Multiple-tube pinch valve assembly

Information

  • Patent Grant
  • 12152699
  • Patent Number
    12,152,699
  • Date Filed
    Thursday, February 23, 2023
    a year ago
  • Date Issued
    Tuesday, November 26, 2024
    a month ago
Abstract
A multi-tubing pinch valve assembly including a receiving space defined between a pinch protrusion and tubing contact body. The multi-tubing pinch valve assembly is moveable between a retracted state and an extended state. In the extended state, multiple tubes disposed in the receiving space are pinched, restricting flow therethrough. In the retracted state, multiple tubes are capable of being loaded into and/or out of the receiving space.
Description
BACKGROUND

The present disclosure is generally directed to pinch valves, in particular, toward pinch valves for selectively controlling flow through multiple tubes.


In general, internal and/or external valves have been used to selectively control the flow of a fluid (e.g., a gas, a liquid, etc., and/or combinations thereof) through tubing or some other conduit. These valves may be operated to completely or partially block fluid flow. While internal valves are arranged at least partially within a lumen of the tubing, external valves allow fluid flow control from outside of the tubing. In particular, an external valve allows a force to be applied to an external surface of the tubing, or soft conduit, deforming the lumen of the tubing from an unrestricted state to an occluded, or partially occluded, state.


BRIEF SUMMARY

External valves (e.g., pinch valves, etc.) provide the ability to control fluid flow in tubing without requiring the installation of expensive and complex internal valves. Typical pinch valves control fluid flow in tubing by compressing an outer portion of the tubing thereby closing a lumen disposed in an inner portion of the tubing. As can be appreciated, pinch valves offer a sterile fluid flow control for tubing where the components of the pinch valve do not come into direct contact with fluid inside the tubing.


In some examples, a tubing arrangement or system design may require that more than one tube, or section of tubing, be closed at the same time or at different times. In conventional systems, a pinch valve may be positioned at each discrete area where fluid flow control may be desired. Each pinch valve may be independently operated by a respective actuator. In this conventional approach, as the number of the discrete fluid flow control areas increases, so does the number of pinch valves required to service the system. Since each pinch valve includes its own actuator, the cost and complexity of this conventional approach necessarily increases. In addition, the number of components required to perform the fluid control operations under the conventional approach increases the potential for failure and the time required for routine maintenance operations.


It is with respect to the above issues and other problems that the embodiments presented herein were contemplated. Among other things, the present disclosure provides a multiple-tubing, or multi-tubing, pinch valve assembly that is capable of pinching more than one tube, or section of tubing, with a single actuator. In some examples, the multi-tubing pinch valve assembly may be configured to pinch various tubes, or tubing sections, simultaneously. Additionally or alternatively, the multi-tubing pinch valve assembly may pinch a first set of tubes at a first time and pinch a second set of tubes at a different second time. In one example, the multi-tubing pinch valve assembly may allow flow through the first set of tubes while pinching the second set of tubes (e.g., preventing flow, etc.), and vice versa.


In one example, the multi-tubing pinch valve assembly may comprise a compact valve array that is capable of executing a sequence of opening and closing flow paths to each bioreactor in a multiple-bioreactor system. The multi-tubing pinch valve assembly may comprise a valve mechanism that may be built into a bioreactor rocker assembly. This design, among other things, greatly simplifies a disposable set (e.g., tubing set, etc.) used in cell expansion systems, sterile fluid management systems, any suitable system that uses a multi-tubing valving scheme for sterile fluid pathway management, etc. Additionally or alternatively, the multi-tubing pinch valve assembly may integrate with a soft cassette of a disposable set.


In some examples, the multi-tubing pinch valve assembly may correspond to a cam-driven valve array that provides a compact method of opening/closing many parallel tubes in a set sequence. This approach may allow a multiple-bioreactor cell expansion system to execute a “time share” or “duty cycle” method of servicing multiple bioreactors, with the valve array being located on the bioreactor rocker rather than on a static cassette. As can be appreciated, the multi-tubing pinch valve assembly is not limited to use in a multiple-bioreactor system. For instance, the mechanism of the multi-tubing pinch valve assembly may be adapted to any situation where multiple valves may be required to have their positions fixed relative to others.


