The present invention relates generally to a firearm sight and, more particularly, to a sight assembly having multiple independent oculars or sights.
Fire arm sight assemblies generally include an ocular or sight that is attached to the firearm to assist the shooter with aligning the bore of the firearm with an intended target. Commonly, the shooter adjusts either the sight relative to the firearm, or the orientation of the sight relative to the target, to accommodate different shooting conditions. For example, if a projectile will be subjected to a crossing wind during the travel of the projectile to the target, the shooter can lateral translate the sight relative to the bore of the firearm, or simply aim the firearm at a sight that is offset from an intended projectile impact area. These variations in lateral alignment of the sight and/or the firearm with the intended target are commonly referred to as windage adjustments.
Another type of alignment adjustment the shooter must accommodate is an inclination of declination of the firearm relative to the target to accommodate the differences between the generally linear sighting path and the occasionally more curved projectile path. For targets at close range, this is generally a negligible consideration for most shooters as the projectile will follow a substantially linear path. This becomes a greater consideration for accurate shooting as the target is moved further from the firearm. In such situations, the shooter must adjust the orientation of the sight relative to the firearm or sight the firearm generally above an intended impact area. Adjusting the orientation of the sight relative to the firearm manipulates the association between the line of sight and the projectile path such that the two lines cross at the intended impact area. Aiming above a target accommodates the arcing path of the projectile such that the projectile strikes the desired impact area even though the firearm sight indicates an elevated impact area.
Regardless of the shooting technique, alignment of the sight with the firearm or estimating the degradation of the projectile path to be able to repeatedly hit an intended target is much more a skill based on experience than the simply mechanical act of firing a projectile from a firearm. Accurate shooting at various ranges under varied conditions is a skill that few shooters master. The ability to accurately hit a target is complicated by both the ambient conditions and the range between the shooter and the target. Although many adjustable gun sights are available, accurate shooting with such sights is heavily dependent on the shooters ability to orient the sight relative to the firearm to strike the intended target. Accordingly, it is desired to provide a firearm sight that can quickly and repeatably align the firearm with an intended target.
The problems associated with the aiming of the firearm mentioned above are magnified as the operable range of the firearm increases. Small misalignments of the firearm relative to a distant target will yield unintended or undesired impacts. High-power firearms, such as a .50 caliber firearm, have the potential to accurately deliver a projectile generally in a range of approximately 2000 yards or approximately 1830 meters. Coupled with the ability to deliver various projectile types such as armor-piercing rounds, incendiary munitions, and explosive rounds, such firearms are an invaluable deterrent to malevolent activities. The ability to accurately deliver projectiles throughout the operable range of such firearms provides the additional advantage of maintaining a spacing between the intended target and the shooter thereby providing a degree of protection for the shooter from debris or other projectiles which may originate from the target independently or as a result of the impact of the shooters projectile.
Understandably, efficient utilization of such high-power firearms depends heavily on the ability to quickly and efficiently train new shooters in the shooting characteristics of such firearms. Depending on a given shooters prior experience, even with the assistance of known shooting aids, the ability to train a shooter to accurately acquire and fire upon a variety of targets within a 2000 yard operating range of a firearm can be a time consuming and expensive endeavor. Accordingly, it would also be desirable to provide a firearm sight assembly that is simple to use and whose operation can be quickly understood.
It would therefore be desirable to have a system and method for providing a firearm sight assembly that is easy to operate and capable of quickly and accurately aligning the firearm projectile path with targets at varying ranges.
The present invention provides a system and method of providing a firearm sight assembly that overcomes one or more of the aforementioned drawbacks. The firearm sight assembly includes a number of sights in a common assembly. The sight assembly according to one aspect of the invention is securable to a firearm and configured such that a shooter can selectively utilize one of the number of sights tailored for a number of respective distances. Preferably, the sights are connected such that moving one sight out of a shooting line of sight brings another sight into the shooting line of sight. Such a sight assembly allows a shooter to quickly configure a firearm for accurate shooting at a variety of distances.
Another aspect of the invention discloses a sight assembly having a base for securing the sight assembly to a firearm. A housing is attached to the base and a first and second sight are attached to the housing. The first sight and the second sight are constructed to rotate about a common axis that is offset and inclined relative to a generally horizontal plane that passes through a bore of the firearm. Such a sight assembly equips a user with a sight that is operable at a variety of distances with minimal manipulation.
A further aspect of the invention discloses a gun sight assembly having a first portion for engaging a firearm and a second portion for engaging the first portion. A number of sights are connected to a hub and oriented in a generally cone shape. A pivot is engaged with the hub and rotationally connects the number of sights to the second portion such that each of the number of sights can rotate between a use position and a stored position. Such a construction provides a sight assembly that is simple to operate and can be efficiently implemented across a range of firearm products.
Yet another aspect of the invention discloses as a method of providing a firearm sight. The method includes providing a frame for being connected to a firearm. A mount is provided that engages the frame. A first sight and a second sight are provided and connected to the mount such that a position of the first sight is fixed relative to the second sight and such that the first sight and the second sight can rotate about an axis that crosses a target sight line through one of the first sight and the second sight. Such a sight assembly can be efficiently produced, provides for repeatable sight position, and is robust and can withstand harsh operating conditions.
