Multiple lumen assembly for use in endoscopes or other medical devices

Information

  • Patent Grant
  • 8202265
  • Patent Number
    8,202,265
  • Date Filed
    Thursday, April 20, 2006
    18 years ago
  • Date Issued
    Tuesday, June 19, 2012
    12 years ago
Abstract
An endoscope or other medical device includes a number of lumens positioned in an outer shaft. The lumens are formed as a multiple lumen assembly. In one embodiment, individual lumens are connected to each other with a sheet or webbing material. The lumen assembly is rolled or folded along its length for incorporation into the outer shaft of the medical device. The sheet or webbing material may be notched or perforated to facilitate folding the lumen assembly and/or separating individual lumens from the lumen assembly.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices, and in particular to endoscopes or other devices for inserting or retrieving items from a patient's body.


BACKGROUND OF THE INVENTION

Many endoscopes and other elongate medical devices that are designed to be advanced into the body include a shaft with one or more lumens therein. The lumens provide passageways between the distal and proximal ends of the shaft to direct air or water or surgical tools through the device. Alternatively, the lumens may be used to route internal components such as steering wires that selectively orient the distal tip of the device or electrical wires through the device.


One method of creating the lumens in the device is to insert individual tubes that form the lumens into the shaft. However, in order to keep the diameter of the device as small as possible, there is often little free space in the shaft for the tubes. As such, the tubes may bind or become wedged and difficult to advance through the shaft. Alternatively, the tubes may only fit in the shaft if they are arranged in a certain pattern, which is difficult to maintain as the tubes are incorporated into the shaft. Finally, by constructing the device using individual tubes for the lumens, it is generally necessary to keep a large inventory of tubes of various sizes at the location where such endoscopes or medical devices are assembled.


Given these problems, there is need for a medical device having multiple interior lumens that is more cost effective and easier to manufacture.


SUMMARY OF THE INVENTION

The present invention is a medical device such as an endoscope or catheter having an outer shaft and a lumen assembly with a number of individual lumens. Each of the lumens is interconnected such that the lumen assembly can be inserted as a group into the shaft.


In one embodiment, the lumens are formed from a tube having a number of individual passages or lumens formed therein. In another embodiment of the invention, the lumens comprise a series of tubes that are joined by a flexible sheet or web. The web may be continuous between the proximal and distal ends of the lumens. In another embodiment of the invention, the web may include a number of slots, cuts or other discontinuities between the proximal and distal ends.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 illustrates a number of conventional individual tubes that are placed within a shaft of an endoscope shaft or other medical device to create a number of corresponding lumens;



FIG. 2A illustrates one embodiment of a multiple lumen assembly for use in an endoscope or other medical device in accordance with one embodiment of the present invention;



FIG. 2B illustrates a lumen extension tube that can be used with the multiple lumen device shown in FIG. 2A;



FIG. 2C illustrates further detail of the multiple lumen assembly shown in FIG. 2A;



FIG. 3 illustrates a multiple lumen assembly having lumens held on a flexible strip in accordance with another embodiment of the present invention;



FIG. 4A illustrates another embodiment of a multiple lumen assembly in accordance with the present invention;



FIG. 4B illustrates another embodiment of a multiple lumen assembly in accordance with the present invention;



FIG. 4C illustrates one embodiment of a multiple lumen assembly having slots in a web that joins adjacent lumens in accordance with the present invention;



FIG. 4D illustrates a multiple lumen assembly having slits in the web joining adjacent lumens in accordance with another embodiment of the present invention;



FIG. 5 illustrates a multiple lumen assembly having a web made of a different material that is different from the material that forms the lumens, in accordance with an embodiment of the present invention;



FIG. 6 illustrates a multiple lumen assembly including lumens that form the outer sheaths of Bowden cables in accordance with an embodiment of the present invention;



FIG. 7A illustrates further details of the lumens that form the outer sheaths of Bowden cables;



FIG. 7B illustrates a multiple lumen assembly that is folded for incorporation into a shaft;



FIG. 7C illustrates a multiple lumen assembly that is wrapped around a central working channel lumen; and



FIG. 7D illustrates a working channel and multiple lumen assembly positioned within an exterior shaft in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As indicated above, the present invention is a multiple lumen assembly that can be incorporated into an endoscope shaft or other medical device configured for insertion into a natural body lumen of a patient's body.



FIG. 1 illustrates a conventional method of providing multiple lumens in an endoscope or other medical device. The multiple lumens 50 include a pair of smaller lumens 52, 54 that can be used for such functions as providing coolant to an LED or other light emitting device at the distal end of the endoscope. The coolant is delivered to the LEDs through a lumen 52 and returned to the proximal end of the device through the lumen 54. In addition, the multiple lumens include individual lumens 56 and 58. Lumen 56 may be used to provide a lens wash liquid to the distal tip, while lumen 58 can be used to provide insufflation gas to the distal tip. Each of the lumens 52, 54, 56, 58 may be made of an extruded tube of polymeric material. While such lumens are inexpensive to manufacture, they can be difficult to assemble within a shaft of the endoscope. The lumens may become lodged or kinked during insertion, or the lumens may become misaligned so that they do not fit within the interior of the shaft. Finally, the lumens take up space and limit shaft flexibility.


To overcome the problems associated with having to install individual tubes to create the lumens in the endoscope, the present invention is a multiple lumen assembly whereby individual lumen tubes are joined together for incorporation into an exterior shaft. In one embodiment of the invention shown in FIG. 2A, the multiple lumen assembly 70 comprises a single tube having a central lumen that is divided to create a number of smaller individual internal lumens 72, 74, 76, 78. The tube is preferably formed by an extrusion process to create the desired number of interior lumens within the tube. The lumen assembly 70 can then be advanced as a whole into an interior lumen of a surrounding shaft. Each of the lumens 72, 74, 76, 78 provides a passage for the delivery of materials, such as gases, liquids or tools through the endoscope.


In some instances, it is necessary to connect the individual lumens contained within the lumen assembly to another device such as a heat exchanger, or orifices at a distal end of the endoscope, etc. In that case, it may be necessary to employ a lumen extension such as that shown in FIG. 2B. Here, a lumen extension 75 includes a length of tubing material 77 and a plug 79. The plug 79 cooperates with the distal end of an individual lumen (e.g., lumen 74) contained within the lumen assembly 70 in order to connect the passageway of the individual lumen to the desired place. The lumen extension 75 allows for the passage of a liquid, air, or other material or device in the medical device.



