Ashcroft et al, “Solid State Physics,” Electron Levels in a Periodic Potential, Chapter 8, pp. 8.1-8.51, 12-1-12.5, (1976). |
Brown et al., “Oscillations up to 420 GHz in GaAs/A1As resonant tunneling diodes,” American Institute of Physics, pp. 1777-1779, (1989). |
Ohtoshi, “Suppression of Leakage Current in InGaAsP/InP Buried Heterostructure Lasers by InAIAs Strained Current-Blocking Layers,” Electronics Letters, vol. 27, pp. 12-13, (1991). |
Yang et al., “Population inversion through resonant interband tunneling,” American Institute of Physics, pp. 181-182, (1991). |
Kazarinov et al., “Carrier Transport in Laser Heterostructures,” IEEE Journal of Quantum Electronic, vol. 30, pp. 49-53, (1994). |
Weisser et al., “Impedance Characteristics of Quantum-Well Lasers,” IEEE Photonics Technology Letters, vol. 6, pp. 1421-1423, (1994). |
Coldren et al., “Diode Lasers and Photonic Integrated Circuits,” Gain and Current Relations, pp. 112-120, (1995). |
Shen et al., “Static Random Access Memories Based on Resonant Interband Tunneling Diodes in the InAs/GaSb/AlSb Material System.” IEEE Electronics Device Letters, vol. 16, p. 178-180, (1995). |
Meyer et al., “Type-II and type-I interband cascade lasers,” Electronics Letters, vol. 32, pp. 45-46, (1996). |
Yamazaki et al., “Evidence of nonuniform carrier distribution in multiple well lasers,” American Institute of Physics, pp. 767-769, (1997). |
Kakimoto et al., “Threshold Currents of 1.3-μm Bulk, 1.55-μm Bulk, and 1.55-μm MQW DFB P-Substrate Partially inverted Buried Heterostructure Laser Diodes.” IEEE Journal of Quantum Electronics, vol. 34, pp. 540-547, (Mar. 1998). |
Sargent et al., “OEIC-Enabling LCI Lasers with Current Guides: Combined Theoretical-Experimental Investigation of Internal Operating Mechanisms,” IEEE Journal of Quantum Electronics, vol. 34, pp. 1280-1287, (Jul. 1998). |
Sirtori et al., “Resonant Tunneling in Quantum Cascade Lasers,” IEEE Journal of Quantum Electronics, vol. 34, pp. 1722-1729, (Sep. 1998). |
Hazell et al., The Effect of Varying Barrier Height on the Operational Characteristics of 1.3-μm Strained-Layer MQW Lasers. |
Zhi et al., “Native-Oxidized InAlAs Blocking Layer Buried Heterostructure InGaAsP-InP MQW Laser for High-Temperature Operation,” IEEE Photonics Technology Letters, vol. 11, pp. 3-5, (Jan. 1999). |
Piprek, et al., “Carrier nonuniformity effects on the internal efficiency of multiquantum-well lasers,” Applied Physics Letter, vol. 74, pp. 489-491, (Jan. 1999). |
Hamp et al., “Nonuniform carrier distribution in asymmetric multiple-quantum-well InGaAsP laser structures with different numbers of quantum wells,” Applied Physics Letter, vol. 74, pp. 744-746, (Feb. 1999). |
Takemasa, et al., “1.3μm AlGaInAs Buried-Heterostructure Lasers,” IEEE Photonics Technology Letters, vol. 11, pp. 949-951, (Aug. 1999). |
Yoshida, et al., “Theoretical and Experimental Analysis of Leakage Current in InGaAsP BH Lasers with p-n-p-n Current Blocking Layers,” IEEE Journal of Quantum Electronics, vol. 35, pp. 1332-1336, (Sep. 1999). |
Aarts et al., “Above-Threshold Leakage in Semiconductor Lasers: An Analytical Physical Model,” IEEE Journal of Quantum Electronics, vol. 36, pp. 496-501, (Apr. 2000). |
Ban et al., “Influence of Nonuniform Carrier Distribution on the Polarization Dependence of Modal Gain in Multiquantum-Well Lasers and Semiconductor Optical Amplifiers,” IEEE Journal of Quantum Electronics, vol. 36, pp. 1083-1088. |
Ban et al., “External Electronic and Optical Evidence for Internal Quantum Transport Effects in BH-MQW Lasers,” IEEE Electron Devices Society: 27th Int Symposium on Compound Semiconductors, Monterey, CA, paper TuBH, (Oct. 2000). |
Suematsu, et al., “Single-Mode Semiconductor Lasers for Long-Wavelength Optical Fiver Communications and Dynamics of Semiconductors Lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, pp. 1436-1449, (Nov./Dec. 2000). |
Razeghi, “Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, pp. 1344-1354, (Nov./Dec. 2000). |
Towe, et al., “A historical Perspective of the Development of the Vertical-Cavity Surface-Emitting Laser,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, pp. 1458-1464, (Nov./Dec. 2000). |