The present invention generally relates to a transporter and method for transporting one or more persons, and more particularly, to a transporter whose sustained motion is controlled, at least in part, by leaning.
A prior art, dynamically balanced transporter 18 whose sustained motion may be controlled by a rider leaning, is shown, in one embodiment, in
Another such prior art transporter whose motion is controlled by leaning is shown in
As discussed above, sustained motion of each of the above-described transporters may be controlled, at least in part, by a subject leaning on a support platform. However, a problem arises when there is more than one rider. While it may be relatively simple for a single rider to lean in a given direction so as to control the motion of the transporter, placement of a second person on the transporter may make it hard or impossible for either person to govern motion of the device by leaning.
In a first embodiment of the invention there is provided a transporter for transporting a first user and at least one additional person, each referred to herein as a ‘rider’, over a surface. The transporter includes a first support platform for supporting the first person, the first support platform having left and right sides and defining a fore-aft vertical plane and a lateral plane. At least one ground-contacting element is coupled to the first support platform such that the first support platform is capable of tilting in the fore-aft plane about a tilt axis. The ground-contacting element is driven by a motorized drive arrangement so as to cause locomotion of the transporter. A controller commands the motorized drive arrangement. The controller is configured so that at least one of fore and aft sustained motion of the transporter is based at least on fore-aft tilting of the first support platform.
The at least one additional rider can be supported by one or more passenger platforms. At least one of the passenger platforms may be coupled to the first support platform such that fore-aft tilting of the first support platform is substantially independent of the passenger platforms. At least one auxiliary ground-contacting element may be coupled to at least one passenger platform.
In accordance with related embodiments of the invention, the first support platform includes a pivot member. The pivot member is characterized by a pivot axis proximate to said tilt axis for coupling at least one of the passenger platforms to the first support platform, the pivot axis being perpendicular to the fore-aft plane. The pivot axis may coincide with said tilt axis.
In other related embodiments of the invention, at least one of the passenger platforms includes an arm having an end for coupling to the pivot member. The arm may be shaped so as to avoid contact with the first platform when the first platform is tilting. The at least one auxiliary ground-contacting element may be a wheel, ski, or skid, which may swivel about a vertical axis in response to turns made by the transporter. The weight of the rider may be borne primarily by the at least one auxiliary ground-contacting element. At least one of the passenger platforms may include at least one seat.
In accordance with further related embodiments of the invention, at least one of the passenger platforms is coupled to the first platform via a ball joint or a U-joint. At least one of the passenger platforms may include a substantially vertical support column. At least one of the passenger platforms may include both a right support platform for supporting a rider's first foot, and a left support platform for supporting the rider's second foot. The controller may command the motorized drive arrangement such that stability of the first support platform is dynamically maintained.
In accordance with another embodiment of the invention, there is provided a transporter for supporting a first user and at least one rider over a surface, each rider having a first and second foot. The transporter includes a first support platform for supporting the first rider, the first support platform having left and right sides and defining a fore-aft vertical plane and a lateral plane. At least one ground-contacting element is coupled to the first support platform such that the first support platform is capable of tilting in the fore-aft plane. The at least one ground-contacting element is driven by a motorized drive arrangement so as to cause locomotion of the transporter. A controller commands the motorized drive arrangement. The controller is configured so that at least one of fore and aft motion of the transporter is based at least on tilting of the first support platform. The transporter also includes one or more right support platforms for supporting the first foot of the at least one rider, and one or more left support platforms for supporting the left foot of the at least one rider.
In related embodiments of the invention, at least one of the right support platforms and at least one of the left support platforms are coupled to the first support platform such that fore-aft tilting of the first support platform is substantially independent of the at least one of the right support platforms and the at least one of the left support platforms. At least one right ground-contacting element may be coupled to at least one of the right support platforms, and at least one left ground-contacting element may be coupled to at least one of the left support platforms. The controller may command the motorized drive arrangement such that stability of the first platform is dynamically maintained. The right and left ground-contacting elements may be one of a wheel, a ski and a skid.
