The present invention relates to an energy delivery probe and method of treatment using the energy delivery probe.
Irreversible electroporation (IRE) is a non-thermal, minimally invasive surgical technique to ablate undesirable tissue, for example, tumor tissue. The technique is easy to apply, can be monitored and controlled, is not affected by local blood flow, and does not require the use of adjuvant drugs. The minimally invasive procedure involves placing needle-like electrodes into or around a targeted tissue area to deliver a series of short and intense electric pulses that induce structural changes in the cell membranes that promote cell death.
Another technique for ablating a desired target tissue is radiofrequency ablation (RFA). This procedure involves using an imaging guidance system such as ultrasound (US), computed tomography (CT), or magnetic resonance (MR). During this procedure, a physician places a probe directly into a target tissue area, such as a tumor. Using an energy source, a physician or other practitioner can then deliver a carefully-controlled amount of energy to flow through the electrodes into the tissue which causes the tissue to heat up. The heating is sustained for a predetermined length of time, usually just a few minutes, which kills and destroys the target tissue. RFA procedures can be percutaneously or laparoscopically performed.
Among the problems associated with current IRE procedures is that with current single IRE probe electrode designs, it is common practice for physicians to perform multiple overlapping or stacked ablations. In between each ablation, the physician has to reposition the probes. During this repositioning or pull-back process, however, it is sometimes difficult for physicians to keep all of the probes parallel for ablations that are performed after the first ablation. In addition, it is difficult to know exactly where the first ablation ends and how much overlap there is between successive ablations, which can increase the chances of missing portions of a target tumor tissue between the ablations or may result in unusual or unpredictable ablation shapes.
Another problem that sometimes occurs with current single IRE or RF ablation probes is probe migration. This occurs when an ablation probe moves slightly from the original position where the probe was inserted, either during the placement of additional probes or during an actual ablation procedure. When this occurs, an undertreated area of target tissue can potentially be left behind, or unintended target tissue can be ablated, or alternatively, a vital organ or structure can be damaged by the tip of a needle.
There exists a need in the art for an improved ablation probe and method of using such a probe for improved IRE and RF ablations that will allow a practitioner to more easily predict and control the location and size of IRE and RF ablations and provide the ability to easily maintain the electrodes in a stationary position within tissue before, during, and after an ablation. An electrode probe and method has not yet been proposed that would solve the problems described above, thereby avoiding many of the negative side effects of the current devices described above.
It is a purpose of the invention described herein to provide a dual probe device in which each probe has at least two electrode regions that can be switched between an active energy delivery state and a non-active non-energy delivery state, depending in the desired ablation zone(s), during either IRE or RF ablations.
It is also a purpose of this invention to provide various anchoring means at the distal tip of the ablation probe described herein in order to anchor at least portion of an active portion of the probe(s) relative to a patient's tissue throughout an ablation procedure.
It is also a purpose of this invention to provide an ablation probe that incorporates a means of adjusting the active portion of the electrode axially along the trocar, or the ablation probe may incorporate a plurality of fixed active portions along the trocar in order to allow the user to create multiple ablations along a specific controlled path through a lesion without repositioning the ablation device.
Various other objectives and advantages of the present invention will become apparent to those skilled in the art as more detailed description is set forth below. Without limiting the scope of the invention, a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention can be found in the Detailed Description of the Invention.
A method of treating a patient is presented herein. The method involves identifying a target tissue, providing at least one energy delivery probe having a longitudinal axis, at least a first trocar and a second trocar. In one embodiment, each of the trocars has a proximal portion and a distal portion can optionally have at least one lumen extending along the longitudinal axis. The distal portions of each of the trocars are capable of piercing tissue. Each of the trocars has at least two electrodes that are electrically insulated from each other. Each electrode is independently selectively activatable. The ablation probe also has an insulative sleeve that is positioned in a coaxially surrounding relationship to at least a portion of each of the first trocar and the second trocar and a switching means for independently activating at least one electrode. The method further involves inserting the probe into or near the target tissue, activating at least a first electrode on the first trocar and a first electrode on the second trocar, and delivering energy to the target tissue to ablate the tissue, thereby forming at least one ablation zone. The ablation method can be repeated between various sets of electrodes between the trocars to produce multiple overlapping ablation zones.
Also described herein is a variation of the ablation method described above. The method involves identifying a target tissue, providing at least one energy delivery probe, as described above, which energy delivery probe further includes at least one anchoring means that is capable of being deployed from the distal end of the probe, inserting the probe into or near the target tissue, deploying the at least one anchoring means, activating at least a first electrode on the first trocar and a first electrode on the second trocar, and delivering energy to the target tissue to ablate the tissue, thereby forming at least one ablation zone. The ablation procedure can be repeated multiple times, thereby causing multiple overlapping ablation zones.
A probe device is also presented herein that has a longitudinal axis and at least a first trocar and a second trocar. Each of the trocars comprises a proximal portion and a distal portion and a lumen extending along the longitudinal axis. The distal portions of the trocars are capable of piercing tissue. Each trocar has at least two electrodes that are electrically insulated and separated from each other, and each electrode is independently selectively activatable.
The foregoing purposes and features, as well as other purposes and features, will become apparent with reference to the description and accompanying figures below, which are included to provide an understanding of the invention and constitute a part of the specification, in which like numerals represent like elements, and in which:
The present invention can be understood more readily by reference to the following detailed description and the examples included therein and to the Figures and their previous and following description. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention.
The skilled artisan will readily appreciate that the devices and methods described herein are merely exemplary and that variations can be made without departing from the spirit and scope of the invention. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
Ranges can be expressed herein as from “about” to one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. As used herein, the words “proximal” and “distal” refer to directions away from and closer to, respectively, the insertion tip of the probe in the probe. The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for quantities of materials, durations of times, temperatures, operating conditions, ratios of amounts, and the likes thereof disclosed herein should be understood as modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the present disclosure and attached claims are approximations that can be varied as desired. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values can be used.
“Formed from” and “formed of” denote open claim language. As such, it is intended that a member “formed from” or “formed of” a list of recited components and/or materials be a member comprising at least these recited components and/or materials, and can further include other non-recited components and/or materials.
Examples provided herein, including those following “such as” and “e.g.,” are considered as illustrative only of various aspects and features of the present disclosure and embodiments thereof, without limiting the scope of any of the referenced terms or phrases either within the context or outside the context of such descriptions. Any suitable equivalents, alternatives, and modifications thereof (including materials, substances, constructions, compositions, formulations, means, methods, conditions, etc.) known and/or available to one skilled in the art can be used or carried out in place of or in combination with those disclosed herein, and are considered to fall within the scope of the present disclosure. Throughout the present disclosure in its entirety, any and all of the one, two, or more features and aspects disclosed herein, explicitly or implicitly, following terms “example”, “examples”, “such as”, “e.g.”, and the likes thereof may be practiced in any combinations of two, three, or more thereof (including their equivalents, alternatives, and modifications), whenever and wherever appropriate as understood by one of ordinary skill in the art. Some of these examples are themselves sufficient for practice singly (including their equivalents, alternatives, and modifications) without being combined with any other features, as understood by one of ordinary skill in the art. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ aspects and features of the present disclosure in virtually any appropriate manner.
As used herein, “substantially”, “generally”, and other words of degree are relative modifiers intended to indicate permissible variation from the characteristic so modified. It is not intended to be limited to the absolute value or characteristic which it modifies, but rather possessing more of the physical or functional characteristic than its opposite, and preferably, approaching or approximating such a physical or functional characteristic. “Optional” or “optionally” means that the subsequently described element, event or circumstance can or cannot occur, and that the description includes instances where said element, event or circumstance occurs and instances where it does not. The term “ablation” is used herein to refer to either irreversible electroporation (IRE) ablations or radiofrequency ablation (RFA) ablations or both. “IRE ablation device” is used herein to refer to any of the devices described herein that can be used for IRE ablations. “RFA devices” can be used herein to refer to any of the devices described herein that can be used for RF ablations. All dimensions herein are exemplary, and one of ordinary skill in the art will recognize that other dimensions possible.
Referring now in detail to the drawings, in which like reference numerals indicate like parts or elements throughout the several views, in various embodiments, presented herein is an exemplary ablation device that can be used for RF or IRE ablations.
The probe 1 further comprises an elongate probe body. The elongate body can comprise a trocar 9 having a proximal end, a distal end, and at least one selectively activatable electrode 21, 41, 51. The probe body can be substantially fixed in relation to the trocar 9.
The probe body comprises a handle 3 that can be positioned at the proximal end 17 of the probe 1. The proximal end 17 of the probe and the proximal end of the handle 3 are interchangeably referred to herein. The handle 3 has a distal end 11, an outer surface, and an interior cavity 56. The probe 1 can be operatively coupled at the proximal end 17 of the handle 3 to an energy source 29 by at least one cable 4. A portion of the cable 4 is positioned within at least a portion of the handle 3, such that the at least one cable 4 is adjacent to the proximal end of the probe 1 and extends proximally from the proximal end 17 of the handle 3.
The power source can be, but is not limited to, an RF source, an electrical energy source, or microwave source. In one aspect, the energy source 29 can be a generator. The generator is configured for supplying energy to the probe 1 in a controlled manner. The energy delivery source can be capable of delivering energy that such as, but not limited to, radiofrequency (RF) energy and electrical energy. Such generators can include, but are not limited to, a RITA® 1500X RF generator (AngioDynamics, Inc., Latham, N.Y.) or a NanoKnife® generator (AngioDynamics, Inc., Latham, N.Y.).
The handle 3 has at least one moveable slide member 7 comprising at least one slot 44. The slot 44 is defined within the outer surface of the handle 3 and extends along the longitudinal axis of the probe. The slot 44 further comprises a plurality of grooves 85 that are positioned at a substantially right angle to the longitudinal axis of the slot 44. The handle 3 can be made of any suitable material, such as, but not limited to, ABS plastic or other similar plastics, such as PEEK.
The at least one slide member 7 is slidably disposed on the handle 3. In one aspect, the slide member 7 can be a finger-actuatable slide member 7. At least a portion of the slide member 7 is slidably received within slot 44. The slide member 7 can be manually and axially slidably actuated in a proximal or a distal direction along the longitudinal axis of the probe 1 such that at least a portion of the slide member 7 can be slidably received and locked into place in a single groove 85. Each groove 85 corresponds with an index marking 37. Each marking 37 corresponds with an electrode deployment length and can be used to indicate to a user the required depth of electrode deployment from trocar 9 needed for 2, 3, and 4 cm diameter tissue ablations, for example. At least a portion of the slide member 7 can be operatively coupled to a portion of at least one insulative sleeve 45, described below.
The trocar 9 has a proximal end, at least a portion of which can be positioned within the cavity of and operatively coupled the handle 3. The trocar 9 has a distal end 15. The distal end 15 of the trocar 9 and the distal end of the probe 1 are interchangeably used herein. The at least one trocar 9 and the handle 3 extend along the longitudinal axis of the probe 1. In one exemplary embodiment, the trocars 9, 90 can be spaced apart from about 1.5 cm to about 2.5 cm. The trocars can be of the same length or different lengths. Trocars of different lengths can enable a user to deploy the first trocar 9 to a first depth and a second trocar 90 to a second depth that is different from the first depth. In one exemplary embodiment, the trocars 9, 90 can be deployed to identical depths. The trocars 9, 90 extend distally from the handle 3 to a distal tip 23, 230. The distal tip 23, 230 can be sharp such that it is capable of piercing tissue. In one embodiment, at least a portion of the trocars 9, 90 can be rigid for IRE probes, but flexible or semi-flexible for RF probes. The rigid body and sharp tip 23, 230 of the trocar 9, 90 can be useful for penetrating target tissues, especially large, hard tumors.
The trocars 9 can have at least one lumen 19 (
The trocars 9, 90 can comprise at least one index marker, such as, but not limited to, at least one depth marking 25, 250 positioned along at least a portion of the outer surface of the trocar 9. The depth markers 25, 250 can be fixed in place and equi-distantly positioned from one another. In one exemplary embodiment, the markers 25, 250 can be spaced apart by about 1 cm. The depth markings 25 can be used to aid a practitioner in gauging the depth of deployment of the distal end of the ablation probe and for determining a desired ablation depth. Each of the trocars 9, 90 can have at least one active electrode region or activatable electrodes 21/210, 41/410, 51/510.
Additionally, an electrically insulative sleeve 45, 450 can be coaxially positioned in a surrounding relationship around at least a portion of at least one of the trocars 9, 90. The insulative sleeve 45, 450 can extend from the proximal end of the trocar 9 to within about 0.25 to about 0.5 inches from the distal tip 23, 230 of the electrode. In one embodiment, insulation sleeve 45, 450 can comprise a polyamide material. The insulation sleeve 45, 450 can be stationary, as illustrated in
In other exemplary embodiments, the insulative sleeve 45, 450 can be axially adjustable, as illustrated in
As described in U.S. patent application Ser. No. 13/028,431, filed Feb. 16, 2011, incorporated herein in its entirety (“Dual Bracketed Energy Delivery Probe and Method of Use”), a locking spacer 59 can be used to position and maintain the position of trocars 9, 90 such that they remain parallel to each other before, during, and after insertion and ablation treatment using the probes 1, 10. In one aspect, the locking spacer 59 can be a separate component that is capable of being axially slidably mounted onto at least a portion of the outer surface of the trocars 9, 90 for selectively positioning and retaining the pair of trocars 9, 90, and the probes 1, 10. The spacer 59 can be comprised of an ABS plastic material or a similar material. The spacer 59 can have any desired shape or size, such as, but not limited to, square or rectangular. The spacer 59 can have rounded edges. In one aspect, the spacer 59 can be transparent so that the markers 25 on the trocar 9 can remain visible to a practitioner.
Although not illustrated in detail, in one aspect, the spacer 59 can be between about 3 cm and 5 cm across the width of the trocars and between about 1 and 3 cm in thickness along the longitudinal length of the trocars. The spacer 59 can have a body with an outer surface and at least two bores: a first bore and a second bore. Each bore has an inner surface, and each bore is capable of receiving a portion of an outer surface of the first trocar 9 and the second trocar 90. The first and second bores can extend through the body of the spacer 59 such that they are in communication with the exterior of the spacer 59. The position of the bores within the spacer 59 can be adjusted to match a desired spacing between the trocars 9, 90. The bores can be capable of receiving at least a portion of the outer surface of each of trocars 9, 90. Each of the bores of the spacer 59 can be equal to or slightly smaller in diameter than the outer diameter of the insulative sleeves 45, 450 on the trocars 9, 90 in order to provide a sufficient interference fit between the outer surface of the insulative sleeve 45, 450 and the inner surface of the bores. Once the spacer 59 has been positioned along the trocars 9, 90, the interference fit between the outer surface of the insulative sleeve 45 and the inner surface of the bores can prevent the spacer 59 from sliding out of a desired position during insertion and use. Although not illustrated, in one alternative embodiment, the spacer 59 can further comprise a locking mechanism.
The spacer 59 can be slideably moveable or adjustable in either a proximal or a distal direction along the longitudinal length of the trocars 9, 90. In one exemplary embodiment, the spacer 59 can be configured to be received into small grooves (not shown) that can be positioned along the longitudinal length of the outer surface of the insulative sleeves 45, 450. The spacer 59 can be provided in a kit that comprises at least the probes 1, 10, cables 4, 40, and optionally an energy source 29. In one aspect, more than one spacer 59 can be included in the kit. Different sized spacers having variously spaced bores could be included in the kit, depending on the desired ablation treatments.
As described above and illustrated in
The two or more electrodes 21/210, 41/410, 51/510 disposed along the length of the trocar can be electrically insulated from each other by at least one electrically insulating region 2, 20. The at least one electrically insulating region(s) 2, 20 can separate the at least two activatable electrodes 21/210, 41/410, 51/510 in a manner sufficient to prevent electrical shorting as well as to prevent arcing between the activatable electrodes 21/210, 41/410, 51/510. In one exemplary embodiment, the electrically insulating regions 2, 20 can have a length of about 1 cm, while the electrodes 21/210, 41/410, 51/510 can have a length of about 2 cm. In one aspect, the insulating regions 2, 20 can be fixed and non-adjustable in dimensions.
As illustrated in
The collective size of the energy delivery surfaces of each of the first, second, and third sets of electrodes can be sufficient to create a volumetric ablation zone between any two of the electrodes of each set of electrodes when sufficient energy is delivered from the energy source to the ablation device.
Unless a portion of each of the electrodes is covered by insulation, then the entire length of each electrode is capable of functioning as an energy delivery surface which can deliver energy to a selected tissue mass. The length and size of each energy delivery surface can be variable. In one exemplary embodiment, the energy delivery surface of each electrode can be about 2 cm. In one exemplary embodiment, such as illustrated in
Although not illustrated, in one aspect, any of the energy delivery devices described herein can optionally include at least one cooling mechanism. Such cooling mechanism can comprise the infusion of one or more liquids through the lumen 19 of the trocar 9. The trocar lumen 19 may be coupled to an infusion medium source and deliver an infusion medium to the selected tissue site. A cooling element can be coupled to at least one of the electrodes. The cooling element can be a structure positioned in at least one of the electrodes and can include at least one channel configured to receive a cooling medium. The cooling medium can be recirculated through the channel. RF probes described herein can also optionally include temperature feedback circuitry.
