X-ray windows can be used for enclosing an x-ray source or detection device. The window can be used to separate air from a vacuum within the enclosure while allowing passage of x-rays through the window.
X-ray windows can include a thin film supported by a support structure, typically comprised of ribs supported by a frame. The support structure can be used to minimize sagging or breaking of the thin film. The support structure can interfere with the passage of x-rays and thus it can be desirable for ribs to be as thin or narrow as possible while still maintaining sufficient strength to hold the thin film. The support structure is normally expected to be strong enough to withstand a differential pressure of around 1 atmosphere without sagging or breaking.
Information relevant to x-ray windows can be found in U.S. Pat. Nos. 4,933,557, 7,737,424, 7,709,820, 7,756,251 and U.S. patent application Ser. Nos. 11/756,962, 12/783,707, 13/018,667, 61/408,472 all incorporated herein by reference.
It has been recognized that it would be advantageous to provide a support structure for an x-ray window that is strong but also minimizes attenuation of x-rays. The present invention is directed to an x-ray window that satisfies the need for strength and minimal attenuation of x-rays by providing larger ribs for strength of the overall structure which support smaller ribs. The smaller ribs allow for reduced attenuation of x-rays. The x-ray window can comprise a support frame with a perimeter and an aperture. A plurality of ribs can extend across the aperture of the support frame and can be supported or carried by the support frame. Openings exist between ribs to allow transmission of x-rays through such openings with no attenuation of x-rays by the ribs. A film can be disposed over and span the ribs and openings. The film can be configured to pass radiation therethrough, such as by selecting a film material and thickness for optimal transmission of x-rays. The ribs can have at least two different cross-sectional sizes including at least one larger sized rib with a cross-sectional area that is at least 5% larger than a cross-sectional area of at least one smaller sized rib.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As illustrated in
The film 13 can be configured to pass radiation therethrough, such as by selecting a film material and thickness for optimal transmission of x-rays. The ribs 11 can have at least two different cross-sectional sizes including at least one larger sized rib with a cross-sectional area that is at least 5% larger than a cross-sectional area of at least one smaller sized rib. This design with some ribs having a larger cross sectional area and other ribs having a smaller cross sectional area can have high strength provided by the larger ribs while allowing for minimal attenuation of x-rays by use of smaller ribs.
The change in cross-sectional area between larger and smaller ribs can be accomplished by a change in rib width w and/or a change in rib height h. For example, in
In the various embodiments described herein, tops of the ribs 11 can terminate substantially in a common plane 16. “Tops of the ribs” is defined as the location on the ribs 11 to which the film 13 is attached. It can be beneficial for tops of the ribs 11 to terminate substantially in a common plane 16 to allow for a substantially flat film 13.
In one embodiment, each larger sized rib can have a cross-sectional area that is at least 5% larger than a cross-sectional area of smaller sized ribs
In another embodiment, each larger sized rib can have a cross-sectional area that is at least 10% larger than a cross-sectional area of smaller sized ribs. In another embodiment, each larger sized rib can have a cross-sectional area that is at least 25% larger than a cross-sectional area of smaller sized ribs. In another embodiment, each larger sized rib can have a cross-sectional area that is at least 50% larger than a cross-sectional area of smaller sized ribs. In another embodiment, each larger sized rib can have a cross-sectional area that is at least twice as large as a cross-sectional area of smaller sized ribs. In another embodiment, each larger sized rib can have a cross-sectional area that is at least four times as large as a cross-sectional area of smaller sized ribs.
Some figures show only two different cross-sectional area size ribs, but more cross-sectional area sizes are within the scope of the present invention and are only excluded from the figures for simplicity. Also, more than the five different cross-sectional area size ribs shown are within the scope of the present invention and are only excluded from the figures for simplicity.
As illustrated in
Larger ribs 11g can extend across the aperture of the support frame 12 to provide extra strength to the smaller sized ribs 11e-f. The pattern of the larger ribs 11g can be aligned with part of the pattern of the smaller sized ribs 11e-f. The ribs 11e-f can extend non-linearly across the aperture of the support frame 12.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
How to Make:
The film 13 can be comprised of a material that will result in minimal attenuation of x-rays and/or minimal contamination of the x-ray signal passed through to an x-ray detector or sensor. The film can be comprised of a polymer, graphene, diamond, beryllium, or other suitable material. The window can have a gas barrier film layer disposed over the film. The gas barrier film layer can comprise boron hydride. The film can be attached to the support structure by an adhesive.
The support structure can be comprised of a polymer (including a photosensitive polymer such as a photosensitive polyimide), silicon, graphene, diamond, beryllium, carbon composite, or other suitable material. The support structure can be formed by pattern and etch, ink jet printer or inkjet technology, or laser mill or laser ablation.
In one embodiment, ribs can have a width w between 25 μm and 75 μm and a height h between 25 μm and 75 μm.