In another related embodiment of the invention, the first support platform includes a first and second pivot member. The first pivot member is characterized by a first pivot axis proximate to said tilt axis for coupling at least one of the right support platforms to the first support platform. The second pivot member is characterized by a second pivot axis proximate to said tilt axis, for coupling at least one of the left support platforms to the first support platform. Both the first and second pivot axes are perpendicular to the fore-aft plane.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
a and 6b show top views of a transporter that includes a first support platform coupled to a second support platform using a ball joint and universal joint, respectively, in accordance with embodiments of the invention;
a and 7b show bottom views of a transporter that includes a first support platform coupled to a second support platform using a scissors linkage, in accordance with one embodiment of the invention;
In accordance with one embodiment of the invention,
Coupled to first support platform 31 are one or more ground-contacting elements 33, 34, which provide contact between first support platform 31 and the ground. Ground-contacting elements 33, 34 may include, but are not limited to, arcuate members, tracks, treads, and wheels (hereinafter the term “wheel” will be used in the specification to refer to any such ground-contacting elements).
First support platform 31 is characterized by a fore-aft axis and a lateral axis. The fore-aft axis, X-X, is perpendicular to the axis of the wheels, while the lateral axis, Y-Y, is parallel to the axis of the wheels. Directions parallel to the axes X-X and Y-Y are called the fore-aft and lateral directions, respectively.
Wheels 33, 34 are coupled to first support platform 31 such that first support platform 31 is capable of tilting in the fore-aft plane about a tilt axis. First support platform 31 may be coupled to the wheels 33, 34 by various means known in the art, such as by a pivot mechanism, springs, or pneumatic pistons.
Motion of the transporter 30 is controlled, at least in part, by fore-aft tilting of first support platform 31. To determine fore-aft tilting of first support platform 31, transporter 30 includes a sensor module. Sensor module includes at least one sensor for generating a signal characteristic of the fore-aft tilting of first support platform 31. The at least one sensor may include, without limitation, a gyroscope, an inclinometer, a load sensor, an attitude sensor, or a proximity sensor, either alone or in combination.
A controller receives the signal characteristic of the fore-aft tilting of first support platform 31 from the sensor module. Based at least on this signal, the controller implements a control algorithm to command a motorized drive arrangement that drives the one or more wheels 33, 34 so as to cause locomotion of transporter 30. The controller may also respond to commands from other operator interfaces, such as a joystick or dial attached, for example, to handlebar 32.
Controller 50 includes a control algorithm for determining the amount of torque to be applied to the at least one wheel based on the sensed fore-aft tilt of the support platform. The control algorithm may be configured either in design of the system or in real time, on the basis of current operating mode and operating conditions as well as preferences of the user. Controller may implement the control algorithm by using a control loop. The operation of control loops is well known in the art of electromechanical engineering and is outlined, for example, in Fraser & Milne, Electro-Mechanical Engineering, IEEE Press (1994), particularly in Chapter 11, “Principles of Continuous Control” which is incorporated herein by reference.
As an example, and not meant to be limiting, the control algorithm may take the form:
The fore-aft tilt of first support platform, θ, may be in the form of an error term defined as the desired fore-aft tilt of the first support platform minus the measured fore-aft tilt of the first support platform attitude. The gain, K, may be a predetermined constant, or may be entered/adjusted by the operator through user interface 51. Responsiveness of the transporter to fore-aft tilting of the first support platform can be governed by K. For example, if K is increased, a rider will perceive a stiffer response in that a small change in platform tilt will result in a large torque command. Offset, O, may be incorporated into the control algorithm to govern the torque applied to the motorized drive, either in addition to, or separate from, the direct effect of θ. Thus, for example, the user may provide an input by means of a user interface of any sort, the input being treated by the control system equivalently to a change, for example, in fore-aft tilting of the first support platform.
Thus, referring back to
In accordance with one embodiment of the invention, a passenger platform 35 is coupled to the first support platform 31 such that fore-aft tilting of the first support platform 31 is substantially decoupled from the passenger platform 35. In the embodiment shown in
Passenger platform 35 is capable of supporting a second rider. The second rider may, for example, stand or sit on passenger platform 35. Attached to the passenger platform 35 may be a vertical support column 311 that can be gripped by a rider while situated on passenger platform 35. In various embodiments, a seat is coupled to passenger platform 35.
