This invention describes a MIMO signal receiving apparatus with optimized performance. The following merely illustrates various embodiments of the present invention for purposes of explaining the principles thereof. It is understood that those skilled in the art of telecommunications will be able to devise various equivalents that, although not explicitly described herein, embody the principles of this invention.
It is noted that the detailed circuit constructions of the superheterodyne receiver and the direct conversion receiver are well understood by people skilled in the art of telecommunications. For example,
The signal processing module 416 processes the first digital signal generated by the first analog-to-digital converter 412 and the second digital signal generated by the second analog-to-converter 414 to determine if their corresponding signal-to-noise ratio (SNR) is higher than a predetermined threshold value. If the second digital signal generated by the analog-to-digital converter 414 is determined to have a SNR higher than the predetermined threshold value and the apparatus 400 is not operating in a power saving mode, the signal processing module 416 will generate an antenna switch control signal that controls the antenna switch module to keep directing the first and second RF signals to the superheterodyne receiver 408 and the direct conversion receiver 410, respectively. In such case, the signal processing module 416 will also generate receiver control signals to enable both the superheterodyne receiver 408 and the direct conversion receiver 410. This operation mode is particularly utilized when the apparatus 400 is located in a low interfered area and is not on serious power constraints.
One advantage of the proposed MIMO signal receiving apparatus is that its size, manufacturing costs, and power consumption rates are lower than those of the conventional MIMO signal receiving apparatus that includes two superheterodyne receivers. As understood by people skilled in the art of telecommunications that the manufacturing costs of a superheterodyne receiver are higher than that of a direct conversion receiver. Thus, the manufacturing costs of the proposed apparatus 400 that contains one superheterodyne receiver and one direct conversion receiver would be lower than those of its conventional counterpart, which contains two superheterodyne receivers. Similarly, as understood by people skilled in the art of telecommunications that the size and power consumption rate of a superheterodyne receiver are higher than that of a direct conversion receiver. Thus, the size and power consumption rate of the proposed apparatus 400 that contains one superheterodyne receiver and one direct conversion receiver would be smaller than those of its conventional counterpart, which contains two superheterodyne receivers.
The signal processing module 416 processes the first digital signal generated by the first analog-to-digital converter 412 and the second digital signal generated by the second analog-to-converter 414 to determine if their corresponding SNR is higher than a predetermined threshold value. If the second digital signal generated by the analog-to-digital converter 414 is determined to have a SNR lower than the predetermined threshold value, the signal processing module 416 will generate an antenna switch control signal that controls the antenna switch module 406 to direct both the first and second RF signals to the superheterodyne receiver 408. In the mean time, the signal processing module 416 will also generate a first receiver control signal to enable the superheterodyne receiver 408, and a second receiver control signal to disable the direct conversion receiver 410. This operation mode is utilized, for example, when the apparatus 400 is located in a high interfered area where the direct conversion receiver cannot provide quality outputs. The signal processing module 416 will keep monitoring the SNR of the second digital signal. Once it is determined to be higher than the predetermined threshold value, the signal processing module will switch the apparatus 400 back to the MIMO mode.
In addition to the cost, size, and power consumption advantages mentioned above, the proposed MIMO signal receiving apparatus is able to provide diversity gains, such that it can function in high interfered areas where its conventional counterpart, that includes only direct conversion receivers, cannot function properly.
The signal processing module 416 processes the first digital signal generated by the first analog-to-digital converter 412 and the second digital signal generated by the second analog-to-converter 414 to determine if their corresponding SNR is higher than a predetermined threshold value. If the second digital signal generated by the analog-to-digital converter 414 is determined to have a SNR higher than the predetermined threshold value, and the apparatus 400 is operating in a power saving mode, the signal processing module 416 will generate an antenna switch control signal that controls the antenna switch module 406 to direct both the first and second RF signals to the direct conversion receiver 410. In the meantime, the signal processing module 416 will also generate a first receiver control signal to disable the superheterodyne receiver 408, and a second receiver control signal to enable the direct conversion receiver 410. This operation mode is utilized, for example, when the apparatus 400 is located in a low interfered area under power constraints, such as being powered by batteries. In addition to the advantages discussed above, this operation mode allows the apparatus 400 to further operate in a power-efficient mode.
It is noted that although the above embodiments use a two-receiver MIMO signal receiving apparatus as an example to explain the principles of the invention, the number of receivers that can be implemented is by no means limited to two. More superheterodyne receivers and direct conversion receivers can be implemented in order to achieve further optimal performance.
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
The present application claims the benefits of U.S. Patent Provisional Application No. 60/816,929 filed on Jun. 27, 2006, entitled “Multiple Receiver Architecture Optimized for Performance, Cost, and Size for Use in MIMO Mobile Wireless Broadband Receiver.”
Number | Date | Country | |
---|---|---|---|
60816929 | Jun 2006 | US |