Information
-
Patent Application
-
20230299652
-
Publication Number
20230299652
-
Date Filed
August 12, 20213 years ago
-
Date Published
September 21, 2023a year ago
-
Inventors
-
Original Assignees
-
CPC
-
-
International Classifications
- H02K15/12
- H05B6/10
- H05B6/64
Abstract
Multiple temperature-control process for stators (7) and rotors of electric motors and components consisting of materials with different magnetic properties by means of a triplex furnace (1) for the quick, efficient, and uniform heating-up of preferably tubular components such as stators (7), wherein the magnetic parts of a component are primarily heated up by means of induction and at the same time non-magnetic parts of the same component are primarily heated up by means of infrared radiation, and at the same time and subsequently secondary heating takes place by means of convection, in particular by passive heating elements (10), which serves for finely adjusting the target temperature and for maintaining it.
Claims
- 1. A multiple temperature-control process for components that comprise different materials with different magnetic and thermal properties, comprising:
heating magnetic parts of a component primarily by induction to a target temperature;simultaneously heating non-magnetic parts of the same component primarily by infrared radiation to the target temperature;and simultaneously finely adjusting and/or maintaining the target temperature of the component by convection heating.
- 2. The multiple temperature-control process according to claim 1, wherein the component is tubular and is simultaneously heated with the induction and with the infrared irradiation, during a primary heating step to ensure quick and uniform heating from inside and from outside of the tubular component.
- 3. The multiple temperature-control process according to claim 1, wherein heating is by an internal heating source and an external heating source, and wherein intensity of the internal heating source and intensity of the external heating source are regulated and controlled independently of each other according to an energy requirement and the target temperature of the material on or in the component.
- 4. The multipletemperature-control process according to claim 1, further comprising: rotating the component during heating to ensure uniform temperature distribution and enhanced heat transfer during convective heating.
- 5. The multiple temperature-control process according to claim 1, wherein convection heating of the component originates partly from an infrared source reflected by the component or the infrared source irradiated past the component.
- 6. The multiple Multiple temperature-control process according to claim 1, wherein the non-magnetic parts of the component to be heated are electrically conductive and are heated by resistance heating due to high electricity transmission in addition to or as an alternative to infrared irradiation.
- 7. The multiple Multiple temperature-control process according to claim 1, further comprising: assessing masses and thermal capacity of the magnetic material and the non-magnetic material of the component and determining a required quantity of heat to heat the magnetic material and the non-magnetic material of the component based on the masses of said materials and their thermal capacity, such that the thermal energy acting on each material of a component is supplied as prescribed by a predetermined regimen until the desired quantity of heat is introduced to reach the target temperature.
- 8. A triplex furnace, comprising: at least one heating station in a thermal chamber, said heating station comprising a primary heater with at least one inductor that is mounted so as to allow movement and at least one infrared radiator that is mounted so as to allow movement;
a secondary convection heater; andat least one component transport unit located outside the thermal chamber and having a component rotary drive.
- 9. The triplex furnace according to claim 8, wherein the secondary convection heater has ferritic passive heating elements that are connected to at least one inductor .
- 10. The triplex furnace according to claim 8, further comprising actuators to which the at least one inductor and the at least one infrared radiator are connected, so that positions of the at least one inductor and at least one infrared radiator in the heating station may be changed .
- 11. The triplex furnace according to claim 1, further comprising: a thermally insulated thermal chamber with at least one sealable component feed opening; and a thermal chamber recess running along the direction of movement of the component; temperature sensors lighting and at least one one-way mirrored glass pane .
- 12. The triplex furnace according to claim 8, wherein the inductor is configured as a flexible hollow body which can optionally be deformed by actuators .
- 13. The triplex furnace according to-claim 8, further comprising: a temperature control for the at least one inductive heater, a temperature control for the at least one infrared heater, a temperature control for the secondary convection heater, and a temperature control for the at least one component transport unit .
- 14. The triplex furnace, wherein plurality of heating stations with primary heaters and secondary convection heaters are arranged in series in the thermal chamber .
- 15. The multiple temperature-control process according to claim 1, wherein the components are stators and rotors of electric motors that comprise soft iron sheets and copper rods.
- 16. The multiple temperature-control process according to claim 1, further comprising:
linearly moving one or more infrared radiators and one or more inductors when heating the component.
- 17. The multiple temperature-control process according to claim 1, wherein convection heating is introduced by at least one ferritic passive heating element which is tempered by an inductor.
- 18. The triplex furnace according to claim 8, further comprising one or more infrared light absorbers as passive heating elements for the at least one infrared radiator.
- 19. The triplex furnace according to claim 11, further comprising: a component transport device which is connected to the thermal chamber; and component carriers associated with the component transport device that project into the thermal chamber and are moved and set in rotation via actuators by means of machine elements.
- 20. The triplex furnace according to claim 12, wherein the inductor is a copper flex tube or a corrugated copper tube.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10 2020 004 905.2 |
Aug 2020 |
DE |
national |
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/EP2021/072456 |
8/12/2021 |
WO |
|