An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.
Electrically tintable windows such as electrochromic windows, sometimes referred to as “smart windows,” have been deployed in limited installations. As such windows gain acceptance and are more widely deployed, they may require increasingly sophisticated control and monitoring systems, as there may be a various systems interacting with smart windows for the benefit of buildings and associated infrastructure. Improved techniques for managing interacting building systems are necessary.
Certain aspects of the disclosure pertain to a plurality of interacting systems including a window control system and at least one other system which may be a lighting system, an HVAC systems, a security system, and/or a home appliance control system. The window control system and the at least one other system are configured to communicate via an application programming interface (API). The window control system is configured to control the optical state of one or more optically switchable windows.
In certain embodiments, the window control system includes a window controller configured to control transitions of at least one optically switchable window. In certain embodiments, the window control system includes a plurality of electrochromic windows in electrical communication with one or more window controllers configured to communicate over a network.
In certain embodiments, the at least one other system is the home appliance control system. In certain embodiments, the at least one other system is the HVAC system. In some implementations, the interacting systems additionally include a building management system configured to control the HVAC system. In such cases, the API may be configured to permit the window control system and the building management system to communicate. In certain embodiments, the at least one other system is the lighting system.
In some implementations, the window control system and the at least one other system are configured to provide data obtained or generated by the window control system to the at least one other system. In some implementations, the window control system and the at least one other system are configured such that the window control system controls one or more devices of the at least one other system.
In certain embodiments, the window control system and the at least one other system are configured such that the at least one other system controls one or more devices of the window control system. In such embodiments, the at least one other system is the HVAC system or the lighting system. As an example, the devices of the window control system include a sensor and/or an optically switchable window.
Another aspect of this disclosure pertains to methods of communicating among a plurality of interacting systems, which may be a window control system and at least one other system selected from the group consisting of a lighting system, an HVAC systems, a security system, and a home appliance control system. In some embodiments, the method is characterized by the following operations: (a) receiving a communication from the window control system or from the at least one other system and addressed to the other of the window control system and the at least one other system, wherein the communication has a format specified by an applications program interface (API) for communicating between the window control system and the at least one other system; (b) providing instructions and/or data contained in the communication to the addressed window control system or at least one other system; and (c) performing, at the addressed window control system or at least one other system, one or more operations using the instructions and/or data contained in the communication.
In certain embodiments, the window control system includes a window controller configured to control transitions of at least one optically switchable window. The window control system may also include a plurality of electrochromic windows in electrical communication with one or more window controllers configured to communicate over a network.
In certain embodiments, the at least one other system is the home appliance control system. In certain embodiments, the at least one other system is the HVAC system. In some such embodiments, a building management system is configured to control the HVAC system, and the HVAC system receives the communication from the window control system via the API. In certain embodiments, the at least one other system is the lighting system.
In some implementations, the at least one other system receives the communication from the window control system, and the communication includes data obtained or generated by the window control system. In some implementations, the at least one other system receives the communication from the window control system, and the communication includes instructions from the window control system for controlling one or more devices of the at least one other system.
In some implementations, the window control system receives the communication from the at least one other system, and the communication includes instructions from the at least one other system for controlling one or more devices of the window control system. As an example, the devices controlled on the window control system include a sensor and/or an optically switchable window. As further examples, the at least one other system is the HVAC system and/or the lighting system.
These and other features and advantages will be described in further detail with reference to the associated drawings.
This document describes, inter alia, a platform for communicating among one or more otherwise independent systems involved in controlling functions of buildings or other sites having switchable optical devices deployed therein. Such independent systems include a window control system and one or more other independent systems such as systems that control residential home products (e.g., NEST (Nest Labs of Palo Alto, California), which controls thermostats, smoke alarms, etc.), HVAC systems, security systems, lighting control systems, and the like. Together the systems control and/or monitor multiple features and/or products, including switchable windows and other infrastructure of a site, which may be a commercial, residential, or public site. Networks and related infrastructure that may be used with the disclosed embodiments are presented in
In some cases, a site has one or more controllers that control the switching of one or more deployed devices. The site may also have sensors such as light sensors, thermal sensors, and/or occupancy sensors that provide data used in making decisions about when and by how much to switch the devices. In certain embodiments, the site employs switchable optical devices such as electrochromic devices on structures such as windows and/or mirrors. In the description that follows, switchable optical devices are often referred to as “windows” or “electrochromic windows”. It should be understood that such terms include structures other windows that have switchable optical devices. Further, the switchable devices are not limited to electrochromic devices, but include such other switchable devices as liquid crystal devices, electrophoretic device, and the like, which may be non-pixelated.
Typically, one of the interacting systems is a window control network. The interacting systems of a site may use sensor output or other information of one system to make decisions about the operation of a different system. Further, a system may analyze information it collects from a site (or sites) to provide control instructions or other instructions for a different system. One system may, if appropriate, control the functioning of elements on a different system. For example, a window network control system may send instructions to a lighting system and/or a HVAC system to adjust the lighting level or air conditioning level in a room or zone where the window system controls tint levels of windows. To permit the independent systems to interact they may need to express their properties and/or functions via Application Programming Interfaces (APIs).
Systems employ APIs to allow external systems to access data and/or functioning that is otherwise opaque to the external systems. APIs provide syntax and a portal to permit the access. For example, an API for a window control system may allow access to window sensor data (e.g., temperature) through a URL, user name, and handshake. HomeKit compliant definitions provide APIs for controlling Apple (Apple Inc. of Cupertino, CA) home appliances and Thread compliant definitions provide APIs for controlling appliances of many other technology companies including NEST and Samsung (Samsung Group of Seoul, South Korea). Thread and HomeKit define standard connection protocols for messaging.
An “optically switchable device” or “switchable optical device” is a thin device that changes optical state in response to electrical input. It reversibly cycles between two or more optical states. Switching between these states is controlled by applying predefined current and/or voltage to the device. The device typically includes two thin conductive sheets that straddle at least one optically active layer. The electrical input driving the change in optical state is applied to the thin conductive sheets. In certain implementations, the input is provided by bus bars in electrical communication with the conductive sheets.
Examples of optically switchable devices include electrochromic devices, certain electrophoretic devices, liquid crystal devices, and the like. Optically switchable devices may be provided on various optically switchable products, such as windows, mirrors, displays, and the like. In certain embodiments, these products are typically provided in a non-pixelated format.
An “optical transition” is a change in any one or more optical properties of an optically switchable device. The optical property that changes may be, for example, tint, reflectivity, refractive index, color, etc. In certain embodiments, the optical transition will have a defined starting optical state and a defined ending optical state. For example the starting optical state may be 80% transmissivity and the ending optical state may be 50% transmissivity. The optical transition is typically driven by applying an appropriate electric potential across the two thin conductive sheets of the optically switchable device.
A “starting optical state” is the optical state of an optically switchable device immediately prior to the beginning of an optical transition. The starting optical state is typically defined as the magnitude of an optical state which may be tint, reflectivity, refractive index, color, etc. The starting optical state may be a maximum or minimum optical state for the optically switchable device; e.g., 90% or 4% transmissivity. Alternatively, the starting optical state may be an intermediate optical state having a value somewhere between the maximum and minimum optical states for the optically switchable device; e.g., 50% transmissivity.
An “ending optical state” is the optical state of an optically switchable device immediately after the complete optical transition from a starting optical state. The complete transition occurs when optical state changes in a manner understood to be complete for a particular application. For example, a complete tinting might be deemed a transition from 75% optical transmissivity to 10% transmissivity. The ending optical state may be a maximum or minimum optical state for the optically switchable device; e.g., 90% or 4% transmissivity. Alternatively, the ending optical state may be an intermediate optical state having a value somewhere between the maximum and minimum optical states for the optically switchable device; e.g., 50% transmissivity.
“Bus bar” refers to an electrically conductive strip attached to a conductive layer such as a transparent conductive electrode spanning the area of an optically switchable device. The bus bar delivers electrical potential and current from an external lead to the conductive layer. An optically switchable device includes two or more bus bars, each connected to a single conductive layer of the device. In various embodiments, a bus bar forms a long thin line that spans most of the length of the length or width of a device. Often, a bus bar is located near the edge of the device.
“Applied Voltage” or Vapp refers the difference in potential applied to two bus bars of opposite polarity on the electrochromic device. Each bus bar is electronically connected to a separate transparent conductive layer. The applied voltage may different magnitudes or functions such as driving an optical transition or holding an optical state. Between the transparent conductive layers are sandwiched the optically switchable device materials such as electrochromic materials. Each of the transparent conductive layers experiences a potential drop between the position where a bus bar is connected to it and a location remote from the bus bar. Generally, the greater the distance from the bus bar, the greater the potential drop in a transparent conducting layer. The local potential of the transparent conductive layers is often referred to herein as the VTCL. Bus bars of opposite polarity may be laterally separated from one another across the face of an optically switchable device.
“Effective Voltage” or Veff refers to the potential between the positive and negative transparent conducting layers at any particular location on the optically switchable device. In Cartesian space, the effective voltage is defined for a particular x,y coordinate on the device. At the point where Veff is measured, the two transparent conducting layers are separated in the z-direction (by the device materials), but share the same x,y coordinate.
“Hold Voltage” refers to the applied voltage necessary to indefinitely maintain the device in an ending optical state.
“Drive Voltage” refers to the applied voltage provided during at least a portion of the optical transition. The drive voltage may be viewed as “driving” at least a portion of the optical transition. Its magnitude is different from that of the applied voltage immediately prior to the start of the optical transition. In certain embodiments, the magnitude of the drive voltage is greater than the magnitude of the hold voltage. An example application of drive and hold voltages is depicted in
A window “controller” is used to control the tint level of the electrochromic device of an electrochromic window. In some embodiments, the window controller is able to transition the electrochromic window between two tint states (levels), a bleached state and a colored state. In other embodiments, the controller can additionally transition the electrochromic window (e.g., having a single electrochromic device) to intermediate tint levels. In some disclosed embodiments, the window controller is able to transition the electrochromic window to four or more tint levels. Certain electrochromic windows allow intermediate tint levels by using two (or more) electrochromic lites in a single IGU, where each lite is a two-state lite.
In some embodiments, a window controller can power one or more electrochromic devices in an electrochromic window. In certain embodiments, this function of the window controller is augmented with one or more other functions such as antenna transceiver functionality and/or other functions described below. Window controllers described herein may provide power to switch the optical state of a device. For example, the controller has its own power source and directs application of power from the window power source to the window. In other embodiments, the power source for the optically switchable device may be separate from the window controller. However, it is convenient to include a power source with the window controller and to configure the controller to power the window directly, because it obviates the need for separate wiring for powering the electrochromic window.
Further, the window controllers described herein are described as standalone controllers which may be configured to control the functions of a single optically switchable window or a plurality of such windows, without integration of the window controller into a network such as a building control network or a building management system (BMS). Window controllers, however, may be integrated into a building control network or a BMS.
Window control network—A window control network controls multiple optical switchable devices such as windows in a site and accesses and/or maintains data relevant to controlling the windows. It may receive data about the switchable optical devices and associated controllers and sensors at one or more sites, and from this data, make decisions about switching the devices. It may send data and/or control messages to the windows on the site(s). It may also detect and/or present potential problems, identify trends in the performance of devices and/or controllers, modify algorithms for controlling the switchable optical devices, etc. In disclosed embodiments, a window control network interacts with other systems. Window control networks are further described below, including the description of
Site—This is the building or other location of installed switchable optical devices. The switchable devices are provided in a network and operated under the control of one or more algorithms that collectively make up a window control system. Transitions from one optical state to another may be dictated by programs or logic such as that described in U.S. patent application Ser. No. 13/772,969, filed Feb. 21, 2013, which is incorporated herein by reference in its entirety. A site may have other systems that communicate with the window control network. Examples of the other systems include lighting systems, HVAC systems, fan systems, security systems, and smart thermostat service or other home appliance service. In some cases, the other system is a user-customizable interface for controlling devices in one a plurality of systems. For example, a user may have window tinting, room temperature, and lighting preferences that attach for the user. Such preferences may be triggered by the user's manual input, e.g., via a mobile device, or a system detecting the user's proximity, e.g., through communication with the user's worn digital sensor or smart mobile phone when the user enters a room or zone. Examples of sites include residential buildings, office buildings, schools, airports, hospitals, government buildings, etc. Its rooms may have network controlled thermostats such as those provided by NEST.
In some embodiments, APIs allow external systems to view data collected by the window system. This includes data directly collected by the window system and also includes information relevant to the external systems and derived by the window system from the raw data it collects.
In some embodiments, APIs allow the window control system to access and control third-party systems. For example, a lighting control system may provide an API that under certain conditions allows the window control system to access the lighting control system. In some implementations, the window control system employs associated heuristics that permit or trigger the window control system to control aspects of the external system via an API.
In some embodiments, APIs allow external systems to control aspects of a window control system such as tinting of windows in a particular zone. As with the prior case, there may be particular conditions that trigger the allowance of the external system to access the functionality of the window control system.
In general API interface is deployed or executes on a device or system remote from the window controller of a window control system. For example, the API may execute at the cloud level or master controller level in window control network. However, this need not be the case, and in fact, it may be desirable to have the API execute at the window controller (or have the window controller contain fail over API processing capability) to maintain inter-system communications in the event of loss of window network functionality. In such implementations, the local window controller(s) can locally communicate with third party systems and maintain comfort and service for an occupant.