In a cam-driven approach, the multi-tubing pinch valve assembly may utilize a finger pump type mechanism having the orientation of the tube and fingers rotated 90 degrees relative to the cam. Rather than pumping a single tube, the multi-tubing pinch valve assembly is capable of valving many tubes simultaneously. This multi-tubing pinch valve assembly design can be paired with a soft cassette, as the fingers actuate in a direction normal to the soft cassette plane. The multi-tubing pinch valve assembly allows the occlusion depth to be tightly controlled, which allows for the possibility of intentionally partially occluding tubes (e.g., partial restriction of fluid flow, etc.). Another benefit of the examples described herein include the compact size and simplified electronics of the multi-tubing pinch valve assembly. Among other things, these features allow the valve unit to be mounted to a bioreactor rocker, in some cases, thereby simplifying a disposable set used in cell expansion systems, for example, by reducing the number of tubes that must run from the bioreactors to the static cassette. Further, the multi-tubing pinch valve assembly may ensure that valve positions are locked relative to each other, allowing assurance of correct flow. For example, it can be assured that one of the tubes in the time share model is always open, preventing pressure buildup, or two tubes may always be open or closed relative to each other, assuring a complete fluid path.


In some examples, the multi-tubing pinch valve assembly may be driven by a motor operatively connected to a camshaft comprising two cam profiles. A first anvil assembly may be disposed adjacent a first cam profile of the two cam profiles and a second anvil assembly may be disposed adjacent a second cam profile of the two cam profiles. As the motor rotates the camshaft, the two cam profiles rotate relative to the first anvil assembly and the second anvil assembly. At specific angles of rotation, at least one cam lobe, or protrusion, disposed on the cam profile may contact the first anvil assembly and the second anvil assembly. For instance, a first cam lobe associated with the first cam profile may contact the first anvil assembly at a first angle of rotation of the camshaft. As the first cam lobe contacts the first anvil assembly, the shape of the first cam lobe may cause the first anvil assembly to move in a direction away from the camshaft toward a pinch plate. A first section of tubing may be disposed in a first space between the first anvil and the pinch plate. In this arrangement, as the first anvil assembly moves toward the pinch plate, a first anvil of the first anvil assembly may contact and deform the first section of tubing such that a lumen of the first section of tubing closes. The first section of tubing may remain closed while the first cam lobe is at, or within a predetermined angular range (e.g., 1-5 degrees) of, a highest displacement point of the first cam lobe and the first anvil maintains the first section of tubing in a closed state.


The multi-tubing pinch valve assembly may be configured as an array of independently actuated multiple-tubing pinch valves. For instance, the multi-tubing pinch valve assembly may include a five-valve array of independently actuated four-tube pinch valves. At least one benefit to this independent actuation arrangement includes, but is in no way limited to, operating the multi-tubing pinch valve assembly in any combination of open or closed states.


This present disclosure describes, among other things, a multi-tubing pinch valve assembly comprising an array that is split into discrete multi-tube valves (e.g., an array of five 4-tube pinch valves), each multi-tube valve in the array capable of being driven by a small linear actuator (e.g., a solenoid, piezoelectric actuator, screw-type actuator, pneumatic cylinder, hydraulic cylinder, and/or a stepper motor linear actuator, etc.). This approach allows for any combination of valve states during a protocol (e.g., system operation, etc.). For example, in a cell expansion system, all valves may be opened during loading of a disposable (e.g., tubing set, etc.), valves may cycle continuously on a 10-second duty cycle during a cell feed, and valves may be opened sequentially for longer durations during tasks such as cell harvest, and/or the like.


In some examples, the pinching jaws of each multi-tube valve (e.g., 4-tube valve, etc.) of the multi-tubing pinch valve assembly may be slightly offset from one another. Among other things, this arrangement may reduce the pinch force from the actuator that may be required to occlude the tubing and increase the jaw gap range that results in occlusion. Such an increased jaw gap may provide enhanced cycling life and tubing integrity over time compared to designs including a decreased jaw gap. In one example, a single set of opposing jaws may pinch four tubes at once. Additionally or alternatively, the independent operability of each of the multi-tube valves may allow for disposable design optimization and simplification when compared with designs that require different valving.


The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.


Numerous additional features and advantages are described herein and will be apparent to those skilled in the art upon consideration of the following Detailed Description and in view of the figures.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.



