A stamp of liquid-exuding type having a multiple-seal-faced assembly has previously been developed by the inventor and the applicant of the present invention. In this prior art stamp, a seal with multiple faces is rotatably supported by a handle so that the lowest face of the seal may be stamped on paper by pressing the handle downward. The assembly including the seal faces is rotated so that the next seal face is moved to the lowest position as the handle is moved upward after being pressed downward (Japanese Laid-Open Patent Application No. 1999-58908).
Assembly of multiple different seal faces in known multiple-seal-faced stamp of liquid-exuding type is supported by a handle of the type which is usually used for a numbering stamp. This handle is usually in the form of a gate-shaped frame which is supported in a vertically movable manner. In general, such gate-shaped frames should be made of a high structural strength material to withstand the forces applied to the handle in use. Thus, such handles are commonly made of metallic material, disadvantageously leading to unacceptably high cost.
One aspect of the present invention is a multiple seal faced stamp of the liquid-exuding type including an outer housing a through-hole at the bottom thereof. The stamp includes a multiple seal face assembly of the liquid-exuding type, an inner housing rotatably supporting this assembly, and a spring loaded depressable handle biased into an upper position and operatively coupled to the inner housing. The multiple seal face assembly is adapted to be depressed downward and returned upward together with the inner housing within the outer housing. The multiple seal face assembly, the inner housing and the handle are supported by the outer housing with the handle projecting upward from the outer housing. The outer housing includes a driving pin on its inner surface providing a mechanism to rotate the multiple seal face assembly. The multiple seal face assembly includes a plurality of driving slits on both side walls thereof. Each driving slit is oriented radially around a central shaft and constitutes also the mechanism to rotate the multiple seal face assembly. The driving pin is adapted to extend through a through-hole of the inner housing into engagement with one of the driving slits as the multiple seal face assembly moves upward from the lowest position thereof to the highest position thereof. This engagement causes the multiple seal face assembly to rotate by one seal face. The outer housing, inner housing and depressing handle are preferably molded from synthetic resin. The side wall of the multiple seal face assembly opposed to the side wall formed with said driving slits and the inner housing include a click-stop mechanism so that the rotation of the multiple seal face assembly can be reliably sensed. Furthermore, the respective seal face members of the multiple seal face assembly are impregnated with different colored ink to provide a multicolored stamp.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
Reference numeral 10 (
Reference numeral 20 (
Multiple seal face assembly of liquid-exuding type 30 (
Side plates 36, 37 are secured to both sides of face assembly 30 by screws. Side plates 36, 37 include a bearing bore 38 through the central portions thereof. The central shaft 40 is inserted into the bearing bores 38, and opposite ends of the central shaft 40 are received by the bearing recesses 22 formed on the inner housing halves 20A, 20B to rotatably support the multiple seal face assembly 30.
With further reference to
The other side plate 37 is formed with a plurality of stopper holes 41 (
The stamp may be assembled as follows. First, the central shaft 40 is inserted into the bearing bore 38 of the multiple seal face assembly 30 having side plates 36, 37 secured thereto by screws. The click-stopper plate 42 is disposed between the side plate 37 and the other inner housing half 20B. Then, the inner housing halves 20A, 20B are put together with the multiple seal face assembly received therebetween, with the opposite ends of the central shaft 40 received in the bearing bores 22 of the respective inner housing halves 20A, 20B. At the same time, the spring 27 is inserted into the depressing handle 24 and the set pin 29 is placed under the lower end of the spring 27. The square plate 25 defining the lower end of the handle 24 is inserted into the handle supporting recesses 23 of the inner housing halves 20A, 20B. Housing halves 20A and 20B are then assembled by means of screws 21.