Passenger platform 35 is supported by at least one auxiliary ground-contacting element 310. Auxiliary ground-contacting element(s) 310 may include, but are not limited to, arcuate members, tracks, treads, skis, and wheels. Auxiliary ground-contacting element(s) may swivel about a vertical axis 312 in response-to turns made by the transporter 30.
During normal operation, pivot member 39 may be free to pivot in the fore/aft vertical plane, and motion is controlled by the subject leaning on the first support platform 31. In a fault condition, where transporter 30 loses the ability to maintain dynamic stability, pivot member 39 may be locked, by activation of a solenoid, for example, in such a manner to prevent passenger platform 35 from tilting forward and transporter 30 from tipping backward. The lock mechanism may be activated, in accordance with various embodiments of the invention, by a control signal or by a power failure. The implementation of the pivot lock and activation of the lock is well known to one of ordinary skill in the mechanical art.
Referring now to
a and 7b are a bottom view of a transporter 70 in which passenger platform 35 is coupled to first support platform 31 via a scissors linkage 72, in accordance with another embodiment of the invention. Referring first to
In the above-described embodiments, first support platform 31 and passenger platform 35 may have a characteristic transverse linear dimension substantially comparable to the shoulder width of a rider. Since the leaning of the respective trailer and transporter components are effectively decoupled, a rider standing on the passenger platform 35 need merely hold onto the rider of the first support platform 31 (i.e. the driver of the transporter 30) in order to maintain balance. Additionally, by exerting force on the rider of the first support platform 31, it is possible for the rider on the passenger platform 35 to drive the transporter 30.
In accordance with various embodiments of the invention, multiple passenger platforms may be attached to the first support platform. For example, the multiple passenger platforms 35 may attached in a serial configuration to the first support platform 31, as shown in
Each of the support platforms 92 and 93 may be supported by one or more ground contacting elements 94 and 95. Ground-contacting elements 94 and 95 may be, without limitation, an arcuate member, a track, a tread, a ski, or a wheel. Left and right support platforms 92 and 93 may be positioned in an unobtrusive position when not in use, such as when only a single rider is using transporter. For, example, in one embodiment, both the left support platform 92 and the right support platform 93 can be rotated in a direction A around pivot members 10031004, respectively, as shown in
In accordance with another embodiment of the invention, the passenger platform 35, as shown in
The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention.
