The invention relates to package water tube boilers, and more specifically, smaller commercial flexible water tube boilers.
Boilers are used in a variety of applications and processes in the world today. One of the more common types of boilers, the water-tube boiler, uses heat from fuel burned within a combustion chamber to heat water circulating through a network of internal tubes. Water-tube boilers typically consist of two principal sections, a radiant section and a convective section. Some boilers are further equipped with a super heater mechanism for, inter alfa, applications in which superheated steam is beneficial or required.
Package water-tube boilers are small to mid-sized water tube boilers that are preconstructed and assembled in a factory. These types of boilers can be shipped and installed as a complete unit, including an integrated burner, and do not require much more than fuel and water sources and appropriate ventilation.
A fundamental advantage of package boilers is an installed cost which is considerably lower than that of a field-erected boiler. This cost advantage is made possible by basic designs that allow standardized fabrication processes while still providing sufficient flexibility to permit satisfactory adaptation to the specific needs of a particular application. As a result, package boilers are typically constructed using standard, industry wide designs. Three of the most prevalent designs of package boilers are the “A”, “D”, and “O” types so named based upon the approximate shape of their respective tubes. In the conventional designs, the mud and steam drums are typically aligned. The drums may, however, be offset as disclosed in U.S. Pat. No. 6,901,887. The offset drum arrangement offers multiple advantages, including, maximizing heat transfer, better control and reduction of NOx emissions, and easier shipping of the pre-constructed unit. Through a modification of the tube arrangement and/or the addition of baffles, a multi-pass boiler can also be created.
The configuration of the tubes connecting the lower drum to the upper drum is especially important in a package boiler. These tubes must not only convey saturated steam and water to the upper drum, but must also adequately cool the unit and the walls in order for the boiler to have its small size. This is an important point as the space available within the unit for insulation is limited.
It would be advantageous to provide a package boiler with the highest operational efficiency while maintaining the smallest footprint. It is further desirable to accomplish such goals while reducing the overall manufacturing costs of the boiler unit.
The invention comprises a multiple pass flexible water tube boiler 100 having a novel tube design.
A plurality of metal water tubes 300 connect the lower drum 160 to the upper drum 150. A combustion chamber 170 is defined by the lower portion of the tubes 300. The upper portion of the tubes reside in a convection section 310 of the boiler. Gas outlet 180 allows the exhaust gas to escape.
One or more external downcomers (not shown) may be used to transport cooler water from the upper drum to the lower drum. When downcomers are used, the offset drum arrangement facilitates the connection of the downcomer to a flange on the header of the lower drum and the connection is not otherwise hindered by the burner arrangement.
The invention incorporates a parallel series of staggered water tubes 300, arranged in two groups of repeating tubes, along the long axis of the drums 150, 160. Referring to
Referring now to
As seen in
It will also be noted that although Group A and Group B have substantially the same design, due to the difference in the first bend in these two tube groups, their horizontal runs will not be situated parallel, i.e., within the same horizontal plane, within the boiler 100. This allows for a staggering of the water tubes which is a design not found in a conventional boiler. In a conventional boiler, all, or substantially all, of the riser tubes are of identical design and mounted in an identical position, yielding a generally uniform arrangement of tubes from the front to the back of the boiler.
In the instant arrangement, the tight interlocking nature of the tubes prevents gases from traveling between the radiant and convection sections of the boiler 100 and further increases the efficiency of the unit. The boiler can, however, also be operated as a multiple pass boiler via the installation of baffles within the convection section. Specifically, one or more baffles 190, such as shown in
In addition, a limited number of tubes, e.g., ten to twelve tubes, are bent slightly differently than the main body of riser tubes 300 in order to allow flue gas from the combustion chamber 400 to enter the convection section 310. These tubes, located near the far or back end of the furnace, are shown in
In operation, the burner 200 injects air and atomized fuel in the combustion chamber creating a flame which extends through the combustion chamber towards the rear wall. The combustion gases pass through the convection section of the water tubes and, ultimately, exit via the gas outlet 180. The heat absorbed by the water tubes 300 heats the water in the tubes and results in the generation of steam which rises to the upper steam drum 150. Depending on the application, tubes 340 and 350 may also act as downcomer tubes, permitting return of water to the lower drum 160.
The staggered tube arrangement substantially improves heat transfer within the boiler. The total heat transfer surface necessary is less than would be required with a conventional water tube arrangement. Therefore, a boiler having the instant configuration and a smaller footprint would be able to maintain the same operational parameters as a boiler having a conventional tube arrangement and, by extension, a larger footprint.
A boiler unit designed in this fashion has a quick response time and can generally be brought online in minutes. Because the unit uses only four tubes per section, the unit can be made to operate at a higher capacity and higher pressure than a conventional unit having ten or more such tubes. Further, this design permits the installation of a radiant superheater within the combustion chamber for additional industrial applications.
Overall manufacturing costs are reduced when employing this design, as the designs of tube set A and tube set B are essentially identical, except for the differences noted above. Costs are therefore reduced because other than those minimal differences, the same tubes are being manufactured and installed.
While the invention has been described in reference to certain preferred embodiments, it will be readily apparent to one of ordinary skill in the art that certain modifications or variations may be made to the system without departing from the scope of invention claimed below and described in the foregoing specification.
This application claims priority from U.S. Provisional Patent Application No. 62/453,558 filed on Feb. 2, 2017.
Number | Date | Country | |
---|---|---|---|
62453558 | Feb 2017 | US |