The present invention relates to thermostats and other thermal comfort controllers and particularly to a multiple language user interface for such thermal comfort controllers.
Current thermal comfort controllers, or thermostats, have a limited user interface which typically includes a number of data input buttons and a small display. Hereinafter, the term thermostat will be used to reference a general comfort control device and is not to be limiting in any way. For example, in addition to traditional thermostats, the present such control device could be a humidistat or used for venting control. As is well known, thermostats often have setback capabilities which involves a programmed temperature schedule. For example, a temperature schedule could be programmed so that in the winter months, a house is warmed to 72 degrees automatically at 6:00 a.m. when the family awakes, cools to 60 degrees during the day while the family is at work and at school, re-warms to 72 degrees at 4:00 p.m. and then cools a final time to 60 degrees after 11:00 p.m., while the family is sleeping. Such a schedule of lower temperatures during off-peak hours saves energy costs.
A schedule of set back temperatures is one example of a control algorithm that can be used by the comfort controller. Of course, such control algorithms will be different for different climates. The control algorithms also vary based on personal preferences. Some people like their homes warmer in the winter than other people do.
Programmable comfort controllers have been troublesome in the past because users often do not understand how to correctly program the controllers. For people whose first language is not English, or for people travelling to a foreign country and staying in a hotel or other housing, programming comfort controllers can be even more difficult because the buttons, controls, and displays on the controllers are usually labeled with English words.
What is needed in the art is a user interface for a thermostat in which the temperature schedule is more easily programmed. To make the programming easier, users should be able to choose a preferred language and then view the switches, etc. on the comfort controller in the chosen preferred language. In addition, to make programming and using the controllers easier, different control algorithms should be available to the user to choose from. The different control algorithms might be programmed during manufacturing, or loaded over the Internet or other network after installation.
This invention can be regarded as a multiple language user interface system for thermal comfort controllers. The user interface system includes a central processing unit, a memory, a display with a touch-sensitive screen used for input, and a language selector. Some embodiments also include a network interface. The memory can store at least one control algorithm and at least one user interface object. The language selector is used to choose a preferred language. Once a preferred language is chosen, the display unit uses the user interface objects in the memory that match the preferred language. In this way, the controls, labels, etc. that are presented to the user on the display unit are in the user's preferred language. In one embodiment, when the comfort controller is first powered-up after installation, the user may be asked to select the preferred language and then the user interface objects may be loaded. In some embodiments, the user interface objects are loaded from the Internet. Control algorithms may also be loaded so that the user can choose from one that is suited for the user's climate and personal preferences.
The present invention is a multiple language user interface system for a thermostat or other comfort controller. Throughout the drawings, an attempt has been made to label corresponding elements with the same reference numbers. The reference numbers include:
Referring to the drawings,
The display unit 200 includes a graphical display/touch sensitive screen. This configuration provides for very flexible graphical display of information along with a very user friendly data input mechanism. The display unit 200 may be very similar to the touch screen display used in a hand-held personal digital assistant (“PDA”), such as a Palm brand PDA manufactured by 3Com, a Jornada brand PDA manufactured by Hewlett Packard, etc. Of course the graphical user interface system could also be manufactured to be integrated with a thermostat itself. In such an embodiment, a touch-sensitive LCD display is coupled with the thermostat's existing central processing unit and RAM.
The control algorithms 500 are programmed or selected by the user. One such control algorithm 500 would be a set-point schedule containing a list of times associated to a list of temperatures. The thermal controller sets-up or sets-back the temperature according to such a set-point schedule. For example, a set-point schedule could be configured to adjust the temperature to 60 degrees at 6:00 a.m., then to 67 degrees at 6:30 a.m., and up to 73 degrees at 8:00 a.m., etc.
The display unit 200 can also be configured with additional controls 905, which could, for example, switch the display between Fahrenheit and Celsius for the temperature, between standard and military time, and between showing a single day's schedule versus showing a week's schedule. The additional controls 905 are labeled. In
There is also an additional control 905 in
In one embodiment of the invention, the comfort controller would be installed without any user interface objects, initial interface objects, or control algorithms stored in memory. When first powered-up after installation, the comfort controller is programmed to load the initial interface objects 600 via the network interface 950. For example, the comfort controller could retrieve the initial interface objects 600 from a web page on the Internet. Or the comfort controller's network interface 950 could include a modem connected to a phone line. In such an embodiment, the initial interface objects 600 can be downloaded as files. The initial interface objects 600 are presented on the display unit 200 and request the user to choose a preferred language. Once the preferred language is chosen, the proper user interface objects 400 are then downloaded. In another embodiment, the comfort controller can be connected via the network interface 950 to a PDA, laptop computer, or similar device carried by the comfort controller installer. The installer's PDA or computer can have libraries of control algorithms, initial interface objects, and user interface objects accessible from memory which can be transferred by a cable, infra-red port, radio-frequency port or other communication method.