FIG. 1A shows a first perspective view of a multi-tubing pinch valve assembly in accordance with embodiments of the present disclosure;



FIG. 1B shows a front elevation view of the multi-tubing pinch valve assembly shown in FIG. 1A;



FIG. 1C shows a second perspective view of the multi-tubing pinch valve shown in FIG. 1A;



FIG. 1D shows a partially exploded perspective view of the multi-tubing pinch valve assembly shown in FIG. 1A;



FIG. 2A shows a schematic section view of the multi-tubing pinch valve assembly taken through line 2-2 shown in FIG. 1D;



FIG. 2B shows a perspective view of an anvil assembly in accordance with examples of the present disclosure;



FIG. 3A is a schematic section view of the anvil assembly and cam of a multi-tubing pinch valve assembly at a first rotational position in accordance with examples of the present disclosure;



FIG. 3B is a schematic section view of the anvil assembly and cam of a multi-tubing pinch valve assembly at a second rotational position in accordance with examples of the present disclosure;



FIG. 3C is a schematic section view of the anvil assembly and cam of a multi-tubing pinch valve assembly at a third rotational position in accordance with examples of the present disclosure;



FIG. 4A shows a first perspective view of a multi-tubing pinch valve assembly in accordance with embodiments of the present disclosure;



FIG. 4B shows a plan view of the multi-tubing pinch valve assembly shown in FIG. 4A;



FIG. 5A shows a schematic plan view of the multi-tubing pinch valve assembly shown in FIG. 4A in a closed, tubing-occluded, state in accordance with examples of the present disclosure;



FIG. 5B shows a schematic plan view of the multi-tubing pinch valve assembly shown in FIG. 4A in a partially closed, tubing-partially-occluded, state in accordance with examples of the present disclosure;



FIG. 5C shows a schematic plan view of the multi-tubing pinch valve assembly shown in FIG. 4A in an open, tubing-open, state in accordance with examples of the present disclosure;



FIG. 6A shows a first perspective view of a multi-tubing pinch valve assembly in an array configuration in accordance with examples of the present disclosure;



FIG. 6B shows a second perspective view of a multi-tubing pinch valve assembly in an array configuration in accordance with examples of the present disclosure;



FIG. 7 shows a perspective view of a multi-tubing pinch valve assembly in an array configuration for a multiple-bioreactor system;



FIG. 8 is a schematic block diagram of a hydraulic layout for a cell expansion system having a single bioreactor in accordance with examples of the present disclosure;



FIG. 9 is a schematic block diagram of a hydraulic layout for a cell expansion system having multiple bioreactors and a multi-tubing pinch valve assembly in accordance with examples of the present disclosure;



FIG. 10 is a perspective view of another exemplary multitube pinch valve assembly in accordance with the present disclosure;



FIG. 11 is a perspective view of the multitube pinch valve assembly of FIG. 10 with a cover removed;



FIG. 12 is a perspective view of an exemplary actuation member of the multitube pinch valve assembly of FIG. 10;



FIG. 13 is a perspective view of a bioreactor support frame configured for the multitube pinch valve assembly of FIG. 10;



FIG. 14 is a perspective view of an additional exemplary multitube pinch valve assembly in accordance with the present disclosure;



FIG. 15 is a perspective view of the multitube pinch valve assembly of FIG. 14 with a bioreactor support frame removed;



FIG. 16 is a perspective view of the multitube pinch valve assembly of FIG. 14 with a cover removed;



FIG. 17 is a cross-sectional view of the multitube pinch valve assembly of FIG. 14; and



FIG. 18 is a perspective view of a bioreactor support frame configured for the multitube pinch valve assembly of FIG. 14.





DETAILED DESCRIPTION

Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the present disclosure may use examples to illustrate one or more aspects thereof. Unless explicitly stated otherwise, the use or listing of one or more examples (which may be denoted by “for example,” “by way of example,” “e.g.,” “such as,” or similar language) is not intended to and does not limit the scope of the present disclosure.


The ensuing description provides embodiments only, and is not intended to limit the scope, applicability, or configuration of the claims. Rather, the ensuing description will provide those skilled in the art with an enabling description for implementing the described embodiments. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the appended claims.


Various aspects of the present disclosure will be described herein with reference to drawings that may be schematic illustrations of idealized configurations.


Conventional external valving solutions generally utilize a single pinch valve to control fluid flow in a single tube. When fluid flow control is required for multiple tubes, each tube of the multiple tubes may employ a respective pinch valve. As can be appreciated, this conventional arrangement increases the number of components needed for a multiple-tube fluid flow control application. With the increased number of components, the complexity of the conventional multiple-tube fluid flow control application increases. Additionally or alternatively, control of each pinch valve in a multiple-tube fluid flow control application, where each tube has its own pinch valve, requires complex valve controls, timing, wiring, and programming. In any event, employing a single pinch valve for every tube, or section of tubing, that is to be pinched in a conventional approach results in increased maintenance times, failures, and system complexity.


It is with respect to the above issues and other problems that the embodiments presented herein were contemplated.