FIG. 2C shows an additional advantage of an extruded lumen assembly such as the type shown in FIG. 2A. The lumen assembly 70 includes naturally rounded corners 73 within each of the individual lumens 72, 74, 76, 78. The rounded corners aid in preventing objects passed through the lumens from binding. The rounded corners 73 are a convenient by-product of an extruding process.



FIG. 3 illustrates an embodiment of the present invention whereby a multiple lumen assembly 82 includes a number of lumens 84, 86, 88, 90 that are formed of individual tubes. The tubes are formed with or secured to a sheet or strip of material 92. In this embodiment, the individual tubes that form the lumens can be formed separately and assembled into the lumen assembly 82 by securing them to the sheet or strip with an adhesive or the like. Alternatively, the lumens and the strip can be made as a single unit with an extrusion or molding process. Each of the tubes 84-90 is spaced apart on the strip 92 to allow the strip to be folded along its length for incorporation into an outer shaft of the endoscope or medical device.



FIG. 4A illustrates another alternative embodiment of the multiple lumen assembly of the present invention. In this embodiment, a lumen assembly 100 is formed of a number of individual lumens 102, 104, 106, 108, etc., that are joined by a webbing material 110. The individual lumens 102-108 form a ribbon with the webbing material 110 positioned to join each of the adjacent lumens. In one embodiment, the multiple lumen assembly 100 is formed by an extrusion process. Each of the lumens 102-108 may be the same size or a different size, depending upon the intended purpose of the lumen.



FIG. 4B illustrates another embodiment of the multiple lumen assembly shown in FIG. 4A. In this example, the multiple lumen assembly 100B comprises a series of lumens 102, 104, 106, 108 that are joined by a webbing material 110B. The webbing material 110B that joins adjacent lumens includes a pair of opposing notches 112 extending along the length thereof. The notches 112 aid in bending the webbing material such that the lumen assembly 100B can be folded for incorporation into the shaft of an endoscope or other medical device. In addition, the notches 112 aid in allowing the webbing material to be split so that individual lumens can be separated from the lumen assembly. Although the embodiment shown in FIG. 4B illustrates a single pair of notches 112 in the webbing material extending between adjacent lumens, it will be appreciated that additional notches or other flexibility enhancing mechanisms such as folds, etc., could be provided.



FIG. 4C illustrates yet another embodiment of the present invention wherein a lumen assembly 100C includes a number of individual lumens 102, 104, 106, 108 that are joined by a webbing material 110C. In this embodiment, the webbing material 110C includes a number of longitudinally extending slots 114 that are cut through the webbing material to increase the flexibility of the webbing material and allow individual lumens to be separated from the assembly. The slots may be formed with a laser after the lumen assembly is extruded or could be formed by other mechanisms such as with a knife. Although the slots 114 are illustrated as being generally oval in shape, it will be appreciated that the slots or holes could be other shapes, such as circular, rectangle, square, triangular, serpentine, etc.



FIG. 4D illustrates yet another alternative embodiment of a lumen assembly according to the present invention. The lumen assembly includes a number of individual lumens 102, 104, 106, 108 that are joined by a webbing material 110D. In this example, the webbing material 110D includes a number of longitudinally extending cuts 116 that extend entirely or partially through the webbing material. The cuts 116 aid in increasing the flexibility of the webbing material and allow the individual lumens to be separated by peeling individual lumens away from the lumen assembly. The individual lumens can then be connected to their appropriate destination. Furthermore, after the lumens are separated from the lumen assembly, they can be cut to the appropriate length.



FIG. 5 shows yet another alternative embodiment of the present invention. In this embodiment, a multiple lumen assembly 120 comprises individual extruded lumens 122, 124, 126, 128 that are joined by a flexible webbing material 130. In the embodiment shown, the webbing material 130 may have a durometer value which is different from the durometer values of one or more of the individual lumens 122, 124, 126, 128. Furthermore, the durometer values of the individual lumens might not necessarily be the same, depending upon the purpose of the lumen. By making the durometer value of the webbing material 130 softer than the durometer of the individual lumens, the lumen bundle 120 becomes flexible in the longitudinal direction so that it can be folded for incorporation into the shaft of an endoscope or other medical device.



FIG. 6 illustrates another embodiment of the present invention. In this example, a multiple lumen assembly 140 includes a number of lumens 142, 144, 146, and 148 that are designed to function as the outer, thinner, sheath of a Bowden cable and are thicker or more rigid than the other lumens of the assembly. Positioned between the Bowden cable lumens are additional lumens 150, 152, 154, 156, which may be used to supply a cooling liquid or gas to an illumination light source such as one or more LEDs. In addition, the lumens 150-156 may be used to supply insufflation gas or a lens wash liquid to a distal end of the endoscope. Each of the lumens 142-156 is joined by a flexible webbing material 160 that extends between adjacent lumens to join them together into a flexible ribbon. One advantage of the multiple lumen assembly 140 is that the lumens can be arranged in any desired order such that when the lumen assembly is folded rolled up for incorporation into an outer shaft of an endoscope, the individual lumens retain their orientation as they are advanced into the shaft. The orientation is preferably selected to minimize the amount of space occupied by the lumen assembly.


In one embodiment of the invention, each of the individual lumens is extruded from a single material. However, as shown in FIG. 7A, some of the lumens, such as the Bowden cable lumens 142, 144, 146, 148, may be extruded using two or more materials. For example, the Bowden cable lumens may include an inner layer 164 formed of a lubricious material such as HDPE. The inner layer 164 is covered with an outer layer 166, which may be formed of a different material. The outer layer 166 may also be used to form the webbing material that joins adjacent lumens. The inner layer 164 provides a slippery surface for the Bowden cables such that they do not bind under tension in order to steer the distal tip of an endoscope or medical device in a desired direction.