Of course, because memory is now so economical some embodiments of the current invention are shipped from the manufacturer with the initial interface objects and many language versions of the user interface objects 400 already stored in memory 300. If enough languages are stored in memory 300, the network interface 950 is not necessary. Otherwise, it is only necessary if the preferred language is one that does not already have user interface objects 400 in memory 300.
Likewise, some embodiments are shipped with control algorithms 500 already stored in memory. The user can pick and choose from these algorithms or can choose to download updated or additional control algorithms 500 via the network interface 950.
The graphical representations, controls and other data that are displayed on display unit 200 are managed by a computer program stored in memory 300. The computer program could be written in any computer language. Possible computer languages to use include C, Java, and Visual Basic.
There are many ways in which the user interface system can work with the thermal comfort controller. The user interface system would probably be integrated into a thermal comfort control system and installed on a wall much like current programmable thermostats. However, if the user interface system is configured on a hand-held PDA, the user-interface could communicate with the thermal comfort controller via the PDA's infra-red sensor. Or, the PDA could be synchronized with a personal computer and the personal computer could set the appropriate instructions to the thermal comfort controller. Or, the PDA could use a cellular/mobile phone feature to telephone the controller (i.e., thermostat, personal computer, etc.) to exchange pertinent and relevant data.
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.
This application is a continuation of prior U.S. application Ser. No. 09/706,077 filed Nov. 3, 2000, now U.S. Pat. No. 6,621,507.
Number | Name | Date | Kind |
---|---|---|---|
4079366 | Wong | Mar 1978 | A |
4174807 | Smith et al. | Nov 1979 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4296334 | Wong et al. | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4314665 | Levine | Feb 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4401262 | Adams et al. | Aug 1983 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4442972 | Sahay et al. | Apr 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4606401 | Levine et al. | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4646964 | Parker et al. | Mar 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4914568 | Kodosky et al. | Apr 1990 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5038851 | Metha | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5329991 | Metha et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitcuhashi | Jul 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5673850 | Uptegraph | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5782296 | Metha | Jul 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5845259 | West et al. | Dec 1998 | A |
5873519 | Beilfuss | Feb 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5901183 | Garin et al. | May 1999 | A |
5902183 | D'Souza | May 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6088029 | Guiberson et al. | Jul 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6320577 | Alexander | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6483906 | Iggulden et al. | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6608560 | Abrams | Aug 2003 | B2 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6726112 | Ho | Apr 2004 | B1 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6868293 | Schurr et al. | Mar 2005 | B1 |
7050026 | Rosen | May 2006 | B1 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010042684 | Essalik et al. | Nov 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020060701 | Naughton et al. | May 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020096572 | Chene et al. | Jul 2002 | A1 |
20020138184 | Kipersztok et al. | Sep 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20030000692 | Okano et al. | Jan 2003 | A1 |
20030014179 | Szukala et al. | Jan 2003 | A1 |
20030033156 | McCall | Feb 2003 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030121652 | Carey et al. | Jul 2003 | A1 |
20030123224 | LaCroix et at. | Jul 2003 | A1 |
20030136135 | Kim et al. | Jul 2003 | A1 |
20030142121 | Rosen | Jul 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030208282 | Shah | Nov 2003 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040245352 | Smith | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
3334117 | Apr 1985 | DE |
29600654 | Apr 1996 | DE |
198 40 552 | Mar 2000 | DE |
0070414 | Jan 1983 | EP |
0 332 957 | Sep 1989 | EP |
0434926 | Aug 1995 | EP |
0 978 692 | Feb 2000 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1074009 | Jul 2001 | EP |
2711230 | Apr 1995 | FR |
WO 9711448 | Mar 1997 | WO |
WO 9739392 | Oct 1997 | WO |
WO 0043870 | Jul 2000 | WO |
WO 0152515 | Jul 2001 | WO |
WO 0179952 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030206196 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09706077 | Nov 2000 | US |
Child | 10453563 | US |