Referring now to FIGS. 1A-1D, a multiple-tube pinch valve assembly 100 is shown in accordance with embodiments of the present disclosure. The multiple-tube pinch valve assembly 100 may comprise a base 104 (e.g., baseplate, frame, support structure, etc.), a camshaft 108, at least one cam 112 attached to the camshaft 108, at least one anvil assembly 150, and a tubing platen 120. In some examples, the tubing platen 120 may comprise a plurality of tube receiving apertures 128 disposed along a length of the tubing platen 120. Each tube receiving aperture 128 of the plurality of tube receiving apertures 128 may be configured to receive a tube, or section of tubing, therein. The plurality of tube receiving apertures 128 may extend in a direction that is perpendicular to the longitudinal axis 110 of the camshaft 108.


Features of the multiple-tube pinch valve assembly 100 may be described in conjunction with a coordinate system 102. The coordinate system 102, as shown in the figures, includes three-dimensions comprising an X-axis, a Y-axis, and a Z-axis. Additionally or alternatively, the coordinate system 102 may be used to define planes (e.g., the XY-plane, the XZ-plane, and the YZ-plane) of the multiple-tube pinch valve assembly 100. These planes may be disposed orthogonal, or at 90 degrees, to one another. While the origin of the coordinate system 102 may be placed at any point on or near the components of the multiple-tube pinch valve assembly 100, for the purposes of description, the axes of the coordinate system 102 are always disposed along the same directions from figure to figure. In some examples, reference may be made to dimensions, angles, directions, relative positions, and/or movements associated with one or more components of the multiple-tube pinch valve assembly 100 with respect to the coordinate system 102. For example, the width of the multiple-tube pinch valve assembly 100 may be defined as a dimension along the X-axis of the coordinate system 102, the height of the multiple-tube pinch valve assembly 100 may be defined as dimension along the Y-axis of the coordinate system 102, and the depth of the multiple-tube pinch valve assembly 100 may be defined as a dimension along the Z-axis of the coordinate system 102. Additionally or alternatively, the width of the tubing platen 120 may be defined as a dimension along the X-axis of the coordinate system 102, the height of the tubing platen 120 may be defined as dimension along the Y-axis of the coordinate system 102, and the depth of the tubing platen 120 may be defined as a dimension along the Z-axis of the coordinate system 102.


The multiple-tube pinch valve assembly 100 may include a motor 132 having an output shaft 134, a drive body 136, and a cam drive body 140. As the output shaft 134 of the motor 132 rotates, power is transmitted from the drive body 136 to the cam drive body 140. In one example, the drive body 136 and the cam drive body 140 may be configured as respective gears in meshing contact with one another. In one example, the drive body 136 and the cam drive body 140 may correspond to pulleys (e.g., timing belt pulleys, V-pulleys, etc.). In this example, power may be transmitted from the drive body 136 to the cam drive body 140 via a drive belt 138. The drive belt 138 may correspond to a timing belt, a V-belt, a ribbed V-belt, a link V-belt, etc., and/or any other continuous belt. In any of these examples, as the output shaft 134 of the motor 132 rotates, the camshaft 108 is caused to rotate about the longitudinal axis 110. Rotation of the camshaft 108 causes the cam 112 having at least one cam profile shape to rotate about the longitudinal axis 110. The cam 112 may be keyed (e.g., via a key and keyway, a spline, etc.), fixed, formed from, and/or otherwise affixed to the camshaft 108. The cam 112 may rotate through 360 degrees. At various angular rotations, different portions of the cam profile shape of the cam 112 may be presented to an anvil assembly 150. For instance, as a protrusion of the cam 112 contacts the anvil assembly 150, the anvil assembly 150 may lift (e.g., move in the positive Y-axis direction) toward the tubing platen 120 and as a recess, or heel, of the cam 112 contacts the anvil assembly 150, the anvil assembly 150 may lower (e.g., move in the negative Y-axis direction) away from the tubing platen 120. In this manner, the rotation of the camshaft 108 may cause the anvil assembly 150 to pinch the multiple tubes 124 in the tube receiving apertures 128 of the multiple-tube pinch valve assembly 100.


In some examples, the multiple-tube pinch valve assembly 100 may include a bioreactor support frame 144. The bioreactor support frame 144 may comprise a plurality of recesses 142 configured to receive and/or hold a respective bioreactor (e.g., hollow fiber bioreactor, cell expansion system bioreactor, etc.). In some examples, the multiple tubes 124 that are disposed in the tube receiving apertures 128 may be interconnected to the multiple bioreactors that are held, or supported, by the bioreactor support frame 144. Fluid flow control to multiple bioreactors may benefit from altering the timing associated with opening and closing the multiple tubes 124 associated with each bioreactor at a same time or at different times.