FIG. 7B illustrates a lumen assembly 140A in a rolled or folded position for incorporation into an endoscope shaft (not shown). As will be appreciated, the free ends between the outer-most lumens 142, 156 of the lumen assembly are brought adjacent each other to facilitate the introduction of the lumens into the shaft. Furthermore, the assembly may be wrapped around an additional central lumen that forms a working channel of a device such as that shown in FIG. 7C. In the embodiment of the invention shown in FIG. 7C, a central lumen 170 extends through the center of the folded lumen assembly 140A. The central lumen 170 may form the working channel of the endoscope or other medical device. Once the lumen bundle 140A is wrapped around the central lumen 170, the combination can be advanced into an outer sheath in order to assemble the endoscope or other medical device.



FIG. 7D illustrates the lumen assembly 140A and the central lumen 170 in position with an outer shaft 180 of an endoscope. Once the lumen assembly 140A and central lumen 170 have been advanced to the distal end of the shaft, the individual lumens can be separated from the ribbon assembly and connected as desired. In addition, individual lumens from the lumen assembly can be trimmed to the appropriate length, as necessary. Alternatively, it may be necessary to attach a lumen extension 190 as shown in FIG. 7C to one or more individual lumens of the lumen assembly in order to connect the lumens to their desired locations. The lumen extension 190 includes a length of flexible tubing and a connector 192 that joins the flexible tubing to a lumen of the lumen assembly.


As will be appreciated, the present invention provides a simplified method for inserting multiple lumens within a medical device in order to both save space and to maintain the orientations of the lumens with respect to each other as they are positioned in an outer shaft. While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. Therefore, the scope of the invention is to be determined from the following claims and equivalents thereof.