The present application is a divisional of U.S. patent application Ser. No. 10/618,914, filed Jul. 14, 2003, now U.S. Pat. No. 6,969,079 which is a continuation-in-part of U.S. application Ser. No. 10/164,333, filed Jun. 5, 2002 now abandoned. The present application is also a continuation-in-part of U.S. patent application Ser. No. 10/626,468, filed Jul. 24, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/164,333, filed Jun. 5, 2002, now abandoned which is a divisional of U.S. patent application Ser. No. 09/516,384, filed Mar. 1, 2000, and which is now U.S. Pat. No. 6,435,535. All of the aforementioned patents and patent applications are hereby expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
584127 | Draullette et al. | Jun 1897 | A |
849270 | Schafer et al. | Apr 1907 | A |
1739716 | Fisher | Dec 1929 | A |
2742973 | Johannesen | Apr 1956 | A |
3145797 | Taylor | Aug 1964 | A |
3260324 | Suarez | Jul 1966 | A |
3283398 | Andren | Nov 1966 | A |
3288234 | Feliz | Nov 1966 | A |
3348518 | Forsyth et al. | Oct 1967 | A |
3374845 | Selwyn | Mar 1968 | A |
3387859 | McClellan | Jun 1968 | A |
3399742 | Malick | Sep 1968 | A |
3446304 | Alimanestiano | May 1969 | A |
3450219 | Fleming | Jun 1969 | A |
3515401 | Gross | Jun 1970 | A |
3580344 | Floyd | May 1971 | A |
3596298 | Durst, Jr. | Aug 1971 | A |
3724874 | Simpson | Apr 1973 | A |
3860264 | Douglas et al. | Jan 1975 | A |
3872945 | Hickman et al. | Mar 1975 | A |
3952822 | Udden et al. | Apr 1976 | A |
4018440 | Deutsch | Apr 1977 | A |
4062558 | Wasserman | Dec 1977 | A |
4076270 | Winchell | Feb 1978 | A |
4088199 | Trautwein | May 1978 | A |
4094372 | Notter | Jun 1978 | A |
4109741 | Gabriel | Aug 1978 | A |
4111445 | Haibeck | Sep 1978 | A |
4151892 | Francken | May 1979 | A |
4222449 | Feliz | Sep 1980 | A |
4264082 | Fouchey, Jr. | Apr 1981 | A |
4266627 | Lauber | May 1981 | A |
4293052 | Daswick et al. | Oct 1981 | A |
4325565 | Winchell | Apr 1982 | A |
4354569 | Eichholz | Oct 1982 | A |
4363493 | Veneklasen | Dec 1982 | A |
4373600 | Buschbom et al. | Feb 1983 | A |
4375840 | Campbell | Mar 1983 | A |
4510956 | King | Apr 1985 | A |
4560022 | Kassai | Dec 1985 | A |
4566707 | Nitzberg | Jan 1986 | A |
4570078 | Yashima et al. | Feb 1986 | A |
4571844 | Komasaku et al. | Feb 1986 | A |
4624469 | Bourne, Jr. | Nov 1986 | A |
4645230 | Hammons | Feb 1987 | A |
4657272 | Davenport | Apr 1987 | A |
4685693 | Vadjunec | Aug 1987 | A |
4709772 | Brunet | Dec 1987 | A |
4716980 | Butler | Jan 1988 | A |
4740001 | Torleumke | Apr 1988 | A |
4746132 | Eagan | May 1988 | A |
4770410 | Brown | Sep 1988 | A |
4786069 | Tang | Nov 1988 | A |
4790400 | Sheeter | Dec 1988 | A |
4790548 | Decelles et al. | Dec 1988 | A |
4794999 | Hester | Jan 1989 | A |
4798255 | Wu | Jan 1989 | A |
4802542 | Houston et al. | Feb 1989 | A |
4809804 | Houston et al. | Mar 1989 | A |
4834200 | Kajita | May 1989 | A |
4863182 | Chern | Sep 1989 | A |
4867188 | Reid | Sep 1989 | A |
4869279 | Hedges | Sep 1989 | A |
4874055 | Beer | Oct 1989 | A |
4890853 | Olson | Jan 1990 | A |
4919225 | Sturges | Apr 1990 | A |
4953851 | Sherlock et al. | Sep 1990 | A |
4984754 | Yarrington | Jan 1991 | A |
4985947 | Ethridge | Jan 1991 | A |
4998596 | Miksitz | Mar 1991 | A |
5002295 | Lin | Mar 1991 | A |
5011170 | Forbes et al. | Apr 1991 | A |
5011171 | Cook | Apr 1991 | A |
5052237 | Reimann | Oct 1991 | A |
5064209 | Kurschat | Nov 1991 | A |
5111899 | Reimann | May 1992 | A |
5158493 | Morgrey | Oct 1992 | A |
5161820 | Vollmer | Nov 1992 | A |
5168947 | Rodenborn | Dec 1992 | A |