In one embodiment, largest ribs can have a width w between about 50 μm and about 250 μm. In another embodiment, smallest ribs can have a width w between about 8 μm and about 30 μm. In another embodiment, intermediate sized ribs can have a width w between about 20 μm and about 50 μm. All ribs in this described in this paragraph can have the same height h or they can be different heights h. All ribs in this described in this paragraph can have heights h as described in the following paragraph.
In one embodiment, largest ribs can have a height h between about 20 μm and about 300 μm. In another embodiment, smallest ribs can have a height h between about 20 μm and about 60 μm. In another embodiment, intermediate sized ribs can have a height h between about 20 μm and about 100 μm. All ribs in this described in this paragraph can have the same width w or they can be different widths. All ribs in this described in this paragraph can have widths as described in the previous paragraph.
In one embodiment, openings 14 between the ribs 11 can take up about 81% to about 90% of a total area within the aperture of the support frame 12. In another embodiment, openings 14 between the ribs 11 can take up about 71% to about 80% of a total area within the aperture of the support frame 12. In another embodiment, openings 14 between the ribs 11 can take up about 91% to about 96% of a total area within the aperture of the support frame 12. Opening 14 area can be dependent on the width w and height h of the ribs 11, the pattern of the ribs, and the number of different sizes of ribs.
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
This claims priority to U.S. Provisional Patent Application Ser. No. 61/445,878, filed Feb. 23, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1276706 | Snook et al. | May 1918 | A |
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee et al. | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3397337 | Denholm | Aug 1968 | A |
3538368 | Oess | Nov 1970 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3741797 | Chavasse, Jr. et al. | Jun 1973 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3873824 | Bean et al. | Mar 1975 | A |
3882339 | Rate et al. | May 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4293373 | Greenwood | Oct 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4443293 | Mallon et al. | Apr 1984 | A |
4463257 | Simpkins et al. | Jul 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4584056 | Perret et al. | Apr 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4696994 | Nakajima | Sep 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins et al. | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5063324 | Grunwald et al. | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5302523 | Coffee et al. | Apr 1994 | A |
5343112 | Wegmann | Aug 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5465023 | Garner | Nov 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5521851 | Wei et al. | May 1996 | A |
5524133 | Neale et al. | Jun 1996 | A |
5561342 | Roeder et al. | Oct 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5602507 | Suzuki | Feb 1997 | A |
5607723 | Plano et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5673044 | Pellon | Sep 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5706354 | Stroehlein | Jan 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5740228 | Schmidt et al. | Apr 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6063629 | Knoblauch | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6073484 | Miller et al. | Jun 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6129901 | Moskovits et al. | Oct 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6277318 | Bower | Aug 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6388359 | Duelli et al. | May 2002 | B1 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6645757 | Okandan et al. | Nov 2003 | B1 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6838297 | Iwasaki | Jan 2005 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6866801 | Mau et al. | Mar 2005 | B1 |
6876724 | Zhou | Apr 2005 | B2 |
6900580 | Dai et al. | May 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6962782 | Livache et al. | Nov 2005 | B1 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7049735 | Ohkubo et al. | May 2006 | B2 |
7075699 | Oldham et al. | Jul 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7108841 | Smally | Sep 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7189430 | Ajayan et al. | Mar 2007 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233071 | Furukawa et al. | Jun 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7399794 | Harmon et al. | Jul 2008 | B2 |
7410603 | Noguchi et al. | Aug 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7650050 | Haffner et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7680652 | Giesbrecht et al. | Mar 2010 | B2 |
7684545 | Damento et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20030165418 | Ajayan et al. | Sep 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060073682 | Furukawa et al. | Apr 2006 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070087436 | Miyawaki et al. | Apr 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070133921 | Haffner et al. | Jun 2007 | A1 |
20070142781 | Sayre | Jun 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070176319 | Thostenson et al. | Aug 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20080199399 | Chen et al. | Aug 2008 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090085426 | Davis et al. | Apr 2009 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20090173897 | Decker et al. | Jul 2009 | A1 |
20100096595 | Prud'Homme et al. | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100239828 | Cornaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100248343 | Aten et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20100323419 | Aten et al. | Dec 2010 | A1 |
20110017921 | Jiang et al. | Jan 2011 | A1 |
20110089330 | Thoms | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57082954 | Aug 1982 | JP |
S6074253 | Jan 1985 | JP |
S6089054 | May 1985 | JP |
3170673 | Jul 1991 | JP |