One example of a window system appropriate for interfacing with other systems is depicted in
System 11 may be implemented in various hardware and/or software configurations. In the depicted embodiment, system 11 includes a data warehouse 13, an analytics server 15, and a report server 17. In the depicted example, the data warehouse interfaces directly with the window controllers and/or sensors by, e.g., a window control network containing a hierarchy of controllers are described below with reference to
Examples of window network configurations are shown in
In certain embodiments, the window intelligence system 11 is implemented in the “cloud”. The system can be centralized or distributed and can be accessed from anywhere using client application by authorized personnel. The various components of the system may be located together or apart in one or more sites, a location remote from all sites and/or in the cloud. Additional features, functions, modules, etc. of the system 11 may include a data and event reporter and a data and event log and/or a database.
Through monitoring of the sensors and controllers, a window intelligence system may provide many types of services such as any one or more of the following services:
The following description presents examples of some types of site information that may be monitored by a window system. The information may be provided from various sources such as voltage and/or current versus time data for individual switchable devices, sensor output data versus time, communications and network events and logs for controller networks, etc. The time variable may be associated with external events such as solar position, weather, etc., as well as time of day or calendar day. Information with a periodic component may be analyzed in the frequency domain as well as the time domain.
In certain embodiments, a connector provides a signal indicating that it is becoming disconnected. A window controller may receive such signals, which can be logged at the window system.
In certain embodiments, the windows, controllers, and/or sensors have their performance or response checked at an initial point in time and thereafter rechecked repeatedly. In some cases, recent performance/response measurements are compared with earlier performance/response measurements to detect trends, deviations, stability, etc. If necessary, adjustments can be made or service can be provided to address trends or deviations detected during comparisons. The collection of relevant parameters for a window, sensor, or controller may serve as a “fingerprint” for the device. Such parameters include voltage response, current response, communications fidelity, etc. as described elsewhere herein. In some embodiments, windows, sensors, and/or controllers are checked and optionally fingerprinted at the factory. For example, a switchable window may go through a burn in procedures during which relevant parameters can be extracted. Windows exhibiting problems can have their current performance compared against earlier fingerprints to optionally determine whether the problem developed after shipping/installation or during operation. Fingerprints can also be generated, optionally automatically, when the devices are commissioned (e.g., installed at a site and initially detected and cataloged). Commissioning is described in PCT Patent Application No. PCT/US2013/036456, filed Apr. 12, 2013, and incorporated herein by reference in its entirety.
A BMS is a computer-based control system installed at a site (e.g., a building) that can monitor and control the site's mechanical and electrical equipment such as ventilation, lighting, power systems, elevators, fire systems, and security systems. In certain embodiments, a BMS may be designed or configured to communicate with a window system to receive control signals and communicate monitored information from systems at the site. A BMS consists of hardware, including interconnections by communication channels to a computer or computers, and associated software for maintaining conditions in the site according to preferences set by the occupants, site manager, and/or window system manager. For example, a BMS may be implemented using a local area network, such as Ethernet. The software can be based on, for example, interne protocols and/or open standards. One example of software is software from Tridium, Inc. (of Richmond, Virginia). One communications protocol commonly used with a BMS is BACnet (building automation and control networks).
A BMS is most common in a large building, and typically functions at least to control the environment within the building. For example, a BMS may control temperature, carbon dioxide levels, and humidity within a building. Typically, there are many mechanical devices that are controlled by a BMS such as heaters, air conditioners, blowers, vents, and the like. To control the building environment, a BMS may turn on and off these various devices under defined conditions. A core function of a typical modern BMS is to maintain a comfortable environment for the building's occupants while minimizing heating and cooling costs/demand. Thus, a modern BMS is used not only to monitor and control, but also to optimize the synergy between various systems, for example, to conserve energy and lower building operation costs.
In some embodiments, a window control system interfaces with a BMS, where the window control system is configured to control one or more electrochromic windows or other tintable windows. In one embodiment, each of the one or more tintable windows includes at least one all solid state and inorganic electrochromic device. In another embodiment, each of the one or more tintable windows includes only all solid state and inorganic electrochromic devices. In another embodiment, one or more of the tintable windows are multistate electrochromic windows, as described in U.S. patent application, Ser. No. 12/851,514, filed on Aug. 5, 2010, and entitled “Multipane Electrochromic Windows.”
Also, the BMS interfaces with a window network 1102. In this example, window network 1102 is depicted as a distributed network of window controllers including a master network controller, 1103, intermediate network controllers, 1105a and 1105b, and end or leaf controllers 1110. End or leaf controllers 1110 may be similar to window controller 450 described with respect to
Each of controllers 1110 can be in a separate location from the tintable window that it controls, or can be integrated into the tintable window. For simplicity, only a few tintable windows of building 1101 are depicted as controlled by master window controller 1102. In a typical setting there may be a large number of tintable windows in a building controlled by window network 1102, which may be a distributed network of window controllers. In alternative embodiments, a single end controller which controls the functions of a single tintable window also falls within the scope of the embodiments disclosed herein.
By incorporating feedback from a window controller, a BMS can provide, for example, enhanced: 1) environmental control, 2) energy savings, 3) security, 4) flexibility in control options, 5) improved reliability and usable life of other systems due to less reliance thereon and therefore less maintenance thereof, 6) information availability and diagnostics, 7) effective use of staff, and various combinations of these, because the tintable windows can be automatically controlled.
In some embodiments, a BMS may not be present or a BMS may be present but may not directly communicate with a master network controller or communicate at a high level with a master network controller. In these embodiments, a master network controller can provide, for example, enhanced: 1) environmental control, 2) energy savings, 3) flexibility in control options, 4) improved reliability and usable life of other systems due to less reliance thereon and therefore less maintenance thereof, 5) information availability and diagnostics, 6) effective use of staff, and various combinations of these, because the tintable windows can be automatically controlled. In these embodiments, maintenance on the BMS does not interrupt control of the tintable windows.
In certain embodiments, a BMS may be in communication with the window system, via an API, to receive control signals and transmit monitored data from one or more systems controlled by the BMS.
A lighting control panel may include circuits or other logic to control the interior lighting, the exterior lighting, the emergency warning lights, the emergency exit signs, and the emergency floor egress lighting. A lighting control panel (e.g., panel 1210) also may access occupancy sensors in the rooms of the site. BMS 1215 may include a server that receives data from and issues commands to the other systems and controllers of site network 1200. For example, BMS 1215 may receive data from and issue commands to each of the window controller 1205, lighting control panel 1210, and security control system 1220. Security control system 1220 may include magnetic card access, turnstiles, solenoid driven door locks, surveillance cameras, burglar alarms, metal detectors, and the like. User console 1225 may be a computer terminal that can be used by the site manager to schedule operations of, control, monitor, optimize, and troubleshoot the different systems of the site. Software from Tridium, Inc. may generate visual representations of data from different systems for user console 1225.
Each of the different controls may control individual devices/apparatus. Window system 1205 controls windows 1255. Lighting control panel 1210 controls lights 1235. BMS 1215 may control HVAC 1230. Security control system 1220 controls security sensors 1240, door locks 1245, and cameras 1250. Data may be exchanged and/or shared between all of the different devices/apparatus and controllers that are part of site network 1200.
In some cases, the systems of site network 1100 or site network 1200 may run according to daily, monthly, quarterly, or yearly schedules. For example, the lighting control system, the window control system, the HVAC, and the security system may operate on a 24 hour schedule accounting for when people are at the site during the work day. At night, the site may enter an energy savings mode, and during the day, the systems may operate in a manner that minimizes the energy consumption of the site while providing for occupant comfort. As another example, the systems may shut down or enter an energy savings mode over a holiday period.
The scheduling information may be combined with geographical information. Geographical information may include the latitude and longitude of a site such as, for example, a building. In the case of a building, geographical information also may include information about the direction that each side of the building faces. Using such information, different rooms on different sides of the building may be controlled in different manners. For example, for east facing rooms of the building in the winter, the window controller may instruct the windows to have no tint in the morning so that the room warms up due to sunlight shining in the room and the lighting control panel may instruct the lights to be dim because of the lighting from the sunlight. The west facing windows may be controllable by the occupants of the room in the morning because the tint of the windows on the west side may have no impact on energy savings. However, the modes of operation of the east facing windows and the west facing windows may switch in the evening (e.g., when the sun is setting, the west facing windows are not tinted to allow sunlight in for both heat and lighting).
Described below is an example of a site such as, for example, the building 1101 in
Further, the temperature within a building may be influenced by exterior light and/or the exterior temperature. For example, on a cold day and with the building being heated by a heating system, rooms closer to doors and/or windows will lose heat faster than the interior regions of the building and be cooler compared to the interior regions.
For exterior condition monitoring, the building may include exterior sensors on the roof of the building. Alternatively, the building may include an exterior sensor associated with each exterior window or an exterior sensor on each side of the building. An exterior sensor on each side of the building could track the irradiance on a side of the building as the sun changes position throughout the day.
When a window controller is integrated into a site network, outputs from exterior sensors may be input to a site network and/or window system. In some cases, these outputs may be provided as input to a local window controller. For example, in some embodiments, output signals from any two or more exterior sensors are received. In some embodiments, only one output signal is received, and in some other embodiments, three, four, five, or more outputs are received. These output signals may be received over a site network.
In some embodiments, the output signals received by sensor(s) include a signal indicating energy or power consumption by a heating system, a cooling system, and/or lighting within the building. For example, the energy or power consumption of the heating system, the cooling system, and/or the lighting of the building may be monitored to provide the signal indicating energy or power consumption. Devices may be interfaced with or attached to the circuits and/or wiring of the building to enable this monitoring. Alternatively, the power systems in the building may be installed such that the power consumed by the heating system, a cooling system, and/or lighting for an individual room within the building or a group of rooms within the building can be monitored.
Tint instructions can be provided to change to tint of the tintable window to a determined level of tint. For example, referring to
In some embodiments, a site including tintable windows may be enrolled in or participate in a demand response program run by the utility or utilities providing power to the site. The program may be a program in which the energy consumption of the site is reduced when a peak load occurrence is expected. The utility may send out a warning signal prior to an expected peak load occurrence. For example, the warning may be sent on the day before, the morning of, or about one hour before the expected peak load occurrence. A peak load occurrence may be expected to occur on a hot summer day when cooling systems/air conditioners are drawing a large amount of power from the utility, for example. The warning signal may be received by a BMS of a building, by the window system, or by window controllers configured to control the tintable windows in the building. This warning signal can be an override mechanism that disengages the tinting control. The BMS or window system can then instruct the window controller(s) to transition the appropriate electrochromic device in the tintable windows to a dark tint level aid in reducing the power draw of the cooling systems in the building at the time when the peak load is expected.
In some embodiments, tintable windows (e.g., electrochromic windows) of windows of a site may be grouped into zones with tintable windows in a zone being instructed in a similar manner. For example, the exterior windows of the site (i.e., windows separating the interior from the exterior of a building), may be grouped into zones, with tintable windows in a zone being instructed in a similar manner. For example, groups of tintable windows on different floors of the building or different sides of a building may be in different zones. In one case, on the first floor of the building, all of the east facing tintable windows may be in zone 1, all of the south facing tintable windows may be in zone 2, all of the west facing tintable windows may be in zone 3, and all of the north facing tintable windows may be in zone 4. In another case, all of the tintable windows on the first floor of the building may be in zone 1, all of the tintable windows on the second floor may be in zone 2, and all of the tintable windows on the third floor may be in zone 3. In yet another case, all of the east facing tintable windows may be in zone 1, all of the south facing tintable windows may be in zone 2, all of the west facing tintable windows may be in zone 3, and all of the north facing tintable windows may be in zone 4. As yet another case, east facing tintable windows on one floor could be divided into different zones. Any number of tintable windows on the same side and/or different sides and/or different floors of the building may be assigned to a zone.
In some embodiments, tintable windows in a zone may be controlled by the same window controller. In some other embodiments, tintable windows in a zone may be controlled by different window controllers, but the window controllers may all receive the same output signals from sensors and use the same function or lookup table to determine the level of tint for the windows in a zone.
In some embodiments, tintable windows in a zone may be controlled by a window controller or controllers that receive an output signal from a transmissivity sensor. In some embodiments, the transmissivity sensor may be mounted proximate the windows in a zone. For example, the transmissivity sensor may be mounted in or on a frame containing an IGU (e.g., mounted in or on a mullion, the horizontal sash of a frame) included in the zone. In some other embodiments, tintable windows in a zone that includes the windows on a single side of the building may be controlled by a window controller or controllers that receive an output signal from a transmissivity sensor.
In some embodiments, a sensor (e.g., photosensor) may provide an output signal to a window controller to control the tintable windows of a first zone (e.g., a master control zone). The window controller may also control the tintable windows in a second zone (e.g., a slave control zone) in the same manner as the first zone. In some other embodiments, another window controller may control the tintable windows in the second zone in the same manner as the first zone.
In some embodiments, a site manager, occupants of rooms in the second zone, or other person may manually instruct (using a tint or clear command or a command from a user console of a BMS, for example) the tintable windows in the second zone (i.e., the slave control zone) to enter a tint level such as a colored state (level) or a clear state. In some embodiments, when the tint level of the windows in the second zone is overridden with such a manual command, the tintable windows in the first zone (i.e., the master control zone) remain under control of the window controller receiving output from the transmissivity sensor. The second zone may remain in a manual command mode for a period of time and then revert back to be under control of the window controller receiving output from the transmissivity sensor. For example, the second zone may stay in a manual mode for one hour after receiving an override command, and then may revert back to be under control of the window controller receiving output from the transmissivity sensor.