Insulative regions 2, 20 can be comprised of electrically non-conductive materials. Suitable electrically non-conductive materials can have a dielectric strength of 10 MV/m or greater, such as 15 MV/m or greater, or 20 MV/m or greater. Electrically non-conductive materials for insulating regions 2, 20 can include thermosets and thermoplastics, such as polyether ether ketone, polyphenylene sulfide, fluoropolymers, and polyamide-imides.
Electrically insulating regions 2, 20 physically separate and electrically insulate electrode 21/210 from other electrodes 41/410, 51/510 of probe 10. The electrically insulating members 2, 20 can have a distal cylindrical portion that is greater in outer diameter and wall thickness than a proximal cylindrical portion. A central lumen passing through the distal and proximal portions of the electrically insulating member can have a substantially uniform diameter that is equal to or greater than the outer diameter of electrode 21. Non-limiting methods of making an electrically insulating piece can include extrusion (including co-extrusion), molding (including co-injection molding), and others known to one skilled in the art.
The proximal and distal portions of the electrodes 21/210, 41/410, 51/510 can have the same or different compositions, and can independently be comprised of one or more electrically conductive materials, including one or more metals and alloys thereof, such as various grades of stainless steel. Electrode 21/210 can have one or more lumens there through and one or more openings positioned at the distal ends of the active electrode 21/210 as well as on the side of portions of the electrode 21/210 for delivery of substances, including, but not limited to, infusion media, solutions or suspensions containing one or more therapeutic agent as well as diagnostic agents, hydrogels, and colloidal suspensions containing nanoparticles as well as microparticles. In certain embodiments the substances can be delivered to increase the conductivity of the tissue and in others are delivered to increase the efficiency of ablation. In other embodiments the substances are released to alter the conductivity of tissue.
Electrically insulating members 2, 20 can be coaxially disposed about at least a portion of at least one voltage delivery member. Electrically insulating members 2, 20 can be coextensive distally with at least a portion of at least one voltage delivery member, and can extend into handle 3. Electrically insulating members 2, 20 can include one or more insulative regions 2, 84 of the same or different electrically non-conductive materials. Electrically insulating members 2, 20 can electrically insulate at least a portion of at least one voltage delivery member to prevent electrical shorting and arcing thereof, which can adversely affect treatment efficiency as well as efficacy. Use of multiple layers as well as coatings to form electrically insulating members 2, 20 can help to reduce or eliminate the occurrence of pin holes or damages therein during the manufacturing process. When assembling probes 1, 10, electrically insulating members 2, 20 can be applied onto the trocar 9, 90 by methods such as, but not limited to, sliding on and shrink-wrapping one or more tubular structures (including sleeves as well as tubing) of thermoplastics, forming one or more surface coatings, such as vapor deposition, spraying, dipping, as well as molding.
Optionally, one or more of electrodes 21/210, 41/410, 51/510 can be rendered more echogenic than other regions, including the electrically insulating regions 2, 20. Certain embodiments include non-limiting methods for echogenicity enhancement including particle blasting, echogenic coating, perforating, chemical etching, and laser etching. In certain embodiments, microabrasive blasting is applied to voltage delivery regions to achieve a depth of 70 microns.
As illustrated in
As illustrated in
One of ordinary skill in the art will recognize that various embodiments of the handles illustrated in
The trocars 9, 90 can extend proximally into cavity 56 of the handle 3 and can terminate in a distal-facing recess of plug 58. Plug 58 can be fixedly coupled to handle 3 to cap off the interior cavity 56 of the handle 3. As such, a portion of energy delivery probe 1 can be fixedly coupled between at least opening 22 and plug 58 within handle 3. Adhesives or other non-limiting bonding techniques can be used to render probe 1 immovable relative to handle 3. Although opening 22 has a substantially circular shape, one of ordinary skill in the art will recognize that the opening 22 can have other shapes as well, including, but not limited to, elliptical or crescent shaped.
A proximal opening 64 can be defined in the outer surface at the proximal end of the handle 3 such that it is configured for receiving one or more cables 4, 40 from cavity 56. In the embodiments described herein, the ablation device can comprise two cables 4, 40 because at least two probes 1, 10 will be used to ablate tissue. Each of cables 4, 40 can be connected to a probe 1, 10. The one or more cables 4, 40 can be electrically coupled to proximal portion 82 of the trocar 9, thus also to any one of the electrodes 21, 41, 51, through at least one lead wire 35. Non-limiting examples of coupling methods include, but are not limited to, soldering, lead wire wounding, electrically conductor lugs, and combinations thereof.
In one aspect, cavity 56 can be at least partially filled with a flowable material, including but not limited to a liquid, semi-liquid, as well as a gel, and a hardening material, such as, but not limited to, at least one of a cross-linkable, polymerizable, or otherwise curable material, that is electrically insulating, such as epoxy, to secure and immobilize the various components within the cavity 56 of the handle 3, as well as provide electrical insulation among the various components and between the components and a device operator. The components within the handle 3, including cables 4, 40, and lead wire 35, in addition to other components, are immobilized relative to handle 3. The handle design is configured to prevent ingression of fluids into handle 3. As illustrated in
As illustrated in
As described above, the tension control wire member 28 can be positioned within a portion of the handle 3 and can extend through at least one lumen 19 of one of the trocars. The proximal end of the tension member 28 can be operatively coupled to the slide member 7 that is manually slideable thereon the handle 3, and the distal end of the tension member 28 can be operatively coupled to the anchoring member 8. The anchoring member 8 can be deployed from the distal end of the trocar 9 by sliding the actuating/slide member proximally along the trocar. The wires can be deployed after the center tension control wire member 28 is pulled toward the proximal end of the device. When the center wire member 50 is pulled in a proximal direction, the remaining wires expand radially outwardly. When tension is removed from the center tension wire member, the outer wires can return to a relaxed position.
In one aspect, as illustrated in
Referring now to
The generator or energy source 29 can be connected to a treatment control computer 34 having input devices such as keyboard 12 and a pointing device 14, and an output device such as a display device 99 or monitor for viewing an image of a target treatment area 300 such as a target tissue 83 or target tissue 83 surrounded by a safety margin 301. The computer 34 is attached to a USB 52, which is attached to the generator 29. The computer 34 is also connected to an imaging device 42 via a cable 53. The therapeutic energy delivery device 1 is used to treat a target tissue 83 inside a patient 16. An imaging device 42 includes a monitor 103 for viewing the target tissue 83 inside the patient 16 in real time. Examples of imaging devices 42 include ultrasonic, CT, MRI and fluoroscopic devices as are known in the art. The treatment system can also include computer software, such as treatment control module (not shown), which assists a user to plan for, execute, and review the results of a medical treatment procedure. The treatment control module can display the anticipated ablation zone(s) based on the position of the probes and the treatment parameters and whether the treatment was successful.
The energy delivery probe device 1 can be configured such that the probe 1 can be placed within or adjacent to the target tissue 83, enabling safe usage in situations where the tissue targeted for ablation is adjacent to critical as well as vital non-targeted structures, such as, but not limited to, the urethra or neurovascular bundles. Thus, the disclosed pulsed electric field ablation, when carried out under certain parameters and operating conditions, can selectively spare, including without damaging, destroying or denaturing, certain tissues and structures present within the ablation volume. Non-limiting tissues that can be selectably spared by the pulsed electric field ablation include nervous, vascular, duct, as well as collagen-rich tissues.
Therapeutic energy delivery devices disclosed herein can be designed for tissue destruction in general, such as resection, excision, coagulation, disruption, denaturation, and ablation, and are applicable in a variety of surgical procedures, including but not limited to open surgeries, minimally invasive surgeries (e.g., laparoscopic surgeries, endoscopic surgeries, surgeries through natural body orifices), thermal ablation surgeries, non-thermal surgeries, such as, but not limited to irreversible electroporation (IRE) and radiofrequency (RF), as well as other procedures known to one of ordinary skill in the art.
The method described herein involves identifying a target tissue 83 in a patient 16, as illustrated in
An incision in a patient's skin can be created, and one or more probes 1, 10 can be inserted into or near a target tissue 83. The insertion of the one or more probes 1, 10 can be percutaneous, laparoscopic, endoscopic, as well as through natural orifices, including insertions related to orifice translumenal endoscopic surgery. An ablation device can be provided, such as that described above, having at least a first trocar 9 and a second trocar 90 that are spaced in a parallel position relative to each other. In one exemplary aspect, the method can further comprise positioning the first trocar 9 on the first side of the target tissue and the second trocar 90 on the second side of the target tissue. The first and second trocars 9, 90 are inserted into the target tissue 83 such that the first trocar 9 and the second trocar 90 remain substantially parallel during insertion, treatment, and withdrawal of the probe 1, as illustrated in
The method described herein further involves delivering energy from an energy source 29 through any desired combination of at least two activatable electrodes 21/210; 41/410; and 51/510 of the trocars 9, 90 to a target tissue 83 in order to ablate the target tissue, thereby forming a first ablation zone 47, as illustrated in
After a first ablation is completed and a first ablation zone 47 is produced, described above, the method can further involve independently or simultaneously activating a second set of electrodes 41/410 that are positioned on the trocars 9, 90 by delivering electrical energy to the electrodes 41/410 to produce a second ablation zone 48 that can be about 1 cm in depth and about 3 cm in width. As illustrated in
The method of use of any of the probe assemblies described herein presents a substantial advantage over conventional IRE and RF ablation methods. This probe design and method is advantageous because it allows for overlapping ablations without requiring the removal and reinsertion of the ablation probe(s) or the need for pull-back of the probe(s) between ablations before re-treatment when a lesion is larger than the current a particular needle device can treat, thereby avoiding trauma to the patient and decreasing the chance of mis-positioning of the probe. Thus, this ablation device can incorporate several separate treatment sections along the length of the trocar 9, 90. This ablation procedure can be repeated multiple times in various positions along the trocars 9, 90 to achieve a desired ablation zone(s). This method is also beneficial because by eliminating the need to adjust the position of the device, the chance of re-seeding a tumor track is also decreased.
In embodiments that comprise a moveable insulative sleeve 45, such as illustrated in
During the methods described above, energy can be applied from the energy source or generator 29 to the electrodes or any of the sets of electrodes in various patterns. Particularly, electrical pulses of various voltages can be applied to the electrode sets described above to the target tissue 83. In one aspect, energy can be applied between a first set of electrodes 21, 210. In another aspect, energy can be successively applied between a second set of electrodes 41, 410. Finally, energy can be successively delivered between a third set of electrodes 41, 410. Each of these ablations produces a similarly size ablation zone. Additional ablations can be performed between any two corresponding electrode pairs of trocars 9, 90. Software can be used to predict ablation zones using various probe configurations. For example, outlining a predicted ablation zone can be obtained using the finite element method (“FEM”) COMSOL Multiphysics Modeling and Simulation software (Palo Alto, Calif.).
In one exemplary embodiment, 90 electric pulses of a 70 microseconds (μsec) pulse length can be delivered per pair of electrodes 21/210, 41/410, and 51/510 at a voltage gradient of 1250 V/cm to the target tissue. Other suitable pulse parameters may be used such as, but not limited to, between 50 and 100 of between 50 and 100 microseconds (μsec) pulse length at a voltage gradient of between about 500 V/cm and about 3000 V/cm. In one aspect, the pulse parameters can be 70 pulses (7 sets of 10 pulses each) at 100 microseconds, with delays of 3.5 seconds between each set of 10 pulses. Voltage gradient (electric field) is a function of the distance between electrodes and electrode geometry, which will vary depending on the size of the tissue sample, tissue properties, and other factors. The parameters such as amplitude of voltage pulses, duration of each pulse, total number of voltage pulses, and duration between consecutive pulses can be altered, depending on the desired ablation.
As illustrated in
Although one type of anchoring means 8 is illustrated in
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. The words “including” and “having,” as used herein including the claims, shall have the same meaning as the word “comprising.” Those familiar with the art can recognize other equivalents to the specific embodiments described herein, which equivalents are also intended to be encompassed by the claims.
Therapeutic energy delivery devices disclosed herein are designed for tissue destruction in general, such as resection, excision, coagulation, disruption, denaturation, and ablation, and are applicable in a variety of surgical procedures, including, but not limited to, open surgeries, minimally invasive surgeries (e.g., laparoscopic surgeries, endoscopic surgeries, surgeries through natural body orifices), thermal ablation surgeries, non-thermal surgeries, as well as other procedures known to one of ordinary skill in the art. The devices may be designed as disposables or for repeated uses.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g., each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions can be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as can be set forth in some of the appended claims.
This completes the description of the selected embodiments of the invention. Those skilled in the art can recognize other equivalents to the specific embodiments described herein which equivalents are intended to be encompassed by the claims attached hereto.
