The present teachings relate to solid inkjet printing devices including printheads and a method for forming the printhead.
Printing an image onto a print medium such as paper for consumer and industrial use is dominated generally by laser technology and ink jet technology. Ink jet technology has become more common as ink jet printing resolution and print quality has increased. Ink jet printers typically use either thermal ink jet technology or piezoelectric technology. Even though they are more expensive to manufacture than thermal ink jets, piezoelectric ink jets are generally favored as they can use a wider variety of inks.
Piezoelectric ink jet printheads typically include a flexible diaphragm manufactured from, for example, stainless steel. Piezoelectric ink jet printheads can also include an array of piezoelectric transducers (i.e., actuators) attached to the diaphragm. Other printhead structures can include one or more laser-patterned dielectric standoff layers and a flexible printed circuit (flex circuit) or printed circuit board (PCB) electrically coupled with each transducer. A printhead can further include a body plate, an inlet/outlet plate, and an aperture plate, each of which can be manufactured from stainless steel. The aperture plate includes a plurality of nozzles (i.e., one or more openings, apertures, or jets) through which ink is dispensed during printing. The number of nozzles per unit area generally determines the printer resolution, with higher resolution devices having more apertures within a given area. As printer resolution increases, the size of the nozzles and the quantity of ink in each ink drop dispensed onto a print medium decreases.
During use of a piezoelectric printhead, a voltage is applied to a piezoelectric transducer, typically through electrical connection with a flex circuit electrode electrically coupled to a voltage source, which causes the piezoelectric transducer to bend or deflect, resulting in a flexing of the diaphragm. Diaphragm flexing by the piezoelectric transducer increases pressure within an ink chamber and expels a quantity of ink from the chamber through a particular nozzle in the aperture plate. As the diaphragm returns to its relaxed (i.e., unflexed) position, it reduces pressure within the chamber and draws ink into the chamber from a main ink reservoir through an opening to replace the expelled ink.
During printhead manufacture, contaminants can be introduced into the printhead. These contaminants can be transported to the nozzle during printing where they can block the flow of ink through the nozzle and reduce print quality. To filter contaminants in the printhead, particulate filter or “rock screen” can be used. The particulate filter can include a stainless steel layer having a plurality of openings. The size of the openings determines the dimensions of the particulates which are blocked by the filter, and are typically sufficiently small to ensure filtration of contaminants which are large enough to block or plug the nozzle during ink jet during printing.
Printhead structures which can improve print quality and reduce printhead costs would be desirable.
The following presents a simplified summary in order to provide a basic understanding of some aspects of one or more embodiments of the present teachings. This summary is not an extensive overview, nor is it intended to identify key or critical elements of the present teachings nor to delineate the scope of the disclosure. Rather, its primary purpose is merely to present one or more concepts in simplified form as a prelude to the detailed description presented later.
In an embodiment of the present teachings, a structure can include a filter assembly. The filter assembly can include a first filter layer including a plurality of pores therein arranged in a pattern, wherein the plurality of pores in the first filter layer includes a first pore pitch, a second filter layer adjacent to the first filter layer and including a plurality of pores therein arranged in a pattern, wherein the plurality of pores in the second filter layer includes a second pore pitch which is different than the first pore pitch, and a fluid path through the filter assembly, wherein an area of overlap of the pores in the first filter layer with the pores in the second filter layer, in a vertical direction perpendicular to a plane of the filter assembly, includes a periodicity.
In another embodiment, a method for forming a structure which includes a filter assembly can include providing a first filter layer having a plurality of pores therein arranged in a pattern, wherein the plurality of pores in the first filter layer includes a first pore pitch and providing a second filter layer adjacent to the first filter layer which includes a plurality of pores therein arranged in a pattern, wherein the plurality of pores in the second filter layer has a second pore pitch which is different than the first pore pitch, placing the first filter layer adjacent to the second filter layer, and forming a fluid path through the filter assembly, wherein an area of overlap of the pores in the first filter layer with the pores in the second filter layer, in a vertical direction perpendicular to a plane of the filter assembly, has a periodicity.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the disclosure. In the figures:
It should be noted that some details of the FIGS. have been simplified and are drawn to facilitate understanding of the present teachings rather than to maintain strict structural accuracy, detail, and scale.