These and various other aspects, features, and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
Firearm 20 includes an action 30 having a firing pin constructed to impact a primer cartridge of a shell. Upon discharge of the shell, a projectile is accelerated and travels through a bore 32 of firearm 20. The projectile exits bore 32 proximate a muzzle 34. Once fired, the projectile follows a projectile path to an intended target. As is commonly understood from projectile dynamics, after leaving bore 32, the projectile gradually slows until impact with interfering objects. As previously discussed, the ability to impact a desired target with the projectile depends greatly on a shooters ability to align bore 32 of firearm 20 such that the projectile follows a projectile path that crosses the intended target.
A shooter position 36 is located generally behind firearm 20 such that a shooters line of sight is generally aligned with a vertical plane associated with the desired projectile path. A shooter utilizes sight assembly 22 and a forward post sight 23 to align bore 32 such that the projectile impacts a desired target. As shown in
As shown in
Referring back to
Referring to
As shown in
Sight assembly 22 further includes a lateral position indicator assembly or stadia indicator 77. Stadia indicator 77 includes a reference marker 81 secured to base 42 and an indicator 82 secured to housing 44. Indicator 82 is secured to housing 44 by a number of fasteners 84 such that a position of indicator 82 can be associated with reference marker 81. Such a construction allows indicator 82 to be oriented relative to reference marker 81 to provide a “zero-out” calibration or adjustment or provide an indication of a projectile path under no or minimal windage conditions. Stadia indicator 77 provides a shooter with a visual indication of the translation of housing 44 relative to base 42 relative to the zeroed orientation.
Referring to
Each of sights 86, 88, 90 is associated such that sight assembly 22 can be utilized for accurate targeting of intended targets within an operable range of firearm 20. Preferably, sight 86 is configured to accurately align firearm 20 with targets at approximately 1000 yards or roughly 915 meters from firearm 20, sight 88 is configured to accurately align firearm 20 with targets between 500 yards or 450 meters and 800 yards or 730 meters, and sight 90 is configured to accurately align firearm 20 with targets nearer than approximately 500 yards or 450 meters. Sight assembly 22 clearly provides a highly versatile sight assembly that is operable across a majority of the common operating range of firearm 20. Understandably, these sight operation ranges are merely exemplary and other sight ranges are envisioned.
Preferably, sights 86, 88, 90 are rigidly connected to one another by a hub portion 97 such that sights 86, 88, 90 are oriented in a generally conical shape and connected such that movement of one sight results in movement of the remaining sights. To configure firearm 20 for shooting at targets at any of a variety of ranges, a shooter simply need position the desired sight 86, 88, 90 within sight window 54. It is appreciated that although three sights are shown, other sight configurations and constructions are envisioned. For example, it is envisioned that two or more than three sights may be provided and the sights provided may be configured with no or differing ranges of overlap. It is further envisioned that the sights and hub be separable but configured to interact when assembled. Such a construction allows a user to uniquely configure a sight assembly for a desired use.
As shown in
Referring back to
An indexer assembly 102 includes a ball 104 and a spring 106. Spring 106 is constructed to bias ball 104 into an underside 108 of hub 97. Ball 104 cooperates with a number of detents 110 formed in underside 108 of hub 97. The cooperation of ball 104 with detents 110 provides a tactile indication that a respective sight 86, 88, 90 is positioned in the in-use position. Indexer assembly 102 further ensures hub 97 and sights 86, 88, 90 are maintained in a desired orientation until a user desires use of an alternative sight 86, 88, 90.
Referring to
As shown in
Referring to
The sight assembly 22 according to the present invention provides a gun sight system that allows a shooter to quickly and repeatably configure the firearm for shooting at various distances. Sight assembly 22 is further configured for generally seamless integration into any of a number of firearm constructions. Sight assembly 22 can also be integrated or augmented and/or supplemented with the use of other sighting accessories such as scopes, lasers, target magnifiers, or the like. The robust construction of sight assembly 22 ensures product longevity and the ability to withstand the inhospitable conditions frequently associated with use of such firearms. Sight assembly 22 is further constructed to be simple to operate such that novice shooters can quickly become accurate marksman across at least a substantial portion of a tactical range of any firearm equipped with such a system.
Therefore, one embodiment of the invention includes sight assembly having a base for securing the sight assembly to a firearm. A housing is attached to the base and a first and second sight are attached to the housing. The first sight and the second sight are constructed to rotate about a common axis that is offset and inclined relative to a generally horizontal plane that passes through a bore of the firearm.
Another embodiment includes a gun sight assembly having a first portion for engaging a firearm and a second portion for engaging the first portion. A number of sights are connected to a hub and oriented in a generally cone shape. A pivot is engaged with the hub and rotationally connects the number of sights to the second portion such that each of the number of sights can rotate between a use position and a stored position.
A further embodiment includes a method of providing a firearm sight that includes providing a frame for being connected to a firearm. A mount is provided that engages the frame. A first sight and a second sight are provided and connected to the mount such that a position of the first sight is fixed relative to the second sight and such that the first sight and the second sight can rotate about an axis that crosses a target sight line through one of the first sight and the second sight.
The present invention has been described in terms of the preferred embodiment, the several embodiments disclosed herein are related as being directed to the assembly as generally shown in the drawings. It is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, the embodiments summarized, or the embodiment shown in the drawings, are possible and within the scope of the appending claims. It is further appreciated that aspects of the multiple embodiments are not specific to any of the particular embodiment and may be applicable between one or more of the disclosed embodiments. The appending claims cover all such alternatives and equivalents.