This application is a continuation of U.S. patent application Ser. No. 13/630,135, filed Sep. 28, 2012, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1653819 | Ephraim et al. | Dec 1927 | A |
3730238 | Butler | May 1973 | A |
3746004 | Jankelson | Jul 1973 | A |
3871359 | Pacela | Mar 1975 | A |
4016886 | Doss et al. | Apr 1977 | A |
4037341 | Odle et al. | Jul 1977 | A |
4216860 | Heimann | Aug 1980 | A |
4226246 | Fragnet | Oct 1980 | A |
4262672 | Kief | Apr 1981 | A |
4267047 | Henne et al. | May 1981 | A |
4278092 | Borsanyi et al. | Jul 1981 | A |
4299217 | Sagae et al. | Nov 1981 | A |
4311148 | Courtney et al. | Jan 1982 | A |
4336881 | Babb et al. | Jun 1982 | A |
4344436 | Kubota | Aug 1982 | A |
4392855 | Oreopoulos et al. | Jul 1983 | A |
4406827 | Carim | Sep 1983 | A |
4407943 | Cole et al. | Oct 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4447235 | Clarke | May 1984 | A |
4469098 | Davi | Sep 1984 | A |
4489535 | Veltman | Dec 1984 | A |
4512765 | Muto | Apr 1985 | A |
4580572 | Granek et al. | Apr 1986 | A |
4636199 | Victor | Jan 1987 | A |
4672969 | Dew | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4676782 | Yamamoto et al. | Jun 1987 | A |
4687471 | Twardowski et al. | Aug 1987 | A |
4716896 | Ackerman | Jan 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
D294519 | Hardy, Jr. | Mar 1988 | S |
4756838 | Veltman | Jul 1988 | A |
4772269 | Twardowski et al. | Sep 1988 | A |
4798585 | Inoue et al. | Jan 1989 | A |
4810963 | Blake-Coleman et al. | Mar 1989 | A |
4813929 | Semrad | Mar 1989 | A |
4819637 | Dormandy, Jr. et al. | Apr 1989 | A |
4822470 | Chang | Apr 1989 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4840172 | Augustine et al. | Jun 1989 | A |
4863426 | Ferragamo et al. | Sep 1989 | A |
4885003 | Hillstead | Dec 1989 | A |
4886496 | Conoscenti et al. | Dec 1989 | A |
4886502 | Poirier et al. | Dec 1989 | A |
4889634 | El-Rashidy | Dec 1989 | A |
4907601 | Frick | Mar 1990 | A |
4919148 | Muccio | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4946793 | Marshall, III | Aug 1990 | A |
4976709 | Sand | Dec 1990 | A |
4981477 | Schon et al. | Jan 1991 | A |
4986810 | Semrad | Jan 1991 | A |
4987895 | Heimlich | Jan 1991 | A |
5019034 | Weaver et al. | May 1991 | A |
5031775 | Kane | Jul 1991 | A |
5052391 | Silberstone et al. | Oct 1991 | A |
5053013 | Ensminger et al. | Oct 1991 | A |
5058605 | Slovak | Oct 1991 | A |
5071558 | Itob | Dec 1991 | A |
5098843 | Calvin | Mar 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5134070 | Casnig | Jul 1992 | A |
5137517 | Loney et al. | Aug 1992 | A |
5141499 | Zappacosta | Aug 1992 | A |
D329496 | Wotton | Sep 1992 | S |
5156597 | Verreet et al. | Oct 1992 | A |
5173158 | Schmukler | Dec 1992 | A |
5186715 | Phillips et al. | Feb 1993 | A |
5186800 | Dower | Feb 1993 | A |
5188592 | Hakki | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5192312 | Orton | Mar 1993 | A |
5193537 | Freeman | Mar 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5215530 | Hogan | Jun 1993 | A |
5222997 | Montgomery | Jun 1993 | A |
5224933 | Bromander | Jul 1993 | A |
5227730 | King et al. | Jul 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5273525 | Hofmann | Dec 1993 | A |
D343687 | Houghton et al. | Jan 1994 | S |
5277201 | Stern | Jan 1994 | A |
5279564 | Taylor | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5283194 | Schmukler | Feb 1994 | A |
5290263 | Wigness et al. | Mar 1994 | A |
5308325 | Quinn et al. | May 1994 | A |
5308338 | Helfrich | May 1994 | A |
5318543 | Ross et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5328451 | Davis et al. | Jul 1994 | A |
5334167 | Cocanower | Aug 1994 | A |
D351661 | Fischer | Oct 1994 | S |
5383917 | Desai et al. | Jan 1995 | A |
5389069 | Weaver | Feb 1995 | A |
5391158 | Peters | Feb 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405320 | Twardowski et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5425752 | Vu'Nguyen | Jun 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5439444 | Andersen et al. | Aug 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5484401 | Rodriguez et al. | Jan 1996 | A |
5533999 | Hood et al. | Jul 1996 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540737 | Fenn | Jul 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5575811 | Reid et al. | Nov 1996 | A |
D376652 | Hunt et al. | Dec 1996 | S |
5582588 | Sakurai et al. | Dec 1996 | A |
5586982 | Abela | Dec 1996 | A |
5588424 | Insler et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5599311 | Raulerson | Feb 1997 | A |
5616126 | Malekmehr et al. | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5626146 | Barber et al. | May 1997 | A |
5630426 | Eggers et al. | May 1997 | A |
D380272 | Partika et al. | Jun 1997 | S |
5634899 | Shapland et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5645855 | Lorenz | Jul 1997 | A |
5672173 | Gough et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5674267 | Mir et al. | Oct 1997 | A |
5683384 | Gough et al. | Nov 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5690620 | Knott | Nov 1997 | A |
5697905 | d'Ambrosio | Dec 1997 | A |
5700252 | Klingenstein | Dec 1997 | A |
5702359 | Hofmann et al. | Dec 1997 | A |
5707332 | Weinberger | Jan 1998 | A |
5718246 | Vona | Feb 1998 | A |
5720921 | Meserol | Feb 1998 | A |
5728143 | Gough et al. | Mar 1998 | A |
5735847 | Gough et al. | Apr 1998 | A |
5752939 | Makoto | May 1998 | A |
5778894 | Dorogi et al. | Jul 1998 | A |
5782827 | Gough et al. | Jul 1998 | A |
5782882 | Lerman et al. | Jul 1998 | A |
5800378 | Edwards et al. | Sep 1998 | A |
5800484 | Gough et al. | Sep 1998 | A |
5807272 | Kun et al. | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5810804 | Gough et al. | Sep 1998 | A |
5830184 | Basta | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836905 | Lemelson et al. | Nov 1998 | A |
5843026 | Edwards et al. | Dec 1998 | A |
5843182 | Goldstein | Dec 1998 | A |
5863290 | Gough et al. | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5866756 | Giros et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5873849 | Bernard | Feb 1999 | A |
5904648 | Arndt et al. | May 1999 | A |
5913855 | Gough et al. | Jun 1999 | A |
5919142 | Boone et al. | Jul 1999 | A |
5919191 | Lennox et al. | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5947284 | Foster | Sep 1999 | A |
5947889 | Hehrlein | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5968006 | Hofmann | Oct 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5984896 | Boyd | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5999847 | Elstrom | Dec 1999 | A |
6004339 | Wijay | Dec 1999 | A |
6009347 | Hofmann | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010613 | Walters et al. | Jan 2000 | A |
6012885 | Taylor et al. | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6041252 | Walker et al. | Mar 2000 | A |
6043066 | Mangano et al. | Mar 2000 | A |
6050994 | Sherman | Apr 2000 | A |
6055453 | Hofmann et al. | Apr 2000 | A |
6059780 | Gough et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6068121 | McGlinch | May 2000 | A |
6068650 | Hofmann et al. | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074374 | Fulton | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6085115 | Weaver et al. | Jul 2000 | A |
6090016 | Kuo | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
D430015 | Himbert et al. | Aug 2000 | S |
6102885 | Bass | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6110192 | Ravenscroft et al. | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6116330 | Salyer | Sep 2000 | A |
6122599 | Mehta | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
6132397 | Davis et al. | Oct 2000 | A |
6132419 | Hofmann | Oct 2000 | A |
6134460 | Chance | Oct 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6150148 | Nanda et al. | Nov 2000 | A |
6159163 | Strauss et al. | Dec 2000 | A |
D437941 | Frattini | Feb 2001 | S |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200314 | Sherman | Mar 2001 | B1 |
6208893 | Hofmann | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6212433 | Behl | Apr 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
D442697 | Hajianpour | May 2001 | S |
6233490 | Kasevich | May 2001 | B1 |
6235023 | Lee et al. | May 2001 | B1 |
D443360 | Haberland | Jun 2001 | S |
6241702 | Lundquist et al. | Jun 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
D445198 | Frattini | Jul 2001 | S |
6258100 | Alferness et al. | Jul 2001 | B1 |
6261831 | Agee | Jul 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6278895 | Bernard | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6284140 | Sommermeyer et al. | Sep 2001 | B1 |
6287293 | Jones et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6298726 | Adachi et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300108 | Rubinsky et al. | Oct 2001 | B1 |
D450391 | Hunt et al. | Nov 2001 | S |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6328735 | Curley et al. | Dec 2001 | B1 |
6330478 | Lee et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6349233 | Adams | Feb 2002 | B1 |
6351674 | Silverstone | Feb 2002 | B2 |
6387671 | Rubinsky et al. | May 2002 | B1 |
6403348 | Rubinsky et al. | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6463331 | Edwards | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6482221 | Hebert et al. | Nov 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6485487 | Sherman | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6493592 | Leonard et al. | Dec 2002 | B1 |
6497704 | Ein-Gal | Dec 2002 | B2 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6520183 | Amar | Feb 2003 | B2 |
6526320 | Mitchell | Feb 2003 | B2 |
D471640 | McMichael et al. | Mar 2003 | S |
D471641 | McMichael et al. | Mar 2003 | S |
6530922 | Cosman et al. | Mar 2003 | B2 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537976 | Gupta | Mar 2003 | B1 |
6558378 | Sherman et al. | May 2003 | B2 |
6562604 | Rubinsky et al. | May 2003 | B2 |
6575967 | Leveen et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6589161 | Corcoran | Jul 2003 | B2 |
6589174 | Chopra et al. | Jul 2003 | B1 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6607529 | Jones et al. | Aug 2003 | B1 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6611706 | Avrahami et al. | Aug 2003 | B2 |
6613211 | McCormick et al. | Sep 2003 | B1 |
6616657 | Simpson et al. | Sep 2003 | B2 |
6627421 | Unger et al. | Sep 2003 | B1 |
D480816 | McMichael et al. | Oct 2003 | S |
6634363 | Danek et al. | Oct 2003 | B1 |
6638253 | Breznock | Oct 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6666858 | Lafontaine | Dec 2003 | B2 |
6669691 | Taimisto | Dec 2003 | B1 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6678558 | Dimmer et al. | Jan 2004 | B1 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6689096 | Loubens et al. | Feb 2004 | B1 |
6689127 | Gough et al. | Feb 2004 | B1 |
6692493 | McGovern et al. | Feb 2004 | B2 |
6694979 | Deem et al. | Feb 2004 | B2 |
6694984 | Habib | Feb 2004 | B2 |
6695861 | Rosenberg et al. | Feb 2004 | B1 |
6697669 | Dev et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6702808 | Kreindel | Mar 2004 | B1 |
6712811 | Underwood et al. | Mar 2004 | B2 |
D489973 | Root et al. | May 2004 | S |
6753171 | Karube et al. | Jun 2004 | B2 |
6761716 | Kadhiresan et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
D495807 | Agbodoe et al. | Sep 2004 | S |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6801804 | Miller et al. | Oct 2004 | B2 |
6812204 | McHale et al. | Nov 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6892099 | Jaafar et al. | May 2005 | B2 |
6905480 | McGuckin, Jr. et al. | Jun 2005 | B2 |
6912417 | Bernard et al. | Jun 2005 | B1 |
6926713 | Rioux et al. | Aug 2005 | B2 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6941950 | Wilson et al. | Sep 2005 | B2 |
6942681 | Johnson | Sep 2005 | B2 |
6958062 | Gough et al. | Oct 2005 | B1 |
6960189 | Bates et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6972014 | Eum et al. | Dec 2005 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6994689 | Zadno-Azizi et al. | Feb 2006 | B1 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7008421 | Daniel et al. | Mar 2006 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7012061 | Reiss et al. | Mar 2006 | B1 |
7027869 | Danek et al. | Apr 2006 | B2 |
7036510 | Zgoda et al. | May 2006 | B2 |
7053063 | Rubinsky et al. | May 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063698 | Whayne et al. | Jun 2006 | B2 |
7087040 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7097612 | Bertolero et al. | Aug 2006 | B2 |
7100616 | Springmeyer | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7169107 | Jersey-Willuhn et al. | Jan 2007 | B2 |
7211083 | Chornenky et al. | May 2007 | B2 |
7232437 | Berman et al. | Jun 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
D549332 | Matsumoto et al. | Aug 2007 | S |
7264002 | Danek et al. | Sep 2007 | B2 |
7267676 | Chornenky et al. | Sep 2007 | B2 |
7273055 | Danek et al. | Sep 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7331949 | Marisi | Feb 2008 | B2 |
7341558 | de la Torre et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
D565743 | Phillips et al. | Apr 2008 | S |
D571478 | Horacek | Jun 2008 | S |
7387626 | Edwards et al. | Jun 2008 | B2 |
7399747 | Clair et al. | Jul 2008 | B1 |
D575399 | Matsumoto et al. | Aug 2008 | S |
D575402 | Sandor | Aug 2008 | S |
7412977 | Fields et al. | Aug 2008 | B2 |
7419487 | Johnson et al. | Sep 2008 | B2 |
7434578 | Dillard et al. | Oct 2008 | B2 |
7437194 | Skwarek et al. | Oct 2008 | B2 |
7449019 | Uchida et al. | Nov 2008 | B2 |
7451765 | Adler | Nov 2008 | B2 |
7455675 | Schur et al. | Nov 2008 | B2 |
7476203 | DeVore et al. | Jan 2009 | B2 |
7488292 | Adachi | Feb 2009 | B2 |
7520877 | Lee, Jr. et al. | Apr 2009 | B2 |
7533671 | Gonzalez et al. | May 2009 | B2 |
D595422 | Mustapha | Jun 2009 | S |
7544301 | Shah et al. | Jun 2009 | B2 |
7549984 | Mathis | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7571729 | Saadat | Aug 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7620507 | Richardson | Nov 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670333 | Schatzberger | Mar 2010 | B2 |
7674249 | Ivorra et al. | Mar 2010 | B2 |
7680543 | Azure | Mar 2010 | B2 |
D613418 | Ryan et al. | Apr 2010 | S |
7699842 | Buysse et al. | Apr 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7718409 | Rubinsky et al. | May 2010 | B2 |
7722606 | Azure | May 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7763018 | DeCarlo et al. | Jul 2010 | B2 |
7765010 | Chornenky et al. | Jul 2010 | B2 |
7771401 | Hekmat et al. | Aug 2010 | B2 |
7776035 | Rick et al. | Aug 2010 | B2 |
7815571 | Deckman et al. | Oct 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7824870 | Kovalcheck et al. | Nov 2010 | B2 |
RE42016 | Chornenky et al. | Dec 2010 | E |
7846108 | Turovskiy et al. | Dec 2010 | B2 |
7853333 | Demarais | Dec 2010 | B2 |
D630321 | Hamilton, Jr. | Jan 2011 | S |
D631154 | Hamilton, Jr. | Jan 2011 | S |
7874986 | Deckman et al. | Jan 2011 | B2 |
7875025 | Cockburn et al. | Jan 2011 | B2 |
7879031 | Peterson | Feb 2011 | B2 |
RE42277 | Jaafar et al. | Apr 2011 | E |
7918852 | Tullis et al. | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7938824 | Chornenky et al. | May 2011 | B2 |
7951582 | Gazit et al. | May 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
RE42835 | Chornenky et al. | Oct 2011 | E |
D647628 | Helfteren | Oct 2011 | S |
8029504 | Long | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8052604 | Lau et al. | Nov 2011 | B2 |
8057391 | Lau et al. | Nov 2011 | B2 |
8062290 | Buysse et al. | Nov 2011 | B2 |
RE43009 | Chornenky et al. | Dec 2011 | E |
8070759 | Stefanchik et al. | Dec 2011 | B2 |
8075572 | Stefanchik et al. | Dec 2011 | B2 |
8088072 | Munrow et al. | Jan 2012 | B2 |
8100922 | Griffith | Jan 2012 | B2 |
8109926 | Azure | Feb 2012 | B2 |
8114070 | Rubinsky et al. | Feb 2012 | B2 |
8114072 | Long et al. | Feb 2012 | B2 |