Claims
  • 1. A medical device, comprising: an outer shaft extending from a proximal end of an insertable portion of the medical device to a distal end of the insertable portion of the medical device, wherein the insertable portion of the medical device is configured for insertion into a natural body lumen of a patient; anda number of lumens inserted within the interior of the outer shaft,wherein each lumen of the number of lumens has an outer surface flexibly joined at one or more points along a length of the lumen to a flexible material so that each lumen is flexibly connected to at least one other lumen and longitudinally fixed with respect to an adjacent lumen of the number of lumens;wherein the number of lumens are connected to form a flexible ribbon that is folded before insertion into the interior of the outer shaft; andwherein an innermost surface of the outer shaft is entirely separated from an outermost surface of the flexible material between adjacent lumens of the number of lumens.
  • 2. The medical device of claim 1, wherein the flexible material is a flexible sheet and each lumen is secured at a single point on the outer surface thereof to the flexible sheet extending along the length of the lumen.
  • 3. The medical device of claim 2, wherein the lumens are adhesively secured to the flexible sheet.
  • 4. The medical device of claim 1, wherein at least two of the number of lumens are connected at two points along the length of the lumens to the flexible material such that the flexible material forms a webbing extending between the at least two lumens.
  • 5. The medical device of claim 4, wherein the flexible material that forms the webbing includes a number of perforations.
  • 6. The medical device of claim 4, wherein the flexible material that forms the webbing includes a notch that penetrates less than an entire thickness of the flexible material.
  • 7. The medical device of claim 4, wherein at least one of the at least two of the number of lumens and the flexible material that forms the webbing are made of a different material.
  • 8. The medical device of claim 4, wherein the flexible material that forms the webbing is integrally formed with the at least two of the number of lumens.
  • 9. The medical device of claim 1, wherein at least two of the number of lumens have different diameters.
  • 10. The medical device of claim 1, wherein the outer shaft is substantially cylindrical.
  • 11. The medical device of claim 1, wherein each of the number of lumens is substantially cylindrical, and the flexible material located between adjacent lumens extends substantially perpendicularly from a periphery of each of the adjacent lumens.
  • 12. An endoscope with an insertable portion having a proximal end and a distal end, comprising: a substantially cylindrical shaft extending from the proximal end of the insertable portion to the distal end of the insertable portion, wherein the insertable portion of the endoscope is configured for insertion into a natural body lumen of a patient;a working channel lumen positioned within the shaft; anda lumen assembly including a number of lumens inserted within the shaft, each lumen of the number of lumens having an outer surface flexibly joined at one or more points along a length of the lumen to a flexible material such that each lumen is flexibly connected to at least one other lumen along at least a portion of a length of the lumens and longitudinally fixed with respect to an adjacent lumen of the number of lumens;wherein the lumen assembly forms a flexible ribbon of lumens that is wrapped around the working channel lumen within the shaft.
  • 13. The endo scope of claim 12, wherein the flexible material is a strip and the lumen assembly includes at least two lumens secured to the strip at the one or more points along the length of the lumens.
  • 14. The endoscope of claim 13, wherein each lumen of the lumen assembly is adhesively secured to the strip.
  • 15. The endo scope of claim 12, wherein at least two lumens in the lumen assembly are flexibly joined at two points along the length of the lumens to the flexible material such that the flexible material forms a webbing that flexibly connects the at least two lumens.
  • 16. The endoscope of claim 15, wherein the flexible material that forms the webbing includes one or more perforations.
  • 17. The endoscope of claim 15, wherein the flexible material that forms the webbing includes a notch extending along a length of the webbing and penetrating less than an entire thickness of the webbing.
  • 18. The endoscope of claim 15, wherein at least one of the at least two lumens and the flexible material that forms the webbing are made of different material.
  • 19. The endoscope of claim 15, wherein the at least two lumens and the flexible material that forms the webbing are made of the same material.
  • 20. The endoscope of claim 12, wherein at least two of the number of lumens have different diameters.
  • 21. The endoscope of claim 12, wherein an innermost surface of the shaft is entirely separated from an outermost surface of the flexible material between adjacent lumens of the lumen assembly.
  • 22. The endoscope of claim 12, wherein each of the number of lumens is substantially cylindrical, and the flexible material located between adjacent lumens extends substantially perpendicularly from a periphery of each of the adjacent lumens.