As shown in the front elevation view of FIG. 1B, the multiple-tube pinch valve assembly 100 may be configured to have a valve array 148A-148E, or an array of valves, comprising a first multi-tube valve 148A, a second multi-tube valve 148B, a third multi-tube valve 148C, a fourth multi-tube valve 148D, and/or a fifth multi-tube valve 148E. Each multi-tube valve of the valve array 148A-148E, may be associated with a set of tubes dedicated to a particular bioreactor. For instance, the first multi-tube valve 148A may control the fluid flow of multiple tubes 124 that are received in the tube receiving apertures 128 associated with the first multi-tube valve 148A. Continuing this example, the second multi-tube valve 148B may control the fluid flow of multiple tubes 124 that are received in the tube receiving apertures 128 associated with the second multi-tube valve 148B, and so on. Each multi-tube valve of the valve array 148A-148E may include a respective anvil assembly 150 and a respective cam 112. In this manner, the cam 112 may be arranged on the camshaft 108 such that one multi-tube valve of the valve array 148A-148E can be operated at an individual, or independent, timing relative to the other multi-tube valves in the valve array 148A-148E. Stated another way, a cam 112 of one multi-tube valve of the valve array 148A-148E may be rotationally oriented out of phase from at least one other multi-tube valve of the valve array 148A-148E. In this example, as the camshaft 108 rotates, the valves in the valve array 148A-148E may open and close at the same or different times. In some examples, the valve array 148A-148E may be disposed along a length of the longitudinal axis 110 (e.g., in the X-axis direction) of the camshaft 108. Although shown comprising five separate valves 148A-148E, the multi-tubing pinch valve assembly 100 may include any number of valves. In some examples, the number of valves may be configured to match a number of bioreactors or sets of multiple tubes 124 that require fluid flow control. As can be appreciated, the valve array of the multi-tubing pinch valve assembly 100 may comprise one, two, three, four, five, or more valves.



FIG. 1D shows a partially exploded perspective view of the multi-tubing pinch valve assembly 100, exposing the anvil grating plate 116. The anvil grating plate 116 may comprise a number of apertures passing therethrough. The apertures may be arranged along the X-axis of the anvil grating plate 116. Each aperture may be sized to receive a portion of the anvil assembly 150. As the camshaft 108 rotates, the cam 112 may contact the anvil assembly 150 moving a portion of the anvil assembly 150 into and/or out of the apertures. The anvil grating plate 116 may comprise a top surface that is arranged a distance from a tubing platen contact surface of the tubing platen 120. This distance may provide a space in which the multiple tubes 124 are disposed. As can be appreciated, as the portion of the anvil assembly 150 enters this space, the multiple tubes 124 may be closed (e.g., pinched) and as the portion of the anvil assembly 150 leaves this space, the multiple tubes 124 may be opened. Additional detail regarding this cam-actuated pinching and fluid flow control of multiple tubes is described in conjunction with FIGS. 2A-3C.



FIG. 2A shows a schematic section view of the multi-tubing pinch valve assembly taken through line 2-2 shown in FIG. 1D. The camshaft 108 is shown having the cam 112 oriented rotationally in a position where the anvil assembly 150 is pinching the multiple tubes 124 disposed in the tube receiving apertures 128 (e.g., in the space between the anvil grating plate 116 and the tubing platen 120). In this position, the anvil assembly 150 is in contact with a cam lobe of the cam 112 and the multiple tubes 124 are shown in a pinched state. Fluid flow through the multiple tubes 124 is restricted in the pinched state where the anvil assembly 150 contacts the multiple tubes 124.


The anvil assembly 150, shown in greater detail in FIG. 2B, includes an anvil 200 comprising an anvil body 204 and a pinch edge 208 extending from a first end 212A to a second end 212B of the anvil assembly 150. The anvil 200 may comprise a protrusion extending from at least one stop ledge 216 of the anvil body 204 in the Y-axis direction. The protrusion may be sized to engage with an aperture, or receptacle, in the anvil grating plate 116 (e.g., in a slip fit, clearance fit, and/or the like). The protrusion may terminate at the pinch edge 208. In some examples, the pinch edge 208 may be flat, radiused, or sharp. The pinch edge 208 may comprise a tapered portion that slopes away from the pinch edge 208 toward the stop ledge 216. In some examples, the tapered portion may allow a section of the multiple tubes 124 being pinched to flex and move around the pinch edge 208. This shape, among other things, may reduce stresses placed on the multiple tubes 124 during pinching.


