The described embodiments relate to LIDAR based 3-D point cloud measuring systems.
A LIDAR system employs pulses of light to measure distance to an object based on the time of flight (TOF) of each pulse of light. A pulse of light emitted from a light source of the LIDAR system interacts with a distal object. A portion of the light reflects from the object and returns to a detector of the LIDAR system. Based on the time elapsed between emission of the pulse of light and detection of the returned pulse of light, a distance is estimated. In some examples, pulses of light are generated by a laser emitter. The light pulses are focused through a lens or lens assembly. The time it takes for a pulse of laser light to return to a detector mounted near the emitter is measured and a distance is derived from the time measurement with high accuracy.
Some LIDAR systems employ a single laser emitter/detector combination combined with a rotating mirror to effectively scan across a plane. Distance measurements performed by such a system are effectively two dimensional (i.e., planar), and the captured distance points are rendered as a 2-D (i.e., single plane) point cloud. In some examples, rotating mirrors are rotated at very fast speeds (e.g., thousands of revolutions per minute).
However, in many operational scenarios, a 3-D point cloud is required. A number of schemes have been employed to interrogate the surrounding environment in three dimensions. In some examples, a 2-D instrument is actuated up and down and/or back and forth, often on a gimbal. This is commonly known within the art as “winking” or “nodding” the sensor. Thus, a single beam LIDAR unit can be employed to capture an entire 3-D array of distance points, albeit one point at a time. In a related example, a prism is employed to “divide” the laser pulse into multiple layers, each having a slightly different vertical angle. This simulates the nodding effect described above, but without actuation of the sensor itself.
In all the above examples, the light path of a single laser emitter/detector combination is somehow altered to achieve a broader field of view. But, the number of pixels such devices can generate per unit time is inherently limited due to limitations on the pulse repetition rate of a single laser. Any alteration of the beam path to achieve a larger coverage area, whether it is by mirror, prism, or actuation of the device, comes at a cost of decreased point cloud density.
As noted above, 3-D point cloud systems exist in several configurations. However, in many applications it is necessary to collect distance measurements over a broad field of view. For example, in an autonomous vehicle application, the vertical field of view should extend down to the ground in front of the vehicle. In addition, the vertical field of view should extend above the horizon, in the event the car enters a dip in the road. In addition, it is necessary to have a minimum of delay between the actions happening in the real world and the imaging of those actions. In some examples, it is desirable to provide a complete image update at least five times per second. To address these requirements, a 3-D LIDAR system has been developed that includes an array of multiple laser emitters and detectors. This system is described in U.S. Pat. No. 7,969,558 issued on Jun. 28, 2011, the subject matter of which is incorporated herein by reference in its entirety.
In many applications, a sequence of pulses is emitted. The direction of each pulse is sequentially varied in rapid succession. In these examples, a distance measurement associated with each individual pulse can be considered a pixel, and a collection of pixels emitted and captured in rapid succession (i.e., “point cloud”) can be rendered as an image or analyzed for other reasons (e.g., detecting obstacles). In some examples, viewing software is employed to render the resulting point clouds as images that appear three dimensional to a user. Different schemes can be used to depict the distance measurements as 3-D images that appear as if they were captured by a live action camera.
In some examples, the timing of successive light emission pulses is set such that the return signal associated with a particular pulse emission is detected before the subsequent pulse emission is triggered. This ensures that a detected return signal is properly associated with the particular pulse emission that generated the detected return signal.
In some other examples, multiple pulses are emitted into the surrounding environment before a return signal from any of the multiple pulses is detected. Traditionally, this approach raises the potential for cross-talk among detected signals. In other words, when multiple pulses are emitted into the surrounding environment before a return signal from any of the multiple pulses is detected, a detected return signal might be incorrectly associated with a different pulse emission than the particular pulse emission that gave rise to detected return signal. This can potentially cause errors in distance measurement.
Traditionally, to avoid cross-talk among the multiple pulses, each of the multiple pulses is projected in a different direction. By projecting each of the multiple pulses in a different direction, each volume of space interrogated by each of the multiple pulses is completely separated from any volume of space interrogated by any of the other multiple pulses. As the separation among simultaneously interrogated spaces is increased, the likelihood of inducing measurement error due to cross-talk is reduced.
Whether sequential pulse techniques, or multiple pulse techniques with spatial separation are employed, performance challenges remain.
The detection of return signals includes significant sources of measurement noise. In some examples, a light pulse due to sun light, a solar flare or cosmic ray is detected and mistakenly associated with a particular pulse emission. This results in a false distance measurement. In some other examples, a pulse emission from another LIDAR system is detected and mistakenly associated with a particular pulse emission. Again, this results in a false distance measurement. These problems are exacerbated as measurement ranges are extended for a LIDAR system without increasing laser pulse intensity.
Existing LIDAR systems employ a single light pulse to interrogate a particular volume of the surrounding environment at any given time. These systems are prone to signal contamination from external noise sources such as sun light, cosmic rays or other LIDAR based imaging systems.
Improvements in noise rejection are desired to extend measurement range and reject detected signals associated with illumination sources not associated with the LIDAR system.
Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Each measurement pulse sequence includes multiple pulses of illumination light and results in an estimate of distance between the 3-D LIDAR system and a particular location. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is longer than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back.
In a further aspect, the LIDAR system determines the time of flight of the multi-pulse measurement beam from the LIDAR device to the particular illuminated spot of the three dimensional environment and back to the LIDAR device.
In some embodiments, a delay time between each LIDAR measurement is set to be greater than the time of flight of the measurement pulse sequence to and from an object located at the maximum range of the LIDAR device. In this manner, there is no cross-talk among different channels of the LIDAR system.
In some other embodiments, a measurement pulse sequence may be emitted from one multi-pulse illumination system before a measurement pulse sequence emitted from another multi-pulse illumination system has had time to return to the LIDAR device. In some embodiments, care is taken to ensure that there is sufficient spatial separation between the areas of the surrounding environment interrogated by each beam to avoid cross-talk. In some embodiments, the multi-pulse illumination associated with a particular measurement channel is encoded differently from any other multi-pulse illumination generated by any other measurement channel.
A multi-pulse illumination beam can be encoded according to a code diversity scheme, an amplitude diversity scheme, a time diversity scheme, or any combination thereof. By encoding the measurement pulse sequence and decoding the return measurement pulse sequence, reflected signals associated with illumination by a measurement pulse sequence are distinguished from exogenous signals.
In some examples, the coding of the multi-pulse illumination beam can be pseudorandom. In some examples, the coding of the multi-pulse beam can be changed in response to a measure of channel noise in the return signals. For example, if the return signal includes noise that exceeds a threshold value, another code is selected. In this manner, coding can be selected that minimizes the impact of exogenous noise sources, such as other LIDAR systems.
In general, the sequence of pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not limiting in any way. Other aspects, inventive features, and advantages of the devices and/or processes described herein will become apparent in the non-limiting detailed description set forth herein.
Reference will now be made in detail to background examples and some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
As depicted in
In the embodiment depicted in
As depicted in
In the embodiment depicted in
As depicted in
As described hereinbefore, one or more of the optical elements of collection optics 116 is constructed from one or more materials that absorb light outside of a predetermined wavelength range that includes the wavelengths of light emitted by each of the array of light emitting elements 114. However, in general, one or more of the optical elements of illumination optics 115 may also be constructed from one or more materials that absorb light outside of a predetermined wavelength range that includes the wavelengths of light emitted by each of the array of light emitting elements 114.
A LIDAR system, such as 3-D LIDAR system 10 depicted in
In one aspect, each measurement beam illuminates a particular location of the three dimensional environment (e.g., pixel) with a sequence of multiple pulses of illumination light. Hence, each measurement pulse sequence includes multiple pulses of illumination light that interrogates one location in the surrounding environment and results in an estimate of distance between the 3-D LIDAR system and the location. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is less than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The photosensitive detector detects the measurement pulse sequence reflected from a particular location in the surrounding three dimensional environment. In this manner, the reflection from a particular measurement location of each pulse of the measurement pulse sequence is captured by the LIDAR system.
In a further aspect, the LIDAR system determines the time of flight of the multi-pulse measurement beam from the LIDAR device to the particular illuminated spot of the three dimensional environment and back to the LIDAR device. The time of flight is determined based on the reflected light detected during the measurement window. The distance between the LIDAR device and the particular location of the three dimensional environment illuminated by the multi-pulse beam of illumination light is determined based on the time of flight and the known speed of light.
Multi-pulse illumination system 130 includes a pulsed light emitting device 137. Pulsed light emitting device 137 generates pulsed light emission in response to a pulsed electrical signal 136 provided to the pulsed light emitting device. The light generated by pulsed light emitting device 137 is focused and projected onto a particular location 138 in the surrounding environment by one or more optical elements of the LIDAR system as a measurement pulse sequence. In one example, light emitted by pulsed light emitting device 137 is focused and projected onto a particular location by illumination optics 115 that collimate the emitted light into a multi-pulse beam of light 16 emitted from 3-D LIDAR system 10 as depicted in
Multi-pulse illumination system 130 includes any number of electrical energy storage elements (ESE) selectively coupled to the pulsed light emitting device 137. For illustration purposes,
As depicted in
As depicted in
In general, each of the sequence of pulses commanded by controller 140 can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some examples, one pulse of the measurement pulse sequence has a larger amplitude than another pulse of the same measurement pulse sequence. In some examples, one pulse of the measurement pulse sequence has a longer duration than another pulse of the same measurement pulse sequence. In some examples, one pulse of the measurement pulse sequence has both a longer duration and greater amplitude than another pulse of the same measurement pulse sequence.
In one embodiment, multi-pulse illumination system 130 includes eight electrical energy storage elements selectively coupled to a pulsed light emitting device in the manner described with reference to
In general, a multi-pulse illumination system 130 may include any number of electrical energy storage elements selectively coupled in series with a pulsed light emitting device. Furthermore, one or more of the electrical energy storage elements may have an energy storage capacity that differs from one or more of the other electrical energy storage elements.
In a further embodiment, a LIDAR system, such as LIDAR system 10 depicted in
As depicted in
In some embodiments, the delay time, TDELAY, is set to be greater than the time of flight of the measurement pulse sequence to and from an object located at the maximum range of the LIDAR device. In this manner, there is no cross-talk among any of the sixteen multi-pulse illumination systems.
In some other embodiments, a measurement pulse sequence may be emitted from one multi-pulse illumination system before a measurement pulse sequence emitted from another multi-pulse illumination system has had time to return to the LIDAR device. In some of these embodiments, care is taken to ensure that there is sufficient spatial separation between the areas of the surrounding environment interrogated by each beam to avoid cross-talk. In some of these embodiments, the multi-pulse illumination generated by any multi-pulse illumination system employed by the LIDAR system is encoded differently from any other multi-pulse illumination generated by any other multi-pulse illumination system. In this manner, the return signal associated each multi-pulse illumination beam can be differentiated from any other collected light, even if there is spatial overlap among the beams.
As depicted in
The amplified signal 153 is communicated to controller 140. An analog-to-digital converter (ADC) 144 of controller 140 is employed to convert the analog signal 153 into a digital signal used for further processing. Controller 140 generates an enable/disable signal 145 employed to control the timing of data acquisition by ADC 144 in concert with multi-pulse control signal, MPC.
As depicted in
As depicted in
The emission and collection of measurement pulse sequences in the measurement of distance between a LIDAR system and a particular location in the surrounding environment enables the implementation of a number of schemes for noise rejection. This can result in an increase in achievable range and a reduction in sensitivity to unwanted signals (e.g., sun noise, solar flares, cross-talk from other LIDAR devices, etc.). The multi-pulse illumination beam can be encoded according to a code diversity scheme, an amplitude diversity scheme, a time diversity scheme, or any combination thereof. By encoding the measurement pulse sequence and decoding the return measurement pulse sequence, reflected signals associated with illumination by the measurement pulse sequence are distinguished from exogenous signals.
In some examples, the coding of the multi-pulse illumination beam canbe pseudorandom. In some examples, the coding of the multi-pulse beam can be changed in response to a measure of channel noise in the return signals. For example, if the return signal includes noise that exceeds a threshold value, another code is selected. In this manner, coding can be selected that minimizes the impact of exogenous noise sources, such as other LIDAR systems.
In one example depicted in
In another example depicted in
In a further aspect, the emission and collection of multiple pulse sequences in the measurement of distance between a LIDAR system and a particular location in the surrounding environment enables the estimation of relative velocity between the LIDAR system and a detected object.
In block 201, a multi-pulse beam of illumination light is emitted from a LIDAR device into a three dimensional environment. The multi-pulse beam of illumination light illuminates a particular spot of the three dimensional environment with a measurement pulse sequence of illumination light.
In block 202, an amount of the measurement pulse sequence reflected from the particular spot of the three dimensional environment illuminated by the multi-pulse beam of illumination light is detected during a measurement time window. The measurement time window has a duration that exceeds the time of flight of light over a distance that is twice the measurement range of the LIDAR device.
In block 203, an output signal indicative of the detected amount of light is generated.
In block 204, the output signal is converted to a digital signal, for example, by analog to digital conversion electronics of controller 140 depicted in
In block 205, a time of flight of the measurement pulse sequence from the LIDAR device to the particular spot of the three dimensional environment and back to the LIDAR device is determined based on the digital signal.
In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Although certain specific embodiments are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific embodiments described above.
Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
The present application for patent claims the benefit of and priority to and is a continuation of U.S. application Ser. No. 16/854,755, filed Apr. 21, 2020, entitled “Multiple Pulse, LIDAR Based 3-D Imaging” which claims the benefit of and priority to and is a continuation of U.S. application Ser. No. 15/339,790, filed Oct. 31, 2016, entitled “Multiple Pulse, LIDAR Based 3-D Imaging” which claims priority under 35 U.S.C. § 119 from U.S. provisional patent application Ser. No. 62/289,277, entitled “Multiple Pulse, LIDAR Based 3-D Imaging”, filed Jan. 31, 2016, the subject matter of each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3064252 | Varela | Nov 1962 | A |
3373441 | Zadig | Mar 1968 | A |
3551845 | Zelina | Dec 1970 | A |
3636250 | Haeff | Jan 1972 | A |
3686514 | Dube et al. | Aug 1972 | A |
3781111 | Fletcher et al. | Dec 1973 | A |
3862415 | Hamden, Jr. et al. | Jan 1975 | A |
3897150 | Bridges et al. | Jul 1975 | A |
3921081 | Lane | Nov 1975 | A |
4179216 | Theurer et al. | Dec 1979 | A |
4199697 | Edwards | Apr 1980 | A |
4201442 | McMahon et al. | May 1980 | A |
4212534 | Bodlaj | Jul 1980 | A |
4220103 | Kasahara et al. | Sep 1980 | A |
4477184 | Endo | Oct 1984 | A |
4516837 | Soret et al. | May 1985 | A |
4634272 | Endo | Jan 1987 | A |
4656462 | Araki et al. | Apr 1987 | A |
4681433 | Aeschlimann | Jul 1987 | A |
4700301 | Dyke | Oct 1987 | A |
4730932 | Iga et al. | Mar 1988 | A |
4742337 | Haag | May 1988 | A |
4834531 | Ward | May 1989 | A |
4862257 | Ulich | Aug 1989 | A |
4895440 | Cain et al. | Jan 1990 | A |
4896343 | Saunders | Jan 1990 | A |
4902126 | Koechner | Feb 1990 | A |
4944036 | Hyatt | Jul 1990 | A |
4952911 | D'Ambrosia et al. | Aug 1990 | A |
4967183 | D'Ambrosia et al. | Oct 1990 | A |
5004916 | Collins, Jr. | Apr 1991 | A |
5006721 | Cameron et al. | Apr 1991 | A |
5023888 | Bayston | Jun 1991 | A |
5026156 | Bayston et al. | Jun 1991 | A |
5033819 | Tanaka | Jul 1991 | A |
5059008 | Flood et al. | Oct 1991 | A |
5175694 | Amato | Dec 1992 | A |
5177768 | Crespo et al. | Jan 1993 | A |
5210586 | Grage et al. | May 1993 | A |
5212533 | Shibuya et al. | May 1993 | A |
5241481 | Olsen | Aug 1993 | A |
5249157 | Taylor | Sep 1993 | A |
5291261 | Dahl et al. | Mar 1994 | A |
5309212 | Clark | May 1994 | A |
5314037 | Shaw et al. | May 1994 | A |
5319201 | Lee | Jun 1994 | A |
5357331 | Flockencier | Oct 1994 | A |
5365218 | Otto | Nov 1994 | A |
5463384 | Juds | Oct 1995 | A |
5465142 | Krumes et al. | Nov 1995 | A |
5515156 | Yoshida et al. | May 1996 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5563706 | Shibuya et al. | Oct 1996 | A |
5572219 | Silverstein et al. | Nov 1996 | A |
5691687 | Kumagai et al. | Nov 1997 | A |
5710417 | Joseph et al. | Jan 1998 | A |
5757472 | Wangler et al. | May 1998 | A |
5757501 | Hipp | May 1998 | A |
5757677 | Lennen | May 1998 | A |
5789739 | Schwarz | Aug 1998 | A |
5793163 | Okuda | Aug 1998 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5805468 | Blohbaum | Sep 1998 | A |
5847815 | Albouy et al. | Dec 1998 | A |
5847817 | Zediker et al. | Dec 1998 | A |
5877688 | Morinaka et al. | Mar 1999 | A |
5889479 | Tabei | Mar 1999 | A |
5895984 | Renz | Apr 1999 | A |
5903355 | Schwarz | May 1999 | A |
5903386 | Mantravadi et al. | May 1999 | A |
5923910 | Nakahara et al. | Jul 1999 | A |
5942688 | Kimura et al. | Aug 1999 | A |
5949530 | Wetteborn | Sep 1999 | A |
5953110 | Burns | Sep 1999 | A |
5991011 | Damm | Nov 1999 | A |
6034803 | Sullivan et al. | Mar 2000 | A |
6043868 | Dunne | Mar 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6088085 | Wetteborn | Jul 2000 | A |
6091071 | Franz et al. | Jul 2000 | A |
6100539 | Blumcke et al. | Aug 2000 | A |
6137566 | Leonard et al. | Oct 2000 | A |
6153878 | Jakob et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6201236 | Juds | Mar 2001 | B1 |
6259714 | Kinbara | Jul 2001 | B1 |
6297844 | Schatz et al. | Oct 2001 | B1 |
6321172 | Jakob et al. | Nov 2001 | B1 |
6327806 | Paige | Dec 2001 | B1 |
6329800 | May | Dec 2001 | B1 |
6335789 | Kikuchi | Jan 2002 | B1 |
6365429 | Kneissl et al. | Apr 2002 | B1 |
6396577 | Ramstack | May 2002 | B1 |
6420698 | Dimsdale | Jul 2002 | B1 |
6441363 | Cook, Jr. et al. | Aug 2002 | B1 |
6441889 | Patterson | Aug 2002 | B1 |
6442476 | Poropat | Aug 2002 | B1 |
6473079 | Kacyra et al. | Oct 2002 | B1 |
6504712 | Hashimoto et al. | Jan 2003 | B2 |
6509958 | Pierenkemper | Jan 2003 | B2 |
6593582 | Lee et al. | Jul 2003 | B2 |
6621764 | Smith | Sep 2003 | B1 |
6636300 | Doemens et al. | Oct 2003 | B2 |
6646725 | Eichinger et al. | Nov 2003 | B1 |
6650402 | Sullivan et al. | Nov 2003 | B2 |
6664529 | Pack et al. | Dec 2003 | B2 |
6665063 | Jamieson et al. | Dec 2003 | B2 |
6670905 | Orr | Dec 2003 | B1 |
6682478 | Nakamura | Jan 2004 | B2 |
6687373 | Yeh et al. | Feb 2004 | B1 |
6710324 | Hipp | Mar 2004 | B2 |
6742707 | Tsikos et al. | Jun 2004 | B1 |
6747747 | Hipp | Jun 2004 | B2 |
6759649 | Hipp | Jul 2004 | B2 |
6789527 | Sauler et al. | Sep 2004 | B2 |
6798527 | Fukumoto et al. | Sep 2004 | B2 |
6812450 | Hipp | Nov 2004 | B2 |
6876790 | Lee | Apr 2005 | B2 |
6879419 | Richman et al. | Apr 2005 | B2 |
6969558 | Walston et al. | Nov 2005 | B2 |
7030968 | D'Aligny et al. | Apr 2006 | B2 |
7041962 | Dollmann et al. | May 2006 | B2 |
7089114 | Huang | Aug 2006 | B1 |
7106424 | Meneely et al. | Sep 2006 | B2 |
7129971 | McCutchen | Oct 2006 | B2 |
7130672 | Pewzner et al. | Oct 2006 | B2 |
7131586 | Tsikos et al. | Nov 2006 | B2 |
7190465 | Froehlich et al. | Mar 2007 | B2 |
7240314 | Leung | Jul 2007 | B1 |
7248342 | Degnan | Jul 2007 | B1 |
7281891 | Smith et al. | Oct 2007 | B2 |
7295298 | Willhoeft et al. | Nov 2007 | B2 |
7313424 | Mayevsky et al. | Dec 2007 | B2 |
7315377 | Holland et al. | Jan 2008 | B2 |
7319777 | Morcom | Jan 2008 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7358819 | Rollins | Apr 2008 | B2 |
7373473 | Bukowski et al. | May 2008 | B2 |
7408462 | Pirkl et al. | Aug 2008 | B2 |
7477360 | England et al. | Jan 2009 | B2 |
7480031 | Mack | Jan 2009 | B2 |
7544945 | Tan et al. | Jun 2009 | B2 |
7570793 | Lages et al. | Aug 2009 | B2 |
7583364 | Mayor et al. | Sep 2009 | B1 |
7589826 | Mack et al. | Sep 2009 | B2 |
7619477 | Segarra | Nov 2009 | B2 |
7623222 | Benz et al. | Nov 2009 | B2 |
7640068 | Johnson et al. | Dec 2009 | B2 |
7642946 | Wong et al. | Jan 2010 | B2 |
7684590 | Kampchen et al. | Mar 2010 | B2 |
7697581 | Walsh et al. | Apr 2010 | B2 |
7741618 | Lee et al. | Jun 2010 | B2 |
7746271 | Furstenberg | Jun 2010 | B2 |
7868665 | Turner et al. | Jan 2011 | B2 |
7944548 | Eaton | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
8042056 | Wheeler et al. | Oct 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8077047 | Humble et al. | Dec 2011 | B2 |
8107056 | Riza | Jan 2012 | B1 |
8139685 | Simic et al. | Mar 2012 | B2 |
8203702 | Kane et al. | Jun 2012 | B1 |
8274037 | Ritter et al. | Sep 2012 | B2 |
8310653 | Ogawa et al. | Nov 2012 | B2 |
8451432 | Crawford | May 2013 | B2 |
8605262 | Campbell et al. | Dec 2013 | B2 |
8675181 | Hall | Mar 2014 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8767190 | Hall | Jul 2014 | B2 |
8875409 | Kretschmer et al. | Nov 2014 | B2 |
8976340 | Gilliland et al. | Mar 2015 | B2 |
8995478 | Kobtsev et al. | Mar 2015 | B1 |
9059562 | Priest | Jun 2015 | B2 |
9063549 | Pennecot et al. | Jun 2015 | B1 |
9069061 | Harwit | Jun 2015 | B1 |
9069080 | Stettner et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9093969 | Gebeyehu et al. | Jul 2015 | B2 |
9110154 | Bates et al. | Aug 2015 | B1 |
9151940 | Chuang et al. | Oct 2015 | B2 |
9191260 | Grund | Nov 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
RE45854 | Gittinger et al. | Jan 2016 | E |
9239959 | Evans et al. | Jan 2016 | B1 |
9246041 | Clausen et al. | Jan 2016 | B1 |
9250327 | Kelley | Feb 2016 | B2 |
9285477 | Smith et al. | Mar 2016 | B1 |
9286538 | Chen et al. | Mar 2016 | B1 |
9310197 | Gogolla et al. | Apr 2016 | B2 |
9383753 | Templeton et al. | Jul 2016 | B1 |
9453914 | Stettner et al. | Sep 2016 | B2 |
9529079 | Droz et al. | Dec 2016 | B1 |
9634156 | Pavlov et al. | Apr 2017 | B2 |
9735885 | Sayyah et al. | Aug 2017 | B1 |
9772607 | Decoux et al. | Sep 2017 | B2 |
9778362 | Rondeau et al. | Oct 2017 | B2 |
RE46672 | Hall | Jan 2018 | E |
9964632 | Droz et al. | May 2018 | B1 |
9983297 | Hall et al. | May 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
10003168 | Villeneuve | Jun 2018 | B1 |
10018726 | Hall et al. | Jul 2018 | B2 |
10048374 | Hall et al. | Aug 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10109183 | Franz et al. | Oct 2018 | B1 |
10120079 | Pennecot et al. | Nov 2018 | B2 |
10126412 | Eldada et al. | Nov 2018 | B2 |
10132928 | Eldada et al. | Nov 2018 | B2 |
10244187 | Stettner et al. | Mar 2019 | B2 |
10309213 | Barfoot et al. | Jun 2019 | B2 |
10330780 | Hall et al. | Jun 2019 | B2 |
10386465 | Hall et al. | Aug 2019 | B2 |
10393874 | Schmidtke et al. | Aug 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10436904 | Moss et al. | Oct 2019 | B2 |
10545222 | Hall et al. | Jan 2020 | B2 |
RE47942 | Hall | Apr 2020 | E |
10613203 | Rekow et al. | Apr 2020 | B1 |
10627490 | Hall et al. | Apr 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10712434 | Hall et al. | Jul 2020 | B2 |
10754034 | Chamberlain et al. | Aug 2020 | B1 |
10983218 | Hall et al. | Apr 2021 | B2 |
11137480 | Hall et al. | Oct 2021 | B2 |
20010011289 | Davis et al. | Aug 2001 | A1 |
20010017718 | Ikeda et al. | Aug 2001 | A1 |
20020003617 | Doemens et al. | Jan 2002 | A1 |
20020060784 | Pack et al. | May 2002 | A1 |
20020109074 | Uchida | Aug 2002 | A1 |
20020117545 | Tsikos et al. | Aug 2002 | A1 |
20030041079 | Bellemore et al. | Feb 2003 | A1 |
20030043363 | Jamieson et al. | Mar 2003 | A1 |
20030043364 | Jamieson et al. | Mar 2003 | A1 |
20030057533 | Lemmi et al. | Mar 2003 | A1 |
20030066977 | Hipp et al. | Apr 2003 | A1 |
20030076485 | Ruff et al. | Apr 2003 | A1 |
20030090646 | Riegl et al. | May 2003 | A1 |
20030163030 | Arriaga | Aug 2003 | A1 |
20040021852 | DeFlumere | Feb 2004 | A1 |
20040066500 | Gokturk et al. | Apr 2004 | A1 |
20040134879 | Kochergin et al. | Jul 2004 | A1 |
20040150810 | Muenter et al. | Aug 2004 | A1 |
20040213463 | Morrison | Oct 2004 | A1 |
20040240706 | Wallace et al. | Dec 2004 | A1 |
20040240710 | Lages et al. | Dec 2004 | A1 |
20040247157 | Lages et al. | Dec 2004 | A1 |
20050023353 | Tsikos et al. | Feb 2005 | A1 |
20050168720 | Yamashita et al. | Aug 2005 | A1 |
20050211893 | Paschalidis | Sep 2005 | A1 |
20050232466 | Kampchen et al. | Oct 2005 | A1 |
20050246065 | Ricard | Nov 2005 | A1 |
20050248749 | Kiehn et al. | Nov 2005 | A1 |
20050279914 | Dimsdale et al. | Dec 2005 | A1 |
20060007350 | Gao et al. | Jan 2006 | A1 |
20060073621 | Kneissel et al. | Apr 2006 | A1 |
20060089765 | Pack et al. | Apr 2006 | A1 |
20060100783 | Haberer et al. | May 2006 | A1 |
20060115113 | Lages et al. | Jun 2006 | A1 |
20060132635 | Land | Jun 2006 | A1 |
20060176697 | Arruda | Aug 2006 | A1 |
20060186326 | Ito | Aug 2006 | A1 |
20060197867 | Johnson et al. | Sep 2006 | A1 |
20060231771 | Lee et al. | Oct 2006 | A1 |
20060290920 | Kampchen et al. | Dec 2006 | A1 |
20070024956 | Coyle | Feb 2007 | A1 |
20070035624 | Bard et al. | Feb 2007 | A1 |
20070071056 | Chen | Mar 2007 | A1 |
20070121095 | Lewis | May 2007 | A1 |
20070181810 | Tan et al. | Aug 2007 | A1 |
20070201027 | Doushkina et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20070241955 | Brosche | Oct 2007 | A1 |
20070272841 | Wiklof | Nov 2007 | A1 |
20080002176 | Krasutsky | Jan 2008 | A1 |
20080013896 | Salzberg et al. | Jan 2008 | A1 |
20080074640 | Walsh et al. | Mar 2008 | A1 |
20080079371 | Kang et al. | Apr 2008 | A1 |
20080154495 | Breed | Jun 2008 | A1 |
20080170826 | Schaafsma | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080258695 | Kumar et al. | Oct 2008 | A1 |
20080302971 | Hyde et al. | Dec 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090026503 | Tsuda | Jan 2009 | A1 |
20090045359 | Kumahara et al. | Feb 2009 | A1 |
20090085901 | Antony | Apr 2009 | A1 |
20090122295 | Eaton | May 2009 | A1 |
20090142053 | Varshneya et al. | Jun 2009 | A1 |
20090168045 | Lin et al. | Jul 2009 | A1 |
20090218475 | Kawakami et al. | Sep 2009 | A1 |
20090245788 | Varshneya et al. | Oct 2009 | A1 |
20090299633 | Hawes et al. | Dec 2009 | A1 |
20090323737 | Ensher et al. | Dec 2009 | A1 |