  • 23. A medical device, comprising: a shaft having a proximal end and a distal end, wherein the shaft of the medical device is configured for insertion into a natural body lumen of a patient; anda flexible ribbon of lumens inserted within the shaft, wherein the ribbon includes a number of parallel spaced lumens positioned across a width of the ribbon that are joined along their length by a flexible material that forms a webbing that extends between adjacent lumens of the ribbon, wherein each lumen of the number of parallel spaced lumens is longitudinally fixed with respect to an adjacent lumen of the number of lumens; andwherein an innermost surface of the shaft is entirely separated from an outermost surface of the flexible material between adjacent lumens of the flexible ribbon of lumens.
  • 24. The medical device of claim 23, wherein the material that forms the webbing has a number of spaced-apart perforations along a length of the webbing between adjacent lumens of the ribbon.
  • 25. The medical device of claim 23, wherein the material that forms the webbing has one or more notches extending along a length of the webbing between adjacent lumens of the ribbon, the one or more notches having a depth that is less than a thickness of the material that forms the webbing.
  • 26. The medical device of claim 23, wherein the lumens in the ribbon and the material that forms the webbing are extruded of the same material.
  • 27. The medical device of claim 23, wherein at least two of the lumens have different diameters.
  • 28. The medical device of claim 23, wherein the shaft is substantially cylindrical.
  • 29. The medical device of claim 23, wherein each of the lumens is substantially cylindrical, and the flexible material located between adjacent lumens extends substantially perpendicularly from a periphery of each of the adjacent lumens.
US Referenced Citations (653)
Number Name Date Kind
3266059 Stelle Aug 1966 A
3470876 Barchilon Oct 1969 A
3526086 Morgan Sep 1970 A
3572325 Bazell et al. Mar 1971 A
3581738 Moore Jun 1971 A
4108211 Tanaka Aug 1978 A
4286585 Ogawa Sep 1981 A
4294162 Fowler et al. Oct 1981 A
4311134 Mitsui et al. Jan 1982 A
4315309 Coli Feb 1982 A
4351323 Ouchi et al. Sep 1982 A
4369768 Vukovic Jan 1983 A
4425113 Bilstad Jan 1984 A
4432349 Oshiro Feb 1984 A
4471766 Terayama Sep 1984 A
4473841 Murakoshi et al. Sep 1984 A
4488039 Sato et al. Dec 1984 A
4491865 Danna et al. Jan 1985 A
4493537 Nakahashi Jan 1985 A
4495134 Ouchi et al. Jan 1985 A
4499895 Takayama Feb 1985 A
4503842 Takayama Mar 1985 A
4513235 Acklam et al. Apr 1985 A
4515444 Prescott et al. May 1985 A
4516063 Kaye et al. May 1985 A
4519391 Murakoshi May 1985 A
4552130 Kinoshita Nov 1985 A
4559928 Takayama Dec 1985 A
4566437 Yamaguchi Jan 1986 A
4573450 Arakawa Mar 1986 A
4580210 Nordstrom Apr 1986 A
4586923 Gould et al. May 1986 A
4615330 Nagasaki et al. Oct 1986 A
4616630 Arakawa Oct 1986 A
4617915 Arakawa Oct 1986 A
4618884 Nagasaki Oct 1986 A
4621618 Omagari et al. Nov 1986 A
4622584 Nagasaki et al. Nov 1986 A
4625714 Toyota Dec 1986 A
4631582 Nagasaki et al. Dec 1986 A
4633303 Nagasaki et al. Dec 1986 A
4633304 Nagasaki Dec 1986 A
4643170 Miyazaki et al. Feb 1987 A
4646723 Arakawa Mar 1987 A
4649904 Krauter et al. Mar 1987 A
4651202 Arakawa Mar 1987 A
4652093 Stephen et al. Mar 1987 A
4652916 Suzaki et al. Mar 1987 A
4654701 Yabe Mar 1987 A
RE32421 Hattori May 1987 E
4662725 Nisioka May 1987 A
4663657 Nagasaki et al. May 1987 A
4667655 Ogiu et al. May 1987 A
4674844 Nishioka et al. Jun 1987 A
4686963 Cohen et al. Aug 1987 A
4697210 Toyota et al. Sep 1987 A
4700693 Lia et al. Oct 1987 A
4709730 Zwilling Dec 1987 A
4714075 Krauter et al. Dec 1987 A
4716457 Matsuo Dec 1987 A
4719508 Sasaki et al. Jan 1988 A
4727417 Kanno et al. Feb 1988 A
4727418 Kato et al. Feb 1988 A
4745470 Yabe et al. May 1988 A
4745471 Takamura et al. May 1988 A
4746974 Matsuo May 1988 A
4748970 Nakajima Jun 1988 A
4755029 Okobe Jul 1988 A
4762119 Allred et al. Aug 1988 A
4765312 Sasa et al. Aug 1988 A
4766489 Kato Aug 1988 A
4787369 Allred et al. Nov 1988 A
4790294 Allred et al. Dec 1988 A
4794913 Shimonaka et al. Jan 1989 A
4796607 Allred et al. Jan 1989 A
4800869 Nakajima Jan 1989 A
4804020 Bartholomew Feb 1989 A
4805596 Hatori Feb 1989 A
4806011 Bettinger Feb 1989 A
4816909 Kimura et al. Mar 1989 A
4819065 Eino Apr 1989 A
4819077 Kikuchi et al. Apr 1989 A
4821116 Nagasaki et al. Apr 1989 A
4824225 Nishioka Apr 1989 A
4831437 Nishioka et al. May 1989 A
4836187 Iwakoshi et al. Jun 1989 A
4844052 Iwakoshi et al. Jul 1989 A
4844071 Chen et al. Jul 1989 A
4845553 Konomura et al. Jul 1989 A
4845555 Yabe et al. Jul 1989 A
4847694 Nishihara Jul 1989 A
4853772 Kikuchi Aug 1989 A
4860731 Matsuura Aug 1989 A
4867546 Nishioka et al. Sep 1989 A
4868647 Uehara et al. Sep 1989 A
4869237 Eino et al. Sep 1989 A
4873965 Danieli Oct 1989 A
4875468 Krauter et al. Oct 1989 A
4877314 Kanamori Oct 1989 A
4882623 Uchikubo Nov 1989 A
4884134 Tsuji et al. Nov 1989 A
4885634 Yabe Dec 1989 A
4890159 Ogiu Dec 1989 A
4894715 Uchikubo et al. Jan 1990 A
4895431 Tsujiuchi et al. Jan 1990 A
4897789 King et al. Jan 1990 A
4899731 Takayama et al. Feb 1990 A
4899732 Cohen Feb 1990 A
4899787 Ouchi et al. Feb 1990 A
4905666 Fukuda Mar 1990 A
4918521 Yabe et al. Apr 1990 A
4919112 Siegmund Apr 1990 A
4919114 Miyazaki Apr 1990 A
4920980 Jackowski May 1990 A
4928172 Uehara et al. May 1990 A
4931867 Kikuchi Jun 1990 A
4941454 Wood et al. Jul 1990 A
4941456 Wood et al. Jul 1990 A
4951134 Nakasima et al. Aug 1990 A
4951135 Sasagawa et al. Aug 1990 A
4952040 Igarashi Aug 1990 A
4959710 Uehara et al. Sep 1990 A
4960127 Noce et al. Oct 1990 A
4961110 Nakamura Oct 1990 A
4967269 Sasagawa et al. Oct 1990 A
4971034 Doi et al. Nov 1990 A
4973311 Iwakoshi et al. Nov 1990 A
4979497 Matsuura et al. Dec 1990 A
4982725 Hibino et al. Jan 1991 A
4984878 Miyano Jan 1991 A
4986642 Yokota et al. Jan 1991 A
4987884 Nishioka et al. Jan 1991 A
4989075 Ito Jan 1991 A
4989581 Tamburrino et al. Feb 1991 A
4996974 Ciarlei Mar 1991 A
4996975 Nakamura Mar 1991 A
5001556 Nakamura et al. Mar 1991 A
5005558 Aomori Apr 1991 A
5005957 Kanamori et al. Apr 1991 A