The anvil assembly 150 may comprise at least one cam contact portion disposed on a lower portion of the anvil body 204. The at least one cam contact portion may extend past the anvil body 204. In any event, the at least one cam contact portion may provide a contact surface between the anvil body 204 and the cam 112 of the multiple-tube pinch valve assembly 100. In some examples, the at least one cam contact portion may correspond to a cam follower 210, or other bearing. The cam follower 210, in some cases, may be made to include a hardened steel wheel and a bearing (e.g., roller bearing, ball bearing, etc.). The lower portion of the anvil body 204 may include a tapered surface 220 disposed on either side of a plane running through a center of the anvil body 204 (e.g., along the XY-plane). The tapered surface 220 may provide clearance for portions of the cam 112 and the cam profile shape as the cam 112 moves relative to the anvil body 204 and anvil assembly 150.



FIGS. 3A-3C shown schematic section views of the anvil assembly 150 as the cam 112 rotates about the longitudinal axis 110. A rotation position fiducial 302 is shown on the cam 112 to illustrate the position from a first angular reference (e.g., illustrated as a zero degree line). The cam 112 may comprise a cam profile shape (e.g., disposed around a periphery of the cam 112) including a cam heel 308 (e.g., a low point), a cam lobe 316 (e.g., a high point), and a cam transition 312 disposed between the cam heel 308 and the cam lobe 316. The cam heel 308 may correspond to a first point along the cam profile shape where a distance from the periphery of the cam 112 to the center of the cam 112 (e.g., the longitudinal axis 110 of the camshaft 108) is closest than other points along the cam profile shape. Additionally or alternatively, the cam lobe 316 may correspond to a second point along the cam profile shape where a distance from the periphery of the cam 112 to the center of the cam 112 (e.g., the longitudinal axis 110 of the camshaft 108) is further than other points along the cam profile shape. As can be appreciated, the distance from the periphery of the cam 112 to the center of the cam 112 at the cam transition 312 may be a distance that is between the distance measured at the first point and the second point.


In FIGS. 3A-3C, the multiple tubes 124 are disposed in a space between the anvil grating plate 116 and the tubing platen 120. In some examples, this space may correspond to the tube receiving apertures 128 described above. FIG. 3A corresponds to the anvil assembly 150 at a first cam 112 rotational position, FIG. 3B corresponds to the anvil assembly 150 at a second cam 112 rotational position, and FIG. 3C corresponds to the anvil assembly 150 at a third cam 112 rotational position. In the first rotational position of the cam 112, the multiple tubes 124 are shown in an open fluid flow state. In this position, fluid may be allowed to flow through each of the multiple tubes 124. In the second rotational position of the cam 112, the multiple tubes 124 are shown in a partially occluded, restricted fluid flow, state. In this position, fluid may be allowed to flow through each of the multiple tubes 124 but in a restricted, partially closed, state. For example, the flow rate of fluid flowing through the multiple tubes 124 may be reduced in the second rotational position when compared to the first rotational position. In the third rotational position of the cam 112, the multiple tubes 124 are shown in a closed state. In this position, fluid is restricted from flowing through each of the multiple tubes 124. This third rotational position may correspond to a completely occluded tubing state, which may also be referred to herein as a pinched or pinched closed state of the multiple tubes 124.


As shown in FIG. 3A, the anvil assembly 150 is in a lowermost position, where the protrusion of the anvil 200 is disposed in the anvil aperture 304 of the anvil grating plate 116. In particular, the cam follower 210 of the anvil assembly 150 is disposed in contact with the cam heel 308 of the cam 112. In this lowermost position, the pinch edge 208 may be disposed adjacent the multiple tubes 124. The multiple tubes 124 are not pinched by the anvil 200 in FIG. 3A, allowing fluid flow through the multiple tubes 124 from the left-hand side of the page to the right-hand side of the page, or vice versa.


When the camshaft 108 is rotated by a first rotation 320A (e.g., shown as a first clockwise rotation), the cam 112 rotates from the zero-degree reference to the al angular position (e.g., comprising a non-zero angle measured from the zero-degree reference), as shown in FIG. 3B. In the al angular position, the cam follower 210 of the anvil assembly 150 is shown in contact with the cam transition 312 of the cam 112. Since the distance from the periphery of the cam 112 at the cam transition 312 is greater than the distance from the periphery of the cam 112 at the cam heel 308, the anvil assembly 150 raises, or lifts, upward disposing the pinch edge 208 in the space between the anvil grating plate 116 and the tubing platen 120. More specifically, the pinch edge 208 contacts the multiple tubes 124 disposed in the tube receiving apertures 128 and deforms the multiple tubes 124 restricting flow therethrough. In the rotational position shown in FIG. 3B, the anvil assembly 150 deforms the multiple tubes 124 providing a partially occluded flow path 324 at least along the pinch edge 208 (e.g., extending into the page).