In some embodiments, a site manager, occupants of rooms in the first zone, or other person may manually instruct (using a tint command or a command from a user console of a BMS, for example) the windows in the first zone (i.e., the master control zone) to enter a tint level such as a colored state or a clear state. In some embodiments, when the tint level of the windows in the first zone is overridden with such a manual command, the tintable windows in the second zone (i.e., the slave control zone) remain under control of the window controller receiving outputs from the exterior sensor. The first zone may remain in a manual command mode for a period of time and then revert back to be under control of window controller receiving output from the transmissivity sensor. For example, the first zone may stay in a manual mode for one hour after receiving an override command, and then may revert back to be under control of the window controller receiving output from the transmissivity sensor. In some other embodiments, the tintable windows in the second zone may remain in the tint level that they are in when the manual override for the first zone is received. The first zone may remain in a manual command mode for a period of time and then both the first zone and the second zone may revert back to be under control of the window controller receiving output from the transmissivity sensor.
Any of the methods described herein of control of a tintable window, regardless of whether the window controller is a standalone window controller or is interfaced with a site network, may be used control the tint of a tintable window.
The references to a BMS in the above description can be replaced in some or all instances with references to a smart thermostat service or other home appliance service such as NEST. The communication between the window system and the BMS or home appliance service can be via an API as described above.
Some features of this disclosure may be implemented on a mesh network, such as the networks described in U.S. Provisional Patent Application No. 62/085,179, filed Nov. 26, 2014, previously incorporated by reference in its entirety. Devices on a mesh network can make use of information known by the network. For instance, where GPS coordinates of one or more windows are known, the other non-window devices can learn their exact locations based on the GPS data and the relative positions of all the other (window and non-window) devices. Because GPS typically does not work inside a building, direct GPS sensing of device positions inside of a building is difficult or impossible. As such, by using the absolute position information learned from the windows themselves, and the relative positions of the various devices on the network, even non-window devices that are inside of a building can learn of their exact locations. In some implementations, such network devices may be populated into the map that is auto-generated. For example, where an office building uses electrochromic windows and printers that are each capable of connecting to the mesh network, the map generated by the controller(s) may show the relative locations of all the windows and printers connected to the network. A building occupant can use this map (e.g., loaded into a smartphone application, computer, etc.) to help them find their nearest printer or other relevant device on the mesh network. Occupancy sensors and HVAC components may also be connected to or interface with the mesh network. In such cases, the map generated by the controller(s) may show whether particular rooms are occupied based on information from the occupancy sensors, and may show other conditions (e.g., actual temperature, thermostat setting, humidity, status of lights, etc.) based on information from other HVAC components. The accuracy and precision of the map are increased with an increased number of devices on the mesh network, since the additional devices provide further data for the system to piece together.
Windows on the mesh network may be configured to interact with other devices on the mesh network, for example they interact via an API or directly with thermostats or other HVAC components. For instance, where a window or set of windows tint (thereby reducing the rate that heat enters the building through the window(s)), the window(s) may send a signal to a thermostat or other HVAC component to reduce the degree of cooling occurring through air conditioning. Similar signals may be sent to increase the degree of cooling through air conditioning, or to control a heating system. Additionally, information gleaned by the electrochromic window (e.g., through sensors, performance, etc.) may be shared with a thermostat or other HVAC component to help inform decisions made by the thermostat or HVAC.
In some embodiments, the controllers may have instructions to control the windows based on the sensed relative and exact positions/orientations of the various windows. For example, the controllers may have instructions to color east-facing windows early in the morning to prevent the sun from heating up the east-facing rooms, and to bleach the east-facing windows later in the afternoon when the sun is not shining directly into the east-facing rooms. Any control scheme may be used, and may be programmed into a controller by a user or installer, or may be pre-programmed by a manufacturer, vendor, etc. In some embodiments the window controllers are programmable in a similar manner as a thermostat (with the option of controlling a single window or multiple windows together).
In some embodiments, window controllers described herein include components for wired or wireless communication between the window controller, sensors, and separate communication nodes. Wireless or wired communications may be accomplished with a communication interface that interfaces directly with the window controller. Such interface could be native to the microprocessor or provided via additional circuitry enabling these functions. In addition, other systems of a site network may include components for wired or wireless communication between different system elements.
A separate communication node for wireless communications can be, for example, another wireless window controller, an end, intermediate, or master window controller, a remote control device, a BMS, or a window system. Wireless communication is used in the window controller for at least one of the following operations: programming and/or operating the tintable window 505 (
In one embodiment, wireless communication is used to operate the associated tintable windows 505, for example, via an infrared (IR), and/or radio frequency (RF) signal. In certain embodiments, the controller will include a wireless protocol chip, such as Bluetooth, EnOcean, Wi-Fi, ZigBee, and the like. Window controllers may also have wireless communication via a network. Input to the window controller can be manually input by an end user at a wall switch, either directly or via wireless communication, or the input can be from a BMS of a site of which the tintable window is a component or from a window system managing system.
In one embodiment, when the window controller is part of a distributed network of controllers, wireless communication is used to transfer data to and from each of a plurality of tintable windows via the distributed network of controllers, each having wireless communication components. For example, referring again to
In some embodiments, more than one mode of wireless communication is used in the window controller distributed network. For example, a master window controller may communicate wirelessly to intermediate controllers via Wi-Fi or ZigBee, while the intermediate controllers communicate with end controllers via Bluetooth, ZigBee, EnOcean, or other protocol. In another example, window controllers have redundant wireless communication systems for flexibility in end user choices for wireless communication.
System 1400 includes a master window controller 1402 that can send control signals to the tintable windows to control its functions. System 1400 also includes a network 1410 in electronic communication with master window controller 1402. Control logic and instructions for controlling functions of the tintable window(s), and/or sensor data may be communicated to the master window controller 1402 through the network 1410. Network 1410 can be a wired or a wireless network (e.g. a cloud network). In some embodiments, network 1410 may be in communication with a BMS (e.g., over an API) to allow the BMS to send instructions for controlling the tintable window(s) through network 1410 to the tintable window(s) in a building. In some cases, the BMS may be in communication with the window system to receive instructions for controlling the tintable window(s) from the window system. In other embodiments, network 1410 may be in communication with a window system to allow the window system to send instructions for controlling the tintable window(s) through network 1410 to the tintable window(s) in a building. In certain embodiments, the master window controller 1402 and/or the master network controller 1403 are designed or configured to communicate with the window system or component thereof such as a data warehouse.
System 1400 also includes EC devices 400 of the tintable windows (not shown) and wall switches 1490, which are both in electronic communication with master window controller 1402. In this illustrated example, master window controller 1402 can send control signals to EC device(s) to control the tint level of the tintable windows having the EC device(s). Each wall switch 1490 is also in communication with EC device(s) and master window controller 1402. An end user (e.g., occupant of a room having the tintable window) can use the wall switch 1490 to control the tint level and other functions of the tintable window having the EC device(s).
In
In
Each wall switch 1490 can be operated by an end user (e.g., occupant of the room) to control the tint level and other functions of the tintable window in communication with the wall switch 1490. The end user can operate the wall switch 1490 to communicate control signals to the EC devices 400 in the associated tintable window. These signals from the wall switch 1490 may override signals from master window controller 1402 in some cases. In other cases (e.g., high demand cases), control signals from the master window controller 1402 may override the control signals from wall switch 1490. Each wall switch 1490 is also in communication with the leaf or end window controller 1110 to send information about the control signals (e.g. time, date, tint level requested, etc.) sent from wall switch 1490 back to master window controller 1402. In some cases, wall switches 1490 may be manually operated. In other cases, wall switches 1490 may be wirelessly controlled by the end user using a remote device (e.g., cell phone, tablet, etc.) sending wireless communications with the control signals, for example, using infrared (IR), and/or radio frequency (RF) signals. In some cases, wall switches 1490 may include a wireless protocol chip, such as Bluetooth, EnOcean, Wi-Fi, ZigBee, and the like. Although wall switches 1490 depicted in
Wireless communication between, for example, master and/or intermediate window controllers and end window controllers offers the advantage of obviating the installation of hard communication lines. This is also true for wireless communication between window controllers and BMS. In one aspect, wireless communication in these roles is useful for data transfer to and from electrochromic windows for operating the window and providing data to, for example, a BMS for optimizing the environment and energy savings in a building. Window location data as well as feedback from sensors are synergized for such optimization. For example, granular level (window-by-window) microclimate information is fed to a BMS in order to optimize the building's various environments.
The references to a BMS in the above description can be replaced in some or all instances with references to a smart thermostat service or other home appliance service such as NEST. The communication between the window system and the BMS or home appliance service can be via an API as described above.
To speed along optical transitions, the applied voltage is initially provided at a magnitude greater than that required to hold the device at a particular optical state in equilibrium. This approach is illustrated in
The depicted profile results from ramping up the voltage to a set level and then holding the voltage to maintain the optical state. The current peaks 201 are associated with changes in optical state, i.e., coloration and bleaching. Specifically, the current peaks represent delivery of the ionic charge needed to color or bleach the device. Mathematically, the shaded area under the peak represents the total charge required to color or bleach the device. The portions of the curve after the initial current spikes (portions 203) represent electronic leakage current while the device is in the new optical state.
In the figure, a voltage profile 205 is superimposed on the current curve. The voltage profile follows the sequence: negative ramp (207), negative hold (209), positive ramp (211), and positive hold (213). Note that the voltage remains constant after reaching its maximum magnitude and during the length of time that the device remains in its defined optical state. Voltage ramp 207 drives the device to its new the colored state and voltage hold 209 maintains the device in the colored state until voltage ramp 211 in the opposite direction drives the transition from colored to bleached states. In some switching algorithms, a current cap is imposed. That is, the current is not permitted to exceed a defined level in order to prevent damaging the device (e.g. driving ion movement through the material layers too quickly can physically damage the material layers). The coloration speed is a function of not only the applied voltage, but also the temperature and the voltage ramping rate.
The voltage values depicted in
The ramp to drive component is characterized by a ramp rate (increasing magnitude) and a magnitude of Vdrive. When the magnitude of the applied voltage reaches Vdrive, the ramp to drive component is completed. The Vdrive component is characterized by the value of Vdrive as well as the duration of Vdrive. The magnitude of Vdrive may be chosen to maintain Veff with a safe but effective range over the entire face of the electrochromic device as described above.
The ramp to hold component is characterized by a voltage ramp rate (decreasing magnitude) and the value of Vhold (or optionally the difference between Vdrive and Vhold). Vapp drops according to the ramp rate until the value of Vhold is reached. The Vhold component is characterized by the magnitude of Vhold and the duration of Vhold. Actually, the duration of Vhold is typically governed by the length of time that the device is held in the colored state (or conversely in the bleached state). Unlike the ramp to drive, Vdrive, and ramp to hold components, the Vhold component has an arbitrary length, which is independent of the physics of the optical transition of the device.
Each type of electrochromic device will have its own characteristic components of the voltage profile for driving the optical transition. For example, a relatively large device and/or one with a more resistive conductive layer will require a higher value of Vdrive and possibly a higher ramp rate in the ramp to drive component. Larger devices may also require higher values of Vhold. U.S. patent application Ser. No. 13/449,251, filed Apr. 17, 2012, and incorporated herein by reference, discloses controllers and associated algorithms for driving optical transitions over a wide range of conditions. As explained therein, each of the components of an applied voltage profile (ramp to drive, Vdrive, ramp to hold, and Vhold, herein) may be independently controlled to address real-time conditions such as current temperature, current level of transmissivity, etc. In some embodiments, the values of each component of the applied voltage profile is set for a particular electrochromic device (having its own bus bar separation, resistivity, etc.) and does vary based on current conditions. In other words, in such embodiments, the voltage profile does not take into account feedback such as temperature, current density, and the like.
As indicated, all voltage values shown in the voltage transition profile of
In certain embodiments, the ramp to drive component of the voltage profile is chosen to safely but rapidly induce ionic current to flow between the electrochromic and counter electrodes. As shown in
In certain embodiments, the value of Vdrive is chosen based on the considerations described above. Particularly, it is chosen so that the value of Veff over the entire surface of the electrochromic device remains within a range that effectively and safely transitions large electrochromic devices. The duration of Vdrive can be chosen based on various considerations. One of these ensures that the drive potential is held for a period sufficient to cause the substantial coloration of the device. For this purpose, the duration of Vdrive may be determined empirically, by monitoring the optical density of the device as a function of the length of time that Vdrive remains in place. In some embodiments, the duration of Vdrive is set to a specified time period. In another embodiment, the duration of Vdrive is set to correspond to a desired amount of ionic charge being passed. As shown, the current ramps down during Vdrive. See current segment 307.
Another consideration is the reduction in current density in the device as the ionic current decays as a consequence of the available lithium ions completing their journey from the anodic coloring electrode to the cathodic coloring electrode (or counter electrode) during the optical transition. When the transition is complete, the only current flowing across device is leakage current through the ion conducting layer. As a consequence, the ohmic drop in potential across the face of the device decreases and the local values of Veff increase. These increased values of Veff can damage or degrade the device if the applied voltage is not reduced. Thus, another consideration in determining the duration of Vdrive is the goal of reducing the level of Veff associated with leakage current. By dropping the applied voltage from Vdrive to Vhold, not only is Veff reduced on the face of the device but leakage current decreases as well. As shown in
In
In disclosed embodiments, a site may be a building having at least one room having an electrochromic window between the exterior and interior of a building. One or more sensors may be located to the exterior of the building and/or inside the room. In embodiments, the output from the one or more sensors may be input to the signal conditioning module 405 of the window controller 450. In some cases, the output from the one or more sensors may be input to a BMS or to a window system. Although the sensors of depicted embodiments are shown as located on the outside vertical wall of the building, this is for the sake of simplicity, and the sensors may be in other locations, such as inside the room or on other surfaces to the exterior, as well. In some cases, two or more sensors may be used to measure the same input, which can provide redundancy in case one sensor fails or has an otherwise erroneous reading.
