The systems and methods relate generally to medical ultrasound imaging systems and, more particularly, to multiple transducer configurations for imaging wider depth ranges.
Conventional medical ultrasound imaging systems, such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE), use an ultrasound imaging device to image the interior of a living being. The ultrasound imaging device is placed on or within a catheter, which can then be inserted into the body for imaging a desired region, such as a body lumen, body cavity and the like. The ultrasound imaging device, which typically includes a transducer, is also communicatively coupled with an imaging system for processing and displaying any image data collected by the transducer. Ultrasound imaging systems can image with a number of different techniques, such as through the use of a rotatable transducer, a transducer array and the like.
In imaging systems that use a rotatable transducer, the transducer is typically mounted on the distal end of a rotatable driveshaft. The catheter typically includes an elongate tubular outer sheath configured to slidably receive the driveshaft. The driveshaft, along with the transducer mounted thereon, can then be rotated within the outer sheath. During rotation, the transducer transmits ultrasound signals into the surrounding lumen tissue. The tissue reflects these signals as echoes, which can then be received by the transducer.
The transducer then outputs an imaging signal indicative of the echo signal characteristics to the imaging system, which processes and stores the signal as an echogenic record. The transducer performs this imaging cycle, i.e., the process of transmitting an ultrasound signal or pulse and receiving the echoes generated therefrom, in a continuous manner as the transducer rotates. Multiple echogenic records are then accumulated by the imaging system, with each record typically corresponding to a different angular position of the transducer. The echogenic records can then be displayed as an image of the body lumen, such as a cross sectional image obtained during one rotation of the transducer. The transducer can be moved longitudinally within the outer sheath via the drive shaft, so that numerous locations along the length of the body lumen can be imaged.
Conventional transducers and other ultrasound imaging devices operate over a finite frequency bandwidth. The frequency of the ultrasound signal is a significant factor in determining the tissue depth that the transmitted ultrasound signal can penetrate. In general, lower frequency signals penetrate the tissue to a greater depth than higher frequency signals. Thus, a transducer operating in a lower frequency range is capable of producing an image at greater depths than a transducer operating at a higher frequency range.
However, the level of image quality produced at different depths is a complex interplay of numerous factors, such as overall system bandwidth (for example, the bandwidth of the receiving circuitry), transducer focus, beam pattern in addition to transducer frequency. All of these factors affect the axial and lateral size of the transmitted, or interrogating, pulse and change the size of the pulse as it propagates through the tissue. The pulse size can be considered one of the major factors affecting image quality. When designing a rotatable imaging device, the designer must select a transducer that can operate over a frequency range wide enough to allow imaging of the desired tissue depths, while at the same time balancing this against the other main performance affecting factors to arrive at a transducer design that produces a quality image.
Accordingly, improved ultrasound imaging systems are needed that can overcome the shortcomings of conventional imaging techniques while at the same time provide greater performance.
The systems and methods described herein provide for multiple transducer configurations for ultrasound imaging systems having an imaging device configured to image the interior of a living being. In one example embodiment of these systems and methods, the imaging device includes a first transducer and a second transducer, where the first transducer is configured to image a first range of depths and the second transducer is configured to image a second range of depths. Each transducer can be configured to image a range of depths by adjusting the transducer's physical focus or by adjusting the transducer's operating frequency or any combination thereof.
The imaging system can also include an image processing system communicatively coupled with the transducer devices and configured to receive a first output signal from the first transducer and a second output signal from the second transducer. The image processing system can be configured to process the first and second output signals into image data and combine the image data such that the image data is displayable as a single image.
In another example embodiment of the systems and methods described herein, the first transducer is configured to operate over a first frequency range and output a first output signal to the image processing system over a signal line. The second transducer is configured to operate over a second frequency range and output a second output signal to the image processing system over the same signal line. The image processing system can be configured to separate the first and second output signals, for instance, by using a signal separation unit and the like.
In another example embodiment of the systems and methods described herein, the first transducer is positioned in the imaging device at a first location and the second transducer is positioned in the imaging device at a second location opposite the first location. The location of the first and second transducers within the imaging device is preferably symmetrical.
In yet another embodiment of the systems and methods described herein, an image processing system is configured to receive a first transducer output signal and process the first output signal into a first echogenic data set comprising a plurality of image data items collected over a first range of tissue depths. The image processing system is also configured to receive a second transducer output signal and process the second output signal into a second echogenic data set comprising a plurality of image data items collected over a second range of tissue depths. The image processing system is further configured to combine the first and second echogenic data sets such that the image data items in the first and second ranges of tissue depths are displayable as a single image.
The first echogenic data set and the second echogenic data set may each comprise at least one data item collected from the same tissue depth. The image processing system can be configured to blend each data item from the first echogenic data set with each data item from the second echogenic data set collected at the same tissue depth to produce a blended data item.
In still another embodiment, the image processing system can be configured to receive a first transducer output signal over a first time period and a second transducer output signal over a second time period. The image processing system can also be configured to ignore the second output signal during the first time period.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims. It is also intended that the invention is not limited to the details of the example embodiments.
The details of the invention, both as to its structure and operation, may be gleaned in part by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
FIGS. 3A-B are schematic views depicting example embodiments of an ultrasound imaging device.
FIGS. 4A-B are timing diagrams depicting the operation of one example embodiment of the ultrasound imaging system having two transducers.
The systems and methods described herein provide for multiple transducer configurations in ultrasound imaging systems. These systems and methods allow an ultrasound imaging system to image a greater range of tissue depths while maintaining a relatively high degree of image quality.
