Not Applicable.
Not Applicable
1. Field of the Invention
This invention relates to the field of solar energy. More specifically, the invention comprises a solar collector incorporating multiple parabolic troughs and multiple collector pipes running through the troughs, in which the position of the pipes relative to the troughs is varied in order to keep the collector pipes in the focus of the troughs as the sun moves across the sky.
2. Description of the Related Art
Solar energy collecting devices frequently use focusing lenses or reflectors to intensify the energy of the sun. Some collecting devices directly convert the solar energy to electrical energy using a photovoltaic array. Other collecting devices use the solar energy to heat a circulating working fluid. The present invention may be adapted to either type of collecting devices, as well as other types.
The reflecting trough shown extends for any suitable distance in a direction that is perpendicular to the orientation of the view. For this type of collector, a conductive pipe containing the circulating working fluid is run through central focal point 14, with the pipe running in a direction that is also perpendicular to the view of
Those skilled in the art will quickly realize that focal point 14 lies along the parabola's axis of symmetry 15, so long as the incoming rays are parallel to the axis of symmetry. Because the reflecting trough actually extends for some distance in a direction that is perpendicular to the view of
In
Prior art parabolic trough collectors typically include a suitable tilting mechanism in order to adjust the elevation of the collector. This mechanism regulates the elevation of the collector throughout the course of the day. An azimuth tracking mechanism is also frequently included. Such mechanisms tend to be complex and relatively expensive.
In order to keep the housing perfectly perpendicular to the incoming solar rays it must be adjusted in both elevation and azimuth. Elevation adjustment 48 tilts housing 46 as indicated. Azimuth adjustment 50 rotates the housing so that it tracks the sun crossing the sky.
One may simply set the elevation adjustment to match the latitude of the location and gain a good approximation of the optimum elevation through the middle of the day. Azimuth, however, is not so easy to approximate. A simple visualization exercise demonstrates this fact: If one sets the azimuth of a device such as shown in
This static approach works fairly well for photovoltaic cells but it does not work well for parabolic trough reflectors.
The reader will thereby appreciate that it is desirable to position a collector pipe within the focal zone even when the focal zone moves away from the trough collector's plane of symmetry. The present invention presents such a solution.
The present invention comprises a trough collector for solar energy, with multiple parallel troughs preferably being contained within a single unit. The collector does not use conventional azimuth tracking in order to keep the sun's rays directed toward the parabola's focus as the sun moves across the sky. Instead, the relative position between the collecting device (preferably a conductive tube containing a circulating working fluid) and the plane of symmetry for each collector is adjusted so that the collecting device remains within the focal zone of the collector as the sun traverses the sky.
A trough reflector has only one true focal axis. As the incoming rays become misaligned with the parabola's plane of symmetry, the focus shifts laterally and blurs somewhat. However—over a reasonable range of travel—the blurring does not significantly degrade the collection efficiency.
Many different devices could be employed to achieve this goal and the invention is by no means limited to any particular method or device. However, as the description of a few embodiments may aid the reader's understanding, such a description is provided.
Chassis 38 serves to mount the other components. It is depicted as a flat plate, though it will likely be a more complex structure for most embodiments. Four parallel parabolic troughs 10 are attached to the chassis using one or more supports 40. The parabolic troughs are fixedly attached to the chassis. That is, in this embodiment the troughs do not move. The positioning of the collecting devices in the focal zones of the troughs is accomplished by moving the collecting devices relative to the stationary troughs. In other embodiments, just the opposite will be done.
A receiver pipe 20 is provided for each parabolic trough 10. This receiver pipe is moved laterally with respect to the parabolic trough it lies within so that it remains within the focal zone of the parabolic trough as the sun transverses the sky. In the embodiment of
In the series-flow scheme of
Movable frame 28 moves on a pair of mounting rails 40. Frame notches 52 in movable frame 28 allow movable frame 28 (and the attached piping) to translate in the directions indicated by the reciprocating arrow. Linear bearings may be employed to allow a smooth movement. A low-friction sliding block may also be placed in each frame notch. Such blocks could be made of NYLON, DELRIN, or any other suitable material. The translation required will be quite slow, so a fairly crude sliding connection will suffice in many applications.
It is, however, preferable to move the frame in a controlled fashion so that the four receiver pipes 20 in this embodiment are accurately maintained in the focal zone of the four parabolic troughs 10 (as the sun transits the sky). In the embodiment of
Thus, by selectively energizing motor 36, movable frame 28 can be moved with respect to chassis 38. The motion may be controlled in any number of suitable ways. One simple approach is to use an open-loop “timetable” that moves the receiver pipes 20 to a predetermined position according to the time of day. One could also employ a closed-loop control system. In this arrangement an energy sensor could be placed at a suitable location on one of the receiver pipes. The control system would then be activated every few minutes during daylight hours and the closed-loop motion control system would adjust the position of the movable frame in order to maximize the energy received by the energy sensor. The energy sensor could be a simple temperature probe or some type of light intensity sensor. Of course, one could also employ a timetable motion controller that is relined by the application of a closed-loop energy sensing function.
Solar tracking is thus performed by the motion of movable frame 28 along with its attached components. Returning briefly to
The embodiment of
Chassis 38 may be set to a fixed elevation setting or elevation tracking may be provided using a conventional mechanism that tilts the entire assembly with respect to the horizontal. If the chassis is static, it is preferable to set the elevation of chassis 38 in order to maximize the efficiency of the collector. The elevation may be set according to latitude. On the equator, the elevation would be zero and chassis 38 would simply be parallel to the ground. At fifteen degrees north latitude, chassis 38 would preferably be set to an elevation of 15 degrees or something slightly less than this to achieve the best approximation of true elevation tracking. For example, the chassis could be mounted so that the side of the chassis proximate motor 36 in the embodiment of
Those skilled in the art will realize that many other components beyond those depicted in
Those skilled in the art will also realize that many other embodiments are possible within the inventive scope of the present invention. As one example, one could design a collector where the receiver pipes remain fixed but the parabolic troughs move laterally to track the sun. Returning to
It is also possible to combine the azimuth-accommodating features of the present invention with conventional azimuth-tracking devices. For example, a crude azimuth turntable could be provided that sets the device of
Thus, although the preceding descriptions contain significant detail, they should properly be viewed as disclosing examples of the inventions' many possible embodiments rather than disclosing the full scope of the invention itself. The scope of the invention will properly be determined by the claims to follow rather than any specific example provided.
Pursuant to the provisions of 37 C.F.R. section 1.53(c), this non-provisional patent application claims the benefit of an earlier-filed provisional application. The provisional application was assigned Ser. No. 61/673,389 and it listed the same inventors.
Number | Name | Date | Kind |
---|---|---|---|
2859745 | Von Brudersdorff | Nov 1958 | A |
3868823 | Russell et al. | Mar 1975 | A |
3991741 | Northrup et al. | Nov 1976 | A |
4003366 | Lightfoot | Jan 1977 | A |
4150663 | Sisson | Apr 1979 | A |
4296735 | Llorach | Oct 1981 | A |
4296737 | Silk | Oct 1981 | A |
4355630 | Fattor | Oct 1982 | A |
4427838 | Goldman | Jan 1984 | A |
4602613 | Barr | Jul 1986 | A |
20110162637 | Hahn | Jul 2011 | A1 |
20110168160 | Moll et al. | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140020678 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61673389 | Jul 2012 | US |