Continuing the rotation from FIG. 3B, the camshaft 108 is rotated by a second rotation 320B (e.g., shown as a second continuing clockwise rotation) further rotating the cam 112 from the al angular position to the α2 angular position. In the α2 angular position, the cam follower 210 of the anvil assembly 150 is shown in contact with the cam lobe 316 of the cam 112. Since the distance from the periphery of the cam 112 at the cam lobe 316 is greater than the distance from the periphery of the cam 112 measured at the cam transition 312, the anvil assembly 150 further raises, or lifts, upward disposing the pinch edge 208 further in the space between the anvil grating plate 116 and the tubing platen 120. In this raised position, the pinch edge 208 deforms the multiple tubes 124 disposed in the tube receiving apertures 128 completely restricting flow therethrough. In the rotational position shown in FIG. 3C, the anvil assembly 150 deforms the multiple tubes 124 providing a pinched tubing point 328 at least along the pinch edge 208 (e.g., extending into the page).


The cam 112 may also be configured to provide an “all-open” state in which all of the tubes 124 are open and not constricted by the anvil assembly 150. Such an “all open” state improves loading of the bioreactor support frame 144. The cam 112 may also be configured to be removable from the assembly 100 to allow all of the bioreactors to be opened simultaneously.


Although described as rotating in a clockwise direction, it should be appreciated that the camshaft 108 may be rotated in a counterclockwise direction, a clockwise direction, and/or combinations thereof. In some examples, the motor 132 may be rotated in any rotational direction causing the rotation of the camshaft 108. Additionally or alternatively, while described as having a cam heel 308, cam transitions 312, and a cam lobe 316, it should be appreciated that the cam 112 may include greater or fewer protrusions, shapes, dwells, lobes, and recesses than are shown and described in FIGS. 1A-3C.


Referring to FIGS. 4A and 4B, various views of a multi-tubing pinch valve assembly 400 is shown in accordance with embodiments of the present disclosure. The multi-tubing pinch valve assembly 400 may provide an array of pinch valves that utilize independently controllable hinged clamp mechanisms. In some examples, the multi-tubing pinch valve assembly 400 may include at least one base 404, hinge plate 416, and clamp platen 420. Multiple tubes 124 may be disposed between the hinge plate 416 and the clamp platen 420. In one example, the multiple tubes 124 may be disposed in tube receiving apertures 128 associated with each valve. The hinge plate 416 may be pivotally connected to a hinge support block 424 at a first point via a pivot axis. An actuator, for example, linear actuator 410, may be attached to a second point of the hinge plate 416. The linear actuator 410 may correspond to a solenoid, a screw-type actuator, and/or a stepper motor-actuated screw-type actuator.


The linear actuator 410 may be mounted to a mount body 408 that is fixed relative to the base 404 of the multi-tubing pinch valve assembly 400. As the linear actuator 410 is actuated, a translation rod 412 may move between a retracted state and an extended state, or vice versa. Extending the translation rod 412 may move the hinge plate 416 toward the clamp platen 420. In this extended position, the multiple tubes 124 disposed in the tube receiving aperture 128 may be pinched by one or more features of the hinge plate 416 and the clamp platen 420.


The clamp platen 420 may be fixed relative to the base 404. As the linear actuator 410 is actuated, the translation rod 412 may move the hinge plate 416 from an open state to a closed state, or vice versa. In the open state, at least one portion of the hinge plate 416 may be separated further from the clamp platen 420 than when in the closed state. When in the open state, the multiple tubes 124 may be loaded and/or removed from the tube receiving aperture 128. Stated another way, the multiple tubes 124 may not be clamped, or pinched, when in the open state. However, when in the closed state, the multiple tubes 124 may be pinched between the hinge plate 416 and the clamp platen 420. Additional detail regarding the construction of the hinge plate 416 and the clamp platen 420 and the fluid flow control (e.g., pinching) arrangement is described in conjunction with FIGS. 5A-5C.