Exterior sensor 510 is a device, such as a photosensor, that is able to detect radiant light incident upon the device flowing from a light source such as the sun or from light reflected to the sensor from a surface, particles in the atmosphere, clouds, etc. The exterior sensor 510 may generate a signal in the form of electrical current that results from the photoelectric effect and the signal may be a function of the light incident on the sensor 510. In some cases, the device may detect radiant light in terms of irradiance in units of watts/m2 or other similar units. In other cases, the device may detect light in the visible range of wavelengths in units of foot candles or similar units. In many cases, there is a linear relationship between these values of irradiance and visible light.
Irradiance values from sunlight can be predicted based on the time of day and time of year as the angle at which sunlight strikes the earth changes. Exterior sensor 510 can detect radiant light in real-time, which accounts for reflected and obstructed light due to buildings, changes in weather (e.g., clouds), etc. For example, on cloudy days, sunlight would be blocked by the clouds and the radiant light detected by an exterior sensor 510 would be lower than on cloudless days.
In some embodiments, there may be one or more exterior sensors 510 associated with a single tintable window 505. Output from the one or more exterior sensors 510 could be compared to one another to determine, for example, if one of exterior sensors 510 is shaded by an object, such as by a bird that landed on exterior sensor 510. In some cases, it may be desirable to use relatively few sensors in a building because some sensors can be unreliable and/or expensive. In certain implementations, a single sensor or a few sensors may be employed to determine the current level of radiant light from the sun impinging on the building or perhaps one side of the building. A cloud may pass in front of the sun or a construction vehicle may park in front of the setting sun. These will result in deviations from the amount of radiant light from the sun calculated to normally impinge on the building.
Exterior sensor 510 may be a type of photosensor. For example, exterior sensor 510 may be a charge coupled device (CCD), photodiode, photoresistor, or photovoltaic cell. One of ordinary skill in the art would appreciate that future developments in photosensor and other sensor technology would also work, as they measure light intensity and provide an electrical output representative of the light level.
In some embodiments, output from exterior sensor 510 may be input to a BMS or window system. The input may be in the form of a voltage signal. The BMS or window system may process the input and pass an output signal with tinting instructions to the window controller 450 directly or through a master window controller 1102 (shown in
In disclosed embodiments, window controller 450 can instruct the PWM 415, to apply a voltage and/or current to tintable window 505 to transition it to any one of four or more different tint levels. In disclosed embodiments, tintable window 505 can be transitioned to at least eight different tint levels described as: 0 (lightest), 5, 10, 15, 20, 25, 30, and 35 (darkest). The tint levels may linearly correspond to visual transmittance values and solar gain heat coefficient (SGHC) values of light transmitted through the tintable window 505. For example, using the above eight tint levels, the lightest tint level of 0 may correspond to an SGHC value of 0.80, the tint level of 5 may correspond to an SGHC value of 0.70, the tint level of 10 may correspond to an SGHC value of 0.60, the tint level of 15 may correspond to an SGHC value of 0.50, the tint level of 20 may correspond to an SGHC value of 0.40, the tint level of 25 may correspond to an SGHC value of 0.30, the tint level of 30 may correspond to an SGHC value of 0.20, and the tint level of 35 (darkest) may correspond to an SGHC value of 0.10.
The BMS or window system in communication with the window controller 450 or a master window controller in communication with the window controller 450 may employ any control logic to determine a desired tint level based on signals from the exterior sensor 510 and/or other input. The window controller 415 can instruct the PWM 460 to apply a voltage and/or current to electrochromic window 505 to transition it to the desired tint level.
The references to a BMS in the above description can be replaced in some or all instances with references to a smart thermostat service or other home appliance service such as NEST.
At step 620, logic Modules A, B, and C perform calculations to determine a tint level for each electrochromic window 505 at a single instant in time b. These calculations can be performed by the window controller 450 or by a window system. In certain embodiments, the control logic predictively calculates how the window should transition in advance of the actual transition. In these cases, the calculations in Modules A, B, and C can be based on a future time around or after transition is complete. In these cases, the future time used in the calculations may be a time in the future that is sufficient to allow the transition to be completed after receiving the tint instructions. In these cases, the controller can send tint instructions in the present time in advance of the actual transition. By the completion of the transition, the window will have transitioned to a tint level that is desired for that time.
At step 630, the control logic allows for certain types of overrides that disengage the algorithm at Modules A, B, and C and define override tint levels at step 640 based on some other consideration. One type of override is a manual override. This is an override implemented by an end user who is occupying a room and determines that a particular tint level (override value) is desirable. There may be situations where the user's manual override is itself overridden. An example of an override is a high demand (or peak load) override, which is associated with a requirement of a utility that energy consumption in the building be reduced. For example, on particularly hot days in large metropolitan areas, it may be necessary to reduce energy consumption throughout the municipality in order to not overly tax the municipality's energy generation and delivery systems. In such cases, the building may override the tint level from the control logic to ensure that all windows have a particularly high level of tinting. Another example of an override may be if there is no occupant in the room, for example, over a weekend in a commercial office building. In these cases, the building may disengage one or more Modules that relate to occupant comfort. In another example, an override may be that all the windows may have a high level of tinting in cold weather or all the windows may have a low level of tinting in warm weather.
At step 650, instructions with the tint levels are transmitted over a site network to window controller(s) in communication with electrochromic device(s) in one or more tintable windows 505 in the building. In certain embodiments, the transmission of tint levels to all window controllers of a building may be implemented with efficiency in mind. For example, if the recalculation of tint level suggests that no change in tint from the current tint level is required, then there is no transmission of instructions with an updated tint level. As another example, the building may be divided into zones based on window size. The control logic may calculate a single tint level for each zone. The control logic may recalculate tint levels for zones with smaller windows more frequently than for zones with larger windows.
In some embodiments, the logic in
Also, there may be certain adaptive components of the control logic of embodiments. For example, the control logic may determine how an end user (e.g. occupant) tries to override the algorithm at particular times of day and makes use of this information in a more predictive manner to determine desired tint levels. In one case, the end user may be using a wall switch to override the tint level provided by the predictive logic at a certain time each day to an override value. The control logic may receive information about these instances and change the control logic to change the tint level to the override value at that time of day.
While certain disclosure emphasizes systems, methods, and logic for controlling optically switchable devices (e.g., electrochromic devices), these techniques can also be used to control mechanical shades or a combination of optically switchable devices and mechanical shades. Such a mechanical shade may, for example, include an array of microelectromechanical systems (MEMS) devices or other electromechanical systems (EMS) devices. Windows having a combination of electrochromic devices and EMS systems devices can be found in PCT international application PCT/US2013/07208, titled “MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES,” filed on Nov. 26, 2012, which is hereby incorporated by reference in its entirety. Mechanical shades typically have different power requirements than certain optically switchable devices such as electrochromic devices. For example, while certain electrochromic devices require a few volts to operate, mechanical shades may in some instances require larger voltages in order to establish sufficient potential to physically move the mechanical feature.
Microblinds and microshutters are examples of types of EMS devices. Some examples of microblinds and microshutters, and their methods of fabrication are described respectively in U.S. Pat. Nos. 7,684,105 and 5,579,149, both of which are hereby incorporated by reference in their entirety.
In certain embodiments, a mechanical shade may be an array of EMS devices, where each EMS device including a portion (e.g., a hinge or an anchor) attached to the substrate and a mobile portion. When actuated by electrostatic forces, the mobile portion may move and obscure the substrate. In the unactuated state, the mobile portion may expose the substrate. In the example of some microblinds, the mobile portion may be an overhanging portion of a material layer that curls when actuated by electrostatic forces. In the example of some microshutters, the mobile portion can rotate or curl when actuated. In some cases, the EMS devices may be actuated and controlled by electrostatic control means. In the example of microshutters, the electrostatic control means may control the angle of rotation or curl to different states. The substrate with the array of EMS devices may also include a conductive layer. In the example of microblinds, the microblinds are fabricated using a thin layer(s) under controlled stress. In embodiments with an array of EMS devices, each EMS device has two states, an actuated state and an unactuated state. The actuated state may render the array of EMS devices substantially opaque and the unactuated state may render the array of EMS devices substantially transparent, or vice versa. The actuated and unactuated states may also switch between substantially reflective (or absorptive) and substantially transparent, for example. Other states are also possible when the array of EMS devices is in an actuated or unactuated state. For example, microshutters, a type of MEMS device, may be fabricated from a tinted (but non-opaque) coating, which when shut provide a tinted pane, and when open the tint is substantially removed. Further, some arrays of EMS devices may have three, four, or more states that are able to be transitioned to. In some cases, the EMS devices can modify visible and/or infrared transmission. The EMS devices may reflect in some cases, may be absorptive in other cases, and in yet other embodiments may provide both reflective and absorptive properties. In certain embodiments, the EMS devices may be operated at variable speeds, e.g., to transition from a high transmission state to a low-transmission state, or a no-transmission state. In certain cases, the EMS devices may be used in conjunction with an electrochromic device (or other optically switchable device) as a temporary light blocking measure, e.g., to block light until the associated electrochromic device has transitioned to a lower transmissivity state or a higher transmissivity state.