8114119 | Spivey et al. | Feb 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8154288 | Deimling | Apr 2012 | B2 |
8157834 | Conlon | Apr 2012 | B2 |
8162918 | Ivorra et al. | Apr 2012 | B2 |
8172772 | Zwolinski et al. | May 2012 | B2 |
8174267 | Brannan et al. | May 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8180433 | Brannan et al. | May 2012 | B2 |
8181995 | DeCarlo | May 2012 | B2 |
8182477 | Orszulak et al. | May 2012 | B2 |
8187269 | Shadduck et al. | May 2012 | B2 |
8187270 | Auth et al. | May 2012 | B2 |
8206300 | Deckman et al. | Jun 2012 | B2 |
8211097 | Leyh | Jul 2012 | B2 |
8211099 | Buysse et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8216161 | Darlington et al. | Jul 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8231603 | Hobbs et al. | Jul 2012 | B2 |
8240468 | Wilkinson et al. | Aug 2012 | B2 |
8241204 | Spivey | Aug 2012 | B2 |
8242782 | Brannan et al. | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8248075 | Brannan et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8252057 | Fox | Aug 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8262577 | Munrow et al. | Sep 2012 | B2 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8262680 | Swain et al. | Sep 2012 | B2 |
8267927 | Dalal et al. | Sep 2012 | B2 |
8267936 | Hushka et al. | Sep 2012 | B2 |
8277379 | Lau et al. | Oct 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8287527 | Brannan et al. | Oct 2012 | B2 |
8292880 | Prakash et al. | Oct 2012 | B2 |
8298222 | Rubinsky et al. | Oct 2012 | B2 |
8303516 | Schmitz et al. | Nov 2012 | B2 |
8317806 | Coe et al. | Nov 2012 | B2 |
8337394 | Vakharia | Dec 2012 | B2 |
8343144 | Kleyman | Jan 2013 | B2 |
8346370 | Haley et al. | Jan 2013 | B2 |
8347891 | Demarais et al. | Jan 2013 | B2 |
8348921 | Ivorra et al. | Jan 2013 | B2 |
8348938 | Blomgren et al. | Jan 2013 | B2 |
8353487 | Trusty et al. | Jan 2013 | B2 |
8353902 | Prakash | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
8361112 | Carroll, II et al. | Jan 2013 | B2 |
8366712 | Bleich et al. | Feb 2013 | B2 |
8377057 | Rick et al. | Feb 2013 | B2 |
8380283 | Krieg | Feb 2013 | B2 |
8394092 | Brannan | Mar 2013 | B2 |
8394102 | Garabedian et al. | Mar 2013 | B2 |
8398626 | Buysse et al. | Mar 2013 | B2 |
8398641 | Wallace et al. | Mar 2013 | B2 |
8403924 | Behnke et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8409200 | Holcomb et al. | Apr 2013 | B2 |
8409206 | Wallace et al. | Apr 2013 | B2 |
8417328 | Sarfaty et al. | Apr 2013 | B2 |
8425455 | Nentwick | Apr 2013 | B2 |
8425505 | Long | Apr 2013 | B2 |
8433423 | Demarais | Apr 2013 | B2 |
8437845 | Sarfaty et al. | May 2013 | B2 |
8439907 | Auth et al. | May 2013 | B2 |
8444640 | Demarais et al. | May 2013 | B2 |
8449538 | Long | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8465484 | Davalos et al. | Jun 2013 | B2 |
8469716 | Fedotov et al. | Jun 2013 | B2 |
8473067 | Hastings et al. | Jun 2013 | B2 |
8480657 | Bakos | Jul 2013 | B2 |
8480665 | DeCarlo | Jul 2013 | B2 |
8480666 | Buysse et al. | Jul 2013 | B2 |
8480689 | Spivey et al. | Jul 2013 | B2 |
8489192 | Hlavka et al. | Jul 2013 | B1 |
8496574 | Trusty et al. | Jul 2013 | B2 |
8506485 | Deckman et al. | Aug 2013 | B2 |
8506564 | Long et al. | Aug 2013 | B2 |
8511317 | Thapliyal et al. | Aug 2013 | B2 |
8512329 | Paulus | Aug 2013 | B2 |
8512330 | Epstein et al. | Aug 2013 | B2 |
8518031 | Boyden et al. | Aug 2013 | B2 |
8529563 | Long et al. | Sep 2013 | B2 |
8542019 | Brannan et al. | Sep 2013 | B2 |
8546979 | Heeren et al. | Oct 2013 | B2 |
8548600 | Deem et al. | Oct 2013 | B2 |
8551069 | Demarais et al. | Oct 2013 | B2 |
8551088 | Falkenstein et al. | Oct 2013 | B2 |
8551097 | Schmitz et al. | Oct 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562599 | Leyh | Oct 2013 | B2 |
8562602 | Azure | Oct 2013 | B2 |
8568401 | Brannan | Oct 2013 | B2 |
8568402 | Buysse et al. | Oct 2013 | B2 |
8568404 | Brannan | Oct 2013 | B2 |
8568410 | Vakharia et al. | Oct 2013 | B2 |
8568411 | Falkenstein et al. | Oct 2013 | B2 |
8579894 | Falkenstein et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579902 | Bleich et al. | Nov 2013 | B2 |
8585704 | Schmitz et al. | Nov 2013 | B2 |
8603087 | Rubinsky et al. | Dec 2013 | B2 |
8608652 | Voegele et al. | Dec 2013 | B2 |
8608739 | Sartor et al. | Dec 2013 | B2 |
8613745 | Bleich | Dec 2013 | B2 |
8617163 | Bleich | Dec 2013 | B2 |
8620423 | Demarais et al. | Dec 2013 | B2 |
8626300 | Demarais et al. | Jan 2014 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8634929 | Chornenky et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8647346 | Bleich et al. | Feb 2014 | B2 |
8652130 | Kreindel | Feb 2014 | B2 |
8652138 | Bleich et al. | Feb 2014 | B2 |
8652150 | Swain et al. | Feb 2014 | B2 |
8663210 | Tomasello | Mar 2014 | B2 |
8663228 | Schmitz et al. | Mar 2014 | B2 |
8668688 | Rusin | Mar 2014 | B2 |
8672937 | Decarlo et al. | Mar 2014 | B2 |
8679003 | Spivey | Mar 2014 | B2 |
8684998 | Demarais et al. | Apr 2014 | B2 |
8706258 | Nabors, Sr. et al. | Apr 2014 | B2 |
8712500 | Schmidt et al. | Apr 2014 | B2 |
8721637 | Zarins et al. | May 2014 | B2 |
8725249 | Bar-Yoseph et al. | May 2014 | B2 |
8728137 | Zarins et al. | May 2014 | B2 |
8728138 | Zarins et al. | May 2014 | B2 |
8728139 | Azure et al. | May 2014 | B2 |
8731672 | Hlavka et al. | May 2014 | B2 |
8740895 | Mayse et al. | Jun 2014 | B2 |
8740896 | Zarins et al. | Jun 2014 | B2 |
8753335 | Moshe et al. | Jun 2014 | B2 |
8768470 | Deem et al. | Jul 2014 | B2 |
8771252 | Gelfand et al. | Jul 2014 | B2 |
8771260 | Conlon et al. | Jul 2014 | B2 |
8774913 | Demarais et al. | Jul 2014 | B2 |
8774922 | Zarins et al. | Jul 2014 | B2 |
8777943 | Mayse et al. | Jul 2014 | B2 |
8784463 | Zarins et al. | Jul 2014 | B2 |
8797039 | Brannan et al. | Aug 2014 | B2 |
8801626 | Sun et al. | Aug 2014 | B2 |
8805545 | Zarins | Aug 2014 | B2 |
8808280 | Mayse et al. | Aug 2014 | B2 |
8814860 | Davalos et al. | Aug 2014 | B2 |
8818514 | Zarins et al. | Aug 2014 | B2 |
8821489 | Mayse et al. | Sep 2014 | B2 |
8828031 | Fox et al. | Sep 2014 | B2 |
8835166 | Phillips et al. | Sep 2014 | B2 |
8845559 | Darlington et al. | Sep 2014 | B2 |
8845629 | Demarais et al. | Sep 2014 | B2 |
8845635 | Daniel et al. | Sep 2014 | B2 |
8845639 | Wallace et al. | Sep 2014 | B2 |
8852163 | Deem et al. | Oct 2014 | B2 |
8858550 | Busch-Madsen et al. | Oct 2014 | B2 |
8865076 | Sarfaty et al. | Oct 2014 | B2 |
8880185 | Hastings et al. | Nov 2014 | B2 |
8880186 | Levin et al. | Nov 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8882759 | Manley et al. | Nov 2014 | B2 |
8888792 | Harris et al. | Nov 2014 | B2 |
8894641 | Brannan | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8906006 | Chornenky et al. | Dec 2014 | B2 |
8906011 | Gelbart et al. | Dec 2014 | B2 |
8906035 | Zwolinski et al. | Dec 2014 | B2 |
8911439 | Mayse et al. | Dec 2014 | B2 |
8915910 | Falkenstein et al. | Dec 2014 | B2 |
8915911 | Azure | Dec 2014 | B2 |
8920411 | Gelbart et al. | Dec 2014 | B2 |
8923970 | Bar-Yoseph et al. | Dec 2014 | B2 |
8926606 | Davalos et al. | Jan 2015 | B2 |
8932287 | Gelbart et al. | Jan 2015 | B2 |
8932289 | Mayse et al. | Jan 2015 | B2 |
8934978 | Deem et al. | Jan 2015 | B2 |
8939897 | Nobis | Jan 2015 | B2 |
8939970 | Stone et al. | Jan 2015 | B2 |
8945121 | Curley | Feb 2015 | B2 |
8948865 | Zarins et al. | Feb 2015 | B2 |
8956350 | Buysse et al. | Feb 2015 | B2 |
8958871 | Demarais et al. | Feb 2015 | B2 |
8958888 | Chornenky et al. | Feb 2015 | B2 |
8961507 | Mayse et al. | Feb 2015 | B2 |
8961508 | Mayse et al. | Feb 2015 | B2 |
8974451 | Smith | Mar 2015 | B2 |
8983595 | Levin et al. | Mar 2015 | B2 |
8986294 | Demarais et al. | Mar 2015 | B2 |
8992517 | Davalos et al. | Mar 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9005195 | Mayse et al. | Apr 2015 | B2 |
9005198 | Long et al. | Apr 2015 | B2 |
9011431 | Long et al. | Apr 2015 | B2 |
9017323 | Miller et al. | Apr 2015 | B2 |
9017324 | Mayse et al. | Apr 2015 | B2 |
9023034 | Jenson et al. | May 2015 | B2 |
9023037 | Zarins et al. | May 2015 | B2 |
9028483 | Long et al. | May 2015 | B2 |
9028485 | Edmunds et al. | May 2015 | B2 |
9039702 | Miller et al. | May 2015 | B2 |
9049987 | Conlon et al. | Jun 2015 | B2 |
9050449 | Darlington et al. | Jun 2015 | B2 |
9060761 | Hastings et al. | Jun 2015 | B2 |
9072518 | Swanson | Jul 2015 | B2 |
9072527 | Deem et al. | Jul 2015 | B2 |
9078665 | Moss et al. | Jul 2015 | B2 |
9084609 | Smith | Jul 2015 | B2 |
9089350 | Willard | Jul 2015 | B2 |
9101386 | Wallace et al. | Aug 2015 | B2 |
9108040 | Zarins | Aug 2015 | B2 |
9113888 | Orszulak et al. | Aug 2015 | B2 |
9119633 | Gelbart et al. | Sep 2015 | B2 |
9119634 | Gelbart et al. | Sep 2015 | B2 |
9125643 | Hlavka et al. | Sep 2015 | B2 |
9125661 | Deem et al. | Sep 2015 | B2 |
9125666 | Steinke et al. | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9131978 | Zarins et al. | Sep 2015 | B2 |
9138281 | Zarins et al. | Sep 2015 | B2 |
9138287 | Curley et al. | Sep 2015 | B2 |
9138288 | Curley | Sep 2015 | B2 |
9149328 | Dimmer et al. | Oct 2015 | B2 |
9155589 | Jenson | Oct 2015 | B2 |
9173704 | Hobbs et al. | Nov 2015 | B2 |
9186198 | Demarais et al. | Nov 2015 | B2 |
9186209 | Weber et al. | Nov 2015 | B2 |
9186213 | Deem et al. | Nov 2015 | B2 |
9192435 | Jenson | Nov 2015 | B2 |
9192715 | Gelfand et al. | Nov 2015 | B2 |
9192790 | Hastings et al. | Nov 2015 | B2 |
9198733 | Neal, II et al. | Dec 2015 | B2 |
9220526 | Conlon | Dec 2015 | B2 |
9220558 | Willard | Dec 2015 | B2 |
9220561 | Crow et al. | Dec 2015 | B2 |
9226772 | Fox | Jan 2016 | B2 |
9226790 | Zemel et al. | Jan 2016 | B2 |
9233241 | Long | Jan 2016 | B2 |
9247952 | Bleich et al. | Feb 2016 | B2 |
9248318 | Darlington et al. | Feb 2016 | B2 |
9254169 | Long et al. | Feb 2016 | B2 |
9254172 | Behnke, II et al. | Feb 2016 | B2 |
9265557 | Sherman et al. | Feb 2016 | B2 |
9265558 | Zarins et al. | Feb 2016 | B2 |
9276367 | Brannan | Mar 2016 | B2 |
9277955 | Herscher et al. | Mar 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9283051 | Garcia et al. | Mar 2016 | B2 |
9289255 | Deem et al. | Mar 2016 | B2 |
9295516 | Pearson et al. | Mar 2016 | B2 |
9307935 | Pluta et al. | Apr 2016 | B2 |
9308039 | Azure | Apr 2016 | B2 |
9308043 | Zarins et al. | Apr 2016 | B2 |
9308044 | Zarins et al. | Apr 2016 | B2 |
9314620 | Long et al. | Apr 2016 | B2 |
9314630 | Levin et al. | Apr 2016 | B2 |
9320561 | Zarins et al. | Apr 2016 | B2 |
9320563 | Brustad et al. | Apr 2016 | B2 |
9326751 | Hastings | May 2016 | B2 |
9326817 | Zarins et al. | May 2016 | B2 |
9327100 | Perry et al. | May 2016 | B2 |
9327122 | Zarins et al. | May 2016 | B2 |
9339618 | Deem et al. | May 2016 | B2 |
9351790 | Zemel et al. | May 2016 | B2 |
20010039393 | Mori et al. | Nov 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20010046706 | Rubinsky et al. | Nov 2001 | A1 |
20010047167 | Heggeness | Nov 2001 | A1 |
20010051366 | Rubinsky et al. | Dec 2001 | A1 |
20020002393 | Mitchell | Jan 2002 | A1 |
20020010491 | Schoenbach et al. | Jan 2002 | A1 |
20020022864 | Mahvi et al. | Feb 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020049370 | Laufer et al. | Apr 2002 | A1 |
20020052601 | Goldberg et al. | May 2002 | A1 |
20020055731 | Atala et al. | May 2002 | A1 |
20020065541 | Fredricks et al. | May 2002 | A1 |
20020072742 | Schaefer et al. | Jun 2002 | A1 |
20020077314 | Falk et al. | Jun 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020077676 | Schroeppel et al. | Jun 2002 | A1 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020095197 | Lardo et al. | Jul 2002 | A1 |
20020099323 | Dev et al. | Jul 2002 | A1 |
20020111615 | Cosman et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020115208 | Mitchell et al. | Aug 2002 | A1 |
20020119437 | Grooms et al. | Aug 2002 | A1 |
20020133324 | Weaver et al. | Sep 2002 | A1 |
20020137121 | Rubinsky et al. | Sep 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138117 | Son | Sep 2002 | A1 |
20020143365 | Herbst | Oct 2002 | A1 |
20020147462 | Mair et al. | Oct 2002 | A1 |
20020156472 | Lee et al. | Oct 2002 | A1 |
20020161361 | Sherman et al. | Oct 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020188242 | Wu | Dec 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Smith | Dec 2002 | A1 |
20030009110 | Tu et al. | Jan 2003 | A1 |
20030014047 | Woloszko et al. | Jan 2003 | A1 |
20030055220 | Legrain | Mar 2003 | A1 |
20030055420 | Kadhiresan et al. | Mar 2003 | A1 |
20030059945 | Dzekunov et al. | Mar 2003 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030078490 | Damasco et al. | Apr 2003 | A1 |
20030088189 | Tu et al. | May 2003 | A1 |
20030088199 | Kawaji | May 2003 | A1 |
20030096407 | Atala et al. | May 2003 | A1 |
20030105454 | Cucin | Jun 2003 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030127090 | Gifford et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030135242 | Mongeon et al. | Jul 2003 | A1 |
20030149451 | Chomenky et al. | Aug 2003 | A1 |
20030154988 | DeVore et al. | Aug 2003 | A1 |
20030159700 | Laufer et al. | Aug 2003 | A1 |
20030164168 | Shaw | Sep 2003 | A1 |
20030166181 | Rubinsky et al. | Sep 2003 | A1 |
20030170898 | Gundersen et al. | Sep 2003 | A1 |
20030194808 | Rubinsky et al. | Oct 2003 | A1 |
20030195385 | DeVore | Oct 2003 | A1 |
20030195406 | Jenkins et al. | Oct 2003 | A1 |
20030199050 | Mangano et al. | Oct 2003 | A1 |
20030208200 | Palanker et al. | Nov 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212412 | Dillard et al. | Nov 2003 | A1 |
20030225360 | Eppstein et al. | Dec 2003 | A1 |
20030228344 | Fields et al. | Dec 2003 | A1 |
20040009459 | Anderson et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040059389 | Chornenky et al. | Mar 2004 | A1 |
20040068228 | Cunningham | Apr 2004 | A1 |
20040116965 | Falkenberg | Jun 2004 | A1 |
20040133194 | Eum et al. | Jul 2004 | A1 |
20040138715 | van Groeningen et al. | Jul 2004 | A1 |
20040146877 | Diss et al. | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040167458 | Draghia-Akli et al. | Aug 2004 | A1 |
20040172136 | Ralph et al. | Sep 2004 | A1 |
20040176855 | Badylak | Sep 2004 | A1 |
20040193097 | Hofmann et al. | Sep 2004 | A1 |
20040199159 | Lee et al. | Oct 2004 | A1 |
20040200484 | Springmeyer | Oct 2004 | A1 |
20040206349 | Alferness et al. | Oct 2004 | A1 |
20040210248 | Gordon et al. | Oct 2004 | A1 |
20040230187 | Lee et al. | Nov 2004 | A1 |
20040236376 | Miklavcic et al. | Nov 2004 | A1 |
20040243107 | Macoviak et al. | Dec 2004 | A1 |
20040267189 | Mavor et al. | Dec 2004 | A1 |
20040267340 | Cioanta et al. | Dec 2004 | A1 |
20050010209 | Lee, Jr. et al. | Jan 2005 | A1 |
20050010259 | Gerber | Jan 2005 | A1 |
20050013870 | Freyman et al. | Jan 2005 | A1 |
20050020965 | Rioux et al. | Jan 2005 | A1 |
20050033276 | Adachi | Feb 2005 | A1 |
20050043726 | McHale et al. | Feb 2005 | A1 |
20050049541 | Behar et al. | Mar 2005 | A1 |
20050054978 | Segal et al. | Mar 2005 | A1 |
20050061322 | Freitag | Mar 2005 | A1 |
20050066974 | Fields et al. | Mar 2005 | A1 |
20050096537 | Parel et al. | May 2005 | A1 |
20050096709 | Skwarek et al. | May 2005 | A1 |
20050107781 | Ostrovsky et al. | May 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050165393 | Eppstein | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050182462 | Chornenky et al. | Aug 2005 | A1 |
20050197619 | Rule et al. | Sep 2005 | A1 |
20050216047 | Kumoyama et al. | Sep 2005 | A1 |
20050228459 | Levin et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050261707 | Schatzberger | Nov 2005 | A1 |
20050267407 | Goldman | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050288684 | Aronson et al. | Dec 2005 | A1 |
20050288702 | McGurk et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060004356 | Bilski et al. | Jan 2006 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060009748 | Mathis | Jan 2006 | A1 |
20060015147 | Persson et al. | Jan 2006 | A1 |
20060020347 | Barrett et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060025760 | Podhajsky | Feb 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060030810 | Mandrusov et al. | Feb 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079838 | Walker et al. | Apr 2006 | A1 |