20100006760 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100046953 | Shaw et al. | Feb 2010 | A1 |
20100067070 | Mamada et al. | Mar 2010 | A1 |
20100073780 | Ito | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100134596 | Becker | Jun 2010 | A1 |
20100188722 | Yamada et al. | Jul 2010 | A1 |
20100198487 | Vollmer et al. | Aug 2010 | A1 |
20100204964 | Pack et al. | Aug 2010 | A1 |
20100239139 | Hunt et al. | Sep 2010 | A1 |
20100258708 | Meyers et al. | Oct 2010 | A1 |
20100265077 | Humble et al. | Oct 2010 | A1 |
20100271615 | Sebastian et al. | Oct 2010 | A1 |
20100302528 | Hall | Dec 2010 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110040482 | Brimble et al. | Feb 2011 | A1 |
20110176183 | Ikeda et al. | Jul 2011 | A1 |
20110211188 | Juenemann et al. | Sep 2011 | A1 |
20110216304 | Hall | Sep 2011 | A1 |
20110228068 | Park | Sep 2011 | A1 |
20110228073 | Lee et al. | Sep 2011 | A1 |
20110235018 | Mori et al. | Sep 2011 | A1 |
20110280265 | Desbiens et al. | Nov 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20110316494 | Kitamura et al. | Dec 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120195597 | Malaney | Aug 2012 | A1 |
20120287417 | Mimeault | Nov 2012 | A1 |
20130024176 | Woodford | Jan 2013 | A2 |
20130038915 | Kusaka et al. | Feb 2013 | A1 |
20130050144 | Reynolds | Feb 2013 | A1 |
20130050486 | Omer et al. | Feb 2013 | A1 |
20130070239 | Crawford et al. | Mar 2013 | A1 |
20130093583 | Shapiro | Apr 2013 | A1 |
20130094960 | Bowyer et al. | Apr 2013 | A1 |
20130151198 | Brown | Jun 2013 | A1 |
20130168673 | Yu et al. | Jul 2013 | A1 |
20130206967 | Shpunt et al. | Aug 2013 | A1 |
20130241761 | Cooper et al. | Sep 2013 | A1 |
20130242283 | Bailey et al. | Sep 2013 | A1 |
20130258312 | Lewis | Oct 2013 | A1 |
20130286404 | Cenko et al. | Oct 2013 | A1 |
20130300479 | Thibault | Nov 2013 | A1 |
20130314711 | Cantin et al. | Nov 2013 | A1 |
20130336375 | Rank et al. | Dec 2013 | A1 |
20130342366 | Kiefer et al. | Dec 2013 | A1 |
20140043309 | Go et al. | Feb 2014 | A1 |
20140063189 | Zheleznyak et al. | Mar 2014 | A1 |
20140063483 | Li | Mar 2014 | A1 |
20140071234 | Millett | Mar 2014 | A1 |
20140078519 | Steffey et al. | Mar 2014 | A1 |
20140104592 | Tien et al. | Apr 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140176657 | Nemoto | Jun 2014 | A1 |
20140240317 | Go et al. | Aug 2014 | A1 |
20140240721 | Herschbach | Aug 2014 | A1 |
20140253369 | Kelley et al. | Sep 2014 | A1 |
20140259715 | Engel | Sep 2014 | A1 |
20140267848 | Wu | Sep 2014 | A1 |
20140274093 | Abdelmonem | Sep 2014 | A1 |
20140293263 | Justice et al. | Oct 2014 | A1 |
20140347650 | Bosch | Nov 2014 | A1 |
20150002852 | de Groot et al. | Jan 2015 | A1 |
20150015895 | Bridges et al. | Jan 2015 | A1 |
20150035437 | Panopoulos et al. | Feb 2015 | A1 |
20150055117 | Pennecot et al. | Feb 2015 | A1 |
20150101234 | Priest et al. | Apr 2015 | A1 |
20150116695 | Bartolome et al. | Apr 2015 | A1 |
20150131080 | Retterath et al. | May 2015 | A1 |
20150144806 | Jin et al. | May 2015 | A1 |
20150185325 | Park et al. | Jul 2015 | A1 |
20150202939 | Stettner et al. | Jul 2015 | A1 |
20150219764 | Lipson | Aug 2015 | A1 |
20150219765 | Mead et al. | Aug 2015 | A1 |
20150226853 | Seo et al. | Aug 2015 | A1 |
20150260843 | Lewis | Sep 2015 | A1 |
20150293224 | Eldada et al. | Oct 2015 | A1 |
20150293228 | Retterath et al. | Oct 2015 | A1 |
20150303216 | Tamaru | Oct 2015 | A1 |
20150346325 | Giacotto et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160009410 | Derenick et al. | Jan 2016 | A1 |
20160014309 | Ellison et al. | Jan 2016 | A1 |
20160021713 | Reed | Jan 2016 | A1 |
20160041266 | Smits | Feb 2016 | A1 |
20160049058 | Allen et al. | Feb 2016 | A1 |
20160098620 | Geile | Apr 2016 | A1 |
20160117431 | Kim et al. | Apr 2016 | A1 |
20160154105 | Sigmund et al. | Jun 2016 | A1 |
20160161600 | Eldada et al. | Jun 2016 | A1 |
20160191173 | Malaney | Jun 2016 | A1 |
20160209499 | Suzuki | Jul 2016 | A1 |
20160210487 | Jiang | Jul 2016 | A1 |
20160245919 | Kalscheur et al. | Aug 2016 | A1 |
20160259038 | Retterath et al. | Sep 2016 | A1 |
20160262228 | Huang et al. | Sep 2016 | A1 |
20160279808 | Doughty et al. | Sep 2016 | A1 |
20160300484 | Torbett | Oct 2016 | A1 |
20160306032 | Schwarz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160327646 | Scheim et al. | Nov 2016 | A1 |
20160345820 | Frisken et al. | Dec 2016 | A1 |
20160363659 | Mindell et al. | Dec 2016 | A1 |
20160365846 | Wyland | Dec 2016 | A1 |
20170005465 | Wyland et al. | Jan 2017 | A1 |
20170026633 | Riza | Jan 2017 | A1 |
20170146639 | Carothers | May 2017 | A1 |
20170146640 | Hall et al. | May 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170214861 | Rachlin et al. | Jul 2017 | A1 |
20170219695 | Hall et al. | Aug 2017 | A1 |
20170219713 | Gruver et al. | Aug 2017 | A1 |
20170220876 | Gao et al. | Aug 2017 | A1 |
20170242102 | Dussan et al. | Aug 2017 | A1 |
20170269198 | Hall et al. | Sep 2017 | A1 |
20170269209 | Hall et al. | Sep 2017 | A1 |
20170269215 | Hall et al. | Sep 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170307736 | Donovan | Oct 2017 | A1 |
20170329010 | Warke et al. | Nov 2017 | A1 |
20170350983 | Hall et al. | Dec 2017 | A1 |
20180019155 | Tsang et al. | Jan 2018 | A1 |
20180058197 | Barfoot et al. | Mar 2018 | A1 |
20180059219 | Irish et al. | Mar 2018 | A1 |
20180074382 | Lee et al. | Mar 2018 | A1 |
20180081041 | Niclass et al. | Mar 2018 | A1 |
20180100924 | Brinkmeyer | Apr 2018 | A1 |
20180106902 | Mase et al. | Apr 2018 | A1 |
20180131449 | Kare et al. | May 2018 | A1 |
20180168539 | Singh et al. | Jun 2018 | A1 |
20180188360 | Berger et al. | Jul 2018 | A1 |
20180261975 | Pavlov et al. | Sep 2018 | A1 |
20180267151 | Hall et al. | Sep 2018 | A1 |
20180275249 | Campbell et al. | Sep 2018 | A1 |
20180284227 | Hall et al. | Oct 2018 | A1 |
20180284274 | LaChapelle | Oct 2018 | A1 |
20180321360 | Hall et al. | Nov 2018 | A1 |
20180364098 | McDaniel et al. | Dec 2018 | A1 |
20190001442 | Unrath et al. | Jan 2019 | A1 |
20190011563 | Hall et al. | Jan 2019 | A1 |
20190056498 | Sonn et al. | Feb 2019 | A1 |
20190178991 | Hall et al. | Jun 2019 | A1 |
20190293764 | Van Nieuwenhove et al. | Sep 2019 | A1 |
20190339365 | Hall et al. | Nov 2019 | A1 |
20190361092 | Hall et al. | Nov 2019 | A1 |
20190369257 | Hall et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20200025879 | Pacala et al. | Jan 2020 | A1 |
20200025896 | Gunnam | Jan 2020 | A1 |
20200064452 | Avlas et al. | Feb 2020 | A1 |
20200088851 | Hall et al. | Mar 2020 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200144971 | Pinto et al. | May 2020 | A1 |
20200166613 | Hall et al. | May 2020 | A1 |
20200191915 | Hall et al. | Jun 2020 | A1 |
20200249321 | Hall | Aug 2020 | A1 |
20200292678 | Hall et al. | Sep 2020 | A1 |
20200319311 | Hall et al. | Oct 2020 | A1 |
20200319343 | Hall et al. | Oct 2020 | A1 |
20200348401 | Hall et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2089105 | Aug 1994 | CA |
641583 | Feb 1984 | CH |
1106534 | Aug 1995 | CN |
1576123 | Feb 2005 | CN |
2681085 | Feb 2005 | CN |
2773714 | Apr 2006 | CN |
930909 | Jul 1955 | DE |
3134815 | Mar 1983 | DE |
3216312 | Nov 1983 | DE |
3216313 | Nov 1983 | DE |
3701340 | Jul 1988 | DE |
3741259 | Jun 1989 | DE |
3808972 | Oct 1989 | DE |
3821892 | Feb 1990 | DE |
4040894 | Apr 1992 | DE |
4115747 | Nov 1992 | DE |
4124192 | Jan 1993 | DE |
4127168 | Feb 1993 | DE |
4137550 | Mar 1993 | DE |
4215272 | Nov 1993 | DE |
4243631 | Jun 1994 | DE |
4340756 | Jun 1994 | DE |
4411448 | Oct 1995 | DE |
4412044 | Oct 1995 | DE |
19512644 | Oct 1996 | DE |
19512681 | Oct 1996 | DE |
4345446 | Jul 1998 | DE |
4345448 | Jul 1998 | DE |
19727792 | Feb 1999 | DE |
19741730 | Apr 1999 | DE |
19741731 | Apr 1999 | DE |
19752145 | May 1999 | DE |
19717399 | Jun 1999 | DE |
19757847 | Jul 1999 | DE |
19757848 | Jul 1999 | DE |
19757849 | Jul 1999 | DE |
19757840 | Sep 1999 | DE |
19815149 | Oct 1999 | DE |
19828000 | Jan 2000 | DE |
19902903 | May 2000 | DE |
19911375 | Sep 2000 | DE |
19919925 | Nov 2000 | DE |
19927501 | Nov 2000 | DE |
19936440 | Mar 2001 | DE |
19953006 | May 2001 | DE |
19953007 | May 2001 | DE |
19953009 | May 2001 | DE |
19953010 | May 2001 | DE |
10025511 | Dec 2001 | DE |
10110420 | Sep 2002 | DE |
10114362 | Oct 2002 | DE |
10127417 | Dec 2002 | DE |
10128954 | Dec 2002 | DE |
10141055 | Mar 2003 | DE |
10143060 | Mar 2003 | DE |
10146692 | Apr 2003 | DE |
10148070 | Apr 2003 | DE |
10151983 | Apr 2003 | DE |
10162668 | Jul 2003 | DE |
10217295 | Nov 2003 | DE |
10222797 | Dec 2003 | DE |
10229408 | Jan 2004 | DE |
10244638 | Apr 2004 | DE |
10244640 | Apr 2004 | DE |
10244643 | Apr 2004 | DE |
10258794 | Jun 2004 | DE |
10303015 | Aug 2004 | DE |
10331529 | Jan 2005 | DE |
10341548 | Mar 2005 | DE |
102004010197 | Sep 2005 | DE |
102004014041 | Oct 2005 | DE |
102005050824 | May 2006 | DE |
102005003827 | Jul 2006 | DE |
102005019233 | Nov 2006 | DE |
102007013023 | Sep 2008 | DE |
102011089636 | Jun 2012 | DE |
202015009250 | Jan 2017 | DE |
0185816 | Jul 1986 | EP |
0361188 | Apr 1990 | EP |
0396865 | Nov 1990 | EP |
0412395 | Feb 1991 | EP |
0412398 | Feb 1991 | EP |
0412399 | Feb 1991 | EP |
0412400 | Feb 1991 | EP |
0468175 | Jan 1992 | EP |
0486430 | May 1992 | EP |
0653720 | May 1995 | EP |
0656868 | Jun 1995 | EP |
0665446 | Aug 1995 | EP |
0897120 | Feb 1999 | EP |
0913707 | May 1999 | EP |
0937996 | Aug 1999 | EP |
0967492 | Dec 1999 | EP |
1046938 | Oct 2000 | EP |
1055937 | Nov 2000 | EP |
1148345 | Oct 2001 | EP |
1160718 | Dec 2001 | EP |
1174733 | Jan 2002 | EP |
1267177 | Dec 2002 | EP |
1267178 | Dec 2002 | EP |
1286178 | Feb 2003 | EP |
1286181 | Feb 2003 | EP |
1288677 | Mar 2003 | EP |
1291673 | Mar 2003 | EP |
1291674 | Mar 2003 | EP |
1298012 | Apr 2003 | EP |
1298453 | Apr 2003 | EP |
1298454 | Apr 2003 | EP |
1300715 | Apr 2003 | EP |
1302784 | Apr 2003 | EP |
1304583 | Apr 2003 | EP |
1306690 | May 2003 | EP |
1308747 | May 2003 | EP |
1355128 | Oct 2003 | EP |
1403657 | Mar 2004 | EP |
1408318 | Apr 2004 | EP |
1418444 | May 2004 | EP |
1460454 | Sep 2004 | EP |
1475764 | Nov 2004 | EP |
1515157 | Mar 2005 | EP |
1531342 | May 2005 | EP |
1531343 | May 2005 | EP |
1548351 | Jun 2005 | EP |
1557691 | Jul 2005 | EP |
1557692 | Jul 2005 | EP |
1557693 | Jul 2005 | EP |
1557694 | Jul 2005 | EP |
1700763 | Sep 2006 | EP |
1914564 | Apr 2008 | EP |
1927867 | Jun 2008 | EP |
1939652 | Jul 2008 | EP |
1947377 | Jul 2008 | EP |
1983354 | Oct 2008 | EP |
2003471 | Dec 2008 | EP |
2177931 | Apr 2010 | EP |
2963445 | Jan 2016 | EP |
3185038 | Jun 2017 | EP |
2041687 | Sep 1980 | GB |
H05240940 | Sep 1993 | JP |
H03-006407 | Feb 1994 | JP |
H6-288725 | Oct 1994 | JP |
H06-289136 | Oct 1994 | JP |
H07-167609 | Jul 1995 | JP |
H09-097925 | Apr 1997 | JP |
11264871 | Sep 1999 | JP |
2001-256576 | Sep 2001 | JP |
2002-031528 | Jan 2002 | JP |
2003-336447 | Nov 2003 | JP |
2004241915 | Aug 2004 | JP |
2004-348575 | Dec 2004 | JP |
2005-070840 | Mar 2005 | JP |
2005-297863 | Oct 2005 | JP |
2006-177843 | Jul 2006 | JP |
2008102000 | May 2008 | JP |
20080258695 | Oct 2008 | JP |
2010-060309 | Mar 2010 | JP |
2013-104771 | May 2013 | JP |
2013187528 | Sep 2013 | JP |
2016164983 | Sep 2016 | JP |
2061224 | May 1996 | RU |
2554279 | Jun 2015 | RU |
2567469 | Nov 2015 | RU |
2575766 | Feb 2016 | RU |
WO-1999003080 | Jan 1999 | WO |
WO-2000025089 | May 2000 | WO |
WO-0131608 | May 2001 | WO |
WO-03019234 | Mar 2003 | WO |
WO-03040755 | May 2003 | WO |
WO-2004019293 | Mar 2004 | WO |
WO-2004036245 | Apr 2004 | WO |
WO-2008008970 | Jan 2008 | WO |
WO-2009120706 | Oct 2009 | WO |
WO-2012172526 | Dec 2012 | WO |
WO-2015104572 | Jul 2015 | WO |
WO-2016162568 | Oct 2016 | WO |
WO-2017089063 | Jun 2017 | WO |
WO-2017132703 | Aug 2017 | WO |
WO-2017149370 | Sep 2017 | WO |
WO-2017164989 | Sep 2017 | WO |
WO-2017165316 | Sep 2017 | WO |
WO-2017210418 | Dec 2017 | WO |
WO-2018125823 | Jul 2018 | WO |
WO-2018196001 | Nov 2018 | WO |
WO-2020001535 | Jan 2020 | WO |
Entry |
---|
U.S. Appl. No. 15/941,302, filed Mar. 30, 2018. |
U.S. Appl. No. 16/510,680, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,710, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,749, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 15/420,384, filed Jan. 31, 2017, Hall et al. |
U.S. Appl. No. 16/030,780, filed Jul. 9, 2018, Hall et al. |
U.S. Appl. No. 11/777,802, filed Jul. 13, 2007, Hall. |
U.S. Appl. No. 13/109,901, filed May 17, 2011, Hall et al. |