5007408 Ieoka Apr 1991 A
5018509 Suzuki et al. May 1991 A
5022382 Ohshoki et al. Jun 1991 A
5029016 Hiyama et al. Jul 1991 A
5034888 Uehara et al. Jul 1991 A
5040069 Matsumoto et al. Aug 1991 A
RE33689 Nishioka et al. Sep 1991 E
5045935 Kikuchi Sep 1991 A
5049989 Tsuji Sep 1991 A
5050584 Matsuura Sep 1991 A
5050974 Takasugi et al. Sep 1991 A
5056503 Nagasaki Oct 1991 A
5061994 Takahashi Oct 1991 A
5068719 Tsuji Nov 1991 A
5069254 Vogelsang Dec 1991 A
5074861 Schneider et al. Dec 1991 A
5081524 Tsuruoka et al. Jan 1992 A
5087989 Igarashi Feb 1992 A
5110645 Matsumoto et al. May 1992 A
5111281 Sekiguchi May 1992 A
5111306 Kanno et al. May 1992 A
5111804 Funakoshi May 1992 A
5113254 Kanno et al. May 1992 A
5116310 Seder et al. May 1992 A
5119238 Igarashi Jun 1992 A
5131393 Ishiguro et al. Jul 1992 A
5137013 Chiba et al. Aug 1992 A
5140265 Sakiyama et al. Aug 1992 A
5156590 Vilmar Oct 1992 A
5159446 Hibino et al. Oct 1992 A
5170775 Tagami Dec 1992 A
5172225 Takahashi et al. Dec 1992 A
5174293 Hagiwara Dec 1992 A
5176629 Kullas et al. Jan 1993 A
5190520 Fenton et al. Mar 1993 A
5191878 Iida et al. Mar 1993 A
5198931 Igarashi Mar 1993 A
5201908 Jones Apr 1993 A
5208702 Shiraiwa May 1993 A
5209220 Hiyama et al. May 1993 A
5225958 Nakamura Jul 1993 A
5228356 Chuang Jul 1993 A
5243416 Nakazawa Sep 1993 A
5243967 Hibino Sep 1993 A
5257628 Ishiguro et al. Nov 1993 A
5271381 Ailinger et al. Dec 1993 A
RE34504 Uehara et al. Jan 1994 E
5291010 Tsuji Mar 1994 A
5299559 Bruce et al. Apr 1994 A
5311858 Adair May 1994 A
5325845 Adair et al. Jul 1994 A
5331551 Tsuruoka et al. Jul 1994 A
5342299 Snoke et al. Aug 1994 A
5347989 Monroe et al. Sep 1994 A
5358011 Stockton et al. Oct 1994 A
5374953 Sasaki et al. Dec 1994 A
5379757 Hiyama et al. Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5390662 Okada Feb 1995 A
5400769 Tanii et al. Mar 1995 A
5402768 Adair Apr 1995 A
5402769 Tsuji Apr 1995 A
5409485 Suda Apr 1995 A
5412478 Ishihara et al. May 1995 A
5418649 Igarashi May 1995 A
5420644 Watanabe May 1995 A
5431645 Smith et al. Jul 1995 A
5434615 Matsumoto Jul 1995 A
5436640 Reeves Jul 1995 A
5436767 Suzuki et al. Jul 1995 A
5440341 Suzuki et al. Aug 1995 A
5464007 Krauter et al. Nov 1995 A
5469840 Tanii et al. Nov 1995 A
5473235 Lance et al. Dec 1995 A
5482029 Sekiguchi et al. Jan 1996 A
5484407 Osypka Jan 1996 A
5484408 Burns Jan 1996 A
5485316 Mori et al. Jan 1996 A
5496260 Krauter et al. Mar 1996 A
5515449 Tsuruoka et al. May 1996 A
5518501 Oneda et al. May 1996 A
5518502 Kaplan et al. May 1996 A
5543831 Tsuji et al. Aug 1996 A
5569158 Suzuki et al. Oct 1996 A
5569159 Anderson et al. Oct 1996 A
5569195 Saab Oct 1996 A
5586262 Komatsu et al. Dec 1996 A
5589854 Tsai Dec 1996 A
5591202 Slater et al. Jan 1997 A
5608451 Konno et al. Mar 1997 A
5609574 Kaplan et al. Mar 1997 A
5619380 Agasawa et al. Apr 1997 A
5622528 Hamano et al. Apr 1997 A
5631695 Nakamura et al. May 1997 A
5633203 Adair May 1997 A
5643203 Beiser et al. Jul 1997 A
5645075 Palmer et al. Jul 1997 A
5647840 D'Amelio et al. Jul 1997 A
5658238 Suzuki et al. Aug 1997 A
5667477 Segawa Sep 1997 A
5674182 Suzuki et al. Oct 1997 A
5674197 van Muiden et al. Oct 1997 A
5685823 Ito et al. Nov 1997 A
5685825 Takase et al. Nov 1997 A
5691853 Miyano Nov 1997 A
5695450 Yabe et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5702349 Morizumi Dec 1997 A
5702754 Zhong Dec 1997 A
5703724 Miyano Dec 1997 A
5704371 Shepard Jan 1998 A
5704896 Fukunishi et al. Jan 1998 A
5708482 Takahashi et al. Jan 1998 A
5721566 Rosenberg et al. Feb 1998 A
5724068 Sanchez et al. Mar 1998 A
5728045 Komi Mar 1998 A
5739811 Rosenberg et al. Apr 1998 A
5740801 Branson Apr 1998 A
5746696 Kondo May 1998 A
5762631 Klein Jun 1998 A
5764809 Nomami et al. Jun 1998 A
5767839 Rosenberg Jun 1998 A
5779673 Roth et al. Jul 1998 A
5779686 Sato et al. Jul 1998 A
5781172 Engel et al. Jul 1998 A
5788714 Ouchi Aug 1998 A
5789047 Sasaki et al. Aug 1998 A
5793539 Konno et al. Aug 1998 A
5805140 Rosenberg et al. Sep 1998 A
5810715 Moriyama Sep 1998 A
5812983 Kumagai Sep 1998 A
5819736 Avny et al. Oct 1998 A
5820591 Thompson et al. Oct 1998 A
5821466 Clark et al. Oct 1998 A
5821920 Rosenberg et al. Oct 1998 A
5823948 Ross, Jr. et al. Oct 1998 A
5827177 Oneda et al. Oct 1998 A
5827186 Chen et al. Oct 1998 A
5827190 Palcic et al. Oct 1998 A
5828197 Martin et al. Oct 1998 A
5828363 Yaniger et al. Oct 1998 A
5830124 Suzuki et al. Nov 1998 A
5830128 Tanaka Nov 1998 A
5836869 Kudo et al. Nov 1998 A
5837023 Koike et al. Nov 1998 A
5840014 Miyano et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843000 Nishioka et al. Dec 1998 A
5846183 Chilcoat Dec 1998 A
5855560 Idaomi et al. Jan 1999 A
5857963 Pelchy et al. Jan 1999 A
5865724 Palmer et al. Feb 1999 A
5868664 Speier et al. Feb 1999 A
5868666 Okada et al. Feb 1999 A
5873816 Kagawa et al. Feb 1999 A
5873866 Kondo et al. Feb 1999 A
5876326 Takamura et al. Mar 1999 A
5876331 Wu et al. Mar 1999 A
5876373 Giba et al. Mar 1999 A
5876427 Chen et al. Mar 1999 A
5877819 Branson Mar 1999 A
5879284 Tsujita Mar 1999 A
5880714 Rosenberg et al. Mar 1999 A
5882293 Ouchi Mar 1999 A
5882339 Beiser et al. Mar 1999 A
5889670 Schuler et al. Mar 1999 A
5889672 Schuler et al. Mar 1999 A
5892630 Broome Apr 1999 A
5895350 Hori Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5897525 Dey et al. Apr 1999 A
5907487 Rosenberg et al. May 1999 A
5923018 Kameda et al. Jul 1999 A
5928136 Barry Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5929900 Yamanaka Jul 1999 A
5929901 Adair et al. Jul 1999 A
5931833 Silverstein Aug 1999 A
5933809 Hunt et al. Aug 1999 A
5935085 Welsh et al. Aug 1999 A
5936778 Miyano et al. Aug 1999 A
5938586 Wilk et al. Aug 1999 A
5941817 Crawford Aug 1999 A
5947953 Ash et al. Sep 1999 A
5950168 Simborg et al. Sep 1999 A
5951462 Yamanaka Sep 1999 A