5171173 | Henderson et al. | Dec 1992 | A |
5186270 | West | Feb 1993 | A |
5221883 | Takenaka et al. | Jun 1993 | A |
5240266 | Kelley et al. | Aug 1993 | A |
5241875 | Kochanneck | Sep 1993 | A |
5248007 | Watkins et al. | Sep 1993 | A |
5314034 | Chittal | May 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5366036 | Perry | Nov 1994 | A |
5376868 | Toyoda et al. | Dec 1994 | A |
5419624 | Adler et al. | May 1995 | A |
5427390 | Duncan et al. | Jun 1995 | A |
5641173 | Cobb, Jr. | Jun 1997 | A |
5655615 | Mick | Aug 1997 | A |
5701965 | Kamen et al. | Dec 1997 | A |
5701968 | Wright-Ott et al. | Dec 1997 | A |
5718534 | Neuling | Feb 1998 | A |
5775452 | Patmont | Jul 1998 | A |
5791425 | Kamen et al. | Aug 1998 | A |
5794730 | Kamen | Aug 1998 | A |
5873582 | Kaufman et al. | Feb 1999 | A |
5921844 | Hollick | Jul 1999 | A |
5947505 | Martin | Sep 1999 | A |
5971091 | Kamen et al. | Oct 1999 | A |
5973463 | Okuda et al. | Oct 1999 | A |
5975225 | Kamen et al. | Nov 1999 | A |
5986221 | Stanley | Nov 1999 | A |
6003624 | Jorgensen et al. | Dec 1999 | A |
6039142 | Eckstein et al. | Mar 2000 | A |
6050357 | Staelin et al. | Apr 2000 | A |
6059062 | Staelin et al. | May 2000 | A |
6125957 | Kauffmann | Oct 2000 | A |
6131057 | Tamaki et al. | Oct 2000 | A |
6223104 | Kamen et al. | Apr 2001 | B1 |
6225977 | Li | May 2001 | B1 |
6288505 | Heinzmann et al. | Sep 2001 | B1 |
6302230 | Kamen et al. | Oct 2001 | B1 |
6312001 | Boyer | Nov 2001 | B1 |
6435535 | Field et al. | Aug 2002 | B1 |
6561294 | Kamen et al. | May 2003 | B1 |
6651766 | Kamen et al. | Nov 2003 | B2 |
6779621 | Kamen et al. | Aug 2004 | B2 |
6969079 | Kamen et al. | Nov 2005 | B2 |
7000933 | Arling et al. | Feb 2006 | B2 |
20020063006 | Kamen et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
2048593 | May 1971 | DE |
3128112 | Feb 1983 | DE |
32 42 880 | Jun 1983 | DE |
3411489 | Apr 1984 | DE |
44 04 594 | Aug 1995 | DE |
196 25 498 | Nov 1997 | DE |
298 08 091 | Aug 1998 | DE |
298 08 096 | Aug 1998 | DE |
0 109 927 | May 1984 | EP |
0 193 473 | Sep 1986 | EP |
0 537 698 | Apr 1993 | EP |
0 663 312 | Jul 1995 | EP |
0 663 313 | Jul 1995 | EP |
0 958 978 | Nov 1999 | EP |
980 237 | May 1951 | FR |
2 502 090 | Mar 1982 | FR |
152664 | Feb 1922 | GB |
1213930 | Nov 1970 | GB |
2 139 576 | Nov 1984 | GB |
57-87766 | Jun 1982 | JP |
57-110569 | Jul 1982 | JP |
59-73372 | Apr 1984 | JP |
63-305082 | Dec 1988 | JP |
2-55580 | Feb 1990 | JP |
2-190277 | Jul 1990 | JP |
4-201793 | Jul 1992 | JP |
5-213240 | Aug 1993 | JP |
5-244933 | Sep 1993 | JP |
6-105415 | Apr 1994 | JP |
6-131685 | May 1994 | JP |
6-171562 | Jun 1994 | JP |
6-212810 | Aug 1994 | JP |
7-255780 | Oct 1995 | JP |
WO 8605752 | Oct 1986 | WO |
WO 8906117 | Jul 1989 | WO |
WO 9623478 | Aug 1996 | WO |
WO 9846474 | Oct 1998 | WO |
WO 0075001 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060011398 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10618914 | Jul 2003 | US |
Child | 10626468 | US | |
Parent | 09516384 | Mar 2000 | US |
Child | 10164333 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10626468 | Jul 2003 | US |
Child | 11233276 | US | |
Parent | 10164333 | Jun 2002 | US |
Child | 10618914 | US | |
Parent | 10164333 | Jun 2002 | US |
Child | 10164333 | US |