Reference will now be made in detail to the present embodiments (exemplary embodiments) of the present teachings, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As used herein unless otherwise specified, the word “printer” encompasses any apparatus that performs a print outputting function for any purpose, such as a digital copier, a bookmaking machine, a facsimile machine, a multi-function machine, a plotter, etc. As used herein unless otherwise specified, the terms “hole,” “pore,” and “opening” are used interchangeably. The term “pitch” as used herein is the distance between corresponding points on adjacent openings within a filter layer, or between adjacent actuators, in the X- and/or Y-directions.
As discussed above, contaminants within printer ink can block an ink jet aperture during printing which can reduce print quality or result in a nonfunctional ink jet. To reduce the effects of contamination, the ink path can of an ink jet printhead can include a particulate filter or “rock screen” which is used to filter contaminants from ink during printing. One type of conventional rock screen can include a single layer of material having openings or pores therethrough. The rock screen is located within the ink path to filter contaminants and prevent their delivery to the nozzle. While a single layer filter is generally effective at stopping particles whose smallest dimension exceeds the pore size of the rock screen, high aspect ratio particles that are sufficiently narrow to pass through the rock screen can re-orient in the flow to potentially block the downstream aperture, thereby causing quality defects. Additionally, during a purge cycle or another print cycle, the majority of debris that is stopped by the rock screen can backflow and be delivered to the rock screen in a new orientation, thereby increasing the opportunity for a given particle to orient in such a way that it can pass through the rock screen into the aperture.
A second type of conventional rock screen can include two layers of material each with the same pore pattern and pitch. The dual layers are separated by a space and aligned so that the pores are offset from each other so that the pores are misaligned. This misalignment of layers having pores of equal pitch increases the tortuosity of the ink path. With this dual layer filter, if a high aspect ratio particle aligns such that it passes through the first screen, the particle may be blocked by the second screen such that it is prevented from passing to the ink jet aperture. However, aligning these two layers of material such that they are perfectly misaligned within micron tolerances can be difficult, and any incorrect alignment decreases the efficiency of the filter.
An embodiment of the present teachings can reduce the possibility of narrow, high aspect ratio particles passing through a rock screen, and can relax processing complexity as alignment to within micron tolerances is not required. In an embodiment of the present teachings, two or more laminated filter layers may be used, where the each filter layer has a pore pattern and a pore pitch. The pore pitch of each filter layer can be different from the pitch of the other filter layers, and the pore pattern of each filter layer of each filter layer can be the same or different from the pore pattern of the other filter layers. In an embodiment, each layer is separated from the one or more other layers by a small gap.
Because the hole pitch of the two or more layers is different for each layer, there will be a spatial periodicity of overlapping holes across a distance of the filter layers. The spatial periodicity can include areas where holes are perfectly misaligned and have 0% overlap (which is an ideal filter region) and areas where holes are perfectly aligned and have 100% overlap (which is a non-ideal filter region). The rest of the filter area will have holes that are neither perfectly aligned nor perfectly misaligned, and which have various degrees of filtering effectiveness, with filtering efficiency being indirectly proportional to the amount of hole overlap. Areas where holes which are more misaligned in the vertical direction are more desirable and area where holes are more aligned in the vertical direction are less desirable.
In an embodiment, “ideal” regions and “non-ideal” regions can be based on the percentage of overlap between the areas of two or more holes in adjacent filter layers. The percentage of overlap which determines whether a hole alignment is ideal or non-ideal can be determined, for example, using an engineering analysis. For example, “ideal” regions may include regions where 75% or less of an area of a hole in a first filter layer overlaps a hole in an adjacent second filter layer in a vertical direction and “non-ideal” regions can include regions where more than 75% of the area of the hole in the first filter layer overlaps the hole in the adjacent second filter layer in the vertical direction. For purposes of this disclosure, the term “vertical” corresponds to a direction which is perpendicular to a major plane of the filter assembly, wherein the filter assembly includes two or more filter layers. In another embodiment, ideal regions may include regions where 50% or less of an area of a hole in a first filter layer overlaps a hole in an adjacent second filter layer in a vertical direction and non-ideal regions can include regions where more than 50% of the area of the hole in the first filter layer overlaps the hole in the adjacent second filter layer in the vertical direction. In another embodiment, ideal regions may include regions where 25% or less of an area of a hole in a first filter layer overlaps a hole in an adjacent second filter layer in a vertical direction and non-ideal regions can include regions where more than 25% of the area of the hole in the first filter layer overlaps the hole in the adjacent second filter layer in the vertical direction. Depending on the pitch and size of each opening, because of the spatial periodicity, a filter assembly can include holes which overlap in a range between 0% and 100%. Ideal and non-ideal regions can be set according to various factors, such as engineering requirements or preferences, design requirements or preferences, the average size and/or aspect ratio of particle contamination, etc.