5956416 Tsuruoka et al. Sep 1999 A
5956689 Everhart Sep 1999 A
5956690 Haggerson et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5970196 Greveling et al. Oct 1999 A
5976070 Ono et al. Nov 1999 A
5976074 Moriyama Nov 1999 A
5980454 Broome Nov 1999 A
5980468 Zimmon Nov 1999 A
5986693 Adair et al. Nov 1999 A
5991729 Barry et al. Nov 1999 A
5991730 Lubin et al. Nov 1999 A
5999168 Rosenberg et al. Dec 1999 A
6002425 Yamanaka et al. Dec 1999 A
6007482 Madni et al. Dec 1999 A
6007531 Snoke et al. Dec 1999 A
6010492 Jacobsen et al. Jan 2000 A
6014630 Jeacock et al. Jan 2000 A
6015088 Parker et al. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6020875 Moore et al. Feb 2000 A
6020876 Rosenberg et al. Feb 2000 A
6026363 Shepard Feb 2000 A
6030360 Biggs Feb 2000 A
6032120 Rock et al. Feb 2000 A
6039728 Berlien et al. Mar 2000 A
6043839 Adair et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6057828 Rosenberg et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6061004 Rosenberg May 2000 A
6067077 Martin et al. May 2000 A
6071248 Zimmon Jun 2000 A
6075555 Street Jun 2000 A
6078308 Rosenberg et al. Jun 2000 A
6078353 Yamanaka et al. Jun 2000 A
6078876 Rosenberg et al. Jun 2000 A
6080104 Ozawa et al. Jun 2000 A
6081809 Kumagai Jun 2000 A
6083152 Strong Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6095971 Takahashi Aug 2000 A
6099465 Inoue Aug 2000 A
6099513 Spehalski Aug 2000 A
6100874 Schena et al. Aug 2000 A
6104382 Martin et al. Aug 2000 A
6120435 Eino Sep 2000 A
6125337 Rosenberg et al. Sep 2000 A
6128006 Rosenberg et al. Oct 2000 A
6132369 Takahashi Oct 2000 A
6134056 Nakamuka Oct 2000 A
6134506 Rosenberg et al. Oct 2000 A
6135946 Konen et al. Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6142956 Kortenbach et al. Nov 2000 A
6146355 Biggs Nov 2000 A
6149607 Simpson et al. Nov 2000 A
6152877 Masters Nov 2000 A
6154198 Rosenberg Nov 2000 A
6154248 Ozawa et al. Nov 2000 A
6155988 Peters Dec 2000 A
6181481 Yamamoto et al. Jan 2001 B1
6184922 Saito et al. Feb 2001 B1
6193714 McGaffigan et al. Feb 2001 B1
6195592 Schuler et al. Feb 2001 B1
6203493 Ben-Haim Mar 2001 B1
6206824 Ohara et al. Mar 2001 B1
6211904 Adair Apr 2001 B1
6216104 Moshfeghi et al. Apr 2001 B1
6219091 Yamanaka et al. Apr 2001 B1
6221070 Tu et al. Apr 2001 B1
6238799 Opolski May 2001 B1
6241668 Herzog Jun 2001 B1
6260994 Matsumoto et al. Jul 2001 B1
6272470 Teshima Aug 2001 B1
6275255 Adair et al. Aug 2001 B1
6283960 Ashley Sep 2001 B1
6295082 Dowdy et al. Sep 2001 B1
6299625 Bacher Oct 2001 B1
6309347 Takahashi et al. Oct 2001 B1
6310642 Adair et al. Oct 2001 B1
6319196 Minami Nov 2001 B1
6319197 Tsuji et al. Nov 2001 B1
6334844 Akiba Jan 2002 B1
6346075 Arai et al. Feb 2002 B1
6358200 Grossi Mar 2002 B1
6366799 Acker et al. Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6398724 May et al. Jun 2002 B1
6413207 Minami Jul 2002 B1
6421078 Akai et al. Jul 2002 B1
6425535 Akiba Jul 2002 B1
6425858 Minami Jul 2002 B1
6436032 Eto et al. Aug 2002 B1
6441845 Matsumoto Aug 2002 B1
6447444 Avni et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6453190 Acker et al. Sep 2002 B1
6454162 Teller Sep 2002 B1
6459447 Okada et al. Oct 2002 B1
6468204 Sendai et al. Oct 2002 B2
6475141 Abe Nov 2002 B2
6478730 Bala et al. Nov 2002 B1
6489987 Higuchi et al. Dec 2002 B1
6496827 Kozam et al. Dec 2002 B2
6498948 Ozawa et al. Dec 2002 B1
6503193 Iwasaki et al. Jan 2003 B1
6520908 Ikeda et al. Feb 2003 B1
6524234 Ouchi Feb 2003 B2
6530882 Farkas et al. Mar 2003 B1
6533722 Nakashima Mar 2003 B2
6540669 Abe et al. Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6545703 Takahashi et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6558317 Takahashi et al. May 2003 B2
6561971 Akiba May 2003 B1
6565507 Kamata et al. May 2003 B2
6574629 Cooke, Jr. et al. Jun 2003 B1
6589162 Nakashima et al. Jul 2003 B2
6595913 Takahashi Jul 2003 B2
6597390 Higuchi Jul 2003 B1
6599239 Hayakawa et al. Jul 2003 B2
6602186 Sugimoto et al. Aug 2003 B1
6605035 Ando et al. Aug 2003 B2
6609135 Omori et al. Aug 2003 B1
6611846 Stoodley Aug 2003 B1
6614969 Eichelberger et al. Sep 2003 B2
6616600 Pauker Sep 2003 B2
6616601 Hayakawa Sep 2003 B2
6623424 Hayakawa et al. Sep 2003 B2
6638214 Akiba Oct 2003 B2
6638215 Kobayashi Oct 2003 B2
6641528 Torii Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656110 Irion et al. Dec 2003 B1
6656112 Miyanaga Dec 2003 B2
6659940 Adler Dec 2003 B2
6663561 Sugimoto et al. Dec 2003 B2
6669629 Matsui Dec 2003 B2
6673012 Fujii et al. Jan 2004 B2
6677984 Kobayashi et al. Jan 2004 B2
6678397 Ohmori et al. Jan 2004 B1
6682479 Takahashi et al. Jan 2004 B1
6685631 Minami Feb 2004 B2
6686949 Kobayashi et al. Feb 2004 B2
6690409 Takahashi Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6692431 Kazakevich Feb 2004 B2
6697101 Takahashi et al. Feb 2004 B1
6699181 Wako Mar 2004 B2
6702737 Hinto et al. Mar 2004 B2
6711426 Benaron et al. Mar 2004 B2
6715068 Abe Mar 2004 B1
6716162 Hakamata Apr 2004 B2
6728599 Wang et al. Apr 2004 B2
6730018 Takase May 2004 B2
6734893 Hess et al. May 2004 B1
6736773 Wendlandt et al. May 2004 B2
6743240 Smith et al. Jun 2004 B2
6749559 Kraas et al. Jun 2004 B1
6749560 Konstorum et al. Jun 2004 B1
6749561 Kazakevich Jun 2004 B2
6753905 Okada et al. Jun 2004 B1
6758806 Kamrava et al. Jul 2004 B2
6758807 Minami Jul 2004 B2
6758842 Irion et al. Jul 2004 B2
6778208 Takeshige et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6785410 Vining et al. Aug 2004 B2
6785414 McStravick et al. Aug 2004 B1
6785593 Wang et al. Aug 2004 B2
6796938 Sendai Sep 2004 B2
6796939 Hirata et al. Sep 2004 B1
6798533 Tipirneni Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6800057 Tsujita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6824539 Novak Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6829003 Takami Dec 2004 B2