20060079845 | Howard et al. | Apr 2006 | A1 |
20060079883 | Elmouelhi et al. | Apr 2006 | A1 |
20060089635 | Young et al. | Apr 2006 | A1 |
20060106379 | O'Brien et al. | May 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060127703 | Takekuma et al. | Jun 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060149123 | Vidlund et al. | Jul 2006 | A1 |
20060173490 | Lafontaine et al. | Aug 2006 | A1 |
20060182684 | Beliveau | Aug 2006 | A1 |
20060184163 | Breen et al. | Aug 2006 | A1 |
20060195146 | Tracey et al. | Aug 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212032 | Daniel et al. | Sep 2006 | A1 |
20060212076 | Demarais et al. | Sep 2006 | A1 |
20060212078 | Demarais et al. | Sep 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060217704 | Cockburn et al. | Sep 2006 | A1 |
20060224188 | Libbus et al. | Oct 2006 | A1 |
20060224192 | Dimmer et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264807 | Westersten et al. | Nov 2006 | A1 |
20060269531 | Beebe et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20060283462 | Fields et al. | Dec 2006 | A1 |
20060293713 | Rubinsky et al. | Dec 2006 | A1 |
20060293725 | Rubinsky et al. | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20060293734 | Scott et al. | Dec 2006 | A1 |
20070010805 | Fedewa et al. | Jan 2007 | A1 |
20070016183 | Lee et al. | Jan 2007 | A1 |
20070016185 | Tullis et al. | Jan 2007 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070025919 | Deem et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070066957 | Demarais et al. | Mar 2007 | A1 |
20070066971 | Podhajsky | Mar 2007 | A1 |
20070078391 | Wortley et al. | Apr 2007 | A1 |
20070078453 | Johnson et al. | Apr 2007 | A1 |
20070083239 | Demarais et al. | Apr 2007 | A1 |
20070093789 | Smith | Apr 2007 | A1 |
20070096048 | Clerc | May 2007 | A1 |
20070118069 | Persson et al. | May 2007 | A1 |
20070129711 | Altshuler et al. | Jun 2007 | A1 |
20070137567 | Shimizu et al. | Jun 2007 | A1 |
20070156129 | Kovalcheck | Jul 2007 | A1 |
20070156135 | Rubinsky et al. | Jul 2007 | A1 |
20070156136 | Godara et al. | Jul 2007 | A1 |
20070173899 | Levin et al. | Jul 2007 | A1 |
20070179380 | Grossman | Aug 2007 | A1 |
20070191889 | Lang | Aug 2007 | A1 |
20070197895 | Nycz et al. | Aug 2007 | A1 |
20070203486 | Young | Aug 2007 | A1 |
20070203549 | Demarais et al. | Aug 2007 | A1 |
20070230757 | Trachtenberg et al. | Oct 2007 | A1 |
20070239099 | Goldfarb et al. | Oct 2007 | A1 |
20070244521 | Bornzin et al. | Oct 2007 | A1 |
20070249939 | Gerbi et al. | Oct 2007 | A1 |
20070287950 | Kjeken et al. | Dec 2007 | A1 |
20070295336 | Nelson et al. | Dec 2007 | A1 |
20070295337 | Nelson et al. | Dec 2007 | A1 |
20080015571 | Rubinsky et al. | Jan 2008 | A1 |
20080015628 | Dubrul et al. | Jan 2008 | A1 |
20080021371 | Rubinsky et al. | Jan 2008 | A1 |
20080027314 | Miyazaki et al. | Jan 2008 | A1 |
20080027343 | Fields et al. | Jan 2008 | A1 |
20080033340 | Heller et al. | Feb 2008 | A1 |
20080033417 | Nields et al. | Feb 2008 | A1 |
20080045880 | Kjeken et al. | Feb 2008 | A1 |
20080052786 | Lin et al. | Feb 2008 | A1 |
20080071262 | Azure | Mar 2008 | A1 |
20080071264 | Azure | Mar 2008 | A1 |
20080071265 | Azure | Mar 2008 | A1 |
20080086115 | Stoklund et al. | Apr 2008 | A1 |
20080097139 | Clerc et al. | Apr 2008 | A1 |
20080097422 | Edwards et al. | Apr 2008 | A1 |
20080103529 | Schoenbach et al. | May 2008 | A1 |
20080121375 | Richason et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080132884 | Rubinsky et al. | Jun 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080140064 | Vegesna | Jun 2008 | A1 |
20080146934 | Czygan et al. | Jun 2008 | A1 |
20080154259 | Gough et al. | Jun 2008 | A1 |
20080167649 | Edwards et al. | Jul 2008 | A1 |
20080171985 | Karakoca | Jul 2008 | A1 |
20080190434 | Tjong Joe Wai | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200912 | Long | Aug 2008 | A1 |
20080208052 | LePivert et al. | Aug 2008 | A1 |
20080210243 | Clayton et al. | Sep 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080214986 | Ivorra et al. | Sep 2008 | A1 |
20080236593 | Nelson et al. | Oct 2008 | A1 |
20080249503 | Fields et al. | Oct 2008 | A1 |
20080255553 | Young et al. | Oct 2008 | A1 |
20080269586 | Rubinsky et al. | Oct 2008 | A1 |
20080269838 | Brighton et al. | Oct 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080279995 | Schultheiss et al. | Nov 2008 | A1 |
20080281319 | Paul et al. | Nov 2008 | A1 |
20080283065 | Chang et al. | Nov 2008 | A1 |
20080288038 | Paul et al. | Nov 2008 | A1 |
20080294155 | Cronin | Nov 2008 | A1 |
20080294358 | Richardson | Nov 2008 | A1 |
20080300589 | Paul et al. | Dec 2008 | A1 |
20080306427 | Bailey | Dec 2008 | A1 |
20080312599 | Rosenberg | Dec 2008 | A1 |
20090018206 | Barkan et al. | Jan 2009 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024075 | Schroeppel et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090029407 | Gazit et al. | Jan 2009 | A1 |
20090030336 | Woo et al. | Jan 2009 | A1 |
20090036773 | Lau et al. | Feb 2009 | A1 |
20090038752 | Weng et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090076496 | Azure | Mar 2009 | A1 |
20090076499 | Azure | Mar 2009 | A1 |
20090076500 | Azure | Mar 2009 | A1 |
20090076502 | Azure et al. | Mar 2009 | A1 |
20090081272 | Clarke et al. | Mar 2009 | A1 |
20090088636 | Lau et al. | Apr 2009 | A1 |
20090099544 | Munrow et al. | Apr 2009 | A1 |
20090105703 | Shadduck | Apr 2009 | A1 |
20090114226 | Deem et al. | May 2009 | A1 |
20090118725 | Auth et al. | May 2009 | A1 |
20090118729 | Auth et al. | May 2009 | A1 |
20090138014 | Bonutti | May 2009 | A1 |
20090143705 | Danek et al. | Jun 2009 | A1 |
20090157166 | Singhal et al. | Jun 2009 | A1 |
20090163904 | Miller et al. | Jun 2009 | A1 |
20090171280 | Samuel et al. | Jul 2009 | A1 |
20090177111 | Miller et al. | Jul 2009 | A1 |
20090186850 | Kiribayashi et al. | Jul 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090198227 | Prakash | Aug 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090204112 | Kleyman | Aug 2009 | A1 |
20090209955 | Forster et al. | Aug 2009 | A1 |
20090216543 | Pang et al. | Aug 2009 | A1 |
20090221939 | Demarais et al. | Sep 2009 | A1 |
20090228001 | Pacey | Sep 2009 | A1 |
20090240247 | Rioux et al. | Sep 2009 | A1 |
20090247933 | Maor et al. | Oct 2009 | A1 |
20090248012 | Maor et al. | Oct 2009 | A1 |
20090269317 | Davalos | Oct 2009 | A1 |
20090270756 | Gamache et al. | Oct 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090281540 | Blomgren et al. | Nov 2009 | A1 |
20090287081 | Grossman et al. | Nov 2009 | A1 |
20090292342 | Rubinsky et al. | Nov 2009 | A1 |
20090301480 | Elsakka et al. | Dec 2009 | A1 |
20090306544 | Ng et al. | Dec 2009 | A1 |
20090306545 | Elsakka et al. | Dec 2009 | A1 |
20090318849 | Hobbs et al. | Dec 2009 | A1 |
20090318905 | Bhargav et al. | Dec 2009 | A1 |
20090326366 | Krieg | Dec 2009 | A1 |
20090326436 | Rubinsky et al. | Dec 2009 | A1 |
20090326561 | Carroll et al. | Dec 2009 | A1 |
20090326570 | Brown | Dec 2009 | A1 |
20100004623 | Hamilton, Jr. et al. | Jan 2010 | A1 |
20100016783 | Bourke, Jr. et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100030211 | Davalos et al. | Feb 2010 | A1 |
20100036291 | Darlington et al. | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100056926 | Deckman et al. | Mar 2010 | A1 |
20100057074 | Roman et al. | Mar 2010 | A1 |
20100057076 | Behnke et al. | Mar 2010 | A1 |
20100069921 | Miller et al. | Mar 2010 | A1 |
20100079215 | Brannan et al. | Apr 2010 | A1 |
20100082022 | Haley et al. | Apr 2010 | A1 |
20100082023 | Brannan et al. | Apr 2010 | A1 |
20100082024 | Brannan et al. | Apr 2010 | A1 |
20100082025 | Brannan et al. | Apr 2010 | A1 |
20100082083 | Brannan et al. | Apr 2010 | A1 |
20100082084 | Brannan et al. | Apr 2010 | A1 |
20100087813 | Long | Apr 2010 | A1 |
20100090696 | Deimling | Apr 2010 | A1 |
20100100093 | Azure | Apr 2010 | A1 |
20100106025 | Sarfaty et al. | Apr 2010 | A1 |
20100106047 | Sarfaty et al. | Apr 2010 | A1 |
20100121173 | Sarfaty et al. | May 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100152725 | Pearson et al. | Jun 2010 | A1 |
20100160850 | Ivorra et al. | Jun 2010 | A1 |
20100168735 | Deno et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100179436 | Sarfaty et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191235 | Moshe et al. | Jul 2010 | A1 |
20100196984 | Rubinsky et al. | Aug 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100204638 | Hobbs | Aug 2010 | A1 |
20100211061 | Leyh | Aug 2010 | A1 |
20100222677 | Placek et al. | Sep 2010 | A1 |
20100228247 | Paul et al. | Sep 2010 | A1 |
20100241117 | Paul et al. | Sep 2010 | A1 |
20100249771 | Pearson et al. | Sep 2010 | A1 |
20100250209 | Pearson et al. | Sep 2010 | A1 |
20100255795 | Rubinsky et al. | Oct 2010 | A1 |
20100256624 | Brannan et al. | Oct 2010 | A1 |
20100256628 | Pearson et al. | Oct 2010 | A1 |
20100256630 | Hamilton, Jr. et al. | Oct 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100262067 | Chornenky et al. | Oct 2010 | A1 |
20100268223 | Coe et al. | Oct 2010 | A1 |
20100268225 | Coe et al. | Oct 2010 | A1 |
20100286690 | Paul et al. | Nov 2010 | A1 |
20100292686 | Rick et al. | Nov 2010 | A1 |
20100298822 | Behnke | Nov 2010 | A1 |
20100298823 | Cao et al. | Nov 2010 | A1 |
20100298825 | Slizynski et al. | Nov 2010 | A1 |
20100331758 | Davalos et al. | Dec 2010 | A1 |
20100331911 | Kovalcheck et al. | Dec 2010 | A1 |
20110009860 | Chornenky et al. | Jan 2011 | A1 |
20110015630 | Azure | Jan 2011 | A1 |
20110017207 | Hendricksen et al. | Jan 2011 | A1 |
20110021970 | Vo-Dinh et al. | Jan 2011 | A1 |
20110034209 | Rubinsky et al. | Feb 2011 | A1 |
20110054458 | Behnke | Mar 2011 | A1 |
20110064671 | Bynoe | Mar 2011 | A1 |
20110082362 | Schmidt et al. | Apr 2011 | A1 |
20110082414 | Wallace | Apr 2011 | A1 |
20110098695 | Brannan | Apr 2011 | A1 |
20110105823 | Single, Jr. et al. | May 2011 | A1 |
20110106221 | Neal et al. | May 2011 | A1 |
20110112434 | Ghabrial et al. | May 2011 | A1 |
20110112531 | Landis et al. | May 2011 | A1 |
20110118721 | Brannan | May 2011 | A1 |
20110118727 | Fish et al. | May 2011 | A1 |
20110118729 | Heeren et al. | May 2011 | A1 |
20110118732 | Rubinsky et al. | May 2011 | A1 |
20110118734 | Auld et al. | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110135626 | Kovalcheck | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144562 | Heeren et al. | Jun 2011 | A1 |
20110144635 | Harper et al. | Jun 2011 | A1 |
20110144638 | Heeren et al. | Jun 2011 | A1 |
20110144641 | Dimalanta, Jr. et al. | Jun 2011 | A1 |
20110144657 | Fish et al. | Jun 2011 | A1 |
20110152678 | Aljuri et al. | Jun 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110160514 | Long et al. | Jun 2011 | A1 |
20110172659 | Brannan | Jul 2011 | A1 |
20110178570 | Demarais | Jul 2011 | A1 |
20110202052 | Gelbart et al. | Aug 2011 | A1 |
20110202053 | Moss et al. | Aug 2011 | A1 |
20110207758 | Sobotka et al. | Aug 2011 | A1 |
20110208096 | Demarais et al. | Aug 2011 | A1 |
20110208180 | Brannan | Aug 2011 | A1 |
20110217730 | Gazit et al. | Sep 2011 | A1 |
20110230874 | Epstein et al. | Sep 2011 | A1 |
20110245756 | Arora et al. | Oct 2011 | A1 |
20110251607 | Kruecker et al. | Oct 2011 | A1 |
20110282354 | Schulte et al. | Nov 2011 | A1 |
20110288545 | Beebe et al. | Nov 2011 | A1 |
20110306971 | Long | Dec 2011 | A1 |
20120034131 | Rubinsky et al. | Feb 2012 | A1 |
20120046658 | Kreindel | Feb 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120071874 | Davalos et al. | Mar 2012 | A1 |
20120085649 | Sano et al. | Apr 2012 | A1 |
20120089009 | Omary et al. | Apr 2012 | A1 |
20120090646 | Tanaka et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120109122 | Arena et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120150172 | Ortiz et al. | Jun 2012 | A1 |
20120165813 | Lee et al. | Jun 2012 | A1 |
20120179091 | Ivorra et al. | Jul 2012 | A1 |
20120220999 | Long | Aug 2012 | A1 |
20120226218 | Phillips et al. | Sep 2012 | A1 |
20120226271 | Callas et al. | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120277741 | Davalos et al. | Nov 2012 | A1 |
20120303012 | Leyh | Nov 2012 | A1 |
20120303020 | Chornenky et al. | Nov 2012 | A1 |
20120310236 | Placek et al. | Dec 2012 | A1 |
20120310237 | Swanson | Dec 2012 | A1 |
20130035921 | Rodriguez-Ponce et al. | Feb 2013 | A1 |
20130041436 | Ruse et al. | Feb 2013 | A1 |
20130072858 | Watson et al. | Mar 2013 | A1 |
20130090646 | Moss et al. | Apr 2013 | A1 |
20130184702 | Neal et al. | Jul 2013 | A1 |
20130196441 | Rubinsky et al. | Aug 2013 | A1 |
20130230895 | Koblizek et al. | Sep 2013 | A1 |
20130238062 | Ron Edoute et al. | Sep 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130261389 | Long | Oct 2013 | A1 |
20130281968 | Davalos et al. | Oct 2013 | A1 |
20130345697 | Garcia et al. | Dec 2013 | A1 |
20140039489 | Davalos et al. | Feb 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140088578 | Rubinsky et al. | Mar 2014 | A1 |
20140107643 | Chornenky et al. | Apr 2014 | A1 |
20140121663 | Pearson et al. | May 2014 | A1 |
20140163551 | Maor et al. | Jun 2014 | A1 |
20140296844 | Kevin et al. | Oct 2014 | A1 |
20140309579 | Rubinsky et al. | Oct 2014 | A1 |
20140378964 | Pearson | Dec 2014 | A1 |
20150032105 | Azure | Jan 2015 | A1 |
20150066013 | Salahieh et al. | Mar 2015 | A1 |
20150066020 | Epstein et al. | Mar 2015 | A1 |
20150088120 | Garcia et al. | Mar 2015 | A1 |
20150088220 | Callas et al. | Mar 2015 | A1 |
20150112333 | Chorenky et al. | Apr 2015 | A1 |
20150126922 | Willis | May 2015 | A1 |
20150141984 | Loomas et al. | May 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150196351 | Stone et al. | Jul 2015 | A1 |
20150201996 | Rubinsky et al. | Jul 2015 | A1 |
20150265349 | Moss et al. | Sep 2015 | A1 |
20150320488 | Moshe et al. | Nov 2015 | A1 |
20150327944 | Neal et al. | Nov 2015 | A1 |
20160022957 | Hobbs et al. | Jan 2016 | A1 |
20160066977 | Neal et al. | Mar 2016 | A1 |
20160074114 | Pearson et al. | Mar 2016 | A1 |
20160143698 | Garcia et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
7656800 | Apr 2001 | AU |
2002315095 | Dec 2002 | AU |
2003227960 | Dec 2003 | AU |
2005271471 | Feb 2006 | AU |
2006321570 | Jun 2007 | AU |
2006321574 | Jun 2007 | AU |
2006321918 | Jun 2007 | AU |
2012255070 | Jan 2014 | AU |
2297846 | Feb 1999 | CA |
2378110 | Feb 2001 | CA |
2445392 | Nov 2002 | CA |
2458676 | Mar 2003 | CA |
2487284 | Dec 2003 | CA |
2575792 | Feb 2006 | CA |
2631940 | Jun 2007 | CA |
2631946 | Jun 2007 | CA |
2632604 | Jun 2007 | CA |
2751462 | Nov 2010 | CA |
1525839 | Sep 2004 | CN |
101534736 | Sep 2009 | CN |
102238921 | Nov 2011 | CN |
102421386 | Apr 2012 | CN |
4000893 | Jul 1991 | DE |
60038026 | Feb 2009 | DE |
0218275 | Apr 1987 | EP |
0339501 | Nov 1989 | EP |
0378132 | Jul 1990 | EP |
0528891 | Mar 1993 | EP |
0533511 | Mar 1993 | EP |
0935482 | Aug 1999 | EP |
0998235 | May 2000 | EP |
1011495 | Jun 2000 | EP |
1061983 | Dec 2000 | EP |
1196550 | Apr 2002 | EP |
1207797 | May 2002 | EP |
1406685 | Apr 2004 | EP |
1424970 | Jun 2004 | EP |
1439792 | Jul 2004 | EP |
1442765 | Aug 2004 | EP |
1462065 | Sep 2004 | EP |
1493397 | Jan 2005 | EP |
1506039 | Feb 2005 | EP |
1791485 | Jun 2007 | EP |
1962708 | Sep 2008 | EP |
1962710 | Sep 2008 | EP |
1962945 | Sep 2008 | EP |
2373241 | Oct 2011 | EP |
2381829 | Nov 2011 | EP |
2413833 | Feb 2012 | EP |
2429435 | Mar 2012 | EP |
Entry |
---|
Cowley, Lifestyle Good news for boomers, Newsweek, Dec. 30, 1996. |
Sharma, et al, Poloxamer 188 decrease susceptibility of artificial lipid membranes to electroporation, Biophysical Journal, 1996, vol. 71, pp. 3229-3241. |
Blad, Baldetorp, Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography, Physiol. Meas., 1996, 17, pp. A105-A115. |
Ho, Mittal, Electroporation of cell membranes: a review, Critical Reviews in Biotechnology, 1996, 16(4), pp. 349-362. |
Gilbert, et al, Rapid report novel electrode designs for electrochemotherapy, Biochimica et Biophysica Acta, Feb 11, 1997, 1134, pp. 9-14. |
