1. Field
The present disclosure relates to multiple layer phosphor bearing film for solid state lighting devices.
2. Background
Solid state devices, such as light emitting diodes (LED)s, are attractive candidates for replacing conventional light sources such as incandescent and fluorescent lamps. LEDs have substantially higher light conversion efficiencies than incandescent lamps and longer lifetimes than both types of conventional light sources. In addition, some types of LEDs now have higher conversion efficiencies than fluorescent light sources and still higher conversion efficiencies have been demonstrated in the laboratory. Finally, LEDs require lower voltages than fluorescent lamps, and therefore, provide various power saving benefits.
Unfortunately, LEDs produce light in a relatively narrow spectrum. To replace conventional lighting systems, LED-based sources that produce white light are needed. One way to produce white light is to encapsulate blue or ultra-violet (UV) LEDs in a phosphor material. The phosphor material converts monochromatic light emitted from the blue or UV LEDs to broad-spectrum white light. The phosphor material is generally formed by encapsulating the LEDs with a carrier (e.g., silicone), introducing a suspension of phosphor particles into the carrier, and then curing the carrier to provide a solid layer of material in which the phosphor particles will remain suspended. Various processes for suspending phosphor particles in silicone carriers are known in the art.
Using these processes, it is difficult to achieve consistent optical properties. Often, due to the process of suspending the phosphor particles in the carrier, the uniformity of light across the LEDs is difficult to maintain. Phosphor tends to sediment while in dispenser. Sometimes tedious and lengthy degassing is required, which results in further sedimentation of phosphor constituents, and subsequently, in varied optical parameters and color characteristics. The process itself is often time consuming and costly, requiring multiple fabrication steps to complete the process. Accordingly, there is a need in the art for a simplified and improved process for applying a phosphor material to LEDs and other solid state devices.
In one aspect of the disclosure, a film includes a phosphor bearing layer comprising phosphor, a transparent protective layer on the phosphor bearing layer, and an adhesive configured to adhere the film to a light source.
In another aspect of the disclosure, a film includes a phosphor bearing layer comprising phosphor, and a transparent protective layer on the phosphor bearing layer, the transparent protective layer comprising a refractive index that is the same or lower than the refractive index of the phosphor bearing layer.
In yet another aspect of the disclosure, a light emitting device includes a light source, and a film comprising a phosphor bearing layer having phosphor, and a transparent protective layer on the a phosphor bearing layer, the film being on the light source.
In a further aspect of the disclosure, a method of manufacturing a light emitting device includes applying a film to a light source, the film comprising a transparent protective layer and a phosphor bearing layer comprising phosphor.
It is understood that other aspects of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several aspects of a multilayer phosphor bearing film by way of illustration. As will be realized, the various aspects of the multilayer phosphor bearing film presented throughout this disclosure are capable of modification in various other respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and the detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The present invention is described more fully hereinafter with reference to the accompanying drawings, in which various aspects of the present invention are shown. This invention, however, may be embodied in many different forms and should not be construed as limited to the various aspects of the present invention presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art.
The various aspects of the present invention illustrated in the drawings may not be drawn to scale. Rather, the dimensions of the various features may be expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus (e.g., device) or method.
Various aspects of the present invention will be described herein with reference to drawings that are schematic illustrations of idealized configurations of the present invention. As such, variations from the shapes of the illustrations as a result, for example, manufacturing techniques and/or tolerances, are to be expected. Thus, the various aspects of the present invention presented throughout this disclosure should not be construed as limited to the particular shapes of elements (e.g., regions, layers, sections, substrates, etc.) illustrated and described herein but are to include deviations in shapes that result, for example, from manufacturing. By way of example, an element illustrated or described as a rectangle may have rounded or curved features and/or a gradient concentration at its edges rather than a discrete change from one element to another. Thus, the elements illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the precise shape of an element and are not intended to limit the scope of the present invention.
It will be understood that when an element such as a region, layer, section, substrate, or the like, is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. It will be further understood that when an element is referred to as being “formed” on another element, it can be grown, deposited, etched, attached, connected, coupled, or otherwise prepared or fabricated on the other element or an intervening element.
Various elements may be shown in the drawings with a particular orientation. By way of example, the drawings may show one element on “top” of or “above” another element. Conversely, the drawings may show one element on the “bottom” of or “below” another element. It will be understood that present invention is intended to encompass different orientations of an apparatus in addition to the orientation depicted in the drawings. By way of example, if an apparatus in the drawings is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this disclosure.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The term “and/or” includes any and all combinations of one or more of the associated listed items
Various aspects of a multilayer phosphor bearing film for a solid state lighting device will now be presented. However, as those skilled in the art will readily appreciate, these aspects may be extended to other film applications without departing from the spirit and scope of the invention. The film may include a phosphor bearing layer with phosphor. The phosphor bearing layer may be adhesive to enable the film to be applied to a light source. The film may also include a transparent protective layer on the phosphor bearing layer. The phosphor bearing layer may include phosphor particles in a low or high refractive index material, such as silicone. The transparent protective layer may also have a low or high refractive index material.
An example of a light source that is well suited for use with a multilayer phosphor bearing film will now be presented with reference to
Turning to
The substrate 104 may include a base 106 and a dielectric layer 108. The base 106 provides mechanical support for the LEDs 102 and may be made from any suitable thermally conductive material, such as, by way of example, aluminum to dissipate heat away from the LEDs 102. The dielectric layer 108 may also be thermally conductive, while at the same time providing electrical insulation between the LEDs 102 from the base 108. The LEDs 102 may be electrically coupled in parallel and/or series by bond wires 114 that extend from the LEDs to contact pads (not shown) on the dielectric layer 108. The contact pads (not shown) may be connected together by a copper circuit layer (not shown) on the dielectric layer 108 or by other means. The LEDs 102 may be encapsulated in an encapsulation material 110, such as silicone, or other transparent encapsulation material. The encapsulation material 110 may be used to focus the light emitted from the LEDs 102, as well as protect the LEDs 102 from the environment. A structural boundary 112 (e.g., a ring) may be used to support the encapsulation material 110.
A multilayer phosphor bearing film may be applied to the light source. An example will now be presented with reference to
Alternatively, the film 200 may include a separate adhesive layer formed with silicone or some other suitable material. The adhesive layer may be formed on the phosphor bearing layer 202 or the transparent protective layer 204.
In one configuration of a multilayer phosphor film, a double sided adhesive film may be applied to a light source. An example of this configuration will now be presented with reference to
A process for manufacturing a multilayer phosphor bearing film will now be presented with reference to
A process for manufacturing a light source with a multilayer phosphor bearing film will now be presented with reference to
The various aspects of a multilayer phosphor bearing film are provided to enable one of ordinary skill in the art to practice the present invention. Various modifications to, and alternative configurations of the multilayer phosphor bearing films presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be extended to other lighting applications. Thus, the claims are not intended to be limited to the various aspects of this disclosure, but are to be accorded the full scope consistent with the language of the claims.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This is a Continuation-in-Part Application which claims the benefit of pending U.S. patent application Ser. No. 12/492,135, filed on Jun. 25, 2009.
Number | Date | Country | |
---|---|---|---|
Parent | 12492135 | Jun 2009 | US |
Child | 12844679 | US |