05066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
2001179844 | Jul 2001 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
20033211396 | Jul 2003 | JP |
4171700 | Jun 2006 | JP |
2006297549 | Nov 2006 | JP |
10-2005-0107094 | Nov 2005 | KR |
WO 96-19738 | Jun 1996 | WO |
WO 9965821 | Dec 1999 | WO |
WO 0009443 | Feb 2000 | WO |
WO 0017102 | Mar 2000 | WO |
WO 03076951 | Sep 2003 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Robert C. Davis;; office action issued Apr. 26, 2012. |
Anderson et al., U.S. Appl. No. 11/756,962, filed Jun. 1, 2007. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Chen, Xiaohua et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 2000, pp. 301-306, vol. 60. |
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989). |
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60. |
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188. |
Flahaut, E. et al, “Carbon Nanotube-metal-oxide nanocomposites; microstructure, electrical conductivity and mechanical properties,” Acta mater., 2000, pp. 3803-3812.Vo. 48. |
Gevin, et al IDe-XV1.0: Performances of a New CMOS Multi channer Analogue Readout ASIC for Cd (Zn) Te Detectors; IEEE 2005. |
Grybos et al.; “DEDIX—Development of Fully Integrated Multichannel ASIC for High Count Rate Digital X-ray Imagining systems”; IEEE 2006; Nuclear Science Symposium Conference Record. |
Grybos, “Pole-Zero Cancellations Circuit With Pulse Pile-Up Tracking System for Low Noise Charge-Sensitive Amplifiers”; Mar. 25, 2009; from IEEE Xplore. |
Grybos, et al “Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems”; IEEE Transactions on Nuclear Science, vol. 54, No. 4, 2007. |
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991). |
http://www.orau.org/ptp/collection/xraytubescollidge/MachelettCW250.htm, 1999, 2 pgs. |
Hutchison, “Vertically aligned carbon nanotubes as a framework for microfabrication of high aspect ration mems,” 2008, pp. 1-50. |
Jiang, et al; “Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties”; Jun. 25, 2004 ; J. Mater. Chem, 2005. |
Jiang, Linquin et al., “Carbon nanotubes-metal nitride composites; a new class of nanocomposites with enhanced electrical properties,” J. Mater. Chem., 2005, pp. 260-266, vol. 15. |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Li, Jun et al., “Bottom-up approach for carbon nanotube interconnects,” Applied Physics Letters, Apr. 14, 2003, pp. 2491-2493, vol. 82 No. 15. |
Lines, U.S. Appl. No. 12/352,864, filed Jan. 13, 2009. |
Lines, U.S. Appl. No. 12/726,120, filed Mar. 17, 2010. |
Ma. R.Z., et al., “Processing and properties of carbon nanotubes-nano-SIC ceramic”, Journal of Materials Science 1998, pp. 5243-5246, vol. 33. |
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
Peigney, et al., “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, 2000, pp. 677-683, vol. 26. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113. |
Rankov. A. “A Novel Correlated Double Sampling Poly-Si Circuit for Readout System in Large Area X-Ray Sensors”, 2005. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Satishkumar B.C., et al. “Synthesis of metal oxide nanorods using carbon nanotubes as templates,” Journal of Materials Chemistry, 2000, pp. 2115-2119, vol. 10. |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No. 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as teh windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009, Krzysztof Kozaczek. |
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010, Michael Lines. |
U.S. Appl. No. 12/783,707, filed May 20, 2010, Steven D. Liddiard. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010, Steven Liddiard. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011, Lei Pei. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
www.moxtek,com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May. 2007, 2 pages. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filed of applicant's application. |
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III. |
Nakajima et al.; “Trial use of carbon-fiber-reinforced plastic as a non-Bragg window material of x-ray transmission”; Rev. Sci. Instrum 60 (7), Jul. 1989. |
Coleman, et al.; “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites”; Carbon 44 (2006) 1624-1652. |
Najafi, et al.; “Radiation resistant polymer-carbon nanotube nanocomposite thin films”; Department of Materials Science and Engineering . . . Nov. 21, 2004. |
Wang, et al.; “Highly oriented carbon nanotube papers made of aligned carbon nanotubes”; Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics; Published Jan. 31, 2008. |
Xie, et al.; “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”; Center for Advanced Materials Technology; Apr. 20, 2005. |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
Coleman, et al.; “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”; Adv. Mater. 2006, 18, 689-706. |
Zhang, et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; 2008 American Chemical Society. |
Hu, et al.; “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications”; 2010 American Chemical Society Jul. 22, 2010. |
NEYCO, “SEM & TEM: Grids”; catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1. |
Hexcel Corporation; “Prepreg Technology” brochure; http://www.hexcel.com/Reso2882urces/DataSheets/Brochure-Data-Sheets/Prepreg—Technology.pdf. |
Chakrapani et al.; Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams; PNAS; Mar. 23, 2004; pp. 4009-4012; vol. 101; No. 12. |
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7. |
Vajtai ; Building Carbon Nanotubes and Their Smart Architecture; pp. 691-698; 2002. |
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011, Dongbing Wang. |
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011, Steven Liddiard. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; office action dated Oct. 15, 2012. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Robert C. Davis; office action dated Oct. 2, 2012. |
PCT application EP12167551.6; filed May 10, 2012; Robert C. Davis; European search report mailed Nov. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20120213336 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61445878 | Feb 2011 | US |