U.S. Appl. No. 15/180,580, filed Jun. 13, 2016, Hall et al. |
U.S. Appl. No. 15/700,543, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,558, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,571, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,836, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,844, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,959, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,965, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 16/912,648, filed Jun. 25, 2020, Hall et al. |
U.S. Appl. No. 15/926,095, filed Mar. 30, 2018, Hall et al. |
U.S. Appl. No. 15/464,227, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/464,221, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/974,527, filed May 8, 2018, Hall et al. |
U.S. Appl. No. 16/748,498, filed Jan. 21, 2020, Hall et al. |
U.S. Appl. No. 15/610,975, filed Jun. 1, 2017, Hall et al. |
U.S. Appl. No. 16/546,131, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/842,491, filed Apr. 7, 2020, Hall et al. |
U.S. Appl. No. 16/546,184, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/546,206, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/909,306, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/339,790, filed Oct. 31, 2016, Hall et al. |
U.S. Appl. No. 16/854,755, filed Apr. 21, 2020, Hall et al. |
U.S. Appl. No. 16/905,843, filed Jun. 18, 2020, Hall et al. |
U.S. Appl. No. 16/909,846, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/835,983, filed Dec. 8, 2017, Hall et al. |
U.S. Appl. No. 16/459,557, filed Jul. 1, 2019, Rekow et al. |
U.S. Appl. No. 16/841,506, filed Apr. 6, 2020, Rekow et al. |
U.S. Appl. No. 16/112,273, filed Aug. 24, 2018, Avlas et al. |
U.S. Appl. No. 16/181,523, filed Nov. 6, 2018, Pinto et al. |
U.S. Appl. No. 16/241,849, filed Jan. 7, 2019, Hall et al. |
U.S. Appl. No. 16/241,963, filed Jan. 7, 2019, Hall et al. |
Quanergy Systems, Inc. v. Velodyne Lidar, Inc. (N.D. Cal.), Docket No. 5:16-cv-05251, filed Sep. 13, 2016, U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), Docket No. 5:16-cV-04742, filed Aug. 13, 2019, U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Suteng Innovation Technology Co., Ltd. (N.D. Cal.), Docket No. 5:16-cV-04746, filed Aug. 13, 2019, U.S. Pat. No. 7,969,558. |
In re Ceitain Rotating 3-D Lidar Devices: Components Thereof, and Sensing Systems Containing the Same (ITC), Investigation No. ITC-337-TA-1173, filed Aug. 15, 2019, U.S. Pat. No. 7,969,558. |
Petition for Inter Partes Review (USPTO Patent Trial and Appeal Board), Case No. IPR2018-00255, filed Nov. 29, 2017, U.S. Pat. No. 7,969,558. |
Petition for Inter Partes Review (USPTO Patent Trial and Appeal Board), Case No. IPR2018-000255, filed Nov. 29, 2017, U.S. Pat. No. 7,969,558. |
Accetta et al., Active Electro-Optical Systems, The Infrared and Electro-Optical Systems Handbook (1993, ed. by Clifton Fox), pp. 3-76. (IPR Nos. '255 and '256 Exhibit 2158). |
Acuity Laser, Principles of Measurement Used by Laser Sensors, https://www.acuitylaser.com/measurement-principles (2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 1075). |
Acuity, Acuity Aluminum Billet Scalping Production Information webpage (Brennan Deposition Exhibit 14) (last visited Dec. 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2184). |
Acuity, Acuity AR700 Laser Displacement Sensor Product Information webpage (Brennan Deposition Exhibit 13) (last visited Dec. 28, 2018), 9 pages. (IPR Nos. '255 and '256 Exhibit 2183). |
Acuity, Acuity Drill Pipe Runout Product Information webpage (Brennan Deposition Exhibit 12) (last visited Dec. 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2182). |
Acuity, Acuity Short Range Sensors Product Information webpage (Brennan Deposition Exhibit 11) (last visited Dec. 30, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 2181). |
Aiestaran et al. “A Fluorescent Linear Optical Fiber Position Sensor” Elsevier B.V. May 21, 2008 (4 pages). |
Albota, “Three-dimensional imaging laser RADAR with a photon-counting avalanche photodiode array and microchip laser,” Applied optics, vol. 41, No. 36 (Dec. 20, 2002), 8 pages. |
Alhashimi, et al., Statistical Modeling and Calibration of Triangulation Lidars, SCITEPRESS—Science and Technology Publications (2016), pp. 308-317. (IPR Nos. '255 and '256 Exhibit 1069). |
Amann, Laser ranging: a critical review of usual techniques for distance measurement, 40(1) Society of Photo-Optical Instrumentation Engineers (Jan. 2001), pp. 10-19. (IPR Nos. '255 and '256 Exhibit 2148). |
American National Standard for Safe Use of Lasers, ANSI Z1 36.1-2014, Laser Institute of America (Dec. 10, 2013), pp. 27-34 and 216-219. (IPR Nos. '255 and '256 Exhibit 1142). |
American National Standard for Safe Use of Lasers, Laser Institute of America (Jun. 28, 2000), 184 pages. (IPR Nos. '255 and '256 Exhibit 2005). |
American National Standards Institute, “Procedures for the Development and Coordination of American National Standards” (Mar. 22, 1995), 50 pages. (IPR Nos. '255 and '256 Exhibit 1040). |
American Petroleum Institute, “Specification for Line Pipe,” API Specification 5L, 43rd Ed. (2004), 166 pages. (IPR Nos. '255 and '256 Exhibit 1139). |
AOOD Technology Limited, “Electrical Slip Rings vs. Rotating Electrical Connectors” (2013), 3 pages. (IPR Nos. '255 and '256 Exhibit 1032). |
Aufrere, et al., Perception for collision avoidance and autonomous driving, The Robots Institute, Carnegie Mellon University (2003), 14 pages (IPR Nos. '255 and '256 Exhibit 2140). |
Aull, et al., “Geiger-Mode Avalanche Photodiodes for Three Dimensional Imaging,” Lincoln Laboratory Journal (2002), 16 pages. (IPR Nos. '255 and '256 Exhibit 1021), Lincoln Laboratory Journal, vol. 13, No. 2, 2002, pp. 335-350. |
Automotive LiDAR, Market Presentation titled “Robotic Cars LiDAR Market in Million Dollars” (Apr. 2018), 86 pages. (IPR Nos. '255 and '256 Exhibit 2113). |
Avalanche Photodiode: A User Guide (2011), 8 pages. (IPR Nos. '255 and '256 Exhibit 1019). |
Beer, et al, Mechanics of Materials, McGraw Hill Companies, 4th Ed. (2006), pp. 750 and 752. (IPR Nos. '255 and '256 Exhibit 1140). |
Berkovic et al., Optical Methods for Distance and Displacement Measurements, Advances in Optics and Photonics (Sep. 11, 2012), pp. 441-471. (IPR Nos. '255 and '256 Exhibit 2007). |
Besl, Active, Optical Range Imaging Sensors Machine Visions and Applications (1988), Springer-Verlag New York Inc., pp. 1:127-1:152 (IPR Nos. '255 and '256 Exhibit 1015). |
Blais, NRC-CNRC, Review of 20 Years of Range Sensor Development, National Research Council Canada (Jan. 2004), pp. 231-243 (IPR Nos. '255 and '256 Exhibit 2141). |
Bordone, et al., “Development of a high-resolution laser radar for 3D imaging in artwork cataloging,” Proceedings of SPIE, vol. 5131 (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 1016). |
Bornstein, “Where am I? Sensors and Methods for Mobile Robot Positioning” (1996), pp. 95-112. |
Brennan, Drawing of I-beam by Dr. Brennan (Brennan Deposition Exhibit 16), (Jan. 4, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 2186). |
Brustein et al., How a Billion-Dollar Autonomous Vehicle Startup Lost Its Way, Bloomberg https://www.bloomberg.com/news/features/2018-08-13/how-a-billiondollar-autonomous-vehicle-startup-lost-its-way (Aug. 13, 2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2098). |
Business Wire, Press Release Distribution webpage, https://services.businesswire.com/press-release-distribution (Dec. 21, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 1143). |
Businesswire, Velodyne Displays Solid State, Highest Performing LiDAR for ADAS, Businesswire https://www.businesswire.com/news/home/20180107005088/en/Velodyne-Displays-Solid-State-Highest-Performing-LiDAR (Jan. 7, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2097). |
Businesswire, Velodyne LiDar Awarded “Industry Choice Company of the Year” at TU-Automotive Detroit Conference, Businesswire, https://www.businesswire.com/news/home/20180608005700/en/Velodyne-LiDAR-Awarded-%E2%80%9CIndustry-Choice-Company-Year%E2%80%9D (Jun. 8, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2096). |
Cameron, An Introduction to LIDAR: The Key Self-Driving Car Sensor, Voyage https://news.voyage.auto/an-introduction-to-lidar-the-key-self-drivingcar-sensor-a7e405590cff (May 9, 2017), 14 pages. (IPR Nos. '255 and '256 Exhibit 2074). |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,735 (Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,811 (Aug. 28, 2019), 3 pages. |
Canbus, https://web.archive.org/web/20040520021138/ http:/canbus.us:80/ (May 20, 2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 1088). |
Carson, N. “Defending GPS against the Spoofing Threat using Network Based Detection and 3, 15,20 Successive Interference Cancellation”. Auburn University. Nov. 2015, 35 pages. |
Chapman, “Introduction to Laser Safety” (Sep. 10, 2007), 19 pages. |
Chellapilla, Lidar: The Smartest Sensor on a Self Driving Car, LinkedIn.com https://www.linkedin.com/pulse/lidar-smartest-sensor-self-driving-carkumar-chellapill (Jul. 31, 2017), 8 pages. (IPR Nos. '255 and '256 Exhibit 2075). |
Cheung, Spinning laser maker is the real winner of the Urban Challenge, Tech Guru Daily, available at http://www.tgdaily.com/trendwatch-features/34750-spinning-laser-maker-is-the-real-winner (Nov. 7, 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2091). |
Code of Federal Regulations, Food and Drugs Rule—Performance Standards for Light-Emitting Products, 21 C.F.R. § 1040.10 (2005). |
Copper Development Association Inc., Copper Tube Handbook—Industry Standard Guide forthe Design and Installation of Copper Piping Systems, CDA Publication A4015-14.17: Copper Tube Handbook (2016), 96 pages. (IPR Nos. '255 and '256 Exhibit 2139). |
Cravotta, “Operating alone,” EDN (Dec. 5, 2005), 6 pages. |
D'Allegro, Meet the Inventor Trying to Bring LiDAR to the Masses, The Drive http://www.thedrive.com/sheetmetal/15567/meet-the-inventor-trying-to bring-lidar-to-the-masses (Oct. 28, 2017), 5 pages. (IPR Nos. '255 and '256 Exhibit 2072). |
Daido, Daido Special Steel Co. home page, https://web.archive.Org/web/20051227070229/http:/daido.co.jp/(Dec. 27, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1087). |
Daido, Daido steel drilling equipment page, https://web.archive.org/web/20050406120958/http:/www.daido.co.jp:80/english/products/applipro/energy/dri.html (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1083). |
Daido, Daido steel petroleum components, https://web.archive.org/web/20050406121643/http:/www.daido.co.jp:80/english/products/applipro/energy/petro.htm (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1084). |
Daido, Daido steel rebar page, https://web.archive.org/web/20051201010951/http:/www.daido.co.jp:80/products/stainless/ik_shokai.html (Dec. 1, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1086). |
DARPA, 2005 DARPA Challenge Info page https://web.archive.org/web/20051214033009/http:/www.darpa.mil:80/grandchallenge/ (Nov. 17, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1092). |
DARPA, 2005 DARPA Team Papers https://web.archive.org/web/20051213010211/http:/www.darpa.mil:80/grandchallenge/techpapers.html (Dec. 13, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1093). |
DARPA, Grand Challenge '05—Frequently Asked Questions, DARPA.com, http://archive.darpa.mil/grandchallenge05/qa.html) (2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2143). |
DARPA, Grand Challenge Media—Frequently Asked Questions (Media),DARPA.com, http://archive.darpa.mil/grandchallenge04/media_faq.htm (2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 2142). |
DARPA, PDF found on Team DAD paper URL, https://web.archive.org/web/20051213015642/http:/www.darpa.mil:80/grandchallenge/TechPapers/TeamDAD.pdf (Aug. 6, 2005), pp. 1-12. (IPR Nos. '255 and '256 Exhibit 1094). |
DARPA, Urban Challenge, DARPA.com, http://archive.darpa.mil/grandchallenge/ (“DARPA Archive”) (2007), 4 pages. (IPR Nos. '255 and '256 Exhibit 2144). |
Dehong, et al., Design and Implementation of LiDAR Navigation System Based on Triangulation Measurement, 29th Chinese Control and Decision Conference (CCDC) (May 2017), 59 pages. (IPR Nos. '255 and '256 Exhibit 1136). |
Doyle, Velodyne HDL-64E Laser Rangefinder (LIDAR) Pseudo-Disassembled, Hizook (Jan. 4, 2009), 7 pages. (IPR Nos. '255 and '256 Exhibit 2046). |
Engineering Toolbox, The Engineering Toolbox Copper Tubes—ASTM B88 Datasheet (last accessed Jul. 10, 2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 2137). |