Various methods described below may be used to reduce or eliminate the poor filtering effect of the non-ideal filter regions. More particularly, the non-ideal regions, which can include regions where the holes are perfectly aligned and regions which are adjacent thereto where the holes are almost perfectly vertically aligned (or aligned within a defined percentage of hole overlap), may be effectively removed from the ink flow path using one of the techniques and/or structures described below.
After forming the two filter layers 10, 20, they can be physically connected together using, for example, one of the processes and/or structures described later in this document, or otherwise placed adjacent to each other.
Because the hole pitch is different in each filter layer 10, 20, there is a spatial periodicity of the hole alignment. Some pores in the filter layers can be, by chance, perfectly aligned (non-ideal) as depicted at 32 and some holes can be perfectly misaligned (ideal) as depicted at 34. In an embodiment, the filter assembly 30 can be assembled along with other components to fabricate an ink jet printhead, with the filter assembly 30 being placed in an ink flow path within the printhead. The effectiveness of the
Thus in contrast to some conventional dual layer filters, a filter assembly 30 formed in accordance with an embodiment of the present teachings is provided without a requirement of an accurate placement of the two layers relative to each other within micron tolerances. The spatial periodicity of the vertical overlap in the areas of the pores provided when the two filter layers are placed adjacent to each other will depend on the pitch of the openings of each layer.
To increase filter efficiency, additional filter layers can be added to the two layer embodiment. If additional layers are added, each filter layer in the filter assembly can have pores with a different hole pitch from every other filter layer. For example,
After completing the third filter layer 40, the third filter layer 40 can be attached or otherwise positioned adjacent to the filter assembly 30 of
In an embodiment, regardless of the number of layers used, any non-ideal aligned holes can be detected using an optical illumination technique. For example, the
After all the filter layers have been attached together into a filter assembly 70, each filter assembly 70 can be optically tested. For example, a light source can be used to illuminate a filter assembly from a first side and the light intensity which passes through the filter in a given area can be detected from the second side to determine the ideal and non-ideal regions. Because the two or more layers have different hole pitches to provide overlapping holes with a repeating periodicity, the pattern of ideal and non-ideal regions will repeat across the filter. The pattern of light which passes through the filter assembly 70 can be analyzed or inspected to determine whether the filter assembly 70 includes any non-ideal regions or areas 72 where holes generally align. If the filter assembly includes only ideal regions, the filter assembly can be passed for assembly with other printhead structures to form a printhead. If the filter assembly includes non-ideal areas 72, the filter assembly can be processed to eliminate the fluid path in the non-ideal areas 72 where the holes are aligned, which can improve filtering efficiency. Three different fluid path elimination structures and/or techniques according to embodiments of the present teachings are depicted in
A first fluid path elimination structure can include an exposed patterned photosensitive layer 76 which is interposed between each of the two or more filter layers which are placed adjacent to each other. The photosensitive layer 76 can adhere the filter layers to each other and block the less desirable, non-ideal regions 72 where the holes generally align. One process to form this patterned photosensitive layer is depicted in
In an exemplary embodiment as depicted in
While the photosensitive layer 80 used in this exemplary embodiment is a negative resist, it will be understood that a positive resist process can be performed. In this embodiment, unexposed photosensitive layer 80 physically attaches first filter layer 82 and second filter layer 84 together. The regions at the left and right sides of
Next, the masks 86, 88 are removed and the photosensitive sheet 80 is exposed to a developer to remove the unexposed portions and to form a structure similar to that depicted in
Another fluid path elimination structure can be formed by melting one or more filter layers in the regions where the pores are aligned in a non-ideal arrangement. Melting of one or both filter layers can be performed, for example, using a laser beam output by a laser, or by other techniques. For example,