Zlotta, et al, Possible mechanisms fo action of transsurethral needle ablation of the prostate on benign prostatic hyperplasia systems: A neurohistochemical study, Journal of Urology, Mar 1997, vol. 157, No. 3, pp. 894-899. |
Duraiswami et al, Solution of electrical impedance tomography equations using boundary element methods, Boundary Element Technology XII, Apr. 1997, pp. 227-237. |
Fox, Nicholls, Sampling conductivity images via MCMC, Auckland University, Auckland, New Zealand. |
Naslund, Transurethral needle ablation of the prostate, Urology, Aug 1997, vol. 50, No. 2, pp. 167-172. |
Boone, et al, Review imaging with electricity: Report of the European concerted action on impedance tomography, Journal of Medical Engineering & Technology, Nov. 1997, vol. 21, No. 6, pp. 201-232. |
Lurquin, Review: Gene transfer by electroporation, Molecular Biotechnology, 1997, vol. 7, pp. 5-31. |
Hapala, Breaking the barrier: methods for reversible permeabilization of cellular membranes, Critical Reviews in Biotechnology, 1997, 17(2), pp. 105-122. |
Duraiswami, et al, Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography, Chemical Engineering Science, 1997, vol. 52, No. 13, pp. 2185-2196. |
Pinero, et al, Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells, Apoptosis, 1997, 2, pp. 330-336. |
Miklavcic, et al, The importance of electric field distribution for effective in vivo electroporation of tissues, Biophysical Journal, May 1998, vol. 74, pp. 2152-2158. |
Issa, et al, Recent Reports: The TUNA procedure for BPH: Review of the technology, Infections in Urology, Jul. 1998. |
Lundqvist, et al, Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, Sep. 1998, Vo. 95, pp. 10356-10360. |
Issa, et al, Specialty Surgery: The TUNA procedure for BPH: Basic procedure and clinical results, Infections in Urology, Sep. 1998. |
Dev, et al, Sustained local delivery of heparin to the rabbit arterial wall with an electroporation catheter, Catheterization and Cardiovascular Diagnosis, 1998, 45, pp. 337-345. |
Duraiswami, et al, Efficient 2D and3D electrical impedance tomography using dual reciprocity boundary element techniques, Engineering Analysis with Boundary Elements, 1998, 22, pp. 13-31. |
Mir, et al, Effective treatment of cutaneous and subcutaneous malignant tumors by electrochemotherapy, 1998, British Journal of Cancer, 77 (12), pp. 2336-2342. |
Sersa, et al, Tumor blood flow modifying effect of electrochemotherapy with Bleomycin, Anticancer Research, 1999, 19, pp. 4017-4022. |
Thompson, et al, To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International, 1999, 84, pp. 1035-1037. |
Gumerov, et al, The dipole approximation method and its coupling with the regular boundar yelement method for efficient electrical impedance tomography, BETECH 99. |
Yang, et al, Dielectric properties of human luekocyte subpopulations determined by electrorotation as a cell separation criterion, Jun. 1999, vol. 76, pp. 3307-3014. |
Huang, Rubinsky, Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells, Biomedical Microdevices, 1999, 2:2, pp. 145-150. |
Mir, Orlowski, Mechanisms of electrochemotherapy, Advanced Drug Delivery Reviews, 1999, 35, pp. 107-118. |
Jaroszeski, et al, In vivo gene delivery by electroporationi, Advanced Drug Delivery Reviews, 1999, 35, pp. 131-137. |
Gehl, et al, In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution, Biochimica et Biophysica Acta, 1999, 1428, pp. 233-240. |
Heller, et al, Clinical applications of electrochemotherapy, Advanced Drug Delivery Reviews, 1999, 35, 119-129. |
Holder, et al, Low-Frequency System, Assessment and calibration of a low-frequency impedance tomography (EIT), optimized for use in imaging brain function in ambulant human subjects, Annals New York Academy Sciences, pp. 512-519. |
Dev, et al, Medical applications of electroporation, IEEE Transactions on Plasma Science, Feb. 2000, vol. 28, No. 1, pp. 206-222. |
Ivanusa, et al, MRI macromolecular contrast agents as indicators of changed tumor blood flow, Radiol Oncol, 2001, 35, 2, pp. 139-147. |
Ermolina, et al, Study of normal and malignant white blood cells by time domain dielectric spectroscopy, IEEE Transactions on Dielectrics and Electrical Insulation, Apr. 2001, vol. 8, No. 2, pp. 253-261. |
Carson, et al, Improving patient satisfaction, BPH management strategies, Supplement to Urology Times, May 2001, Vo. 29, Suppl. 1, pp. 1-22. |
Beebe, et al, Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: Apoptosis induction and tumor growth inhibition, IEEE, 2002, pp. 211-215. |
N/a, When patient satisfaction is your goal, Precision Office TUNA System, VidaMed, Inc. |
Chandrasekar, et al, Transurethral needle ablation of the prostate (TUNA)—A prospective study, six year follow up, pp. 1210. |
N/a, Highlights from worldwide clinical studies, Transurethral needle ablation (TUNA), Vidamed's Office TUNA System, VidaMed, Inc., pp. 1-4. |
Schoenbach, et al, Intracellular effect of ultrashort electrical pulses, Bioelectromagnetics, 2001, 22, pp. 440-448. |
Cemazar et al, Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy, British Journal of Cancer, 2001, 84, 4, pp. 565-570. |
Kotnik, et al, Cell membrane electropermeabilization by symmetrical biopolar rectangular pulses, Part I. Increased efficiency of permeabilization, Bioelectrochemistry, 2001, 54, pp. 83-90. |
Kotnik, et al, Cell membrane electropermeabilization by symmetrical biopolar rectangular pulses, Part II. Reduced electrolytic contamination, Bioelectrochemistry, 2001, 54, pp. 91-95. |
Lebar, Miklavcic, Cell electropermeabilization to small molecules in vitro: control by pulse parameters, Radiol Oncol, 2001, 35, 3, pp. 193-202. |
Naslund, Cost-effectiveness of minimally invasive treatments and transurethral resection (TURP) in benign prostatic hyperplasia (BPH), Unveristy of Maryland School of Medicine, 2001, pp. 1213. |
Davalos, et al, A feasibility study for electrical impedance tomography as a means to montior tissue electroporatioin for molecular medicien, IEEE Transactions on Biomedical Engineering, Apr. 2002, vol. 49, No. 4, pp. 400-403. |
Jossinet, et al, Electrical impedance end-tomography: Imaging tissue from inside, IEEE Transactions on Medical Imaging, Jun. 2002, vol. 21, No. 6, pp. 560-565. |
Lebar, et al, Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artifice lipid bilayers, IEEE Transactions on Nanobioscience, Sep. 2002, vol. 1, No. 3, pp. 116-120. |
Sersa, et al, Reduced blood flow and oxygenation in SA-I tumors after electrochemotherapy with cisplatin, 2003, 87, pp. 1047-1054. |
Davalos, Real-time imaging for molecular medicine through electrical impedance tomography of electroporation, Dissertation, University of California, Berkeley. |
Szot, et al, 3D in vitro bioengineered tumors based on collagen I hydrogels, Biomaterials, Nov. 2011, 32(31), pp. 7905-7912. |
Bastista, et al, The use of whole organ decellularization for the generation of a vascularized liver organoid, Hepatology, 2011, vol. 53, No. 2, pp. 604-617. |
Sano, et al, Modeling and development fo a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples, Biosensors and Bioelectronics, 2011, pp. 1-8. |
Charpentier, et al, Irreversible electroporation of the liver an dliver hilum in swine, HBP, 2011, 13, pp. 168-173. |
Sankaranarayanan, et al, Effect of irreversible electroporation on cell proliferation in fibroblasts, Proc. ESA Annual Meeting on Electrostatics, 2011, pp. 1-8. |
Sano, et al, Contactless dielectrophoretic spectroscopy: Examination of the dielectric properties of cells found in blood, Electrophoresis, 2011, 32, pp. 3164-3171. |
Chen, et al, Classification of cell types using a microfluidic device for mechanical and electrical measurements on single cells, Lab Chip, 2011, 11 , pp. 3174-3181. |
Rebersek, Miklavcic, Advantages and disadvantages of different concepts of electroporation pulse generation, Automatika, 2011, 52, 1, pp. 12-19. |
Ben-David, et al, Characterization of irreversible electroporaiton ablation in in vivo porcine liver, AJR, Jan. 2012, 198, pp. W62-W68. |
Appelbaum, et al, US findings after irreversible electroporation ablation: Radiologic-pathologic correlation, Radiology, Jan. 2012, vol. 262, No. 1, pp. 117-125. |
Salmanzadeh, et al, Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis, Biomicrofluidics, Apr. 3, 2012, 6, 024104, pp. 1-13. |
Neal, et al, Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning, IEEE Transactions on Biomedical Engineering, Apr. 2012, vol. 59, No. 4, pp. 1076-1085. |
Du Pre, et al, Minimal coronary artery damage by myocardial electroporation ablation, European Society of Cardiology, Europace, May 31, 2012, pp. 1-6. |
Wittkampf, et al, Myocradial lesion depth with circular electroporation ablation, Circ Arrhythm Electrophysiol, 2012, 5, pp. 581-586. |
Arena, et al, Phase change electrodes for reducing joule heating during irreversible electroporation, Proceedings of the ASME 2012 Summer Bioengineering Conference, Jun. 20, 2012, pp. 1-2. |
Garcia, et al, Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements, 34th Annual International Conference of the IEEE EMBS, Aug. 28, 2012, pp. 2575-2578. |
Hjouj, et al, MRI study on reversible and irreversible electroporation induced blood brain barrier disruption, Aug. 10, 2012, PLOS One, vol. 7, 8, e42817, pp. 1-9. |
Martin, et al, Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma, American College of Surgeons, Sep. 2012, vol. 215, No. 3, pp. 361-369. |
Weaver, et al, A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected, Bioelectrochemistry, Oct. 2012, 87, pp. 236-243. |
Arena, et al, A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation, Biophysical Journal, Nov. 2012, vol. 103, pp. 2033-2042. |
Garcia, et al, 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation, PLOS One, vol. 7, 11, pp. 1- 8. |
Arena, et al, Towards the development of latent heat storage electrodes for electroporation-based therapies, Applied Physics Letters, 2012, 101, 083902, pp. 1-4. |
Cannon, et al, Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures, Journal of Surgical Oncology, 2012, pp. 1-6. |
Bagla, Papadouris, Percutaneous irreversible electroporation of surgically unresectable pancreatic cancer: A case report, J Vasc Intery Radiol, 2012, 23, pp. 142-145. |
Phillips, et al, Irreversible electroporation on the small intestine, British Journal of Cancer, 2012, pp. 1-6. |
Mahnic-Kalamiza, et al, Educational application for visualization and analysis of electric field strength in multiple electrode electroporation, BMC Medical Education, 2012, 12, 102, pp. 1-13. |
Kingham, et al, Ablation of perivascular hepatic malignant tumors with irreversible electroporation, J Am Coll Surg, 2012, 215, pp. 379-387. |
Salmanzadeh, et al, Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells, Biomicrofluidics, Jan. 23, 2013, 7, 011809, pp. 1-12. |
Faroja, et al, Irreversible electroporation ablation: Is all the damage non-thermal?, Radiology, Feb. 2013, vol. 266, No. 2, pp. 462-470. |
Fong, et al, Modeling ewing sarcoma tumors in vitro with 3D scaffolds, PNAS, Apr. 16, 2013, vol. 110, No. 15, pp. 6500-6505. |
Garcia, et al, Position paper concerning the use of Angiodynamics' nanoknife system for treatment of brain gliomas, Virgina Tech—Wake Forest University, May 22, 2013, pp. 1-46. |
Salmanzadeh, et al, Sphingolipid metabolites modulate dielectric characteristics of cells in a mouse ovarian cancer progression model, Integr Biol, Jun. 2013, 5, 6, pp. 843-852. |
Polak, et al, On the electroporation thresholds of lipid bilayers: Molecular dynamics simulation investigations, J Membrane Biol, Jun. 13, 2013, 246, pp. 843-850. |
Jiang, et al, Membrane-targeting approaches for enhanced cancer cell destruction with irreversible electroporation, Annuals of Biomedical Engineering, Aug. 15, 2013. |
Bayazitoglu, et al, An overview of nanoparticle assisted laser therapy, International Journal of Heat and Mass Transfer, Sep. 11, 2013, 67, pp. 469-486. |
Rossmeisl, Jr., et al, Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain, Journal of Veterinary Science, 2013, 14, 4, pp. 433-440. |
Lu, et al, Irreversible electroporation: Ready for prime time?, Techniques in Vascular and Interventional Radiology, 2013, 16, pp. 277-286. |
Dunki-Jacobs, et al, Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas, American College of Surgeons, Feb. 2014, vol. 218, No. 2, pp. 179-187. |
Son, et al, Basic features of a cell electroporation model: illustrative behavior for tw overy different pulses, J Membrane Biol, Jul. 22, 2014, 247, pp. 1209-1228. |
Neal, et al, An “Off-the-Shelf” system for intraprocedural electrical current evaluation and monitoring of irreversible electroporation therapy, Cardiovasc Intervent Radiol, Feb. 27, 2014. |
Sano, et al, In-vtro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies, Bioelectrochemistry, Aug. 4, 2014, 100, pp. 69-79. |
Rossmeisl, New treatment modalities for brain tumors in dogs and cats, Vet Clin Small Anim, 2014, 44, pp. 1013-1038. |
Chen, et al, Preclinical study of locoregional therapy of hepatocellular carcinoma by bioelectric ablation with microsecond pulsed electric fields (usPEFs), Scientific Reports, Apr. 2015, 5, 9851, pp. 1-10. |
Trimmer, et al, Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience, J Vasc Intery Radiol, 2015, 26: pp. 1465-1471. |
Eppich, et al, Pulsed electric fields for seletion of hematopoietic cells and depletion of tumor cell contaminants, Nature America, Aug. 2000, vol. 18, pp. 882-887. |
Mir, Therapeutic perspectives of in vivo cell electropermeabilization, Bioelectrochemistry, 2000, 53, pp. 1-10. |
Al-Khadra, et al, The role of electroporation in defibrillation, Circulation Research, Oct. 27, 2000, 87, pp. 797-804. |
Miklavcic, et al, A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy, Biochimica et Biophysica Acta, 2000, 1523, pp. 73-83. |
Rubinsky, Cryosurgery, Annu. Rev. Biomed. Eng. 2000, 2, pp. 157-187. |
Jaroszeski, et al, In vivo gene delivery by electroporation, Advanced Drug Delivery Reviews, 1999, 35, pp. 131-137. |
Coates, et al, The electric discharge of the electric eel, Electrophorus electricus (Linnaeus), Zoologica: New York Zoological Society, pp. 1-32. |
Lynn, et al, A new method for the generation and use of focused ultrasound in experimental biology, pp. 179-193. |
Clark, et al, The Electrical Properties of Resting and Secreting Pancreas, pp. 247-260. |
Neumann, Rosenheck, Permeability changes induced by electric impulses in vesicular membranes, J. Membrane Biol., 1972, 10, pp. 279-290. |
Crowley, Electrical breakdown of bimolecular lipid membranes as an electromechanical instability, Biophysical Journal, 1973, vol. 13, 711-724. |
Zimmermann, et al, Dielectric breakdown of cell membranes, Biophysical Journal, 1974, vol. 14, pp. 881-899. |
Organ, Electrophysiologic principles of radiofrequency lesion making, Appl. Neurophysiol., 1976, 39, pp. 69-76. |
Kinosita, Jr., Tsong, Hemodialysis of human erythrocytes by a transient electric field, Biochemistry, 1977, vol. 74, No. 5, pp. 1923-1927. |
Kinsoita, Jr., Tsong, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Aug. 1977, vol. 268, pp. 438-441. |
Kinosita, Jr., Tsong, Voltage-induced pore formation and hemolysis of human erythrocytes, Biochimica et Biophysica Acta, 1977, pp. 227-242. |
Baker, Knight, Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes, Nature, Dec. 1978, vol. 276, pp. 620-622. |
Gauger, Bentrup, A study of dielectric membrane breakdown in the Fucus egg, J. Membrane Biol., 1979, 48, pp. 249-264. |
Erez, Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monactive electrocoagulation, Transactions of theASME, Feb. 1980, vol. 102, pp. 42-49. |
Neumann, et al, Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, 1982, vol. 1, No. 7, pp. 841-845. |
Seibert, et al, Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice, Cancer Research, May 1983, 43, pp. 2223-2239. |
Brown, Phototherapy of tumors, World J. Surg., 1983, 7, 700-709. |
Onik, et al, Ultraonic characteristics of frozen liver, Cryobiology, 1984, 21, pp. 321-328. |