Number | Name | Date | Kind |
---|---|---|---|
4129861 | Giglia | Dec 1978 | A |
4553085 | Canzano | Nov 1985 | A |
5384653 | Benson et al. | Jan 1995 | A |
5416617 | Loiseaux et al. | May 1995 | A |
5440317 | Jalloul et al. | Aug 1995 | A |
5477152 | Hayhurst | Dec 1995 | A |
5579149 | Moret et al. | Nov 1996 | A |
5867495 | Elliott et al. | Feb 1999 | A |
6039390 | Agrawal et al. | Mar 2000 | A |
6055089 | Schulz et al. | Apr 2000 | A |
6066801 | Kodaira et al. | May 2000 | A |
6262831 | Bauer et al. | Jul 2001 | B1 |
6344748 | Gannon | Feb 2002 | B1 |
6407847 | Poll et al. | Jun 2002 | B1 |
6567708 | Bechtel et al. | May 2003 | B1 |
6707590 | Bartsch | Mar 2004 | B1 |
6897936 | Li et al. | May 2005 | B1 |
6965813 | Granqvist et al. | Nov 2005 | B2 |
7133181 | Greer | Nov 2006 | B2 |
7391420 | Coyne | Jun 2008 | B1 |
7536370 | Masurkar | May 2009 | B2 |
7684105 | Lamontagne et al. | Mar 2010 | B2 |
7739138 | Chauhan et al. | Jun 2010 | B2 |
7800812 | Moskowitz | Sep 2010 | B2 |
7941245 | Popat | May 2011 | B1 |
8149756 | Hottinen | Apr 2012 | B2 |
8213074 | Shrivastava et al. | Jul 2012 | B1 |
8254013 | Mehtani et al. | Aug 2012 | B2 |
8705162 | Brown et al. | Apr 2014 | B2 |
8843238 | Wenzel et al. | Sep 2014 | B2 |
8976440 | Berland et al. | Mar 2015 | B2 |
9081246 | Rozbicki | Jul 2015 | B2 |
9128346 | Shrivastava et al. | Sep 2015 | B2 |
9170008 | Reul et al. | Oct 2015 | B2 |
9225286 | Tweedie | Dec 2015 | B1 |
9300581 | Hui et al. | Mar 2016 | B1 |
9348192 | Brown et al. | May 2016 | B2 |
9442338 | Uhm et al. | Sep 2016 | B2 |
9442341 | Shrivastava et al. | Sep 2016 | B2 |
9454055 | Brown et al. | Sep 2016 | B2 |
9470947 | Nagel et al. | Oct 2016 | B2 |
9494055 | Rusche | Nov 2016 | B2 |
9551913 | Kim et al. | Jan 2017 | B2 |
9677327 | Nagel et al. | Jun 2017 | B1 |
9690174 | Wang | Jun 2017 | B2 |
9709869 | Baumann et al. | Jul 2017 | B2 |
9740074 | Agrawal et al. | Aug 2017 | B2 |
9778533 | Bertolini | Oct 2017 | B2 |
9898912 | Jordan, II et al. | Feb 2018 | B1 |
9906956 | Huang | Feb 2018 | B1 |
9946138 | Shrivastava et al. | Apr 2018 | B2 |
10001691 | Shrivastava et al. | Jun 2018 | B2 |
10110631 | Bauer et al. | Oct 2018 | B2 |
10137764 | Driscoll et al. | Nov 2018 | B2 |
10268098 | Shrivastava et al. | Apr 2019 | B2 |
10286839 | Mazuir et al. | May 2019 | B1 |
10288971 | Phillips et al. | May 2019 | B2 |
10303035 | Brown et al. | May 2019 | B2 |
10329839 | Fasi et al. | Jun 2019 | B2 |
10387221 | Shrivastava et al. | Aug 2019 | B2 |
10409652 | Shrivastava et al. | Sep 2019 | B2 |
10481459 | Shrivastava et al. | Nov 2019 | B2 |
10488837 | Cirino | Nov 2019 | B2 |
10505751 | Casilli | Dec 2019 | B2 |
10514963 | Shrivastava et al. | Dec 2019 | B2 |
10532268 | Tran et al. | Jan 2020 | B2 |
10720766 | Krammer et al. | Jul 2020 | B2 |
10746761 | Rayman et al. | Aug 2020 | B2 |
10747082 | Shrivastava et al. | Aug 2020 | B2 |
10768582 | Shrivastava et al. | Sep 2020 | B2 |
10859983 | Shrivastava et al. | Dec 2020 | B2 |
10917259 | Chein et al. | Feb 2021 | B1 |
10921675 | Barnum et al. | Feb 2021 | B2 |
10949267 | Shrivastava et al. | Mar 2021 | B2 |
10954677 | Scanlin | Mar 2021 | B1 |
10956231 | Shrivastava et al. | Mar 2021 | B2 |
10989977 | Shrivastava et al. | Apr 2021 | B2 |
11016357 | Brown et al. | May 2021 | B2 |
11054792 | Shrivastava et al. | Jul 2021 | B2 |
11073800 | Shrivastava et al. | Jul 2021 | B2 |
11150616 | Shrivastava et al. | Oct 2021 | B2 |
11168910 | Alcala Perez | Nov 2021 | B2 |
11294254 | Patterson et al. | Apr 2022 | B2 |
11384596 | Shrivastava et al. | Jul 2022 | B2 |
11436061 | Shrivastava et al. | Sep 2022 | B2 |
11579571 | Shrivastava et al. | Feb 2023 | B2 |
11681197 | Shrivastava et al. | Jun 2023 | B2 |
11687045 | Shrivastava et al. | Jun 2023 | B2 |
11733660 | Shrivastava et al. | Aug 2023 | B2 |
11740948 | Shrivastava et al. | Aug 2023 | B2 |
11750594 | Vangati et al. | Sep 2023 | B2 |
11754902 | Brown et al. | Sep 2023 | B2 |
20010005083 | Serizawa et al. | Jun 2001 | A1 |
20020024424 | Burns et al. | Feb 2002 | A1 |
20020027504 | Davis et al. | Mar 2002 | A1 |
20020149829 | Mochizuka et al. | Oct 2002 | A1 |
20030101154 | Hisano et al. | May 2003 | A1 |
20030169574 | Maruyama et al. | Sep 2003 | A1 |
20030191546 | Bechtel et al. | Oct 2003 | A1 |
20030227663 | Agrawal et al. | Dec 2003 | A1 |
20040001056 | Atherton et al. | Jan 2004 | A1 |
20040215520 | Butler et al. | Oct 2004 | A1 |
20040236620 | Chauhan et al. | Nov 2004 | A1 |
20050157675 | Feder et al. | Jul 2005 | A1 |
20050270620 | Bauer et al. | Dec 2005 | A1 |
20050270621 | Bauer et al. | Dec 2005 | A1 |
20060018000 | Greer | Jan 2006 | A1 |
20060107616 | Ratti et al. | May 2006 | A1 |
20060174333 | Thomas et al. | Aug 2006 | A1 |
20060279527 | Zehner et al. | Dec 2006 | A1 |
20070053053 | Moskowitz | Mar 2007 | A1 |
20070067048 | Bechtel et al. | Mar 2007 | A1 |
20070115979 | Balay et al. | May 2007 | A1 |
20070285759 | Ash et al. | Dec 2007 | A1 |
20080042012 | Callahan et al. | Feb 2008 | A1 |
20080043316 | Moskowitz | Feb 2008 | A2 |
20080048101 | Romig et al. | Feb 2008 | A1 |
20080147847 | Pitkow et al. | Jun 2008 | A1 |
20080172312 | Synesiou et al. | Jul 2008 | A1 |
20080184350 | Chu | Jul 2008 | A1 |
20080186562 | Moskowitz | Aug 2008 | A2 |
20080211682 | Hyland et al. | Sep 2008 | A1 |
20080238706 | Kenwright | Oct 2008 | A1 |
20090015740 | Sagitov et al. | Jan 2009 | A1 |
20090163170 | Norp et al. | Jun 2009 | A1 |
20090271042 | Voysey | Oct 2009 | A1 |
20090323160 | Egerton et al. | Dec 2009 | A1 |
20100039410 | Becker et al. | Feb 2010 | A1 |
20100052844 | Wesby | Mar 2010 | A1 |
20100172010 | Gustavsson et al. | Jul 2010 | A1 |
20100188057 | Tarng | Jul 2010 | A1 |
20100228854 | Morrison et al. | Sep 2010 | A1 |
20100243427 | Kozlowski et al. | Sep 2010 | A1 |
20100245973 | Wang et al. | Sep 2010 | A1 |
20100274366 | Fata et al. | Oct 2010 | A1 |
20100286839 | Iaquinangelo et al. | Nov 2010 | A1 |
20100286937 | Hedley et al. | Nov 2010 | A1 |
20100315693 | Lam et al. | Dec 2010 | A1 |
20110050756 | Cassidy et al. | Mar 2011 | A1 |
20110071685 | Huneycutt et al. | Mar 2011 | A1 |
20110083152 | Centore, III et al. | Apr 2011 | A1 |
20110097081 | Gupta et al. | Apr 2011 | A1 |
20110124313 | Jones | May 2011 | A1 |
20110148218 | Rozbicki | Jun 2011 | A1 |
20110154022 | Cheng et al. | Jun 2011 | A1 |
20110164317 | Vergohl et al. | Jul 2011 | A1 |
20110223886 | Nasielski et al. | Sep 2011 | A1 |
20110261429 | Sbar et al. | Oct 2011 | A1 |
20120026573 | Collins et al. | Feb 2012 | A1 |
20120033287 | Friedman et al. | Feb 2012 | A1 |
20120062975 | Mehtani et al. | Mar 2012 | A1 |
20120086363 | Golding et al. | Apr 2012 | A1 |
20120140492 | Alvarez | Jun 2012 | A1 |
20120188627 | Chen et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120194895 | Podbelski et al. | Aug 2012 | A1 |
20120229275 | Mattern | Sep 2012 | A1 |
20120235493 | Kiuchi et al. | Sep 2012 | A1 |
20120239209 | Brown et al. | Sep 2012 | A1 |
20120259583 | Noboa et al. | Oct 2012 | A1 |
20120293855 | Shrivastava et al. | Nov 2012 | A1 |
20130013921 | Bhathena et al. | Jan 2013 | A1 |
20130024029 | Tran et al. | Jan 2013 | A1 |
20130054033 | Casilli | Feb 2013 | A1 |
20130060357 | Li et al. | Mar 2013 | A1 |
20130073681 | Jiang et al. | Mar 2013 | A1 |
20130085614 | Wenzel et al. | Apr 2013 | A1 |
20130085615 | Barker | Apr 2013 | A1 |
20130085616 | Wenzel | Apr 2013 | A1 |
20130088331 | Cho et al. | Apr 2013 | A1 |
20130131869 | Majewski et al. | May 2013 | A1 |
20130157493 | Brown | Jun 2013 | A1 |
20130158790 | McIntyre, Jr. et al. | Jun 2013 | A1 |
20130182308 | Guarr et al. | Jul 2013 | A1 |
20130196600 | Capers et al. | Aug 2013 | A1 |
20130241299 | Snyker et al. | Sep 2013 | A1 |
20130243425 | Franklin | Sep 2013 | A1 |
20130271812 | Brown et al. | Oct 2013 | A1 |
20130271813 | Brown | Oct 2013 | A1 |
20130271814 | Brown | Oct 2013 | A1 |
20130278989 | Lam et al. | Oct 2013 | A1 |
20130306615 | Rozbicki et al. | Nov 2013 | A1 |
20140101573 | Kuo | Apr 2014 | A1 |
20140156097 | Nesler et al. | Jun 2014 | A1 |
20140160550 | Brown et al. | Jun 2014 | A1 |
20140170863 | Brown | Jun 2014 | A1 |
20140171016 | Sennett et al. | Jun 2014 | A1 |
20140172557 | Eden et al. | Jun 2014 | A1 |
20140182350 | Bhavaraju et al. | Jul 2014 | A1 |
20140236323 | Brown et al. | Aug 2014 | A1 |
20140243033 | Wala et al. | Aug 2014 | A1 |
20140249876 | Wu et al. | Sep 2014 | A1 |
20140273911 | Dunn et al. | Sep 2014 | A1 |
20140274458 | Kronenberg et al. | Sep 2014 | A1 |
20140300945 | Parker | Oct 2014 | A1 |
20140303788 | Sanders et al. | Oct 2014 | A1 |
20140330538 | Conklin et al. | Nov 2014 | A1 |
20140347190 | Grimm | Nov 2014 | A1 |
20140349497 | Brown et al. | Nov 2014 | A1 |
20140367057 | Feldstein | Dec 2014 | A1 |
20140368899 | Greer | Dec 2014 | A1 |
20140371931 | Lin et al. | Dec 2014 | A1 |
20150002919 | Jack et al. | Jan 2015 | A1 |
20150003822 | Fukada et al. | Jan 2015 | A1 |
20150023661 | Borkenhagen et al. | Jan 2015 | A1 |
20150098121 | Turnbull et al. | Apr 2015 | A1 |
20150116811 | Shrivastava et al. | Apr 2015 | A1 |
20150120297 | Meruva | Apr 2015 | A1 |
20150129140 | Dean et al. | May 2015 | A1 |
20150137792 | Filippi et al. | May 2015 | A1 |
20150160525 | Shi | Jun 2015 | A1 |
20150378230 | Gudmunson et al. | Dec 2015 | A1 |
20150378231 | Greer et al. | Dec 2015 | A1 |
20160070151 | Shrivastava et al. | Mar 2016 | A1 |
20160109778 | Shrivastava et al. | Apr 2016 | A1 |
20160134932 | Karp et al. | May 2016 | A1 |
20160135175 | Tarlazzi | May 2016 | A1 |
20160147100 | Van Oosten et al. | May 2016 | A1 |
20160154290 | Brown et al. | Jun 2016 | A1 |
20160202589 | Nagel et al. | Jul 2016 | A1 |
20160203403 | Nagel et al. | Jul 2016 | A1 |
20160225832 | Kwon et al. | Aug 2016 | A1 |
20160231354 | Rayman et al. | Aug 2016 | A1 |
20160261837 | Thompson et al. | Sep 2016 | A1 |
20170063429 | Flask | Mar 2017 | A1 |
20170070457 | Sachs | Mar 2017 | A1 |
20170075183 | Brown | Mar 2017 | A1 |
20170075323 | Shrivastava et al. | Mar 2017 | A1 |
20170077988 | Flask | Mar 2017 | A1 |
20170080341 | Mao et al. | Mar 2017 | A1 |
20170082903 | Vigano et al. | Mar 2017 | A1 |
20170085834 | Kim et al. | Mar 2017 | A1 |
20170097259 | Brown et al. | Apr 2017 | A1 |
20170139301 | Messere et al. | May 2017 | A1 |
20170197494 | Li | Jul 2017 | A1 |
20170200424 | Xu et al. | Jul 2017 | A1 |
20170212400 | Shrivastava et al. | Jul 2017 | A1 |
20170234067 | Fasi et al. | Aug 2017 | A1 |
20170243122 | Komatsu et al. | Aug 2017 | A1 |
20170251488 | Urban et al. | Aug 2017 | A1 |
20170253801 | Bae et al. | Sep 2017 | A1 |
20170264865 | Huangfu | Sep 2017 | A1 |
20170272317 | Singla et al. | Sep 2017 | A1 |
20170279930 | Zhang | Sep 2017 | A1 |
20170284691 | Sinha et al. | Oct 2017 | A1 |
20170285432 | Shrivastava et al. | Oct 2017 | A1 |
20170285433 | Shrivastava et al. | Oct 2017 | A1 |