In this embodiment, the adhesive layer 104 can be formed as a solid sheet which is interposed between the filter layers 100, 102, which is then etched from both sides of the filter assembly using an anisotropic vertical etch. During a first etch in a first direction, the first filter layer 100 functions as a first etch mask and, during a second etch from a second direction, the second filter functions as a second etch mask to block the etch such that a portion of the adhesive layer 104 remains between the filter layers 100, 102 as depicted in
The regions at the left and right sides of
Another fluid path elimination technique can include the formation of a patterned blocking layer 78 attached to a surface of one or more of the filter layers as depicted in
Yet another fluid path elimination technique can be implemented when the filter assembly is fabricated together with other structures such as ink jet actuators 79 (
In an embodiment, a pitch of the openings in each filter layer can vary in the X- and Y-directions. For example, the pores can have a density of eight per unit area in the X-direction and a density of ten per unit area in the Y-direction. Having different pitches in different directions may be advantageous when the pitch of the actuators 79 themselves is different in the X- and Y-directions. The filter layers can be aligned so that their X- and Y-directions are aligned, which minimizes rotational misalignment.
Additionally, angled (parallelogram) shaped unit cells of filter holes can be realized by shifting each row of holes in each layer laterally. This may be advantageous when the actuators of the actuator array are not aligned in the X- and Y-directions in a rectangular grid pattern, but are offset with respect to each other so that the array is tilted. In such a design, forming angled shaped unit cells of filter holes would allow the actuator array to be aligned with the ideal regions of the filter assembly. The actuators can be placed over the ideal regions so that the non-ideal regions can be buried or hidden.
It is contemplated that the pores through the filter layers can be shapes other than round, for example square, rectangular, oval, etc.
Thus an embodiment of the present teachings can include a filter assembly having two or more filter layers with non-equal hole pitches. If the hole spatial frequency of a first filter layer is f1 and the hole spatial frequency of a second filter layer is f2, then the frequency of the hole alignment between the two layers will be Δf=abs(f2−f1) and the spatial periodicity of the hole alignment in the filter assembly will be 1/Δf. If the two layers are then placed together without regard to alignment in the X- and Y-directions (i.e., they are arbitrarily aligned relative to each other, minimizing rotational misalignment) with a gap in between, then there will be regions where the holes are perfectly aligned (non-ideal) and regions where the holes are perfectly misaligned (ideal). For the purposes of this discussion, misaligned holes provide better particle blocking than aligned holes.
Embodiments of the present teachings can include the fabrication and use of a filtering medium which does not require a process to precisely align the layers relative to each other as is the case for dual filter layers that have equal hole pitches. Precise alignment of two or more layers of material with equal hole pitches so that the holes can be perfectly misaligned, as is the case for dual layer equal pitch filters, is much more difficult than placing the two or more layers together without regard to precise alignment. After the filter layers are placed together, the result can be analyzed and processing can continue based on the orientation of the two filter layers with respect to each other. The holes within each filter layer may be formed by laser ablation, punching, etching, photo-chemical processes or any other means used to form small holes. Additionally, embodiments of the present teachings can be extended to any material that has periodic filter holes (such as a woven mesh) provided that the addition of a second layer with a different hole pitch will advantageously provide increased tortuosity and a trapping mechanism which is improved over the use of either filter layer by itself.
For a printhead arrangement with a 2D array of actuators, the spatial periodicity of the holes of the combined filter layers which form the filter assembly can be chosen based on a spatial arrangement of the actuators. It may be desirable that a filter assembly hole pattern is uniform throughout the printhead so that the actuators can be placed in a position which avoids the placement of the ink path in the non-ideal filter assembly regions. Therefore, if the spatial frequency of the actuators is “fact” actuators per unit length and the spatial frequency of the filter holes in a first filter layer is f1 holes per unit length, then the spatial frequency of filter holes provided in a second filter layer can be f1±fact.