Gilbert, et al, The use of ultrsound imaging for monitoring cryosurgery, IEEE Frontiers of Engineering and computing in Health Care, 1984, pp. 107-111. |
Onik, et al, Sonographic monitoring of hepatic cryosurgery in an experimental animal model, AJR, May 1985, 144, pp. 1043-1047. |
Griffiths, The importance of phase measurement in e lectrical impedance tomography, Phys. Med. Biol., Nov. 1987, vol. 32, No. 11, pp. 1435-1444. |
Okino, Mohri, Effects of high-voltage electrical impulse and an anticancer drug on in vivo growing tumors, Jpn. J. Cancer Res., Dec. 1987, 78, pp. 1319-1321. |
Kinosita, Jr. et al, Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope, Biophys. J., Jun. 1988, vol. 53, pp. 1015-1019. |
Amasha, et al, Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia, Clin. Phys. Physiol. Meas., 1988, vol. 9, Suppl. A, pp. 49-53. |
Asmai, et al, Dielectric properties of mouse lymphocytes and erythrocytes, Biochimica et Biophysica Acta, 1989, 1010, pp. 49-55. |
Griffiths, Zhang, A dual-frequency electrical impedance tomography system, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476. |
Rowland, et al, Transvenous ablation of atrioventricular conduction with a low energy power source, Br Heart J, 1989, 62, pp. 361-366. |
Marsazalek, et al, Schwan equation and transmembrane potential induced by alternating electric field, Biophysical Journal, Oct. 1990, vol. 58, pp. 1053-1058. |
Tekle, et al, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Biochemistry, May 1991, vol. 88, pp. 4230-4234. |
Mir, et al, Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses, Eur. J. Cancer, 1991, vol. 27, No. 1, pp. 68-72. |
Mir, et al, Electrochemotherapy, a novel antitumor treatment: first clinical trial, Cancerology, 1991, 313, pp. 613-618. |
Narayan, Dahiya, Establishment and characterization of a human primay prostatic adenocarcinoma cell line (ND-1—, The Journal of Urology, Nov. 1992, vol. 148, pp. 1600-1604. |
Griffiths, et al, Measurement of pharyngeal transit time by electrical impedance tomography, Clin. Phys. Physiol. Meas., 1993, vol. 13, Suppl. A, pp. 197-200. |
Rols, et al, Highly efficient transfection of mammalian cells by electric field pulses application to large volumes of cell culture by using a flow system, Eur. J. Biochem., 1992, 205, pp. 115-121. |
Brown, et al, Blood flow imaging using electrical impedance tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 175-179. |
Foster, et al, Production of prostatic lesions in canines usign transrectally administered high-intensity focused ultrasound, Eur Urol, 1993, pp. 330-336. |
Shiina, et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: Results in 146 patients, AJR, May 1993, 160, pp. 1023-1028. |
Salford, et al, A new brain tumour therapy combining bleomycin with in vivo electropermeabilization, Biochemical and Biohysical Research Communications, Jul. 30, 1993, vol. 194, No. pp. 938-943. |
Glidewell, NG, The use of magnetic resonance imaging data and the inclusion of anisotropic regions in electrical impedance tomography, ISA, 1993, pp. 251-257. |
Gascoyne, et al, Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis, Biochimca et Biophysica Acta, 1993, 1149, pp. 119-126. |
Foster, et al, High-intensity focused ultrsound in the treatment of prostatic disease, Eur Urol, 1993, 23(suppl1), pp. 29-33. |
Andreason, Electroporation as a technique for the ransfer of macromolecules into mamalian cell lines, J. Tiss. Cult. Meth., 1993, 15, pp. 56-62. |
Weaver, Electroporation: A general phenomenon for manipulating cells and tissues, Journal of Cellular Biochemistry, 1993, 51, pp. 426-435. |
Barber, Electrical impedance tomography applied potential tomography, Advances in Biomedical Engineering, 1993, IOS Press, pp. 165-173. |
Cook, et al, ACT3: a high-speed, high-precision electrical impedance tomograph, IEEE Transactions on Biomedical Engineering, 1994, vol. 41, No. 8, pp. 713-722. |
Alberts, et al, Molecular biology of the Cell, Biocchemical education, 1994, 22(3), pp. 164. |
Hughes, et al, An analysis of studies comparing electrical impedance tomography with x-ray videofluoroscopy in the assessment of swallowing, Physiol. Meas. 1994, 15, pp. A199-A209. |
Griffiths, Tissue spectroscopy with electrical impedance tomography: Computer simulations, IEEE Transactions on Biomedical Engineering, Saep 1995, vol. 42, No. 9, pp. 948-954. |
Gencer, et al, Electrical impedance tomography: Induced-currentimaging achieved with a multiple coil system, IEEE Transactions on Biomedical Engineering, Feb. 1996, vol. 43, No. 2, pp. 139-149. |
Weaver, Chizmadzhev, Review Theory of electroporation: a review, Biolectrochemistry and Bioenergetics, 1996, 41, pp. 135-160. |
Gimsa, et al, Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: Dispersion of the cytoplasm, Biophysical Journal, Jul. 1996, vol. 71, pp. 495-506. |
International Search Report for PCT/US2010/029243 WOSA dated Jul. 30, 2010. |
International Search Report for PCT/US2010/022011 ISR dated Aug. 30, 2010. |
International Search Report for PCT/US2010/022011 WOSA dated Aug. 30, 2010. |
International Search Report for PCT/US2006/016045 IPRP dated Oct. 30, 2007. |
International Search Report for PCT-US-10-053077 ISR dated Aug. 2, 2011. |
International Search Report for PCT-US-10-053077 WOSA dated Aug. 2, 2011. |
International Search Report for PCT/US2009/042100 IPRP IPRP dated Nov. 2, 2010. |
International Search Report for EP 09739678 SESR dated May 3, 2012. |
International Search Report for PCT/US2010/029243 IPRP dated Oct. 4, 2011. |
International Search Report for PCT/US2009/048270 IPRP dated Jan. 5, 2011. |
International Search Report for PCT/US2007/000084 IPRP dated Jul. 8, 2008. |
International Search Report for PCT/US2009/042100 ISR dated Jul. 9, 2009. |
International Search Report for PCT/US2009/042100 WOSA dated Jul. 9, 2009. |
International Search Report for PCT/US2009/048270 ISR dated Feb. 11, 2010. |
International Search Report for PCT/US2009/048270 WOSA dated Feb. 11, 2010. |
International Search Report PCT/US2009042100 ESO dated May 11, 2012. |
International Search Report PCT/US2009/038661 ISR dated Jun. 12, 2009. |
International Search Report 12002108.4 ESO dated Jun. 12, 2013. |
International Search Report PCT/US07/00084 WOSA dated Dec. 14, 2007. |
International Search Report for PCT/US2011/056177 IPRP dated Apr. 16, 2013. |
International Search Report for 06751655 SESR dated Oct. 9, 2016. |
International Search Report for PCT/US2010/053077 ISR IPRP dated Apr. 17, 2012. |
International Search Report for 11833421 SESR dated Mar. 18, 2014. |
International Search Report for PCT/US2011/024909 ISR dated Oct. 18, 2011. |
International Search Report for PCT/US2011/024909 WOSA dated Oct. 18, 2011. |
International Search Report for 07716249 SESR dated Jan. 19, 2009. |
International Search Report for PCT/US2009/062806 IPRP dated Jan. 4, 2012. |
International Search Report for PCT/US2009/062806 ISR dated Jan. 19, 2010. |
International Search Report for PCT/US2009/062806 WOSA dated Jan. 19, 2010. |
International Search Report for 10824248.8 ESO dated Jan. 20, 2014. |
International Search Report for PCT/US2009/047969 ISR dated Jan. 21, 2010. |
International Search Report for PCT/US2009/047969 WOSA dated Jan. 21, 2010. |
International Search Report for PCT/US2011/024909 IPRP dated Aug. 21, 2012. |
International Search Report for PCT/US2011/025003 IPRP dated Aug. 21, 2012. |
International Search Report for PCT/US2009/047969 IPRP dated Dec. 21, 2010. |
International Search Report for PCT/US2010/036734 ISR dated Dec. 23, 2010. |
International Search Report for PCT/US2010/036734 WOSA dated Dec. 23, 2010. |
International Search Report for PCT/US2011/025003 ISR dated Oct. 24, 2011. |
International Search Report for PCT/US2011/025003 WOSA dated Oct. 24, 2011. |
International Search Report for PCT/US2011/062067 ISR dated Jul. 25, 2012. |
International Search Report for PCT/US2011/062067 WOSA dated Jul. 25, 2012. |
International Search Report for PCT/US06/16045 ISR dated Sep. 25, 2007. |
International Search Report for PCT/US2010/022011 IPRP dated Jul. 26, 2011. |
International Search Reprot for PCT/US2011056177 ESO dated Mar. 28, 2014. |
International Search Report for PCT/US2011/062067 IPRP dated May 28, 2013. |
International Search Report for PCT/US2009/038661 IPRP dated Sep. 28, 2010. |
International Search Report for 06751655.9 ESO dated Oct. 29, 2009. |
International Search Report for PCT/US2010/036734 IPRP dated Nov. 29, 2011. |
International Search Report for 12002108 EPS dated May 30, 2012. |
International Search Report for PCT/US2011/056177 ISR dated May 30, 2012. |
International Search Report for PCT/US2011/056177 WOSA dated May 30, 2012. |
International Search Report for PCT/US10/29243 ISR dated Jul. 30, 2010. |
Wright, On a relationship betweene the arrhenius parameters from thermal damage studies, Technical Brief, Journal of Biomechanical Engineering, Transactions of the ASME, Apr. 2003, vol. 125, pp. 300-304. |
Heczynska, et al, Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ, Cancer Research, Apr. 1, 2003, 63, pp. 1441-1444. |
Ivorra, Bioimpedance monitoring for physicians: an overview, Biomedical Applications Group, Centre Nacional de Microelectronica, Jul. 2003, pp. 1-35. |
Weaver, Electroporation of biological membranes from multicellular to nano scales, IEEE Transactions on Dielectrics and Electrical Insulation, Oct. 2003, vol. 10, No. 5, pp. 754-768. |
Dev, et al, Electric field of a six-needle array electrode used in drug and DNA delivery in vivo: Analytical versus numerical solution, IEEE Transactions on Biomedical Engineering, Nov. 2003, vol. 50, No. 11, pp. 1296-1300. |
Rajagopal, Rockson, Coronary restenosis: A review of mechanisms and management, The American Journal of Medicine, Nov. 2003, vol. 115, pp. 547-553. |
Sersa, et al, Tumor blood flow modifying effects of electrochemotherapy: a potential vascular targeted mechanism, Radiol Oncol, 2003, 37, 1, pp. 43-48. |
Davalos, et al, Theoretical analysis of the thermal effects during in vivo tissue electroporation, Bioelectrochemistry, 2003, 61, pp. 99-107. |
Gothelf, et al, Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation, Cancer Treatment Reviews, 2003, 39, pp. 371-387. |
Bancroft, et al, Design of a flow perfusion bioreactor system for bone tissue-engineering applications, Tissue Engineering, 2003, vol. 9, No. 3, pp. 549-554. |
Malpica, et al, Grading ovarian serous carcinoma using a two-tier system, Am J Surg Pathol, Apr. 2004, vol. 28, No. 4, pp. 496-504. |
Davalos, et al, Electrical impedance tomography for imaging tissue electroporation, IEEE Transactions on Biomedical Engineering, May 2004, vol. 51, No. 5, pp. 761-767. |
Albright, et al, Performance and complicatioins associated with the Synchromed 10-ml infusion pump for intrathecal baclofen administration in children, J Neurosurg (Pediatrics 2), Aug. 2004, vol. 101, pp. 64-68. |
Diederich, et al, Catheter-based ultrasound applicators for selective thermal ablation: progress towards MRI-guided applications in prostate, Int. J. Hyperthermia, Nov. 2004, vol. 20, No. 7, pp. 739-756. |
Radeva, et al, Induction of apoptosis and necrosis in cancer cells by electric fields, electromagnetic fields, and photodynamically active quinoids, Electromagnetic Biology and Medicine, 2003, 23, pp. 185-200. |
Davalos, et al, Tissue ablation with irreversible electroporation, Annals of Biomedical Engineering, Feb. 2005, vol. 33, No. 2, pp. 223-231. |
Sel, et al, Sequential finite element model of tissue electropermeabilization, IEEE Transactions on Biomedical Engineering, May 2005, vol. 52, No. 5, pp. 816-827. |
Dean, Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals, Am J Physiol cell Physiol, Aug. 2005, 289, pp. C233-C245. |
Pavselj, et al, The course of tissue permeabilization studied on a mathematical model of a subcutaenous tumor in small animals, IEEE Transactions on Biomedical Engineering, Aug. 2005, vol. 52, No. 8, pp. 1373-1381. |
Paszek, et al, Tensional homeostasis and the malignant phenotype, Cancer Cell, Sep. 2005, vol. 8, pp. 241-254. |
Saur, et al, CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer, Basic-Liver, pancreas, and biliary tract, Gastroenterology, Oct. 2004, 129, pp. 1237-1250. |
Knight, et al, Direct imaging of transvenous radiofrequency cardiac ablation using a steerable fiberoptic infrared endoscope, Heart Rhythm Society, Oct. 2005, vol. 2, No. 10, pp. 1116-1121. |
Miller, et al, Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment, Dec. 2005, vol. 4, No. 6, pp. 699-705. |
Mir, et al, Electric pulse-mediated gene delviery to various animal tissues, Advances in Genetics, 2005, vol. 54, pp. 84-114. |
Nikolski, Efimov, Electroporation of the heart, Europace, 2005, 7, pp. S146-S154. |
Machado-Aranda, et al, Gene transfer of the NA+, K+K -ATPase B1 subunit using electroporation increases lung liquid clearance, American Journal of Respiratory and Critical Care Medicine, 2004, vol. 171, pp. 204-211. |
Kotnik, Miklavcic, Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields, Biophysical Journal, Jan. 2006, vol. 90, pp. 480-491. |
Labeed, et al, Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis, Biochimica et Biophysica Acta, Feb. 23, 2006, 1760, pp. 922-929. |
Pucihar, et al, Numerical determination of transmembrane voltage indcued on irregularly shaped cells, Annals of Biomedical Engineering, Mar. 18, 2006, vol. 34, No. 4, pp. 642-652. |
Gilbert, et al, Decellularization of tissues and organs, Biomaterials, Mar. 7, 2006, 27, pp. 3675-3683. |
Edd, et al, In vivo results of a new focal tissue ablation technique: Irreversible electroporation, IEEE Transactions on Biomedical Engineering, Jun. 2006, vol. 53, No. 5, pp. 1409-1415. |
Ivorra, Rubinsky, Impedance analyzer for in vivo electroporation studies, Proceedings of the 28th IEEE EMBS Annual International Conference, IEEE, Aug. 30, 2006, pp. 5056-5059. |
Carpenter, et al, CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biology, Oct. 31, 2006, vol. 7, Iss. 10, R100, pp. 1-11. |
Kanduser, et al, Cell membrane fluidity related to electroporation and resealing, Eur Biophys J, Oct. 8, 2006, 35, pp. 196-204. |
Bolland, et al, Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering, Biomaterials, Nov. 7, 2006, 28, pp. 1061-1070. |
Cukjati, et al, Real time electroporation control for accurate and safe in vivo non-viral gene therapy, Bioelectrochemistry, Nov. 10, 2006, 70, pp. 501-507. |
Tijink, et al, How we do it: Chemo-electroporation in the head and neck for otherwise untreatable patients, Correspondence, Clinical Otolaryngology, 2006, 31, pp. 447-451. |
Marty, et al, Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study, EJC Supplements, 2006, 4, pp. 3-13. |
Soden, et al, Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumors, Cancer Letters, 2006, 232 pp. 300-310. |
Demirbas, Thermal energy storage and phase change materials: An overview, Energy Sources, Part B, 2006, 1, pp. 85-95. |
Rubinsky, et al, Irreversible electroporation: A new ablation modality—Clinical implications, Technology in Cancer Research and Treatment, Feb. 2007, vol. 6, No. 1, pp. 1-12. |
Zhou, et al, Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation, Gene Therapy, Mar. 8, 2007, 14, pp. 775-780. |
Lavee, et al, A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation, The Heart Forum, Mar. 2007, 10, 2, pp. 96-101. |
Hall, et al, Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells, Apoptosis, May 23, 2007, 12, pp. 1721-1731. |
Sel, et al, Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropereabilization, IEEE Transactions on Biomedical Engineering, May 2007, vol. 54, No. 5, pp. 773-781. |
Kirson, et al, Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumor, PNAS, Jun. 12, 2007, vol. 104, No. 24, pp. 10152-10157. |
Talele, Gaynor, Non-linear time domain model of electropermeabilizationi: Response of a single cell to an arbitary applied electric field, Journal of Electrostatics, Jul. 16, 2007, 65, pp. 775-784. |