English, et al., The Complementary Nature of triangulation and ladar technologies, 5791 Proceedings of SPIE (May 19, 2005), pp. 29-41. (IPR Nos. '255 and '256 Exhibit 2162). |
Esacademy, Betting on CAN, https://web.archive.org/web/20040609170940/http:/www.esacademy.com:80/faq/docs/bettingcan/traditional.htm (Jun. 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1089). |
European Patent Office, Office Action, App. No. EP 07840406.8 (dated Mar. 15, 2011) 7 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Jan. 29, 2019), 3 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 14, 2016), 4 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 5, 2015), 4 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 7, 2019), 6 pages. |
Ewald et al., Object Detection with Laser Scanners for Automotive Applications, IFAC Control in Transportation Systems (2000), pp. 369-372. (IPR Nos. '255 and '256 Exhibit 2191). |
Excelitas Technologies, “Avalanche Photodiode. A User Guide”, 2011 Excelitas Technologies Corp., pp. 1-8. |
Fast Company, The World's 50 Most Innovative Companies 2017, https://www.fastcompany.com/most-innovative-companies/2017 (last visited Feb. 26, 2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2077). |
Fischer, “Rapid Measurement and Mapping of Tracer Gas Concentrations in a Large Indoor Space” (May 2000), 27 pages. |
Ford Media Center, Ford Tripling Autonomous Vehicle Development Fleet, Accelerating onroad Testing of Sensors and Software (Jan. 5, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2066). |
Fox, “Active electro-optical systems,” The infrared and electro-optical systems handbook, vol. 6 (1993), pp. 1-80. |
Frost et al., Driving the Future of Autonomous Navigation—Whitepaper for Analysis of LIDAR technology for advanced safety, https://velodynelidar.com/docs/papers/FROST-ON-LIDAR.pdf (2016), 30 pages. (IPR Nos. '255 and '256 Exhibit 1130). |
Fuerstenberg, et al., Multilayer Laserscanner for Robust Object Tracking and Classification in Urban Traffic Scenes, 9th World Congress on Intelligent Transport Systems (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 1079), pp. 1-10. |
Fuerstenberg, et al., Pedestrian Recognition and Tracking of Vehicles using a vehicle based Multilayer Laserscanner, IEEE (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 2192). |
Fuerstenberg, Pedestrian detection and classification by laserscanners, (2003), 8 pages. |
Furstenberg, et al., New Sensor for 360 Vehicle Surveillance—Innovative Approach to Stop & Go, Lane Assistance and Pedestrian Recognition (May 2001), 5 pages. (IPR Nos. '255 and '256 Exhibit 2190). |
Gargiulo, Velodyne Lidar Tops Winning Urban Challenge Vehicles, Business Wire (Nov. 6, 2007), 2 pages. (IPR Nos. '255 and '256 Exhibit 2082). |
Garmin, How the LIDAR-Lite v3/v3HP works with reflective surfaces, GARMIN.com, https://support.garmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (last visited Aug. 24, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2145). |
Glennie et al., Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications, MDPI Remote Sensing (Mar. 14, 2011), 15 pages. (IPR Nos. '255 and '256 Exhibit 2057). |
Glennie, Performance analysis of a kinematic terrestrial LiDAR scanning system, MAPPS/ASPRS 2006 fall conference (Nov. 6-10, 2006), 9 pages. |
Glennie, Reign of Point Clouds: A Kinematic Terrestrial LiDAR Scanning System (2007), pp. 22-31. |
Gustavson, “Diode-laser radar for low-cost weapon guidance,” SPIE vol. 1633, Laser radar VII (1992), pp. 1-12. |
Hall, et al., Team DAD Technical Paper, DARPA Grand Challenge 2005, XP-002543336, Aug. 26, 2005, pp. 1-12. (IPR Nos.'255 and'256 Exhibit 1081). |
Hamamatsu, CCD area image sensor S7030/S7031 Series Back-thinned FFT-CCD Datasheet (2006), 8 pages. (IPR Nos. '255 and '256 Exhibit 2123). |
Hamamatsu, CCD Image Sensors Webpage (“CCD Image Sensors”) (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2124). |
Hamamatsu, Image Sensor Selection guide (Dec. 2003), 20 pages. (IPR Nos. '255 and '256 Exhibit 2128). |
Hamamatsu, Image Sensors Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2160). |
Hamamatsu, One-dimensional PSD Plastic package, 1-D PSD with plastic package Datasheet (“1-D PSD Datasheet”) (2004), 5 pages. (IPR Nos. '255 and '256 Exhibit 2118). |
Hamamatsu, One-Dimensional PSD Webpage, One-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2119). |
Hamamatsu, Photodiode Technical Information, 18 pages. (IPR Nos. '255 and '256 Exhibit 2129). |
Hamamatsu, Position Sensitive Detectors (“PSDs”) Webpage, One-dimensional and Two-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2117). |
Hamamatsu, S4111-46Q Si Photodiode Array Webpage (Oct. 22, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2135). |
Hamamatsu, Si photodiode array—S4111/S4114 series 16, 35, 46 element Si photodiode array for UV to NIR Datasheet (Jul. 2004), 4 pages. (IPR Nos. '255 and '256 Exhibit 2134). |
Hamamatsu, Silicon Photodiode Array Webpage (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2130). |
Hamamatsu, Technical Information, SD-25—Characteristics and use of FFT-CCD area image sensor (Aug. 2003), 27 pages. (IPR Nos. '255 and '256 Exhibit 2126). |
Hamamatsu, Technical Information, SD-28—Characteristics and use of Si APD (Avalanche Photodiode) (Aug. 2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 2127). |
Hamamatsu, Two-dimensional PSD S1300 Datasheet (Dec. 19, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2121). |
Hamamatsu, Two-dimensional PSDs S1200, S1300, S1880, S1881, S2044—Non-discrete position sensor utilizing photodiode surface resistance Datasheet (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 2120). |
Hamamatsu, Two-dimensional PSDs Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2122). |
Hamatsu, Opto-Semiconductor Handbook, Si APD, MMPC (Chapter 3), (“APD Handbook”), available at https://www.hamamatsu.com/US/en/hamamatsu/overview/bsd/solid_state_division/related_documents.html (2014), 25 pages. (IPR Nos. '255 and '256 Exhibit 2006). |
Hancock, “Laser Intensity Based Obstacle Detecting and Tracking” (Jan. 1999), pp. 45-65. |
Haran et al., Infrared Reflectivy of Pedestrian Mannequin for Autonomous Emergency Braking Testing, IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016), 6 pages. (IPR Nos. '255 and '256 Exhibit 2168). |
Heenan, et al., Feature-Level Map Building and Object Recognition for Intersection Safety Applications, in Advanced Microsystems for Automotive Applications (Jurgen Valldorf and Wolfgang Gessner eds.) (2005), pp. 505-519. (IPR Nos. '255 and '256 Exhibit 2199). |
Hergert et al., The WITS$ guide to selecting a photodetector, Hamamatsu.com, https://hub.hamamatsu.com/US/en/technical-note/WITS-guide-detectorselection/index.html (Jul. 2015), 16 pages. (IPR Nos. '255 and '256 Exhibit 2133). |
IBEO, “IBEO about,” https://web.archive.org/web/20040606111631/http:/www.ibeoas.de:80/html/about/about (2004). |
IBEO, “IBEO data and prices,” https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (2004), 2 pages. |
IBEO, “IBEO history,” https://web.archive.org/web/20040807161657/, http:/www.ibeoas.de:80/html/about/ab_history.html (2004), 1 page. |
IBEO, “IBEO LD Multilayer data sheet,” https://web.archive.org/web/20031003201743/http://www.ibeoas.de:80/html/prod/prod_ld_multi.html (2003), 1 page. |
IBEO, “IBEO Motiv sensor,” https://web.archive.org/web/20040113062910/,http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (1997-2000), 1 page. |
IBEO, “IBEO multilayer tech” (2004), 1 page. |
IBEO, “IBEO multitarget capability,” https://web.archive.org/web/20040323030746/,http/:www.ibeoas.de:80/html/knho/knho-senstech-mlc.html (2004), 1 page. |
IBEO, “IBEO products,” https://web.archive.org/web/20040606115118/http/:www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO products,” https://web.archive.org/web/20041011011528/http://www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO publications,” https://web.archive.org/web/20031208175052/http://www.ibeoas.de:80/html/public/public.html (2003), 2 pages. |
IBEO, “IBEO roadmap,” https://web.archive.org/web/20041209032449/http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (2004), 1 page. |
IBEO, “IBEO Time of Flight” (2004), 1 page. |
IBEO, “IBEO,” https://web.archive.org/web/20040202131331/http:/www.ibeo-as.de:8 (2004), 1 page. |
IBEO, IBEO about page, https://web.archive.org/web/20040606111631/http:/www.ibeoas.de:80/html/about/about (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1103). |
IBEO, IBEO Alasca, https://web.archive.org/web/20031001091407/http:/www.ibeoas.de:80/html/prod/prod_alasca.html (Oct. 1, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 1099). |
IBEO, IBEO Automobile Sensor GmbH—Scanner Technology webpage (Brennan Deposition Exhibit 1) (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2171). |
IBEO, IBEO Automobile Sensor GmbH—The ALASCA project webpage (Brennan Deposition Exhibit 2) (Oct. 6, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 2172). |
IBEO, IBEO Available products, https://web.archive.org/web/20041011011528/http://www.ibeoas.de:80/html/prod/prod.html (Oct. 11, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1108). |
IBEO, IBEO data sheet re available products, https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (Dec. 9, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1107). |
IBEO, IBEO history, https://web.archive.org/web/20040807161657/http:/www.ibeoas.de:80/html/about/ab_history.html (Aug. 7, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1104). |
IBEO, IBEO home page, https://web.archive.org/web/20040202131331/ http:/www.ibeo-as.de:8 (Feb. 2, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1102). |
IBEO, IBEO LD Multilayer data sheet, https://web.archive.org/web/20031003201743/http://www.ibeoas.de:80/html/prod/prod_Id_multi.html (Oct. 3, 2003), 1 page. (IPR Nos.'255 and '256 Exhibit 1111). |
IBEO, IBEO Motiv sensor, https://web.archive.org/web/20040113062910/http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (Jan. 13, 2004), 1 page. (IPR Nos.'255 and '256 Exhibit 1110). |
IBEO, IBEO multilayer tech, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1097). |
IBEO, IBEO multilayer technology page with moving graphic, Archive.org (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1096). |
IBEO, IBEO multitarget capability, https://web.archive.org/web/20040323030746/http:/www.ibeoas.de:80/html/knho/knho_senstech_mlc.html (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1101). |
IBEO, IBEO products page, https://web.archive.org/web/20040606115118/http:/www.ibeoas.de:80/html/prod/prod.html (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1100). |
IBEO, IBEO publications page, https://web.archive.org/web/20031208175052/http://www.ibeoas.de:80/html/public/public.html (Dec. 8, 2003), 2 pages. (IPR Nos. '255 and '256 Exhibit 1109). |
IBEO, IBEO Roadmap, https://web.archive.org/web/20041209032449/http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (Dec. 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1105). |
IBEO, IBEO time of flight with moving graphic, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1095). |
IBEO, IBEO Time of Flight, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1098). |
Informed Infrastructure, Velodyne LiDAR Division Announces Agreement with Caterpillar for Laser Imaging Technology, Informed Infrastructure http://informedinfrastructure.com/25630/velodynes-lidar-divisionannounces-agreement-with-caterpillar-for-laser-imaging-technology-2/ (Aug. 8, 2012), 3 pages. (IPR Nos. '255 and '256 Exhibit 2079). |
Inter Parties Review Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Institution of Inter Partes Review (May 25, 2018), 11 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00255). |
Inter Parties Review Declaration of Dr. James F. Brennan III (Nov. 29, 2017), 172 pages. (IPR Nos. '255 and '256 Exhibit 1002). |
Inter Parties Review Final Written Decision (May 23, 2019), 40 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 56 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 72 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Updated Exhibit List (Feb. 11, 2019), 21 pages. (IPR No. 2018-00255). |
Inter Parties Review Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9) (IPR No. 2018-00255, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 67 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 38 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Updated Exhibit List (Jan. 30, 2019), 13 pages. (IPR No. 2018-00255). |