The spatial frequencies can be different in different directions yielding a spatial periodicity (1/Δf)x in the X-direction and (1/Δf)y in the Y-direction. For simplicity, the examples depicted herein use equal periodicity in the X- and Y-directions.
After formation of a filter assembly that includes at least two filter layers with different pore periodicities, processing can continue to form a completed printhead, wherein the filter assembly is configured for use as a particulate filter (rock screen) for ink during use. Formation of a complete printhead can include the formation of a plurality of ink ports through a diaphragm and the attachment of a plurality of actuators (piezoelectric transducers) to the diaphragm in accordance with some known designs.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the present teachings are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume negative values, e.g. −1, −2, −3, −10, −20, −30, etc.
While the present teachings have been illustrated with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. For example, it will be appreciated that while the process is described as a series of acts or events, the present teachings are not limited by the ordering of such acts or events. Some acts may occur in different orders and/or concurrently with other acts or events apart from those described herein. Also, not all process stages may be required to implement a methodology in accordance with one or more aspects or embodiments of the present teachings. It will be appreciated that structural components and/or processing stages can be added or existing structural components and/or processing stages can be removed or modified. Further, one or more of the acts depicted herein may be carried out in one or more separate acts and/or phases. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” The term “at least one of” is used to mean one or more of the listed items can be selected. Further, in the discussion and claims herein, the term “on” used with respect to two materials, one “on” the other, means at least some contact between the materials, while “over” means the materials are in proximity, but possibly with one or more additional intervening materials such that contact is possible but not required. Neither “on” nor “over” implies any directionality as used herein. The term “conformal” describes a coating material in which angles of the underlying material are preserved by the conformal material. The term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated embodiment. Finally, “exemplary” indicates the description is used as an example, rather than implying that it is an ideal. Other embodiments of the present teachings will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present teachings being indicated by the following claims.
Terms of relative position as used in this application are defined based on a plane parallel to the conventional plane or working surface of a workpiece, regardless of the orientation of the workpiece. The term “horizontal” or “lateral” as used in this application is defined as a plane parallel to the conventional plane or working surface of a filter assembly or other workpiece, regardless of the orientation of the workpiece. The term “vertical” refers to a direction perpendicular to a plane of the filter assembly or other workpiece. Terms such as “on,” “side” (as in “sidewall”), “higher,” “lower,” “over,” “top,” and “under” are defined with respect to the conventional plane or working surface being on the top surface of the filter assembly or other workpiece, regardless of the orientation of the filter assembly or workpiece.
Number | Name | Date | Kind |
---|---|---|---|
3919382 | Smarook | Nov 1975 | A |
4046359 | Gellert | Sep 1977 | A |
4148954 | Smarook | Apr 1979 | A |
5310674 | Weinreb et al. | May 1994 | A |
5489930 | Anderson | Feb 1996 | A |
5610645 | Moore et al. | Mar 1997 | A |
5868933 | Patrick et al. | Feb 1999 | A |
7484835 | Kim et al. | Feb 2009 | B2 |
7901064 | Urayama et al. | Mar 2011 | B2 |
7938522 | Xie et al. | May 2011 | B2 |
8348407 | Matsufuji et al. | Jan 2013 | B2 |
8419175 | Graham et al. | Apr 2013 | B2 |
20030026381 | Ukai et al. | Feb 2003 | A1 |
20030080060 | Gulvin | May 2003 | A1 |
20040026313 | Arlon Fischer | Feb 2004 | A1 |
20040080592 | Kneezel | Apr 2004 | A1 |
20040118770 | Sale et al. | Jun 2004 | A1 |
20040251175 | Adams et al. | Dec 2004 | A1 |
20050249917 | Trentacosta et al. | Nov 2005 | A1 |
20060280906 | Trentacosta et al. | Dec 2006 | A1 |
20090186190 | Guan et al. | Jul 2009 | A1 |
20100151190 | Trentacosta et al. | Jun 2010 | A1 |
20100328409 | Matsufuji et al. | Dec 2010 | A1 |
20110233152 | Wieczorek et al. | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140022320 A1 | Jan 2014 | US |