20170328121 | Purdy et al. | Nov 2017 | A1 |
20170347129 | Levi et al. | Nov 2017 | A1 |
20170364046 | Westrick, Jr. et al. | Dec 2017 | A1 |
20170364395 | Shrivastava et al. | Dec 2017 | A1 |
20180090992 | Shrivastava et al. | Mar 2018 | A1 |
20180106098 | Unveren et al. | Apr 2018 | A1 |
20180129172 | Shrivastava et al. | May 2018 | A1 |
20180144712 | Threlkel et al. | May 2018 | A1 |
20180176799 | Lange et al. | Jun 2018 | A1 |
20180189117 | Shrivastava et al. | Jul 2018 | A1 |
20180267380 | Shrivastava et al. | Sep 2018 | A1 |
20180284555 | Klawuhn et al. | Oct 2018 | A1 |
20180321042 | Brewer et al. | Nov 2018 | A1 |
20180335939 | Karunamuni et al. | Nov 2018 | A1 |
20190155122 | Brown et al. | May 2019 | A1 |
20190235451 | Shrivastava et al. | Aug 2019 | A1 |
20190271895 | Shrivastava et al. | Sep 2019 | A1 |
20190320033 | Nagata et al. | Oct 2019 | A1 |
20190331978 | Shrivastava et al. | Oct 2019 | A1 |
20190347141 | Shrivastava et al. | Nov 2019 | A1 |
20190353972 | Shrivastava et al. | Nov 2019 | A1 |
20190361411 | Park et al. | Nov 2019 | A1 |
20190384652 | Shrivastava et al. | Dec 2019 | A1 |
20200041963 | Shrivastava et al. | Feb 2020 | A1 |
20200041967 | Shrivastava et al. | Feb 2020 | A1 |
20200045261 | Lim et al. | Feb 2020 | A1 |
20200057421 | Trikha et al. | Feb 2020 | A1 |
20200067865 | Jiménez et al. | Feb 2020 | A1 |
20200103841 | Pillai et al. | Apr 2020 | A1 |
20200150508 | Patterson et al. | May 2020 | A1 |
20200162856 | Ziv et al. | May 2020 | A1 |
20200241379 | Barnum et al. | Jul 2020 | A1 |
20200257179 | Barnum et al. | Aug 2020 | A1 |
20200387041 | Shrivastava et al. | Dec 2020 | A1 |
20210021788 | McNelley et al. | Jan 2021 | A1 |
20210165696 | Shrivastava et al. | Jun 2021 | A1 |
20210191221 | Shrivastava et al. | Jun 2021 | A1 |
20210210053 | Ng et al. | Jul 2021 | A1 |
20210232015 | Brown et al. | Jul 2021 | A1 |
20210246719 | Shrivastava et al. | Aug 2021 | A1 |
20210302799 | Khanna | Sep 2021 | A1 |
20210373511 | Shrivastava et al. | Dec 2021 | A1 |
20210383804 | Makker et al. | Dec 2021 | A1 |
20210390953 | Makker et al. | Dec 2021 | A1 |
20220011729 | Shrivastava et al. | Jan 2022 | A1 |
20220121078 | Vollen et al. | Apr 2022 | A1 |
20220159077 | Shrivastava et al. | May 2022 | A1 |
20220171248 | Shrivastava et al. | Jun 2022 | A1 |
20220179275 | Patterson et al. | Jun 2022 | A1 |
20220231399 | Brown et al. | Jul 2022 | A1 |
20220298850 | Shrivastava et al. | Sep 2022 | A1 |
20220316269 | Shrivastava et al. | Oct 2022 | A1 |
20220337596 | Smith et al. | Oct 2022 | A1 |
20220365494 | Shrivastava et al. | Nov 2022 | A1 |
20220365830 | Shrivastava et al. | Nov 2022 | A1 |
20230041490 | Vangati et al. | Feb 2023 | A1 |
20230074720 | Brown et al. | Mar 2023 | A1 |
20230120049 | Vangati et al. | Apr 2023 | A1 |
20230333520 | Shrivastava et al. | Oct 2023 | A1 |
20230341740 | Shrivastava et al. | Oct 2023 | A1 |
20230393542 | Shrivastava et al. | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
1161092 | Oct 1997 | CN |
1219251 | Jun 1999 | CN |
1311935 | Sep 2001 | CN |
1599280 | Mar 2005 | CN |
1692348 | Nov 2005 | CN |
1723658 | Jan 2006 | CN |
101154104 | Apr 2008 | CN |
101253460 | Aug 2008 | CN |
101501757 | Aug 2009 | CN |
101510078 | Aug 2009 | CN |
101856193 | Oct 2010 | CN |
102325326 | Jan 2012 | CN |
102414601 | Apr 2012 | CN |
102598469 | Jul 2012 | CN |
202443309 | Sep 2012 | CN |
103051737 | Apr 2013 | CN |
103168269 | Jun 2013 | CN |
203019761 | Jun 2013 | CN |
103238107 | Aug 2013 | CN |
103282841 | Sep 2013 | CN |
103327126 | Sep 2013 | CN |
103345236 | Oct 2013 | CN |
103547965 | Jan 2014 | CN |
103649826 | Mar 2014 | CN |
103842735 | Jun 2014 | CN |
103987909 | Aug 2014 | CN |
104114804 | Oct 2014 | CN |
104321497 | Jan 2015 | CN |
104335595 | Feb 2015 | CN |
105143586 | Dec 2015 | CN |
105974160 | Sep 2016 | CN |
106125444 | Nov 2016 | CN |
106164973 | Nov 2016 | CN |
106462023 | Feb 2017 | CN |
106575064 | Apr 2017 | CN |
107850815 | Mar 2018 | CN |
108139644 | Jun 2018 | CN |
0917667 | May 1999 | EP |
1929701 | Jun 2008 | EP |
2090961 | Aug 2009 | EP |
2357544 | Aug 2011 | EP |
2648086 | Oct 2013 | EP |
2764998 | Aug 2014 | EP |
2357544 | Oct 2014 | EP |
3015915 | May 2016 | EP |
2837205 | Feb 2017 | EP |
3293941 | Mar 2018 | EP |
3352053 | Jul 2018 | EP |
3230943 | Jul 2021 | EP |
H10215492 | Aug 1998 | JP |
H10246078 | Sep 1998 | JP |
H11500838 | Jan 1999 | JP |
2003284160 | Oct 2003 | JP |
2004332350 | Nov 2004 | JP |
2006287729 | Oct 2006 | JP |
2007156909 | Jun 2007 | JP |
4139109 | Aug 2008 | JP |
2010152646 | Jul 2010 | JP |
2012017614 | Jan 2012 | JP |
2012533060 | Dec 2012 | JP |
3184348 | Jun 2013 | JP |
2018050290 | Mar 2018 | JP |
2018507337 | Mar 2018 | JP |
2019186771 | Oct 2019 | JP |
19990088613 | Dec 1999 | KR |
20030040361 | May 2003 | KR |
20030073121 | Sep 2003 | KR |
20070089370 | Aug 2007 | KR |
20090066107 | Jun 2009 | KR |
20120045915 | May 2012 | KR |
20120092921 | Aug 2012 | KR |
20120117409 | Oct 2012 | KR |
20130023668 | Mar 2013 | KR |
20130026740 | Mar 2013 | KR |
20130112693 | Oct 2013 | KR |
101323668 | Nov 2013 | KR |
101346862 | Jan 2014 | KR |
20140004175 | Jan 2014 | KR |
101799323 | Dec 2017 | KR |
20190142032 | Dec 2019 | KR |
20210032133 | Mar 2021 | KR |
20210039721 | Apr 2021 | KR |
104808 | May 2011 | RU |
2012107324 | Sep 2013 | RU |
200532346 | Oct 2005 | TW |
201029838 | Aug 2010 | TW |
201635840 | Oct 2016 | TW |
I607269 | Dec 2017 | TW |
WO-0124700 | Apr 2001 | WO |
WO-03092309 | Nov 2003 | WO |
WO-2012079159 | Jun 2012 | WO |
WO-2012125332 | Sep 2012 | WO |
WO-2012125348 | Sep 2012 | WO |
WO-2012130262 | Oct 2012 | WO |
WO-2013046112 | Apr 2013 | WO |
WO 2013155467 | Oct 2013 | WO |
WO-2013155467 | Oct 2013 | WO |
WO-2013158464 | Oct 2013 | WO |
WO-2013177575 | Nov 2013 | WO |
WO-2014059268 | Apr 2014 | WO |
WO-2014082092 | May 2014 | WO |
WO-2014121809 | Aug 2014 | WO |
WO-2014124701 | Aug 2014 | WO |
WO-2014130471 | Aug 2014 | WO |
WO-2015051262 | Apr 2015 | WO |
WO-2015113592 | Aug 2015 | WO |
WO-2015134789 | Sep 2015 | WO |
WO-2016004109 | Jan 2016 | WO |
WO-2016085964 | Jun 2016 | WO |
WO-2016094445 | Jun 2016 | WO |
WO-2016183059 | Nov 2016 | WO |
WO-2017007841 | Jan 2017 | WO |
WO-2017007942 | Jan 2017 | WO |
WO-2017075059 | May 2017 | WO |
WO-2017189618 | Nov 2017 | WO |
WO-2018067377 | Apr 2018 | WO |
WO-2018098089 | May 2018 | WO |
WO-2018200702 | Nov 2018 | WO |
WO-2018200740 | Nov 2018 | WO |
WO-2018200752 | Nov 2018 | WO |
WO-2019157602 | Aug 2019 | WO |
WO-2019203931 | Oct 2019 | WO |
WO-2019204205 | Oct 2019 | WO |
WO-2019213441 | Nov 2019 | WO |
WO-2020172187 | Aug 2020 | WO |
WO-2020185941 | Sep 2020 | WO |
WO-2021211798 | Oct 2021 | WO |
Entry |
---|
“Sage Product Highlights” screenshot, accessed Aug. 28, 2015, 1 page. |
“SageGlass Mobile App” screenshot, accessed Aug. 28, 2015, 1 page. |
“SageGlass Unplugged” screenshot, accessed Aug. 28, 2015, 1 page. |
“SageGlass Unplugged™—wireless dynamic glass”, 2014, 2 pages. |
APC by Schneider Electric, Smart-UPS 120V Product Brochure, 2013, 8 pp. |
AU Office Action dated Jan. 11, 2022, in Application No. AU2021201145. |
AU Office action dated Sep. 30, 2022, in AU Application No. AU2021215134. |
AU Office action dated Apr. 4, 2022, in AU Application No. AU2020226999. |
AU Office action dated Oct. 12, 2022, in AU Application No. AU2020226999. |
AU Office action dated Oct. 22, 2021, in AU Application No. AU2020226999. |
Australian Examination Report dated Dec. 24, 2019 in AU Application No. 2015227056. |
Australian Examination Report dated Mar. 2, 2020 in AU Application No. 2015353569. |
Australian Office Action dated Aug. 10, 2020 in AU Application No. 2015360714. |
Australian Office Action dated Aug. 9, 2021 in AU Application No. 2015360714. |
Australian Office Action dated Dec. 4, 2020 in AU Application No. 2015360714. |
Australian Office Action dated Jun. 4, 2021 in AU Application No. 2015360714. |
Byun, J. et al., “Development of a Self-adapting Intelligent System for Building Energy Saving and Context-aware Smart Services”, IEEE Transactions on Consumer Electronics, Feb. 2011, vol. 57, No. 1, pp. 90-98. |
CA Office Action dated Dec. 13, 2021, in Application No. CA2970300. |
CA Office Action dated Dec. 23, 2021, in Application No. CA2941526. |
CA Office Action dated Sep. 13, 2022, in Application No. CA2970300. |
Cecilio, J., et al., “A configurable middleware for processing heterogenous industrial intelligent sensors,” IEEE 16th International Conference on Intelligent Engineering Systems (INES), Jun. 15, 2012, pp. 145-149. |
Chen, H. et al. “The Design and Implementation of a Smart Building Control System”, 2009 IEEE International Conference on e-Business Engineering, pp. 255-262. |
CN Office Action dated Aug. 1, 2022, in Application No. CN201880037591.6 With English translation. |
CN Office action dated Aug. 22, 2022 in Application No. CN202011547257.0 With English translation. |
CN Office Action dated Aug. 31, 2022 in Application No. CN201780069604.3. |
CN Office Action dated Dec. 29, 2021, in application No. 202010466929.9 with English translation. |
CN Notice of Allowance with Supplemental Search Report (w/translation) dated Mar. 1, 2021 in CN Application No. 201580040461.4. |
CN Office Action dated May 17, 2022, in Application No. CN201780069604.3 With English Translation. |
CN Office Action dated Apr. 18, 2022, in Application No. CN202011547257.0 with English translation. |
CN Office Action dated Aug. 16, 2019 in CN Application No. 201580015979.2. |
CN Office Action dated Aug. 19, 2022, in Application No. CN202080022001.X with English translation. |
CN Office Action dated Aug. 28, 2018 in CN Application No. 201580070776.3. |
CN Office Action dated Dec. 1, 2021, in application No. CN201780069604.3 with English translation. |
CN Office Action dated Feb. 2, 2019 in CN Application No. 201580015979.2. |
CN Office Action dated Feb. 3, 2020 in CN Application No. 201580072749.X. |
CN Office Action dated Jan. 15, 2020 in CN Application No. 201580015979.2. |
CN Office Action dated Jun. 29, 2021 in CN Application No. 202010466929.9. |
CN Office Action dated Jun. 3, 2020 in CN Application No. 201580015979.2. |
CN Office Action dated Jun. 3, 2021 in CN Application No. 201580072749.X. |
CN Office Action dated Mar. 19, 2019 in CN Application No. 201580070776.3. |
CN Office Action dated Mar. 2, 2022, in Application No. CN201880037591.6 with English translation. |
CN Office Action dated Mar. 8, 2021 in CN Application No. 201580072749.X. |
CN Office Action dated Mar. 9, 2020 in CN Application No. 201580040461.4. |
CN Office Action dated May 20, 2022, in Application No. CN202010466929.9 with English translation. |
CN Office Action dated Nov. 1, 2022, in Application No. CN201880037591.6. |
CN Office Action dated Nov. 12, 2021, in Application No. CN20158072749 with English translation. |
CN Office Action dated Oct. 21, 2020 in CN Application No. 201580040461.4. |
CN Office Action dated Oct. 9, 2019 in CN Application No. 201580070776.3. |
CN Office Action dated Sep. 28, 2022, in Application No. CN202010466929.9. |
CN Office Action dated Sep. 30, 2020 in CN Application No. 201580072749.X. |
Duchon, Claude E. et al., “Estimating Cloud Type from Pyranometer Observations,” Journal of Applied Meteorology, vol. 38, Jan. 1999, pp. 132-141. |
EP Office Action dated Jul. 13, 2022 in Application No. EP20170858928. |
EP Office Action dated Sep. 12, 2022 in Application No. EP20180791117.7. |
EP Examination Report dated Mar. 4, 2019 in EP Application No. 15814233.1. |
EP Extended European Search Report dated Sep. 14, 2021, in the application EP21182449.7. |
EP Extended Search Report dated Dec. 17, 2019 in EP Application No. 19202054. |