6830545 Bendall Dec 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6840932 Lang et al. Jan 2005 B2
6842196 Swift et al. Jan 2005 B1
6846286 Suzuki et al. Jan 2005 B2
6847933 Hastings Jan 2005 B1
6849043 Kondo Feb 2005 B2
6850794 Shahidi Feb 2005 B2
6855109 Obata et al. Feb 2005 B2
6858004 Ozawa et al. Feb 2005 B1
6858014 Damarati Feb 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6863650 Irion Mar 2005 B1
6863661 Carrillo et al. Mar 2005 B2
6868195 Fujita Mar 2005 B2
6871086 Nevo et al. Mar 2005 B2
6873352 Mochida et al. Mar 2005 B2
6876380 Abe et al. Apr 2005 B2
6879339 Ozawa Apr 2005 B2
6881188 Furuya et al. Apr 2005 B2
6882785 Eichelberger et al. Apr 2005 B2
6887195 Pilvisto May 2005 B1
6890294 Niwa et al. May 2005 B2
6892090 Verard et al. May 2005 B2
6892112 Wang et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6898086 Takami et al. May 2005 B2
6899673 Ogura et al. May 2005 B2
6899674 Viebach et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6900829 Ozawa et al. May 2005 B1
6902527 Doguchi et al. Jun 2005 B1
6902529 Onishi et al. Jun 2005 B2
6903761 Abe et al. Jun 2005 B1
6903883 Amanai Jun 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905462 Homma Jun 2005 B1
6908427 Fleener et al. Jun 2005 B2
6908429 Heimberger et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6916286 Kazakevich Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6928490 Bucholz et al. Aug 2005 B1
6930706 Kobayahi et al. Aug 2005 B2
6932761 Maeda et al. Aug 2005 B2
6934093 Kislev et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6943821 Abe et al. Sep 2005 B2
6943822 Iida et al. Sep 2005 B2
6943946 Fiete Sep 2005 B2
6943959 Homma Sep 2005 B2
6943966 Konno Sep 2005 B2
6944031 Takami Sep 2005 B2
6949068 Taniguchi et al. Sep 2005 B2
6950248 Rudischhauser et al. Sep 2005 B2
6950691 Uckikubo Sep 2005 B2
6954311 Amanai Oct 2005 B2
6955671 Uchikubo Oct 2005 B2
6956703 Saito Oct 2005 B2
6961187 Amanai Nov 2005 B2
6962564 Hickle Nov 2005 B2
6963175 Archenhold et al. Nov 2005 B2
6964662 Kidooka et al. Nov 2005 B2
6967673 Ozawa et al. Nov 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6975968 Nakamitsu et al. Dec 2005 B2
6976954 Takahashi Dec 2005 B2
6977053 Mukasa et al. Dec 2005 B2
6977670 Takahashi et al. Dec 2005 B2
6980227 Iida et al. Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6981945 Sarvazyan et al. Jan 2006 B1
6982740 Adair et al. Jan 2006 B2
6984206 Kumei et al. Jan 2006 B2
6985183 Jan et al. Jan 2006 B2
6986686 Shibata et al. Jan 2006 B2
6994668 Miyano Feb 2006 B2
6994704 Qin et al. Feb 2006 B2
7001330 Kobayashi Feb 2006 B2
7008376 Ikeda et al. Mar 2006 B2
20010039370 Takahashi et al. Nov 2001 A1
20010049491 Shimada Dec 2001 A1
20020017515 Obata et al. Feb 2002 A1
20020028984 Hayakawa et al. Mar 2002 A1
20020055669 Konno May 2002 A1
20020080248 Adair et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087166 Brock et al. Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020163575 Ayame et al. Nov 2002 A1
20020193662 Belson Dec 2002 A1
20020193664 Ross et al. Dec 2002 A1
20030032863 Kazakevich Feb 2003 A1
20030045778 Ohline et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030069897 Roy et al. Apr 2003 A1
20030149338 Francois et al. Aug 2003 A1
20030181905 Long Sep 2003 A1
20040049097 Miyake Mar 2004 A1
20040054258 Maeda et al. Mar 2004 A1
20040073083 Ikeda et al. Apr 2004 A1
20040073084 Maeda et al. Apr 2004 A1
20040073085 Ikeda et al. Apr 2004 A1
20040143159 Wendlandt Jul 2004 A1
20040147809 Kazakevich Jul 2004 A1
20040167379 Akiba Aug 2004 A1
20040249247 Iddan Dec 2004 A1
20040257608 Tipirneni Dec 2004 A1
20050006133 Greiner et al. Jan 2005 A1
20050192476 Homan et al. Sep 2005 A1
20050197861 Omori et al. Sep 2005 A1
20050200698 Amling et al. Sep 2005 A1
20050203341 Welker et al. Sep 2005 A1
20050203418 Yamada et al. Sep 2005 A1
20050205958 Taniguchi et al. Sep 2005 A1
20050207645 Nishimura et al. Sep 2005 A1
20050209509 Belson Sep 2005 A1
20050225872 Uzawa et al. Oct 2005 A1
20050226508 Gotohda Oct 2005 A1
20050228221 Hirakawa Oct 2005 A1
20050228222 Furumi Oct 2005 A1
20050228227 Weber Oct 2005 A1
20050228697 Funahashi Oct 2005 A1
20050231591 Abe Oct 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050243169 Ono et al. Nov 2005 A1
20050247081 Sakata et al. Nov 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050251112 Danitz et al. Nov 2005 A1
20050251998 Bar-Or et al. Nov 2005 A1
20050253044 Kuriyama Nov 2005 A1
20050256370 Fujita Nov 2005 A1
20050256373 Bar-Or et al. Nov 2005 A1
20050256377 Deppmeier et al. Nov 2005 A1
20050256424 Zimmon Nov 2005 A1
20050264687 Murayama Dec 2005 A1
20050267417 Secrest et al. Dec 2005 A1
20050271340 Weisberg et al. Dec 2005 A1
20050272978 Brunnen et al. Dec 2005 A1
20050273085 Hinmane et al. Dec 2005 A1
20050288545 Matsumoto et al. Dec 2005 A1
20050288553 Sugimoto Dec 2005 A1
20060015008 Kennedy Jan 2006 A1
Foreign Referenced Citations (35)
Number Date Country
87 14 480 Apr 1988 DE
39 16 288 Nov 1989 DE
101 29 990 Jan 2003 DE
0 075 153 Mar 1983 EP
0 437 229 Jul 1991 EP
0 689 851 Jan 1996 EP
0 728 487 Aug 1996 EP
1 300 883 Apr 2003 EP
1 433 412 Jun 2004 EP
58-78635 May 1983 JP
05-31071 Feb 1993 JP
05-091972 Apr 1993 JP
06-105800 Apr 1994 JP
06-254048 Sep 1994 JP
07-8441 Jan 1995 JP
10-113330 May 1998 JP
10-286221 Oct 1998 JP
11-216113 Aug 1999 JP
2001 128933 May 2001 JP
3219521 Aug 2001 JP
2002 078675 Mar 2002 JP
2002-102152 Apr 2002 JP
2002-177197 Jun 2002 JP
2002-185873 Jun 2002 JP
2002-253481 Sep 2002 JP
3372273 Nov 2002 JP
2003-75113 Mar 2003 JP
2002 007134 Jul 2003 JP
3482238 Oct 2003 JP
2005253483 Sep 2005 JP
WO 9313704 Jul 1993 WO
WO 9907301 Feb 1999 WO
WO 03097156 Nov 2003 WO
WO 2004016310 Feb 2004 WO
WO 2005023082 Mar 2005 WO
Related Publications (1)
Number Date Country
20070250038 A1 Oct 2007 US