Esser, et al, Towards solid tumor treatment by irreversible electroporation: Intrinsic redistribution of fields and currents in tissue, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 261-273. |
Maor, et al, The effect of irreversible electroporation on blood vessels, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 307-312. |
Edd, Davalos, Mathematical modeling of irreversible electroporation for treatment planning, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 275-286. |
Rubinsky, Irreversible electroporation in medicine, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 255-259. |
Onik, et al, Irreversible electroporation: Implications for prostate ablation, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 295-300. |
Lee, et al, Imaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlation, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 287-293. |
Bertacchini, et al, Design of an irreversible electroporation system for clinical use, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 313-320. |
Al-Sakere, et al, A study of the immunological response to tumor ablation with irreversible electroporation, Technology in Cancer Research and Treatment, Aug. 2007, vol. 6, No. 4, pp. 301-305. |
Fischbach, et al, Engineering tumors with 3D scaffolds, Nature Methods, Sep. 2, 2007, vol. 4, No. 10, pp. 855-860. |
Ivorra, Rubinsky, In vivo electrical impedance measurements during and after electroporation of rat liver, Bioelectrochemistry, Oct. 21, 2007, 70, pp. 287-295. |
Yao, et al, Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation, IEEE Transactions on Plasma Science, Oct. 2007, vol. 35, No. 5, pp. 1541-1549. |
Corovic, et al, Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations, BioMedical Engineering Online, Oct. 15, 2007, 6, 37, pp. 1-14. |
Schoenbach, et al, Bioelectric effects of intense nanosecond pulses, IEEE Transactions on Dielectric and Electrical Insulation, 2007, vol. 14, Iss. 5, pp. 1088-1109. |
Al-Sakere, et al, Tumor ablation with irreversible electroporation, PLOS One, Nov. 7, 2007, Iss. 11, e1135, pp. 1-8. |
Hall, et al, Nanosecond pulsed electric fields have differential effects on cells in the S-phase, DNA and Cell Biology, 2007, vol. 26, No. 3, pp. 160-171. |
He, et al, Nonlinear current response of micro electroporation and resealing dynamics for human cancer cells, Bioelectrochemistry, Jan. 29, 2008, 72, pp. 161-168. |
Ott, et al, Perfusion-decellarized matrix: using nature's platform to engineer a bioartificial heart, Nature Medicine, Jan. 13, 2008, vol. 14, No. 2, pp. 213-221. |
Ron, et al, Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy, Biophysical Chemistry, Mar. 29, 2008, 135, pp. 59-68. |
Garcia, et al, Irreversible electroporation (IRE) to treat brain tumors, Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008), Jun. 25, 2008, pp. 6-7. |
Davalos, Rubinsky, Temperature considerations during irreversible electroporation, International Journal of Heat and Mass Transfer, Jun. 14, 2008, 51, pp. 5617-5622. |
Dahl, et al, Nuclear shape, mechanics and mechanotransduction, Circulation Research, Jun. 6, 2008, 102, pp. 1307-1318. |
Seidler, et al, A Cre-IoxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors, PNAS, Jul. 22, 2008, vol. 105, No. 29, pp. 10137-10142. |
Maor, et al, Intravascular irreversible electroporation: Theoretical and experimental feasibility study, 30th Annual International IEEE EMBS Conference, IEEE, Aug. 20, 2008, pp. 2051-2054. |
Maor, et al, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Transactions on Biomedical Engineering, Sep. 2008, vol. 55, No. 9, pp. 2268-2274. |
Jensen, et al, Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper, BMC Medical Imaging, Oct. 16, 2008, 8, 16,m pp. 1-9. |
Rubinsky, et al, Optimal parameters for the destruction of prostate cancer using irreversible electroporation, The Journal of Urology, Dec. 2008, vol. 180, pp. 2668-2674. |
Daud, et al, Phase I trial of Interleukin-12 plasmid electroporation in patients with metastatic melanoma, Journal of Clinical Oncology, Dec. 20, 2008, vol. 26, No. 36, pp. 5896-5903. |
Flanagan, et al, Unique dielectric properties distinguish stem cells and their differentiated progency, Stem Cells, 2008, 26, pp. 656-665. |
Mali, et al, The effect of electroporation pulses on functioning of the heart, Med Biol Eng Comput, 2008. |
Kuthi, Gundersen, Nanosecond uplse generator with scalable pulse amplitude, IEEE, 2008, pp. 65-68. |
Craiu, Scadden, Chapter 22 flow electroporation with pulsed electric fields for purging tumor cells, Electroporation Protocols: Preclinical and Clinical Gene Medicine, Methods in Molecular Biology, vol. 423, pp. 301-310. |
Mir, Chapter 1 application of electroporation gene therapy: Past, current and future, Electroporation Protocols: Preclinical and Clinical Gene Medicine, Methods in Molecular Biology, vol. 423, pp. 3-17. |
Lin, Lee, An optically induced cell lysis device using dielectrophoresis, Applied Physics Letters, Jan. 20, 2009, 94, 033901, pp. 1-3. |
Kroeger, et al, Curvature-driven pore growth in charged membranes during charge-pulse and voltage-clamp experiments, Biophysical Journal, Feb. 2009, 96, 3, pp. 907-916. |
Maor, et al, Non thermal irreversible electroporation: Novel technology for vascular smooth muscle cells abation, PLOS One, Mar. 9, 2009, vol. 4757-, Iss. 3, e4757, pp. 1-9. |
Shafiee, et al, A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equation, Journal of Biomedical Engineering, Jul. 2009, vol. 131, 074509, pp. 1-5. |
Granot, et al, in vivo imaging of irreversible electroporation by means of electrical impedance tomography, Phys. Med. Biol., Jul. 30, 2009, 54, pp. 4927-4943. |
Daniels, Rubinsky, Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues, Journal of Biomedical Engineering, Jul. 2009, vol. 131, 071006, pp. 1-12. |
Esser, et al, Towards solid tumor treatment by nanosecond pulsed electric fields, Technology in Cancer Research and Treatment, Aug. 2009, vol. 8, No. 4, pp. 289-306. |
Ivorra, et al, In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment,Phys. Med. Biol., Sep. 17, 2009, 54, pp. 5949-5963. |
Garcia, et al, Pilot study of irreversible electroporation for intracranial surgery, 31st Annual International Conference of the IEEE EMBS, IEEE, Sep. 2, 2009, pp. 6513-6516. |
Hong, et al, Cardiac ablation via electroporation, 31st Annual International Conference of the IEEE EMBS, IEEE, Sep. 2, 2009, pp. 3381-3384. |
Neal, Davalos, The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems, Annals of Biomedical Engineering, Dec. 2009, vol. 37, No. 12, pp. 2615-2625. |
Sharma, et al, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 2009, 13, pp. 318-345. |
Ibey, et al, Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells, Biochim Biophys Acta, Nov. 2010, 1800, 11, pp. 1210-1219. |
Tsivian, Polascik, Recent advances in focal therapy of prostate and kidney cancer, Medicine Reports, Jan. 18, 2010, 2, 1, pp. 1-3. |
adEYANJU, et al, The improvement of irreversible electroporation therapy using saline-irrigated electrodes: A theoretical study, Technology in Cancer Research and Treatment, Aug. 2011, vol. 10, No. 4, pp. 347-360. |
Maor, Rubinsky, Endovascular nonthermal irreversible electroporation: A finite element analysis, Journal of Biomedical Engineering, Feb. 7, 2010, vol. 132, 031008, pp. 1-7. |
Choi, et al, Preclinical analysis of irreversible electroporation on rat liver tissues using a microfabricated electroporator, Tissue Engineering Part C, 2010, vol. 16, No. 6, pp. 1245-1253. |
Verbridge, et al, Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis, Tissue Engineering, Part A, Apr. 9, 2010, vol. 16, No. 7, pp. 2133-2141. |
Lee, et al, Advanced hepatic ablation technique for creating complete cell death: Irreversible electroporation, 2010, Radiology, vol. 255, No. 2, pp. 426-433. |
Ball, et al, Irreversible electroporation: A new challenge in “out of the operating theater” anesthesia, Anesth Analg, May 2010, 110, pp. 1305-1309. |
Laufer, et al, Electrical impedance characterization of normal and cancerous human hepatic tissue, Physiol Meas, 2010, 31, pp. 995-1009. |
Sabuncu, et al, Dielectrophoretic separation of mouse melanoma clones, Biomicrofluidics, Jun. 16, 2010, 4, 021101, pp. 1-7. |
Garcia, et al, Intracranial nonthermal irreversible electroporation: In vivo analysis, J Membrane Biol, Jul. 29, 2010, 236, pp. 127-136. |
Neal, et al, Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode, Breat Cancer Res Treat, Aug. 27, 2010, 123, 1, pp. 295-301. |
Zhang, et al, MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: Preclinical feasibility studies in a rodent model, Radiology, Aug. 2010, vol. 256, No. 2, pp. 424-32. |
Neal, et al, A study using irreversible electroporation to treat large, irregular tumors in a canine patient, 32nd Annual International Conference of the IEEE EMBS, IEEE, Aug. 2010, pp. 2747-2750. |
Garcia, et al, Non-thermal irreversible electroporation for deep intracranial disorders, 32nd Annual International Conferenece of the IEEE EMBS, IEEE, Aug. 2010, pp. 2747463-. |
Phillips, et al, Nonthermal irreversible electroporation for tissue decellularization, Journal of Biomedical Engineering, Aug. 16, 2010, vol. 132, 091003, pp. 1-8. |
Pech, et al, Irreversible electroporation of renal cell carcinoma: A first-in-man phase I clinical study, Cardiovasc Intervent Radiol, Aug. 15, 2010. |
Lee, et al, Irreversible electroporation: A novel image-guided cancer therapy, Gut and Liver, Sep. 2010, vol. 4, Supp. 1, pp. S99-104. |
Hong, et al, Cardiac ablation via electroporation, 31st Annual International Conference of the IEEE EMBS, IEEE, Sep. 2, 2010, pp. 3381-3384. |
Dupuy, et al, Irreversible electroporation in a swine lung model, Cardiovasc Intervent Radiol, Dec. 30, 2010, 34, pp. 391-395. |
Arena, et al, Theoretical considerations of tissue electropration with high frequency biopolar pulses, IEEEE, pp. 1-7. |
Deodhar, et al, Renal tissue ablation with irreversible electroporation: Preliminary results in a porcine model, Technology and Engineering, Urology, 2010, 1-7. |
Mccarley, Soulen, Percutaneous ablation of hepatic tumors, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 255-260. |
Neu, Neu, Mechanism of irreversible electroporation in cells: Insight from the models, Irreversible Electroporation: BIOMED, pp. 85-122. |
Charpentier, et al, Irreversible electroporation of the pancreas in swine: A pilot study, HPB, 2010, 12, pp. 348-351. |
Tracy, et al, Irreversible electroporation (IRE): A novel method for renal tissue ablation, BJU International, 107, pp. 1982-1987. |
Onik, Rubinsky, Irreversible electroporation: First patient experience focal therapy of prostate cancer, Irreversible Electroporation, BIOMED, pp. 235-247. |
Mcwilliams, et al, Image-guided tumor ablation: Emerging technologies and future directions, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 302-313. |
Kurup, Callstrom, Image-guided percutaneous ablation of bone and soft tissue tumors, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 276-284. |
Thomson, Human experience with irreversible electroporation, Irreversible Electroporation, BIOMED, 2010, pp. 249-354. |
Saldanha, et al, Current tumor ablation technologies: Basic science and device review, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 247-254. |
Dupuy, Shulman, Current status of thermal ablation treatments for lung malignancies, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 268-275. |
Carmi, Georgiades, Combination percutaneous and intraarterial therapy for the treatment of hepatocellular carcinoma: A review, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 296-301. |
Jarm, et al, Antivascular effects of electrochemotherapy: implicatoins in treatment of bleeding metastases, Expert Rev. Anticancer Ther., 2010, 10, 5, pp. 729-746. |
Maybody, An overview of image-guided percutaneous ablation of renal tumors, Seminars in Interventional Radiology, 2010, vol. 27, No. 3, pp. 261-267. |
Goldberg, Rubinsky, A statistical model for multidimensional irreversible electroporation cell death in tissue, Biomedical Engineering Online, 2010, 9:13, pp. 1-13. |
Sano, et al, Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion, Biomedical Engineering Online, 2010, 9, 83, pp. 1-16. |
Mahmood, Gehl, Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation, Bioelectrochemistry, Jan. 6, 2011, 81, pp. 10-16. |
Garcia, et al, Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient, Feb. 2011, vol. 10, No. 1, pp. 73-83. |
Guo, et al, Irreversible electroporation in the liver: Contrast-enhanced inversion-recovery MR imaging approaches to differentiate reversibly electroporated penumbra from irreversibly electroporated ablation zones, Radiology, Feb. 2011, vol. 258, No. 2, pp. 461-468. |
Bower, et al, Irreversible electroporation of the pancreas: Definitive local therapy without systemic effects, Journal of Surgical Oncology, Feb. 28, 2011, 104, pp. 22-28. |
Ellis, et al, Nonthermal irreversible electroporation for intracranial surgical applications, J Neurosurg, Mar. 2011, 114, pp. 681-688. |
Nesin, et al, Manipulation of cell volume and membrane pore comparision following single cell permeabilization with 60- and 600-ns. electric pulses, Biochim Biophys Acta, Mar. 2011, 1808(3), pp. 792-801. |
Mccall, Nanoknife, liposomal doxorubicin show efficacy against liver cancer, European Congress of Radiology, Mar. 7, 2011, pp. 1-2. |
Mahmood, et al, Diffusion-weighted MRI for verification of electroporation-based treatments, J Membrane Biol, Mar. 6, 2011, 240, pp. 131-138. |
Deodhar, et al, Irreversible electroporation near the heart: Ventricular arrhythmias can be prevented with ECG synchronization, AJR, Mar. 2011, 196, pp. W330-W335. |
Garcia, et al, A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure, Biomedical Engineering Online, 2011, 10: 34, pp. 1-21. |
Li, et al, The effects of irreversible electroporation (IRE) on nerves, PLOS One, Apr. 14, 2011, vol. 6, Iss. 4, e18831, pp. 1-7. |
Neal, et al, Successful treatment of a large soft tissue sarcoma with irreversible electroporaiton, Journal of Clinical Oncology, May 1, 2011, vol. 29, No. 13, pp. e372-e377. |
Thomson, et al, Investigation of the safety of irreversible electroporation in humans, J Vasc Intery Radiol, May 2011, 22, pp. 611-621. |
Rossmeisl, Jr., et al, Successful treatment of a large soft tissue sarcoma with irreversible electroporation, Journal of Clinical Oncology, May 1, 2011, vol. 29, No. 13, pp. e372-e377. |
Daniels, Rubinsky, Temperature modulation of electric fields in biological matter, PLOS One, vol. 6, Iss. 6, e20877, pp. 1-9. |
Lion, et al, Poly(I:C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC, PLOS One, vol. 6, Iss. 6, e20952, pp. 1-10. |
Agerholm-Larsen, et al, Preclinical validation of electrochemotherapy as an effective treatment for brain tumors, Cancer Res, Jun. 1, 2011, 71, 11, pp. 3753-3762. |
Mulhall, et al, Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis, Anal Bioanal chem, Aug. 30, 2011, 401, pp. 2455-2463. |
Troszak, Rubinsky, Self-powered electroporation using a singularity-induced nano-electroporation configuration, Biochemical and Biophysical Research Communications, Sep. 28, 2011, 414, pp. 419-424. |
Arena, et al, High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction, BioMedical Engineering Online, Nov. 21, 2011, 10: 102, pp. 1-20. |
Hjouj, et al, Electroporationo-induced BBB disruption and tissue damage depicted by MRI, Neuro-Oncology, Abstracts from the 16th Annual Scientific Meeting, Nov. 17, 2011, vol. 13, Supp 3, ET-32, p. iii114. |
Mir, Orlowski, Introduction: Electropermeabilization as a new drug delivery approach, Methods in Molecular Medicine, 2000, vol. 37, pp. 99-117. |
O'Brien, et al, Investigation of the Alamar Blue (resarzurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur J Biochem, 2000, 267, pp. 5421-5426. |
Number | Date | Country | |
---|---|---|---|
20160113708 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14733115 | Jun 2015 | US |
Child | 14989061 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13630135 | Sep 2012 | US |
Child | 14733115 | US |