The present invention relates to a multiple output magnetic sensor that can be used to sense multiple positions of an object. Such a sensor can be used, for example, to indicate the half-latch and full-latch positions of an automobile door.
It is desirable and sometimes necessary to sense the positions of various devices that can assume multiple positions. One such device is the door of an automobile. The latches of such doors typically have half-latch and full-latch positions. When the door is in the full-latch position, the latch is fully engaged and the door in its fully closed position. When the door is in the half-latch position, the door in not in its fully closed position but the latch is sufficiently engaged to prevent the door from opening without further intervention by an operator. When the door is in neither the full-latch position nor the half-latch position, the door is open.
There are several reasons to sense these door latch positions. For example, the driver of an automobile can be notified when a door is in the full-latch position, or is in the half-latch position, or is open. Alternatively, power assist doors are being contemplated in which a motor or actuator is used to pull the door tightly closed to, for example, better shut out exterior noise. In this case, it is desirable to sense the half-latch position of the door in order to energize the motor so that it pulls the door to the full-latch position, and to then sense the full-latch position in order to prevent further pulling by the motor.
Hall sensors have been used to sense the position of objects by detecting the presence or absence of a magnetic field. Thus, a small magnet may be attached to an object whose position is be sensed, and the magnetic field of the magnet is detected by the Hall sensor in order to determine the position of the object. If the circuit that processes the signal from the Hall sensor is configured for uni-polar operation and has a digital output, the sensor will turn on when the magnetic field from the magnet exceeds a pre-defined threshold and will be off the rest of the time (ignoring the effects of hysteresis). Therefore, the circuit will only be able to detect when the object is in a certain discrete position.
In applications requiring the detection of multiple positions, such as the automobile door application discussed above, an encoded signal is frequently utilized. However, if only one Hall sensor is to be used to detect multiple positions, a complex time based extrapolation algorithm is required to determine the multiple positions.
To avoid the use of such an algorithm, a separate discrete Hall sensor can be used to detect each of the various positions of the object. However, the use of multiple Hall sensors increases the cost of the position detection system. In high volume industries such as the automobile industry, the cost can become significant.
The present invention relates to a multiple position sensor that overcomes one or more of these or other problems.
According to one aspect of the present invention, a door position sensing system comprises a door claw, a receiver, and a processor. The door claw has first and second transmitters mounted thereon. The receiver is mounted so as to receive signals transmitted by the first and second transmitters. The processor is responsive to the receiver to provide outputs indicating first and second positions of a door corresponding to the first and second transmitters.
According to another aspect of the present invention, a system comprises a mounting structure having a periphery, a first magnet, a second magnet, and a magnetic field sensor. The first magnet has a first North pole and a first South pole, and the first magnet is mounted on the mounting structure at the periphery such that the first North pole faces the periphery and the first South pole faces away from the periphery. The second magnet has a second North pole and a second South pole, and the second magnet is mounted on the mounting structure at the periphery such that the second South pole faces the periphery and the second North pole faces away from the periphery. The magnetic field sensor senses the first and second magnets upon relative movement between the magnetic sensor and the mounting structure.
According to still another aspect of the present invention, a door latch claw comprises a door claw plate having a periphery, a first transmitter mounted on the door claw plate at the periphery to transmit a signal indicative of a half-latch position of the door claw plate, and a second transmitter mounted on the door claw plate at the periphery to transmit a signal indicative of a full-latch position of the door claw plate.
These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:
As illustrated in
The door claw 16 is shown in more detail in
Also mounted on the frame of the automobile 10 is a printed circuit board 44 supporting a Hall sensor 46 and a processing circuit 48 comprising one or more electronic and/or electrical components. The printed circuit board 44 electrically couples the Hall sensor 46 to the processing circuit 48. The printed circuit board 44 is mounted on the automobile frame so that the Hall sensor 46 senses the magnetic fields of the first and second magnets 24 and 26 as the first and second magnets 24 and 26 move past the Hall sensor 46 during rotation of the door claw plate 22.
The Hall sensor 46 senses the presence of the first and second magnets 24 and 26 and provides corresponding output signals to the processing circuit 48. Based on these outputs signals from the Hall sensor 46, the processing circuit 48 provides half-latch and full-latch outputs to indicate the half-latch and full-latch positions of the door claw 16.
With this orientation of the first and second magnets 24 and 26, the Hall sensor 46 provides a positive going signal in response to the first magnet 24 and a negative going signal in response to the second magnet 26. As shown in
Accordingly, as the door claw 16 rotates from its door open position shown in
As can be seen, both of the output pulses 54 and 56 are shown with a positive polarity. However, both of the output pulses 54 and 56 may have the same negative polarity, or one of the output pulses 54 and 56 may have a positive polarity and the other of the output pulses 54 and 56 may have a negative polarity.
Moreover, the output pulses may be either voltage pulses or current pulses. Furthermore, instead of providing output pulses on separate pins (the outputs of the first and second operational amplifiers 50 and 52), pulses may be provided on a single pin, in which case, the pulses may be distinguished by different voltage or current levels. Accordingly, the outputs can be two voltage outputs with either different or same polarities, two current outputs with either different or same polarities, one voltage output with several voltage levels, and/or one current output with several current levels. Additionally, an interface can be provided where the information is transmitted serially (for example, using pulse width modulated signals associated with particular sensed conditions).
Certain modifications of the present invention have been discussed above. Other modifications of the present invention will occur to those practicing in the art of the present invention. For example, as described above, the first and second magnets 24 and 26 mounted on the door claw 16 have corresponding magnetic fields, and the Hall sensor 46 is mounted so as to sense the magnetic fields of the first and second magnets 24 and 26. The first and second magnets 24 and 26 may be viewed as magnetic field transmitters, and the Hall sensor 46 may be viewed as a magnetic field receiver. Other types of transmitters may be mounted on the door claw 16 to transmit signals indicating the position of the door claw 16. For example, the transmitters mounted on the door claw 16 may be electromagnetic transmitters, optical transmitters, sonic transmitters, RF transmitters, etc. The sensor such as the Hall sensor 46 must be suitably chosen to complement the particular transmitter.
Also, as described above, the Hall sensor 46 is stationary with respect to the first and second magnets 24 and 26. However, in some applications, the first and second magnets 24 and 26 may be stationary with respect to the Hall sensor 46.
Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.
Number | Name | Date | Kind |
---|---|---|---|
4295118 | Herr et al. | Oct 1981 | A |
5722706 | Bartel et al. | Mar 1998 | A |
5862691 | Friedrich et al. | Jan 1999 | A |
5890384 | Bartel et al. | Apr 1999 | A |
6377005 | Zintler et al. | Apr 2002 | B1 |
6539760 | Letzel et al. | Apr 2003 | B1 |
6603378 | Collins | Aug 2003 | B1 |
6705665 | Buecker et al. | Mar 2004 | B1 |
6711923 | Weyerstall | Mar 2004 | B1 |
20010035654 | Cetnar et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
03140578 | Jun 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20040130315 A1 | Jul 2004 | US |