Inter Parties Review Record of Oral Hearing (Feb. 27, 2019), 126 pages. (IPR Nos. 2018-00255 and 2018-00256). |
Inter Parties Review Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9), 71 pages. (IPR No. 2018-00255). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 18, 2018), 33 pages. (IPR Nos. '255 and '256 Exhibit 1066). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 20, 2018), 52 pages. (IPR Nos. '255 and '256 Exhibit 1067). |
Inter Parties Review, Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Institution of Inter Partes Review (May 25, 2018), 12 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00256). |
Inter Parties Review, Declaration of Dr. Sylvia Hall-Ellis (Nov. 29, 2017), 93 pages. (IPR Nos. '255 and '256 Exhibit 1041). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. in Support of Patent Owner's Preliminary Responses (Public Version—Redacted) (Mar. 7, 2018), 120 pages. (IPR Nos. '255 and '256 Exhibit 2003). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. in Support of Patent Owner's Reply in Support of Its Motion to Amend (Jan. 16, 2019), 71 pages. (IPR Nos. '255 and '256 Exhibit 2202). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. in Support of Patent Owner's Responses and Motions to Amend (Public Version - Redacted) (Sep. 27, 2018), 202 pages. (IPR Nos. '255 and '256 Exhibit 2115). |
Inter Parties Review, Declaration of James F. Brennan, III in Support of Petitioner's Replies and Oppositions to Motions to Amend (Dec. 21, 2018), 93 pages. (IPR Nos. '255 and '256 Exhibit 1063). |
Inter Parties Review, Declaration of Sylvia Hall-Ellis (Dec. 21, 2018), 146 pages. (IPR Nos. '255 and '256 Exhibit 1065). |
Inter Parties Review, Defendant Velodyne's Answer and Counterclaim, Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) ECF No. 36 (Dec. 5, 2016), 56 pages. (IPR Nos. '255 and '256 Exhibit 2080). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Aug. 23, 2018), 241 pages. (IPR Nos. '255 and '256 Exhibit 2156). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Jan. 4, 2019), 267 pages. (IPR Nos. '255 and '256 Exhibit 2194). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken Nov. 27, 2018), 285 pages. (IPR Nos. '255 and '256 Exhibit 1064). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken on Jan. 22, 2019), 368 pages. (IPR Nos. '255 and '256 Exhibit 1150). |
Inter Parties Review, Eden Deposition Exhibit 1—Unmanned Vehicles Come of Age: The DARPA Grand Challenge (2006), pp. 26-29. (IPR Nos. '255 and '256 Exhibit 1151). |
Inter Parties Review, Eden Deposition Exhibit 10—Are processor algorithms key to safe self-driving cars?—EDN Asia (https: //www.ednasia.com/ news /article/areprocessor-algorithms-key-to-safe-self-driving-cars) (Jul. 7, 2016), 7 pages. (IPR Nos. '255 and '256 Exhibit 1160). |
Inter Parties Review, Eden Deposition Exhibit 11—Steve Taranovich's profile (https://www.edn.com/user/steve.taranovich) (Jan. 22, 2019), 4 pages. (IPR Nos. '255 and '256 Exhibit 1161). |
Inter Parties Review, Eden Deposition Exhibit 12—Instrumentation and Control (http://www.Instrumentation.co.za/article.aspx?pklarticleid=1664) (Feb. 2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 1162). |
Inter Parties Review, Eden Deposition Exhibit 13—IBEO on board: ibeo Lux 4L / ibeo LUX 8L / ibeo LUX HD Data Sheet (Jul. 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 1163). |
Inter Parties Review, Eden Deposition Exhibit 2—Driver Reaction Time in Crash Avoidance Research: validation of a Driving Simulator Study on a Test Track; Article in Human Factors and Ergonomics Society Annual Meeting Proceedings, Jul. 2000, 5 pages. (IPR Nos. '255 and '256 Exhibit 1152). |
Inter Parties Review, Eden Deposition Exhibit 3—Axis of Rotation diagram (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1153). |
Inter Parties Review, Eden Deposition Exhibit 4—Parallel Line and Plane—from Wolfram MathWorld (http://mathworld.wolfram.com/ParallelLineandPlane.html) (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1154). |
Inter Parties Review, Eden Deposition Exhibit 5—Quasi-3D Scanning with Laserscanners: Introduction from 2D to 3D (2001), 7 pages. (IPR Nos. '255 and '256 Exhibit 1155). |
Inter Parties Review, Eden Deposition Exhibit 6—L-Gage LT3 Long-Range Time-of-Flight Laser Distance-Gauging Sensors (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 1156). |
Inter Parties Review, Eden Deposition Exhibit 7—About Ibeo: Our Mission (https://www.ibeoas.com/aboutibeo) (Jan. 21, 2019), 10 pages. (IPR Nos. '255 and '256 Exhibit 1157). |
Inter Parties Review, Eden Deposition Exhibit 8—Automotive Industry; Explore Our Key Industries (https://velodynelidar.com/industry.html) (2019), 6 pages. (IPR Nos. '255 and '256 Exhibit 1158). |
Inter Parties Review, Eden Deposition Exhibit 9—LeddarTech, Solid-State LiDARs: Enabling the Automotive Industry Towards Autonomous Driving (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1159). |
Inter Parties Review, Excerpt from Beautiful Data, Edited by Toby Segaran and Jeff Hammerbacher (Jul. 2009), pp. 150-153. (IPR Nos. '255 and '256 Exhibit 2014). |
Inter Parties Review, Excerpt from James T. Luxon and David E. Parker, Industrial Lasers and Their Applications, Prentice-Hall (1985), pp. 56, 68-70, 124-125, 145, 150-151, and 154-159. (IPR Nos. '255 and '256 Exhibit 2009). |
Inter Parties Review, Excerpt from Peter W. Milonni and Joseph Eberly, Lasers (1988), pp. 585-589. (IPR Nos. '255 and '256 Exhibit 2011). |
Inter Parties Review, Excerpt from Raymond T. Measures, Laser Remote Sensing, Fundamentals and Applications (1992), pp. 205 and 213-214. (IPR Nos. '255 and '256 Exhibit 2010). |
Inter Parties Review, Excerpt from Stephan Lugomer, Laser Technology, Laser Driven Processes, Prentice-Hall (1990), pp. 302-311. (IPR Nos. '255 and '256 Exhibit 2008). |
Inter Parties Review, Excerpt from William V. Smith, Laser Applications (1970), pp. 23-27. (IPR Nos. '255 and '256 Exhibit 2012). |
Inter Parties Review, Excerpts of Deposition of Craig L. Glennie, Ph.D., Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) (Jun. 27, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2016). |
Inter Parties Review, Final Written Decision (May 23, 2019), 41 pages. (IPR No. 2018-00256). |
Inter Parties Review, Images of Generator Rotors (Brennan Deposition Exhibit 8) (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2178). |
Inter Parties Review, Listing of Labelled Substitute Claims (2018), 17 pages. (IPR Nos. '255 and '256 Exhibit 1076). |
Inter Parties Review, Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 57 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Updated Exhibit List (Feb. 11, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (IPR No. 2018-00256, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 37 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Updated Exhibit List (Jan. 30, 2019), 15 pages. (IPR No. 2018-00256). |
Inter Parties Review, PTAB Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and 2018-00256 (Jan. 11, 2019), 27 pages. (IPR Nos. '255 and '256 Exhibit 2204). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (Mizuno), Quanergy Systems, Inc. v. Velodyne LIDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 1127). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (PILAR), Quanergy Systems, Inc. v. Velodyne LIDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 13 pages. (IPR Nos. '255 and '256 Exhibit 1128). |
Inter Parties Review, Quanergy M8 Lidar Sensor Datasheet, 2 pages. (IPR Nos. '255 and '256 Exhibit 2071). |
Inter Parties Review, Quanergy Systems Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 24 pages. (IPR Nos. '255 and '256 Exhibit 1126). |
Inter Parties Review, Quanergy's Objected-to Demonstrative Slides of Patent Owner (2019), 16 pages. (IPR Nos. '255 and '256 Exhibit 1164). |
Inter Parties Review, Redlined Supplemental Declaration of Dr. James F. Brennan III (2018), 171 pages. (IPR Nos. '255 and '256 Exhibit 1062). |
Inter Parties Review, Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (2018) 76 pages. (IPR No. 2018-00256). |
Inter Parties Review, Transcript of Sep. 13, 2018 Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Sep. 13, 2018), 21 pages. (IPR Nos. '255 and '256 Exhibit 2116). |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 1.2 (Aug. 2001), 122 pages. |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 2.0 (2007), 104 pages. |
Internet Archive Web Page: Laser Components (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Internet Archive Web Page: Laser Components: High Powered Pulsed Laser Diodes 905D3J08-Series (2004), 6 pages. (IPR Nos. '255 and '256 Exhibit 1024). |
Internet Archive Webpage: Mercotac 3-Conductor Rotary Electrical Connectors (Mar. 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 1031). |
IPO Education Foundation, Inventor of the Year Award, https://www.ipoef.org/inventor-of-the-year/ (2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2207). |
irdajp.org, IrDA Infrared Data Association, http://www.irdajp.org/irdajp.info (2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1134). |
Janocha, Actuators: Basics and Applications, Springer (2004), pp. 85-153. (IPR Nos. '255 and '256 Exhibit 1080). |
Japanese Patent Office, Petitioner's Translation of Mizuno Japanese Patent Publication No. H3-6407 (1991), 15 pages. (IPR Nos. '255 and '256 Exhibit 1058). |
Jelalian, “Laser Radar Systems” (1992), 1 page. |
Juberts, et al., “Status report on next generation LADAR for driving unmanned ground vehicles” Mobile Robots XVII, edited by Douglas W. Gage, Proceedings of SPIE, vol. 5609, 2004, pp. 1-12. |
Kaempchen, Feature-Level Fusion of Laser Scanner and Video Data for Advanced Drive Assistance Systems (Ph.D. Dissertation, Ulm University) (2007), 248 pages. (IPR Nos. '255 and '256 Exhibit 2198). |
Kaufmann, Choosing Your Detector, OE Magazine (Mar. 2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2150). |
Kaufmann, Light Levels and Noise—Guide Detector Choices, Photonics Spectra 149 (Jul. 2000), 4 pages. (IPR Nos. '255 and '256 Exhibit 2151). |
Kawata, “Development of ultra-small lightweight optical range sensor system”, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, Aug. 2-6, 2005, pp. 58-63 (IPR Nos. '255 and '256 Exhibit 1033). |
Kilpela, Excerpt of Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications, at Fig. 24 (Academic dissertation, University of Oulu (Brennan Deposition Exhibit 15) (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2185). |
Kilpela, Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications (Academic dissertation, University of Oulu) (2004), 98 pages. (IPR Nos. '255 and '256 Exhibit 2152). |
Kilpelä, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Review of Scientific Instruments (Apr. 2001), 13 pages. (IPR Nos. '255 and '256 Exhibit 1005). |
Kluge, Laserscanner for Automotive Applications (May 2001), 5 pages. (IPR Nos. '255 and '256 Exhibit 2196). |
Kohanbash, “LIDAR fundamentals—robots for roboticists” (May 5, 2014), 6 pages. |
Lages, Laserscanner for Obstacle Detection in Advanced Microsystems for Automotive Applications Yearbook (S. Kruger et al. eds.) (2002), pp. 136-140. (IPR Nos. '255 and '256 Exhibit 2200). |
Lamon, “The SmarTer for ELROB 2006—a vehicle for fully autonomous navigation and mapping in outdoor environments” (2005), 14 pages. |
Langheim, et al., Sensing of Car Environment at Low Speed Driving, CARSENSE (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 2193). |
Laser Components Produkte, Laser Components IG, Inc., 2004, 1 page. |
Laser Components, “High Power Pulsed Laser Diodes 905D3J08-Series”, Laser Components IG, Inc., 2004, 6 pages. |
Laser Components, https:/web.archive.org/web/20041205172904/http:www.lasercomponents.com (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Liu, et al., “Coupling Study of a Rotary Capacitive Power Transfer System” Industrial Technology, 2009. ICIT 2009. IEEE International Conference, IEEE, Piscataway, NJ, USA, Feb. 10, 2009, pp. 1-6. |
Maatta et al., A High-Precision Time-to-Digital Converter for Pulsed Time-of-Flight Laser Radar Applications, 47 IEEE No. 2, 521 (Apr. 1998), pp. 521-536. (IPR Nos. '255 and '256 Exhibit 2161). |
Macadam, Understanding and Modeling the Human Driver, 40 Vehicle System Dynamics, Nos. 1-3 (2003), pp. 101-134. (IPR Nos. '255 and '256 Exhibit 2205). |