EP Extended Search Report dated Feb. 15, 2018 in EP Application No. 15814233.1. |
EP Extended Search Report dated Jun. 19, 2017 in EP Application No. 15758538.1. |
EP Extended Search Report dated Jun. 5, 2018 in EP Application No. 15868003.3. |
EP Extended Search Report dated Nov. 11, 2020 in EP Application No. 18791117.7. |
EP Extended Search Report dated Nov. 28, 2019 in EP Application No. 19188907.0. |
EP Extended Search Report dated Nov. 8, 2018 in EP Application No. 15863112.7. |
EP Extended Search Report dated Oct. 1, 2020 in EP Application No. 17858928.9. |
EP Office Action dated Jan. 17, 2022, in Application No. 17858928.9. |
EP Office Action dated Jun. 30, 2022 in Application No. EP20190727174. |
EP Office Action dated Aug. 21, 2018 in EP Application No. 15758538.1. |
EP office action dated Aug. 25, 2021, in EP Application No. EP19202054.3. |
EP Office Action dated Feb. 15, 2022, in Application No. EP19188907.0. |
EP Office Action dated Jan. 29, 2021 in EP Application No. 15868003.3. |
EP Office Action dated May 14, 2020 in EP Application No. 15868003.3. |
EP Office Action dated Nov. 19, 2020 in EP Application No. 15758538.1. |
EP Search Report dated Dec. 10, 2021, in Application No. EP19787808.5. |
European Office Action dated Feb. 25, 2021 in EP Application No. 15863112.7. |
Hameed, Z. et al., “Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms: a Review.”, Renewable and Sustainable energy reviews, 2009, vol. 13, pp. 1-39. |
IN Office Action dated Aug. 5, 2022 in Application No. IN201937050525. |
IN Office Action dated Jan. 13, 2022, in Application No. 201937044701. |
IN Office Action dated Aug. 2, 2021 in IN Application No. 201637028587. |
IN Office Action dated Nov. 24, 2020 in IN Application No. 201737020192. |
Indian Office Action dated Feb. 24, 2021 in IN Application No. 201737021981. |
International Preliminary Report on Patentability dated Mar. 3, 2022, in Application No. PCT/US2020/070427. |
International Preliminary Report on Patentability dated Oct. 6, 2022 in PCT Application PCT/US2021/023834. |
International Search Report and Written Opinion dated Sep. 1, 2022 in Application No. PCT/US2022/028850. |
International Preliminary Report on Patentability dated Apr. 18, 2019 in PCT Application No. PCT/US17/54120. |
International Preliminary Report on Patentability dated Jan. 12, 2017 in PCT Application No. PCT/US15/38667. |
International Preliminary Report on Patentability dated Jun. 22, 2017 in PCT Application No. PCT/US15/64555. |
International Preliminary Report on Patentability dated Jun. 8, 2017 in PCT/US2015/062480. |
International Preliminary Report on Patentability dated Nov. 12, 2020 in PCT Application No. PCT/US2019/030467. |
International Preliminary Report on Patentability dated Nov. 7, 2019 in PCT Application No. PCT/US2018/029406. |
International Preliminary Report on Patentability dated Nov. 7, 2019 in PCT Application No. PCT/US2018/029460. |
International Preliminary Report on Patentability dated Oct. 29, 2020 in PCT/US2019/019455. |
International Preliminary Report on Patentability dated Sep. 15, 2016 in Application No. PCT/US2015/019031. |
International Search Report and Written Opinion dated Apr. 28, 2020 in PCT Application No. PCT/US2020/018677. |
International Search Report and Written Opinion dated Feb. 15, 2016 in PCT/US2015/062480. |
International Search Report and Written Opinion dated Jul. 6, 2022, in PCT Application No. PCT/US2022/020730. |
International Search Report and Written Opinion dated Jul. 11, 2019 in PCT Application No. PCT/US2019/030467. |
International Search Report and Written Opinion dated Mar. 29, 2016 in PCT Application No. PCT/US15/64555. |
International Search Report and Written Opinion dated May 29, 2015 in Application No. PCT/US2015/019031. |
International Search Report and Written Opinion dated Nov. 16, 2018 in PCT Application No. PCT/US2018/029460. |
International Search Report and Written Opinion dated Oct. 15, 2018 in PCT Application No. PCT/US2018/029406. |
International Search Report and Written Opinion dated Oct. 16, 2015 in PCT Application No. PCT/US15/38667. |
International Search Report and Written Opinion dated Sep. 1, 2022, in Application No. PCT/US2022/024812. |
International Search Report and Written Opinion (ISA/KR) dated Jan. 9, 2018 in PCT Application No. PCT/US17/54120. |
International Search Report and Written Opinion (ISA/KR) dated Jun. 14, 2019 in PCT/US2019/019455. |
JP Examination Report dated Nov. 26, 2020 in JP Application No. 2017-549175. |
JP Office Action dated Dec. 7, 2021, in Application No. JP20170549175 with English translation. |
JP Office Action dated Jul. 20, 2021 in JP Application No. 2017-549175. |
JP Office Action dated Jun. 16, 2020 in JP Application No. 2017-549175. |
JP Office Action dated Mar. 1, 2022, in Application No. JP2020-175033 with translation. |
JP Office Action dated Nov. 19, 2019 in JP Application No. 2017-549175. |
JP office action dated Sep. 7, 2021, in JP Application No. 2020-175033. |
Kipp & Zonen, “Solar Radiation” (known as of Sep. 3, 2014) [http://www.kippzonen.com/Knowledge-Center/Theoretical-info/Solar-Radiation]. |
KR Office Action dated Nov. 3, 2022, in Application No. KR10-2022-7027386 with English Translation. |
KR Office Action dated Apr. 13, 2022, in KR Application No. KR1020217028044 with English translation. |
KR Office Action dated Dec. 22, 2021, in Application No. KR1020177018491 with English translation. |
KR Office Action dated Jan. 22, 2021 in KR Application No. 10-2016-7025862. |
KR Office Action dated Jul. 31, 2021 in KR Application No. 10-2016-7025862. |
KR Office Action dated Oct. 26, 2021, in KR Application No. KR1020217028044 with English translation. |
Mumaw, R.J et al., “There is More to Monitoring a Nuclear Power Plant Than Meets the Eye”, Human factors, 2000, vol. 42, No. 1, pp. 36-55. |
National Aeronautics & Space Administration, “Cloud Remote Sensing and Modeling,” (known as of Sep. 3, 2014), published date of Sep. 15, 2014, [http://atmospheres.gsfc.nasa.gov/climate/index.php?section=134]. |
“Ossia Wireless Charging”, screenshot and picture of Cota device, accessed Apr. 20, 2015, 1 page. |
Preliminary Amendment dated Jan. 18, 2017 in U.S. Appl. No. 15/123,069. |
RU Office Action dated Sep. 24, 2018 in RU Application No. 2016139012. |
Russian Office Action dated Jul. 10, 2019 in RU Application No. 2017123902. |
Sim, S., “Next generation data interchange: tool-to-tool application programming interfaces,” IEEE Working Conference on Reverse Engineering, Nov. 25, 2000, pp. 278-280. |
Taiwanese Office Action dated Dec. 12, 2018 in TW Application No. 107129150. |
Taiwanese Office Action dated Feb. 27, 2020 in TW Application No. 108126548. |
Taiwanese Office Action dated May 13, 2019 in TW Application No. 104139217. |
TW Notice of Allowance & Search Report (translated) dated Jul. 30, 2021 in TW Application No. 106133985. |
TW Office Action dated Jun. 6, 2022 in Application No. TW108115291 With English Translation. |
TW Office Action dated Apr. 29, 2022, in Application No. TW110140314 with English translation. |
TW Office Action dated Jan. 28, 2022, in Application No. TW110109128 with English translation. |
TW Office Action dated Mar. 15, 2022, in Application No. TW109112242 with English translation. |
TW Office Action dated Nov. 23, 2022 in Application No. TW107114217. |
U.S. Non-Final office Action dated Sep. 21, 2022 in U.S. Appl. No. 17/301,026. |
U.S. Notice of Allowance dated May 12, 2022, in U.S. Appl. No. 17/171,667. |
U.S. Corrected Notice of Allowance dated Jun. 27, 2022 in U.S. Appl. No. 16/527,554. |
U.S. Corrected Notice of Allowability dated Jun. 4, 2020 in U.S. Appl. No. 16/298,776. |
U.S. Corrected Notice of Allowability dated May 3, 2021 in U.S. Appl. No. 16/253,971. |
U.S. Corrected Notice of Allowability dated Sep. 23, 2021, in U.S. Appl. No. 16/338,403. |
U.S. Corrected Notice of Allowance dated Apr. 28, 2022, in U.S. Appl. No. 15/733,765. |
U.S. Final Office Action dated Dec. 23, 2020 in U.S. Appl. No. 16/338,403. |
U.S. Final Office Action dated Feb. 26, 2015 in U.S. Appl. No. 13/479,137. |
U.S. Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/479,137. |
U.S. Final Office Action dated Jan. 31, 2019 in U.S. Appl. No. 15/534,175. |
U.S. Final Office Action dated Jul. 2, 2019 in U.S. Appl. No. 15/691,468. |
U.S. Final Office Action dated Jul. 3, 2019 in U.S. Appl. No. 15/623,237. |
U.S. Final Office Action dated Mar. 15, 2018 in U.S. Appl. No. 14/951,410. |
U.S. Final Office Action dated Mar. 17, 2017 in U.S. Appl. No. 14/887,178. |
U.S. Final Office Action dated Mar. 18, 2020 in U.S. Appl. No. 16/253,971. |
U.S. Final Office Action dated Mar. 3, 2020 in U.S. Appl. No. 16/508,099. |
U.S. Final Office Action dated Sep. 19, 2016 in U.S. Appl. No. 14/887,178. |
U.S. Non-Final office Action dated Nov. 14, 2022 in U.S. Appl. No. 17/804,802. |
U.S. Non-Final office Action dated Nov. 15, 2022 in U.S. Appl. No. 17/355,086. |
U.S. Non-Final office Action dated Sep. 9, 2022 in U.S. Appl. No. 17/249,442. |
U.S. Non-Final Office Action dated Aug. 12, 2022, in U.S. Appl. No. 16/655,032. |
U.S. Non-Final Office Action dated Dec. 6, 2022 in U.S. Appl. No. 17/453,469. |
U.S. Non-final Office Action dated Jul. 28, 2022 in U.S. Appl. No. 16/655,032. |
U.S. Non-Final Office Action dated Oct. 24, 2022, in U.S. Appl. No. 17/486,716. |
U.S. Non-Final Office Action dated Oct. 28, 2021 in U.S. Appl. No. 15/733,765. |
U.S. Non-Final Office Action dated Oct. 29, 2021 in U.S. Appl. No. 16/527,554. |
U.S. Notice of Allowability (supplemental) dated Sep. 30, 2020 in U.S. Appl. No. 15/123,069. |
U.S. Notice of Allowance (corrected) dated Apr. 18, 2019 in U.S. Appl. No. 15/320,725. |
U.S. Notice of Allowance dated Apr. 17, 2019 in U.S. Appl. No. 15/534,175. |
U.S. Notice of Allowance dated Apr. 17, 2019 in U.S. Appl. No. 15/910,936. |
U.S. Notice of Allowance dated Apr. 6, 2020 in U.S. Appl. No. 16/298,776. |
U.S. Notice of Allowance dated Apr. 6, 2022, in U.S. Appl. No. 15/733,765. |
U.S. Notice of Allowance dated Apr. 9, 2020 in U.S. Appl. No. 15/123,069. |
U.S. Notice of Allowance dated Dec. 13, 2018 in U.S. Appl. No. 15/978,029. |
U.S. Notice of Allowance dated Dec. 14, 2018 in U.S. Appl. No. 15/910,936. |
U.S. Notice of Allowance dated Dec. 31, 2020 in U.S. Appl. No. 16/523,624. |
U.S. Notice of Allowance dated Dec. 31, 2020 in U.S. Appl. No. 16/555,377. |
U.S. Notice of Allowance dated Dec. 7, 2020 in U.S. Appl. No. 16/508,099. |
U.S. Notice of Allowance dated Feb. 16, 2022 in U.S. Appl. No. 16/664,089. |
U.S. Notice of Allowance dated Feb. 4, 2021 in U.S. Appl. No. 16/253,971. |
U.S. Notice of Allowance dated Jul. 1, 2020 in U.S. Appl. No. 15/623,237. |
U.S. Notice of Allowance dated Jul. 17, 2019 in U.S. Appl. No. 15/123,069. |
U.S. Notice of Allowance dated Jul. 17, 2019 in U.S. Appl. No. 15/320,725. |
U.S. Notice of Allowance dated Jul. 25, 2019 in U.S. Appl. No. 15/534,175. |
U.S. Notice of Allowance dated Jun. 8, 2022 in U.S. Appl. No. 15/733,765. |
U.S. Notice of Allowance dated Jun. 14, 2021 in U.S. Appl. No. 16/338,403. |
U.S. Notice of Allowance dated Jun. 20, 2022 in U.S. Appl. No. 16/527,554. |
U.S. Notice of Allowance dated Mar. 10, 2021 in U.S. Appl. No. 15/691,468. |
U.S. Notice of Allowance dated Mar. 20, 2019 in U.S. Appl. No. 15/320,725. |
U.S. Notice of Allowance dated Mar. 26, 2021 in U.S. Appl. No. 16/254,434. |
U.S. Notice of Allowance dated Mar. 9, 2018 in U.S. Appl. No. 14/887,178. |
U.S. Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/479,137. |
U.S. Notice of Allowance dated May 14, 2019 in U.S. Appl. No. 15/623,235. |