Transducers 112 and 114 are preferably configured to image different tissue depths, or ranges of tissue depths. Transducers 112 and 114 are preferably communicatively coupled with image processing system 120 via communication paths 113 and 115, respectively. During an imaging procedure, each transducer 112 and 114 can be operated to obtain separate image data sets containing image data from different tissue depths. Imaging system 120 can be configured to compile and process these image data sets such that they are displayable as a single high quality image covering a wider tissue depth range than conventional systems.
Using various methods, transducer 112 and 114 can be configured to image different tissue depths, which can be either overlapping or non-overlapping. For instance, transducers 112 and 114 can be configured to operate over different frequency ranges, or with different physical focuses, or with any combination of the two. In one embodiment, transducers 112 and 114 are configured to operate over different bandwidths, or frequency ranges. Here, for example, each transducer 112 and 114 is preferably configured to operate at a separate center frequency with partially overlapping bandwidths as depicted in
Alternatively, imaging system 100 can be configured such that transducers 112 and 114 each have a different physical focus to image a different range of tissue depths. Physical focus can be adjusted by changing the shape of the transducer, adding a lens to the transducer and the like. Preferably, the depth ranges for each transducer 112 and 114 at least partially overlap, although this is not required. The tissue depth focus chosen for each transducer 112 and 114 will depend on the needs of the application. For instance, in intracardiac applications, the distance from the imaging device 106 to the body lumen or heart chamber is typically on the order of one to two centimeters, while in coronary applications, the distance from the imaging device to the body lumen is typically 4 millimeters or less.
During operation of system 100, each transducer 112 and 114 transmits and receives ultrasound energy in these primary directions 302 and 304, respectively. When operating within a body lumen, each transducer 112 and 114 effectively images regions of the lumen located opposite to each other. Because each transducer 112 and 114 is preferably configured to image a different range of depths, as imaging device 106 performs a rotation, image data from each transducer 112 and 114 is obtained and can be combined by IVUS imaging system 100 to produce a single cross-sectional image of the body lumen showing a wider range of depths.
Although the above described embodiments of imaging system 100 have two transducers 112 and 114, any number of transducers can be used. For instance,
The embodiment in
It should be understood that the needs of each application will vary, and that the systems and methods described herein are not limited to any one configuration of transducers. For instance, a dual transducer “bullseye” configuration having an inner transducer surrounded by an outer, annular transducer is just one example of another configuration that can be implemented in system 100.
Furthermore, the IVUS imaging system 100 can be configured such that each transducer is operative, i.e., transmitting or receiving, in separate time segments. FIGS. 4A-B depict timing diagrams for an example embodiment of IVUS imaging system 100 having two transducers 112 and 114, which preferably rotate continuously during the imaging procedure.
Image processing system 120 can be configured to ignore signals received by the non-operative transducer 112 or 114 in any manner, including the use of hardware or software implementations. At time T4, imaging device 106 has rotated to a new angular position so that the imaging process can be repeated. One of skill in the art will readily recognize that other embodiments can be configured with more than two transducers 112 and 114 by adding an additional time period for each additional transducer where that transducer is operative and the image processing system 120 ignores echoes received by the other transducers.
Within each echogenic data record 503 are individual data items 506. Each data item 506 has data representative of the strength of an echo received from a certain depth. This data can be used, for instance, to determine a brightness value for the image. Various tissue features reflect the incident ultrasound pulse differently and will translate into echoes of various strengths. In one embodiment, the depth of the tissue feature is determined, for instance, by the time delay between the transmission of the ultrasound pulse and receipt of the echo. The tissue depth and angular position 504 correlate to a position on image 501. The strength of the received echo can be translated into a brightness value for that position on image 501. In this manner, image 501 of the body tissue can be constructed.
In one embodiment, echogenic data sets 503 for each transducer 112 and 114 are compiled into an image data set. Echogenic data records 503 from corresponding angular positions in each image data set are then combined, or blended, to form a combined image data set. Data items 506 occurring at similar depths and angular positions 504 are combined, or blended, in a manner sufficient to produce a resulting blended data item. A simple additive combination of data items 506 would not accurately reflect the corresponding tissue feature because, for instance, the resulting data item 506 would be an additive combination of two signals received from the same tissue feature.
The blended data item preferably accurately represents the tissue feature in relation to the other tissue features in image 501. Any method process, or technique of combining or blending ultrasound data can be used. For instance, in one embodiment, data items 506 occurring at the same depth and angular position 504 are averaged. Another method of data blending is disclosed in U.S. Pat. No. 6,132,374 issued to Hossack et al. on Oct. 17, 2000, which is fully incorporated by reference herein. By combining the ultrasound data, an ultrasound image 501 showing tissue features occurring over a wide range of depths can be generated. Imaging system 100 can combine the image data as each data item 506 is collected, as each echogenic data record 503 is collected or after any number of echogenic data records 503 are collected as needed by the application.
By using signal separation unit 602, transducers 112 and 114 can share a common communicative path, which can allow the size of drive shaft 108 and outer sheath 104 to be reduced. As a result, catheter 102 can be advanced into smaller body lumens. One of skill in the art will readily recognize that signal separation can be implemented in numerous ways and with numerous circuitry types other than bandpass filters. For instance, a highpass and lowpass filter combination can be used, as well as certain algorithmic and software techniques and the like.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Features and processes known to those of ordinary skill may similarly be incorporated as desired. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.