Makynen, Position-Sensitive Devices and Sensor System for Optical Tracking and Displacement Sensing Applications (Academic Dissertation, University of Oulu (2000), 121 pages. (IPR Nos. '255 and '256 Exhibit 2153). |
Manandhar, “Auto-Extraction of Urban Features from Vehicle-Borne Laser Data”, Centre for Spatial Information Science, The University of Tokyo, Japan; Symposium on Geospatial Theory, Processing Applications, Ottawa (2002) 6 pages. (IPR Nos. '255 and '256 Exhibit 1017). |
Marino, “A compact 3D imaging laser RADAR system using Geiger-mode APD arrays: system and measurements,” Proceedings of SPIE—The international society for optical engineering (Aug. 2003), 16 pages. |
Marino, “Jigsaw: A Foliage-Penetrating 3D Imaging Laser Radar System” (2005), pp. 23-36. |
McManamon, “Optical Phased Array Technology,” Proceedings of the IEEE, vol. 84, No. 2 (Feb. 1996), pp. 268-298. |
Melle, et al., “How to select avalanche photodiodes,” Laser Focus World (Oct. 1, 1995), 9 pages. (IPR Nos. '255 and '256 Exhibit 1020). |
Mercotac Model 305, Electrical Slip Rings, https://web.archive.org/web/200602100652519/www.mercotac.com/html/305.htm (Feb. 2006), 3 pages. |
Mercotac, 3-Conductor Rotary Electrical Connectors https://web.archive.Org/web/20060317120209/http://www.mercotac.com:80/html/threeconductor.html (Mar. 2006), 1 page. |
Merriam, How to Use Lidar with the raspberry PI, Hackaday, https://hackaday.com/2016/01/22/how-to-use-lidar-with-the-raspberry-pi/ (Jan. 22, 2016), 13 pages. (IPR Nos. '255 and '256 Exhibit 1072). |
Morsy et al., “Multispectral LiDAR Data for Land Cover Classification of Urban Areas,” Sensors 17(5), 958 (2017), 21 pages. |
MTI Instruments Inc., An Introduction to Laser Triangulation Sensors, https://www.azosensors.com/article.aspx?ArticleID=523 (Aug. 28, 2014), 9 pages. (IPR Nos. '255 and '256 Exhibit 2154). |
Nagappan, “Adaptive Cruise Control: Laser Diodes as an Alternative to Millimeter Wave Radars” (Sep. 2005), pp. 1-5. |
National Highway Traffic Safety Administration (NHTSA), DOT, Final Rule Federal Motor Vehicle Safety Standards; Tire Pressure Monitoring Systems Controls and Displays (2005), 222 pages. (IPR Nos. '255 and '256 Exhibit 1141). |
Office of the Federal Register National Archives and Records Administration, “Code of Federal Regulations, 21, Parts 800 to 1299, Revised as of Apr. 1, 2005, Food and Drugs”, Apr. 1, 2005, pp. 1-23. |
Ogurtsov, et al., “High Accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Optics Communications (2006), pp. 266-273. (IPR Nos. '255 and '256 Exhibit 1042). |
Ohnsman, How a 34-Year-Old Audio Equipment Company is Leading the Self-Driving Car Revolution, Forbes (Aug. 8, 2017), 7 pages. (IPR Nos. '255 and '256 Exhibit 2040). |
OHR, “War raises stakes of next DARPA bot race,” EDN (Aug. 15, 2005), 3 pages. |
Omron, Technical Explanation for Displacement Sensors and Measurement Sensors, CSM_Displacemente_LineWidth_TG_E_2_1 (2018), 8 pages. (IPR Nos.'255 and'256 Exhibit 2149). |
Oshkosh, “Team Terramax: DARPA Grand Challenge 2005” (Oct. 2005), pp. 1-14. |
Ou-Yang, et al., “High-dynamic-range laser range finders based on a novel multi modulated frequency method,” Optical Engineering (Dec. 2006), 6 pages. (IPR Nos. '255 and '256 Exhibit 1043). |
Overton, First Sensor expands supply agreement for APDs used in Velodyne lidar systems, Laser Focus World (Feb. 15, 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2039). |
Ozguner, “Team TerraMax and the DARPA Grand Challenge: a General Overview,” IEEE Intelligent Vehicles Symposium (2004), 6 pages. |
Panasonic, Measurement Sensors: Specular vs Diffuse, Panasonic Blog, https://na.industrial.panasonic.com/blog/measurement-sensorsspecular-vs-diffuse (Dec. 7, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2155). |
PCT International Search Report and Written Opinion, App. No. PCT/US2007/073490, (2008), 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2010/037129, Jul. 27, 2010, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015869, Apr. 10, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015874, May 23, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015877, Apr. 13, 2017, 13 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023259, May 31, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023261, May 26, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023262, Jun. 5, 2017, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/035427, Aug. 29, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/036865, Sep. 26, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/047543, Nov. 27, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/023283, Jun. 1, 2018, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/025395, Jun. 25, 2018, 14 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/031682, Sep. 17, 2018, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/050934, Nov. 20, 2018, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/051497, Nov. 28, 2018, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059062, Jan. 16, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059452, Jan. 16, 2019, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/016259, Apr. 26, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046412, Jun. 24, 2020, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046419, Oct. 29, 2019, 14 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046422, Dec. 3, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046573, Nov. 15, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/051729, Nov. 20, 2019, 7 pages. |
PCT Search Report and Written Opinion (Corrected), App. No. PCT/US2020/026925, May 12, 2020, 5 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012633, Jun. 2, 2020, 13 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012635, Jun. 4, 2020, 10 pages. |
Piatek et al., LiDAR: A photonics guide to autonomous vehicle market, Hamamatsu.com, https://hub.hamamatsu.com/US/en/application-note/LiDAR-competingtechnologies-automotive/index.html (Nov. 18, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2136). |
Piatek, Measuring distance with light, Hamamatsu.com, https://hub.hamamatsu.com/US/en/application-note/measuringdistance-with-light/index.html (Apr. 2, 2015), 18 pages. (IPR Nos. '255 and '256 Exhibit 2132). |
Piatek, Presentation entitled ‘LiDAR and Other Techniques—Measuring Distance with Light for Automotive Industry’, authored by Slawomir Piatek, Technical Consultant, Hamamatsu Corp. (Dec. 6, 2017), 66 pages. (IPR Nos. '255 and '256 Exhibit 2131). |
Popper, Guiding Light, The Billion-Dollar Widget Steering the Driverless Car Industry, The Verge (Oct. 18, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2076). |
Qing, “Method of 3D visualization using laser radar on board of mobile robot,” Journal of Jilin University (Information Science Ed.), vol. 22 (Jul. 2004), 4 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Amended Invalidity Contentions Pursuant to Patent Local Rule 3-3,” May 23, 2017, 238 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4,” Mar. 27, 2017, 24 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Amended Complaint, Nov. 18, 2016, 6 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Answer to Counterclaim, (Jan. 16, 2017) 9 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Defendant Velodyne's Answer and Counterclaim, Dec. 5, 2016, 20 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Complaint, Case No. 5:16-cv-05251 (Sep. 13, 2016), 21 pages. |
Ramsey et al., Use Scenarios to Plan for Autonomous Vehicle Adoption, Gartner (Jun. 26, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2064). |
Reutebuch, “LiDAR: an Emerging Tool for Multiple Resource Inventory,” Journal of Forestry (Sep. 2005) 7 pages. |
REYMANN et al., Improving LiDAR Point Cloud Classification using Intensities and Multiple Echoes, IEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2015), 8 pages. (IPR Nos. '255 and '256 Exhibit 2167). |
Richmond et al., Polarimetric Imaging Laser Radar (PILAR) Program. In Advanced Sensory Payloads for UAV, Meeting Proceedings RTO-MP-SET-092, Paper 19. Neuilly-sur-Seine, France: RTO (May 1, 2005), 35 pages. (IPR Nos. '255 and '256 Exhibit 1129). |
Riegl LMS-Q120, http://web.archive.org/web/20050113054822/http:/www.riegl.com/industrial_scanners_/lms_q120_/q120_all_.htm (2005), 4 pages. |
Riegl, “Riegl LMS-Z210” (2003), 8 pages. |
Robots for Roboticists, LIDAR Fundamentals, http://robotsforroboticists.com/lidar-fundamentals/ (May 5, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1068). |
ROS-Drivers—Error in packet rate for the VLP-32C #142, GitHub Forum (Jan. 29, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2041). |
Saleh, “Fundamentals of Photonics” vol. 2, Wiley-lnterscience Publication, 1991, pp. 342-383, 494-541, and 592-695. (IPR Nos. '255 and '256 Exhibit 1008). |
Search Report and Opinion, EP App. No. 07840406.8, dated Sep. 8, 2009, 6 pages. |
Search Report and Opinion, EP App. No. 11166432.2, dated Jul. 28, 2011, 7 pages. |
Search Report and Opinion, EP App. No. 17745112.7, dated Aug. 27, 2019, 8 pages. |
Search Report and Opinion, EP App. No. 17770748.6, dated Oct. 22, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17770926.8, dated Oct. 29, 2019, 11 pages. |
Search Report and Opinion, EP App. No. 17770928.4, dated Oct. 29, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17807474.6, dated Dec. 9, 2019, 9 pages. |
Sensick, “DME 2000 / DME 3000: Precise non-contact distance determination,” Sensick Catalogue (2006), pp. 450-457. (IPR Nos. '255 and '256 Exhibit 1073). |
SICK DME 2000 Operating Instructions (Excerpt) (Brennan Deposition Exhibit 9) (May 2002), 42 pages. (IPR Nos. '255 and '256 Exhibit 2179). |
SICK Laser Triangulation Sensors Product Information (Brennan Deposition Exhibit 6) (Jun. 25, 2018), 76 pages. (IPR Nos. '255 and '256 Exhibit 2176). |
SICK LMS 200/ LMS 211/ LMS 220 / LMS 221/ LMS 291 Laser Measurement Systems—Technical Description (Brennan Deposition Exhibit 4) (Jun. 2003), 40 pages. (IPR Nos. '255 and '256 Exhibit 2174). |
SICK LMS200/211/221/291 Laser Measurement Systems—Technical Description (Brennan Deposition Exhibit 3) (2006), 48 pages. (IPR Nos. '255 and '256 Exhibit 2173). |
SICK Sensick Measuring Distance with Light—Distance Sensors Product Overview (Brennan Deposition Exhibit 10) (2004), 12 pages. (IPR Nos. '255 and '256 Exhibit 2180). |
SICK, SICK ToF sensors at close range, https://web.archive.org/web/20040607070720/http:/www.sick.de:80/de/products/categories/industrial/distancesensors/dme2000/en.html (Jun. 7, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1082). |
Singh, “Cyclone: A Laser Scanner for Mobile Robot Navigation” (Sep. 1991), pp. 1-18. |
Skolnik, “Introduction to radar systems,” Second edition, McGraw-Hill book company (1980), pp. 1-3. |
Skolnik, “Radar Handbook” Second Edition, McGraw-Hill Publishing Company, 1990, pp. 1-1191. |
Song et al., Assessing the Possibility of Land-Cover Classification Using LiDAR Intensity Data, Commission III, PCV02 (2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 2169). |
Spies, “Extended Eyes—Sense and Avoid,” Presented at the 2006 International Aerospace Exhibition, Berlin (May 2006), 22 pages. |
Stone, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility” (May 2004), 198 pages. |
Strang, Drawing of cross-section of I-beam by Jonathan Strang (Brennan Deposition Exhibit 5), (2018) 1 page. (IPR Nos. '255 and '256 Exhibit 2175). |
strata-gee.com, Velodyne President Calls Strata-gee to Set the Record Straight, https://www.strata-gee.com/velodyne-president-calls-strata-gee-setrecord-straight/ (Jun. 26, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1137). |
Strawa et al., The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques, 20 Journal of Atmospheric and Oceanic Technology 454 (Apr. 2003), pp. 454-465. (IPR Nos. '255 and '256 Exhibit 2090). |
Tarakanov, et al., “Picosecond pulse generation by internal gain switching in laser diodes,” Journal of Applied Physics 95:223 (Mar. 2004), pp. 2223-2229. (IPR Nos. '255 and '256 Exhibit 1044). |
Taranovich, Are processor algorithms key to safe self-driving cars? EDN Asia, https://www.ednasia.com/news/article/are-processor-algorithms-key-tosafe-self-driving-cars (Jul. 7, 2016), 11 pages. (IPR Nos. '255 and '256 Exhibit 2206). |
Taylor, An Introduction to Error Analysis—The Study of Uncertainties in Physical Measurements, Oxford University Press (1982), pp. 81-137. (IPR Nos. '255 and '256 Exhibit 1138). |