The inner housing 20 enclosing the multiple seal face assembly 30 with handle 24 may be assembled into the outer housing 10 as follows: The half 10A of the outer housing 10 is placed so as to face the half 20A of the inner housing 20, and the other half 10B of the outer housing 10 is placed facing the other half 20B of the inner housing 20. The outer housing halves 10A, 10B are then brought adjacent each other to enclose the inner housing 20 therebetween. Opposite ends of the set pin 29 are positioned at the lower end of the spring 27 within the depressing handle 24. The opposite ends of set pin 29 are then inserted into the associated receiving recesses 15 formed in the inner wall of the upper through-hole 12 defined by upper parts of the outer housing halves 10A, 10B. The outer housing halves 10A, 10B are then secured to each other by means of screws 11.
With reference to
Depression of the handle 24 from this state against the force of the spring 27 causes the multiple seal face assembly 30 to be moved downward together with the inner housing 20 without being rotated. During lowering of handle 24, the set pin 18 is disengaged from the associated driving slit 39A and comes in contact with the surface of the side wall 36 (FIG. 10).
Upon depression of the assembly 30 together with the inner housing 20 down to the lowest position, the seal face 33A of the lowest seal face member 32A comes in contact with a paper sheet to be stamped through the window-like opening 13, and the seal face 33A of the seal face member 32A is stamped thereon. Thereupon, the driving pin 18 is engaged with the next driving slit 39B (FIG. 11).
When the force on handle 24 is released, the handle 24, the inner housing 20, and the multiple seal face assembly 30 are lifted together by the force of the spring 27. During such lifting back, the driving slit 39B remains in engagement with the driving pin 18 so that the multiple seal face assembly 30 is rotated around the central shaft 40 counterclockwise as viewed in
The handle 24 may be depressed four times in this manner to stamp the respective seal faces 33A, 33B, 33C and 33D of four seal face members 32A, 32B, 32C and 32D on the same region of the sheet, thereby providing a multicolored stamp if the respective seal face members are impregnated with different colored ink.
In summary, the multiple seal faced stamp of liquid-exuding type according to this invention comprises the outer housing having a through-hole at its bottom, the multiple seal face assembly of liquid-exuding type, the inner housing rotatably supporting this assembly and the depressing handle loaded with restoring elasticity and operatively coupled to the inner housing, wherein the multiple seal face assembly of liquid-exuding type is adapted to be depressed downward and returned upward together with the inner housing within the outer housing; wherein the multiple seal face assembly of liquid-exuding type, the inner housing and the depressing handle are supported by the outer housing with the depressing handle projecting upward from the outer housing; wherein the outer housing is provided on its inner surface with the driving pin constituting a mechanism to rotate the multiple seal face assembly; wherein the multiple seal face assembly is provided on both side walls thereof with a plurality of driving slits each oriented radially around the central shaft and constituting also the mechanism to rotate the multiple seal face assembly; wherein the driving pin is adapted to extend through the through-hole of the inner housing into engagement with one of the driving slits as the multiple seal face assembly moves upward again from the lowest position thereof to the highest position thereof so that this engagement causes the multiple seal face assembly by one seal face; and wherein the outer housing, the inner housing and the depressing handle are molded from synthetic resin. In this way, the multiple seal faced stamp of liquid-exuding type can be supplied at a rational cost and widely accepted by the market.
The side wall of the multiple seal face assembly opposed to the side wall formed with said driving slits and the inner housing are provided with the click-stopper mechanism so that the rotation of the multiple seal face assembly can be reliably sensed.
Furthermore, the respective seal face members of the multiple seal face assembly are impregnated with different colored ink to provide a multicolored stamp.
Number | Name | Date | Kind |
---|---|---|---|
3880079 | Klapholz | Apr 1975 | A |
4805529 | Becher | Feb 1989 | A |
4852489 | Wall et al. | Aug 1989 | A |
5359932 | Van Breene | Nov 1994 | A |
5740737 | Polak et al. | Apr 1998 | A |
5850787 | Pichler | Dec 1998 | A |
6453813 | Faber | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
1158908 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20020144614 A1 | Oct 2002 | US |