U.S. Notice of Allowance dated May 6, 2020 in U.S. Appl. No. 15/623,237. |
U.S. Notice of Allowance dated Nov. 28, 2018 in U.S. Appl. No. 15/123,069. |
U.S. Notice of Allowance dated Nov. 3, 2020 in U.S. Appl. No. 15/691,468. |
U.S. Notice of Allowance dated Oct. 7, 2021 in U.S. Appl. No. 16/664,089. |
U.S. Notice of Allowance dated Oct. 14, 2021 in U.S. Appl. No. 16/664,089. |
U.S. Notice of Allowance dated Oct. 22, 2018 in U.S. Appl. No. 14/951,410. |
U.S. Notice of Allowance (supplemental) dated Jun. 12, 2015 in U.S. Appl. No. 13/479,137. |
U.S. Office Action dated Apr. 27, 2018 in U.S. Appl. No. 15/123,069. |
U.S. Office Action dated Aug. 21, 2019 in U.S. Appl. No. 16/508,099. |
U.S. Office Action dated Aug. 22, 2019 in U.S. Appl. No. 16/298,776. |
U.S. Office Action dated Aug. 7, 2018 in U.S. Appl. No. 15/910,936. |
U.S. Office Action dated Aug. 7, 2020 in U.S. Appl. No. 16/338,403. |
U.S. Office Action dated Feb. 4, 2019 in U.S. Appl. No. 15/623,235. |
U.S. Office Action dated Feb. 7, 2019 in U.S. Appl. No. 15/623,237. |
U.S. Office Action dated Feb. 7, 2019 in U.S. Appl. No. 15/691,468. |
U.S. Office Action dated Jul. 21, 2020 in U.S. Appl. No. 16/523,624. |
U.S. Office Action dated Jul. 21, 2020 in U.S. Appl. No. 16/555,377. |
U.S. Office Action dated Jul. 23, 2020 in U.S. Appl. No. 16/508,099. |
U.S. Office Action dated Jul. 24, 2018 in U.S. Appl. No. 15/978,029. |
U.S. Office Action dated Jul. 25, 2019 in U.S. Appl. No. 16/253,971. |
U.S. Office Action dated Jul. 29, 2020 in U.S. Appl. No. 16/253,971. |
U.S. Office Action dated Jul. 3, 2014 in U.S. Appl. No. 13/479,137. |
U.S. Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/534,175. |
U.S. Office Action dated Mar. 25, 2016 in U.S. Appl. No. 14/887,178. |
U.S. Office Action dated May 6, 2020 in U.S. Appl. No. 15/691,468. |
U.S. Office Action dated Oct. 23, 2017 in U.S. Appl. No. 14/887,178. |
U.S. Office Action dated Sep. 11, 2017 in U.S. Appl. No. 14/951,410. |
U.S. Office Action dated Sep. 23, 2013 in U.S. Appl. No. 13/479,137. |
U.S. Office Action dated Sep. 30, 2020 in U.S. Appl. No. 16/254,434. |
U.S. Office Action dated Sep. 4, 2018 in U.S. Appl. No. 15/320,725. |
U.S. Appl. No. 16/338,403, inventors Shrivastava et al., filed Mar. 29, 2019. |
U.S. Appl. No. 63/124,673, inventors Tai et al., filed Dec. 11, 2020. |
U.S. Appl. No. 63/146,365, inventors Brown et al., filed Feb. 5, 2021. |
U.S. Appl. No. 63/163,305, inventors Trikha et al., filed Mar. 19, 2021. |
U.S. Appl. No. 63/181,648, inventors Makker et al., filed Apr. 29, 2021. |
U.S. Appl. No. 63/187,632, inventors Hur et al., filed May 12, 2021. |
U.S. Appl. No. 63/226,127, inventors Lee et al., filed Jul. 21, 2021. |
U.S. Preliminary Amendment dated Dec. 31, 2019 in U.S. Appl. No. 16/608,159. |
U.S. Supplemental Notice of Allowance dated Aug. 1, 2022 in U.S. Appl. No. 17/171,667. |
Woods, D ., “The Alarm Problem and Directed Attention in Dynamic Fault Management.”, Ergonomics, 1995, vol. 38, No. 11, pp. 2371-2393. |
Alguindigue. I., et al., “Monitoring and Diagnosis of Rolling Element Bearings Using Artificial Neural Networks,” IEEE Transactions on Industrial Electronics, 1993, vol. 40 (2), pp. 209-217. |
AU Office action dated Mar. 20, 2023, in AU Application No. AU20210215134. |
Bannat, A., et al., “Artificial Cognition in Production Systems”, IEEE Transactions on Automation Science and Engineering, 2011, vol. 8, No. 1, pp. 148-174. |
Bucci, G., et al., “Digital Measurement Station for Power Quality Analysis in Distributed Environments,” IEEE Transactions on Instrumentation and Measurement, 2003, vol. 52(1), pp. 75-84. |
CA Office Action dated Feb. 22, 2023, in Application No. CA2970300. |
CA Office Action dated Jul. 31, 2023, in Application No. CA3156883. |
CA Office Action dated Nov. 9, 2023, in CA Application No. 3139813. |
CA Office Action dated Oct. 26, 2023, in CA Application No. 3039342. |
CA Office Action dated Oct. 31, 2023, in Application No. CA3129952. |
CA Office Action dated Sep. 28, 2023, in Application No. CA3062817. |
CN Office Action dated Aug. 31, 2022 in Application No. CN201780069604.3 with English translation. |
CN Office Action dated Jan. 10, 2023, in Application No. CN202080022001.X with English translation. |
CN Office Action dated Jan. 12, 2023 in CN Application No. CN202011547257 with English translation. |
CN Office Action dated Jul. 28, 2023, in Application No. CN201980031543 with English translation. |
CN Office Action dated Mar. 16, 2023, in Application No. CN202080022001 .X with English translation. |
CN Office Action dated Mar. 30, 2023 in Application No. CN201980031543 with English translation. |
CN Office Action dated May 24, 2023, in Application No. CN202080022001 .X with English translation. |
CN Office Action dated Nov. 1, 2022, in Application No. CN201880037591.6 with English translation. |
CN Office Action dated Sep. 28, 2022 in Application No. CN202010466929.9 with English translation. |
EP Extended European search report dated Jan. 3, 2023 in Application No. EP22198532.8. |
EP Extended European Search report dated Oct. 24, 2023, in Application No. EP23161161.7. |
EP office action dated Apr. 24, 2023, in application No. EP21182448.7. |
EP office action dated Jul. 3, 2023, in application No. EP17858928.9. |
EP Office Action dated Jun. 19, 2023 in Application No. EP19727174.5. |
EP office action dated Jun. 29, 2023, in application No. EP19787808.5. |
EP office action dated Mar. 10, 2023, in application No. EP20712740.8. |
European Office Action dated Apr. 25, 2023 in Application No. EP19188907. |
Hadziosmanovic, D., et al., “Through the Eye of the Plc: Semantic Security Monitoring for Industrial Processes,” Proceedings of the 30th Annual Computer Security Applications Conference, 2014, pp. 126-135. |
International Preliminary Report on Patentability and Written Opinion dated Nov. 23, 2023 in PCT Application No. PCT/US2022/024999. |
International Preliminary Report on Patentability and Written Opinion dated Nov. 23, 2023 in PCT Application No. PCT/US2022/028850. |
International Preliminary Report on Patentability dated Oct. 26, 2023, in Application No. PCT/US2022/024812. |
International Preliminary Reporton Patentability dated Sep. 28, 2023, in PCT Application No. PCT/US2022/020730. |
International Search Report and Written Opinion dated Jul. 26, 2022 in Application No. PCT/US2022/024999. |
International Search Report and Written Opinion dated Nov. 16, 2022 in PCT Application No. PCT/US2022/074162. |
JP Office Action dated Jun. 6, 2023, in application No. JP2022-149815 with English translation. |
JP Office Action dated Jun. 6, 2023, in Application No. JP2020-560912 with English translation. |
JP office action dated Sep. 7, 2021, in JP Application No. 2020-175033 with English translation. |
KR Office Action dated Apr. 25, 2023, in Application No. KR10-2017-7017128 with English translation. |
KR Office Action dated Dec. 7, 2022 in Application No. KR10-2022-7036992 with English translation. |
KR Office Action dated Jul. 10, 2023, in application No. KR 10-2023-7021596 with English Translation. |
KR Office Action dated Jul. 26, 2023, in Application No. KR10-2022-7037562 with English translation. |
KR Office Action dated May 12, 2023, in Application No. KR10-2022-7027386 with English translation. |
KR Office Action dated Sep. 25, 2023, in Application No. KR10-2022-7027386 withEnglish Translation. |
Laskar, S.H., et al., “Power Quality Monitoring by Virtual Instrumentation using LabView”, 2011 46th International Universities' Power Engineering Conference (UPEC), 2011, pp. 1-6. |
Tuokko, R., et al., “Micro and Desktop Factory Road Map”, Tampere University of Technology, 2012, pp. 1-114. |
TW Office Action dated Apr. 27, 2023, in application No. TW20220142122 with English translation. |
TW Office Action dated Jan. 12, 2023 in Application No. TW108115291 with English translation. |
TW Office Action dated Jun. 17, 2023, in application No. TW107114217 with English translation. |
TW Office Action dated Nov. 23, 2022 in Application No. TW107114217 with English translation. |
U.S. Advisory Action dated Aug. 23, 2023 in U.S. Appl. No. 17/194,795. |
U.S. Corrected Notice of Allowance dated Jan. 6, 2023 in U.S. Appl. No. 16/655,032. |
U.S. Corrected Notice of Allowance dated Dec. 4, 2023 in U.S. Appl. No. 17/453,469. |
U.S. Corrected Notice of Allowance dated Jul. 17, 2023, in U.S. Appl. No. 17/301,026. |
U.S. Corrected Notice of Allowance dated Jun. 12, 2023, in U.S. Appl. No. 17/453,469. |
U.S. Corrected Notice of Allowance dated May 26, 2023 in U.S. Appl. No. 17/355,086. |
U.S. Corrected Notice of Allowance dated Oct. 31, 2023, in U.S. Appl. No. 17/453,469. |
U.S. Final office Action dated May 19, 2023 in U.S. Appl. No. 17/194,795. |
U.S. Final Office Action dated Nov. 15, 2023 in U.S. Appl. No. 17/609,671. |
U.S. Non-Final office Action dated Jan. 23, 2023 in U.S. Appl. No. 17/869,725. |
U.S. Non-Final Office Action dated Apr. 18, 2023 in U.S. Appl. No. 17/609,671. |
U.S. Non-Final Office Action dated Aug. 31, 2023, in U.S. Appl. No. 17/194,795. |
U.S. Non-Final office Action dated Dec. 21, 2022 in U.S. Appl. No. 17/194,795. |
U.S. Non-Final Office Action dated Jul. 20, 2023, in U.S. Appl. No. 17/804,802. |
U.S. Non-Final office Action dated Mar. 9, 2023 in U.S. Appl. No. 17/909,925. |
U.S. Non-Final Office Action dated Nov. 16, 2023 in U.S. Appl. No. 17/194,795. |
U.S. Notice of Allowance dated Aug. 3, 2023, in U.S. Appl. No. 17/869,725. |
U.S. Notice of Allowance dated Aug. 10, 2023 in U.S. Appl. No. 17/301,026. |
U.S. Notice of Allowance dated Aug. 23, 2023 in U.S. Appl. No. 17/909,925. |
U.S. Notice of Allowance dated Aug. 29, 2023 in U.S. Appl. No. 17/486,716. |
U.S. Notice of Allowance dated Dec. 29, 2022 in U.S. Appl. No. 16/655,032. |
U.S. Notice of Allowance dated Feb. 7, 2023 in U.S. Appl. No. 17/249,442. |
U.S. Notice of Allowance dated Feb. 14, 2023 in U.S. Appl. No. 17/355,086. |
U.S. Notice of Allowance dated Jul. 6, 2023 in U.S. Appl. No. 17/870,480. |
U.S. Notice of Allowance dated Jul. 13, 2023 in U.S. Appl. No. 17/940,951. |
U.S. Notice of Allowance dated Jun. 7, 2023 in U.S. Appl. No. 17/453,469. |
U.S. Notice of Allowance dated Jun. 7, 2023 in U.S. Appl. No. 17/870,480. |
U.S. Notice of Allowance dated Jun. 12, 2023, in U.S. Appl. No. 17/940,951. |
U.S. Notice of Allowance dated Jun. 16, 2023, in U.S. Appl. No. 17/301,026. |
U.S. Notice of Allowance dated Mar. 31, 2023 in U.S. Appl. No. 17/249,442. |
U.S. Notice of Allowance dated May 19, 2023 in U.S. Appl. No. 17/249,442. |
U.S. Notice of Allowance dated May 22, 2023 in U.S. Appl. No. 17/486,716. |
U.S. Notice of Allowance dated May 23, 2023 in U.S. Appl. No. 17/869,725. |
U.S. Notice of Allowance dated May 26, 2023, in U.S. Appl. No. 17/453,469. |
U.S. Notice of Allowance dated Sep. 20, 2023, in U.S. Appl. No. 17/453,469. |
U.S. Appl. No. 18/281,913 inventors Trikha N, et al., filed Sep. 13, 2023. |
U.S. Appl. No. 18/513,707, inventors Vangati M R, et al., filed Nov. 20, 2023. |
U.S. Appl. No. 18/555,129, inventors MakkerT, et al., filed Oct. 12, 2023. |
U.S. Appl. No. 18/555,275, inventors Hur Yerang et al., filed Oct. 13, 2023. |
Number | Date | Country | |
---|---|---|---|
20230111311 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
62088943 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17869725 | Jul 2022 | US |
Child | 17989603 | US | |
Parent | 17171667 | Feb 2021 | US |
Child | 17869725 | US | |
Parent | 16523624 | Jul 2019 | US |
Child | 17171667 | US | |
Parent | 15910936 | Mar 2018 | US |
Child | 16523624 | US | |
Parent | 15623235 | Jun 2017 | US |
Child | 15910936 | US | |
Parent | 15534175 | US | |
Child | 15623235 | US |