The American Heritage Dictionary of the English Language, Houghton Mifflin Company, 3d ed. (1996), pp. 1497, 1570, 1697, 1762, and 1804. (IPR Nos. '255 and '256 Exhibit 1018). |
The American Society of Mechanical Engineers, Welded and Seamless Wrought Steel Pipe, Asme B36.10M-2004 (Oct. 25, 2004), 26 pages. (IPR Nos. '255 and '256 Exhibit 2138). |
The Laser Institute of America, “American National Standard of Safe Use of Lasers” ANSI Z136.1-2000, Revision of ANSI Z136.1-1993, Second Printing 2003, 32 pages. |
Thin Lens Equation, http://hyperphysics.phyastr.gsu.edu/hbase/geoopt/lenseq.html (last visited Dec. 30, 2018) (Brennan Deposition Exhibit 7), 4 pages. (IPR Nos. '255 and '256 Exhibit 2177). |
Thomas, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American national standard for safe use of lasers,” Journal of Laser Applications, Aug. 2001, vol. 13, No. 4, pp. 134-140. |
Thrun, “Probabilistic Terrain Analysis for High-Speed Desert Driving” (Oct. 2005), 7 pages. |
Trepagnier, “Team gray technical paper,” DARPA grand challenge 2005 (Aug. 28, 2005), 14 pages. |
Turk, et al., VITS—A Vision System for Autonomous Land Vehicle Navigation, 10 IEEE No. 3 (May 1988), pp. 342-361. (IPR Nos. '255 and '256 Exhibit 2147). |
U.S. District Court, Claim Construction Order, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Oct. 4, 2017), 33 pages. (IPR Nos. '255 and '256 Exhibit 1027). |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Hesai Photonics Technology Co., Ltd.'s Notice of Prior Art,” Nov. 13, 2019, 35 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Notice of Prior Art,” Nov. 13, 2019, 34 pages. |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/391,383 (U.S. Pat. No. 7,130,672, Pewzner) (Aug. 3, 2005), 8 pages. |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/508,232 (U.S. Pat. No. 7,313,424, Mayevsky) (Apr. 21, 2006), 17 pages. |
Ullrich, et al., “High-performance 3D-imaging laser sensor,” Proceedings of SPIE vol. 3707 (Jun. 1999), pp. 658-664. (IPR Nos. '255 and '256 Exhibit 1014). |
ULTRA Puck, VLP-32C Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2093). |
Urmson, “High speed navigation of unrehearsed terrain: red team technology for grand challenge 2004” (Jun. 1, 2004), 47 pages. |
USGS, EROS CalVal Center of Excellence (ECCOE), https://calval.cr.usgs.gov/wordpress/wpcontent/uploads/JACIE_files/JACIE06/Files/312Habib.pdf (Dec. 21, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1071). |
Uwinnipeg, Centripetal Acceleration, Uwinnipeg.ca, http://theory.uwinnipeg.ca/physics/circ/node6.html (1997), 2 pages. (IPR Nos. '255 and '256 Exhibit 2157). |
Velodyne Acoustics, Inc., Motor Specification, Merlin Project, Rev. E1 Initial Engineering Release (Apr. 29, 2009), 1 page. (IPR Nos. '255 and '256 Exhibit 2020). |
Velodyne Acoustics, Inc., Motor Winding Specs., P2.0 , E2 Changed Material (Mar. 10, 2010), 1 page. (IPR Nos. '255 and '256 Exhibit 2022). |
Velodyne Acoustics, Inc., Outline Drawing HDL-64E S3 Envelope Drawing, Rev. A (Apr. 21, 2015), 1 page. (IPR Nos. '255 and '256 Exhibit 2094). |
Velodyne LIDAR Products, PowerPoint (Jan. 18, 2017), 9 pages. (IPR Nos. '255 and '256 Exhibit 2031). |
Velodyne LIDAR, CAD Drawing of MotorStat-38in, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2063). |
Velodyne LIDAR, CAD Drawing of MotorStat3in, HDL-64E(2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2021). |
Velodyne LIDAR, CAD Drawing of Rotor, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2026). |
Velodyne LIDAR, CAD Drawing of RotorAI, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2027). |
Velodyne LIDAR, Envelope Hi Res VLP-16 Drawings, Rev. A (Jun. 30, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2061). |
Velodyne LIDAR, Excerpts of VLP-32C User Manual, 63-9325 Rev. B (2018), 26 pages. (IPR Nos. '255 and '256 Exhibit 2034). |
Velodyne LIDAR, First Sensor Annual Report (2016), pp. 1-143. (IPR Nos. '255 and '256 Exhibit 2038). |
Velodyne LIDAR, HDL-32E Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2042). |
Velodyne LIDAR, HDL-32E Envelope Drawing (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2043). |
Velodyne LIDAR, HDL-32E Supported Sensors, Poly Synch Docs 2.3.2, http://docs.polysync.io/sensors/velodyne-hdl-32e/ (2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2055). |
Velodyne LIDAR, HDL-32E User's Manual and Programing Guide (Aug. 2016), 29 pages. (IPR Nos. '255 and '256 Exhibit 2044). |
Velodyne LIDAR, HDL-64E Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2069). |
Velodyne LIDAR, HDL-64E S2 and S2.1 User's Manual and Programming Guide (Nov. 2012), 43 pages. (IPR Nos. '255 and '256 Exhibit 2050). |
Velodyne LIDAR, HDL-64E S2 Datasheet (Mar. 2010), 2 pages. (IPR Nos. '255 and '256 Exhibit 2047). |
Velodyne LIDAR, HDL-64E S3 Data Sheet (2016), 2 pages. (IPR Nos. '255 and '256 Exhibit 2048). |
Velodyne LIDAR, HDL-64E S3 User's Manual and Programming Guide (May 2013), 54 pages. (IPR Nos. '255 and '256 Exhibit 2051). |
Velodyne LIDAR, HDL-64E User's Manual (Mar. 2008), 21 pages. (IPR Nos. '255 and '256 Exhibit 2052). |
Velodyne LIDAR, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), Complaint, Case No. 5:19-cv-04742 (Aug. 13, 2019), 13 pages. |
Velodyne LIDAR, Inc. v. Sunteng Innovation Technology Co., Ltd. (“Robosense”) (N.D. Cal.), Complaint, Case No. 5:19-cv-04746 (Aug. 13, 2019), 13 pages. |
Velodyne LIDAR, Inc., Production Worksheet Detector, Item #24-AD5009 in Production, AD500-9 NIR Photodiode (Jan. 18, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2024). |
Velodyne LIDAR, Inc., Production Worksheet, Item #30-AD230CER2 in Production, APD, 230UM, Ceramic Submount (Jan. 17, 2018), 1 pages. (IPR Nos. '255 and '256 Exhibit 2023). |
Velodyne LIDAR, It Began With a Race . . . 16 Years of Velodyne LiDAR, Velodyne LiDAR Blog, available at http://velodynelidar.com/blog/it-began-with-a-race/ (2018), 8 pages. (IPR Nos. '255 and '256 Exhibit 2070). |
Velodyne LIDAR, Product Guide (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2058). |
Velodyne LIDAR, Puck, Real-time 3D LiDAR Sensor, VLP-16 Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2060). |
Velodyne LIDAR, Ultra Puck™ VLP-32 Data Sheet (2014), 2 pages. (IPR Nos. '255 and '256 Exhibit 2032). |
Velodyne LIDAR, Velodyne Donates LIDAR and Robotic Artifacts to Smithsonian, Point of Engineering, Point of Beginning (May 23, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2078). |
Velodyne LIDAR, VLP-16 User's Manual and Programming Guide (Mar. 2016), 49 pages. (IPR Nos. '255 and '256 Exhibit 2062). |
Velodyne LIDAR, VLP-32C User Manual, 63-9325 Rev. B. (Feb. 2, 2018), 136 pages. (IPR Nos. '255 and '256 Exhibit 2114). |
Velodyne Lidar, Webserver User Guide VLP-16 & HDL-32E (63-6266 Rev A) (Nov. 2015), 32 pages. (IPR Nos. '255 and '256 Exhibit 2013). |
Velodyne Lidar, White Paper, Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications (Oct. 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2059). |
Velodyne, Velodyne—High Definition Lidar—Overview https://web.archive.org/web/20071107104255/http://www.velodyne.com:80/lidar/products/overview.aspx (Nov. 7, 2007), 1 page. (IPR Nos. '255 and '256 Exhibit 1091). |
Velodyne, Velodyne HDL Applications, https://web.archive.org/web/20080716041931/http://www.velodyne.com:80/lidar/technology/applications.aspx (Jul. 16, 2008), 1 page. (IPR Nos. '255 and '256 Exhibit 1106). |
Velodyne, Velodyne HDL-64E user manual, https://web.archive.org/web/20081117092628/http://www.velodyne.com/lidar/products/manual/HDL-64E%20Manual.pdf (Nov. 17, 2008), 23 pages. (IPR Nos. '255 and '256 Exhibit 1090). |
Velodynelidar, Data to Improve the Cost, Convenience and Safety of Motor Vehicles, https://velodynelidar.com/industry.html (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1125). |
Weber, Where to? A History of Autonomous Vehicles, Computer History Museum, https://support.garmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (May 8, 2014), 23 pages. (IPR Nos. '255 and '256 Exhibit 2146). |
Westinghouse, “AN/TPS-43 E Tactical Radar System” (1999), pp. 1-14. |
Widmann, “Development of Collision Avoidance Systems at Delphi Automotive Systems” (1998), pp. 353-358. |
Wikipedia, “Laser” (Nov. 10, 2017), 25 pages. (IPR Nos. '255 and '256 Exhibit 1022). |
Willhoeft et al., “Quasi-3D Scanning with Laserscanners,” IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 1077). |
Williams, Bias Voltage and Current Sense Circuits for Avalanche Photodiodes—Feeding and Reading the APD, Linear Technology AN92-1 (Nov. 2012), 32 pages. (IPR Nos. '255 and '256 Exhibit 2125). |
Williams, Driverless cars yield to reality: It's a long road ahead, PC World (Jul. 8, 2013), 6 pages. (IPR Nos. '255 and '256 Exhibit 2073). |
Wulf et al., “Fast 3D Scanning Methods for Laser Measurement Systems, CSCS-14, 14th Int'l Conference on Control Systems and Computer Science” (Jul. 2003), pp. 312-317. (IPR Nos. '255 and '256 Exhibit 1078). |
Wulf, “2D Mapping of Cluttered Indoor Environments by Means of 3D Perception,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation (Apr. 2004), pp. 4204-4209. |
Yang, et al., “Performance of a large-area avalanche photodiode at low temperature for scintillation detection,” Nuclear Instruments and Methods in Physics Research (2003), pp. 388-393 (IPR Nos. '255 and '256 Exhibit 1034). |
Yu et al., A New 3D Map Reconstruction Based Mobile Robot Navigation, IEEE (2006), 4 pages. (IPR Nos. '255 and '256 Exhibit 2189). |
Zappa, et al., SPADA: Single-Photon Avalanche Diode Arrays, IEEE Photonics Technology Letters, vol. 17, No. 3 (Mar. 2005), 9 pages. (IPR Nos. '255 and '256 Exhibit 1135). |
Zhao, “A vehicle-borne urban 3-D acquisition system using single-row laser range scanners,” IEEE transactions on systems, man, and cybernetics, vol. 33, No. 4 (Aug. 2003), pp. 658-666. |
Zhao, “Reconstructing Textured CAD Model of Urban Environment Using Vehicle-Borne Laser Range Scanners and Line Cameras,” Lecture Notes in Computer Science, vol. 2095 (2001), pp. 284-297. |
Zheng, “The Technique of Land 3D Laser Scanning and Imaging Surveying,” Railway Aerial Survey, vol. 2 (2003), 3 pages. |
Supplementary European Search Report EP App. No. 17807474, dated Dec. 9, 2019, 9 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Jul. 16, 2021), 4 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Sep. 18, 2020), 4 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,024,510 (dated Jun. 23, 2021), 5 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,024,510 (dated Oct. 16, 2020), 6 pages. |
European Patent Office, Communication, Application No. 18886541.4 dated Jul. 16, 2021. |
European Patent Office, Examination Report, Appl. No. 17745112.7 (dated Aug. 30, 2021), 5 pages. |
European Patent Office, Examination Report, Appl. No. 17745112.7 (dated Jul. 1, 2020), 6 pages. |
European Patent Office, Examination Report, Appl. No. 17807474.6 (dated Nov. 24, 2021), 6 pages. |
Extended Search Report, EP App. No. 18886541.4, dated Jun. 29, 2021, 9 pages. |
Japanese Patent Office, Office Action, App. No. 2018-540039 (dated Aug. 17, 2021), 3 pages. |
Japanese Patent Office, Office Action, App. No. 2018-563105 (dated Apr. 6, 2021), 6 pages. |
Japanese Patent Office, Office Action, App. No. 2019-540039 (dated Dec. 8, 2020), 5 pages. |
Extended European Search Report, EP Appl. No. 19863803.3, dated Mar. 18, 2022, 12 pages. |
Russian Search Report for Appl. No. 2021107542 dated Aug. 13, 2019, 4 pages. |
Russian Patent Office, Office Action, App. No. 2021107542 (dated Mar. 23, 2022), 14 pages. |
Extended European Search Report of Appl. No. 19875552.2 dated Aug. 23, 2021, 10 pages. |
Russian Search Report for Appl. No. 2021110675 dated Feb. 1, 2022, 2 pages. |
Japanese Patent Office, JP Application No. 2021-056430, Notice of Reasons for Rejection, dated May 31, 2022, 4 pages. |
English Translation of Notice of Reasons for Rejection, JP Application No. 2021-056430, dated May 31, 2022 (5 pages). |
European Patent Office, Communication for EP 18 774 795.1-1206, dated May 30, 2022 (8 pages). |
Japanese Patent Office, JP Application No. 2019-553816, Notice of Reasons for Rejection, dated Dec. 8, 2014 (4 pages). |
English Translation, JP Application No. 2019-553816, Notice of Reasons for Rejection, dated Dec. 8, 2021 (1 page). |
Number | Date | Country | |
---|---|---|---|
20200319311 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62289277 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16854755 | Apr 2020 | US |
Child | 16905849 | US | |
Parent | 15339790 | Oct 2016 | US |
Child | 16854755 | US |