In some examples, the multi-tubing pinch valve assembly 400 may comprise an array of valves arranged adjacent to one another. As shown in the plan view of FIG. 4B, four separate valves are shown, each valve configured to pinch multiple tubes 124 associated therewith. Each valve of the multi-tubing pinch valve assembly 400 may comprise a linear actuator 410, a translation rod 412, and a hinge plate 416. Although shown with separate clamp platens 420 in FIGS. 4A and 4B, it should be appreciated that different valves may share a clamp platen 420. For instance, and as shown in FIGS. 6A and 6B, the dual clamp platen 620 is used by more than one valve. The array of valves of the multi-tubing pinch valve assembly 400 shown in FIG. 4B, show a first row comprising two valves with linear actuators 410 that are configured to extend from right to left and a second row comprising two valves with linear actuators 410 that are configured to extend from left to right. Although shown comprising four separate valves, the multi-tubing pinch valve assembly 400 may include any number of valves. In some examples, the number of valves may be configured to match a number of bioreactors or sets of multiple tubes 124 that require fluid flow control. As can be appreciated, the valve array of the multi-tubing pinch valve assembly 400 may comprise one, two, three, four, five, or more valves.



FIGS. 5A-5C show schematic plan views of the multi-tubing pinch valve assembly 400 described above moving between a closed state and an open state. The linear actuator 410 is shown attached to a mount body 408 that is fixed to the base 404. A hinge plate 416 is shown pivotally attached to a hinge support block 424 that is fixed to the base 404. The clamp platen 420 may be fixed to the base 404 or other portion of the multi-tubing pinch valve assembly 400. The hinge plate 416 may comprise a hinge pinch protrusion 516 extending from a surface of the hinge plate 416 in a direction toward the clamp platen 420. In some examples, the clamp platen 420 may comprise a tubing contact portion that is configured to contact the multiple tubes 124 disposed in the tube receiving aperture 128. In some examples, the tubing contact portion may correspond to a flat plate surface and/or a platen pinch protrusion 520 that extends from a surface of the clamp platen 420 (e.g., in a direction of the hinge plate 416).


The linear actuator 410 may be attached to a mount body 408. The mount body 408 may be fixed relative to the base 404. The linear actuator 410 may include a translation rod 412 that moves relative to the mount body 408 (e.g., in a direction toward or away from the mount body 408). The translation rod 412 may comprise a clevis pin 504 that engages with a clevis of the hinge plate 416. In some examples, the hinge plate 416 may comprise a clevis slot 508 in which the clevis pin 504 may be disposed.



FIG. 5A shows a schematic plan view of the multi-tubing pinch valve assembly 400 in a closed, tubing-occluded, state in accordance with examples of the present disclosure. In this state, the translation rod 412 of the linear actuator 410 is extended by a first translation vector 502A. The clevis pin 504 moving in the clevis slot 508 of the hinge plate 416 pivots the hinge plate 416 about the hinge pin 512 (e.g., pivot axis) in this state moving the hinge pinch protrusion 516 into contact with the multiple tubes 124 pinching the multiple tubes 124 between the hinge pinch protrusion 516 of the hinge plate 416 and the platen pinch protrusion 520 of the clamp platen 420. When the translation rod 412 is extended in this state, fluid flow through the multiple tubes 124 is occluded completely at the pinched tubing point 328.



FIG. 5B shows a schematic plan view of the multi-tubing pinch valve assembly 400 in a partially closed or partially open, tubing-partially-occluded, state in accordance with examples of the present disclosure. In this tubing-partially-occluded state, the translation rod 412 of the linear actuator 410 is retracted by a second translation vector 502B from the position shown in FIG. 5A. As the translation rod 412 retracts, the clevis pin 504 moves in the clevis slot 508 of the hinge plate 416 pivoting the hinge plate 416 about the hinge pin 512 (e.g., pivot axis) in a first hinge plate rotation 506A. In this position, the hinge pinch protrusion 516 is in contact with the multiple tubes 124 partially deforming the multiple tubes 124 and the fluid flow lumens of each of the multiple tubes 124. More specifically, the multiple tubes 124 are captured between the hinge pinch protrusion 516 of the hinge plate 416 and the platen pinch protrusion 520 of the clamp platen 420 providing a partially occluded flow path 324 through the multiple tubes 124. In the tubing-partially-occluded state, fluid flow rate through the multiple tubes 124 disposed in the tube receiving aperture 128 may be reduced when compared to a tubing-open state.



FIG. 5C shows a schematic plan view of the multi-tubing pinch valve assembly 400 in an open, tubing-open, state in accordance with examples of the present disclosure. In this tubing-open state, the translation rod 412 of the linear actuator 410 is retracted by a third translation vector 502C from the position shown in FIGS. 5A and 5B. As the translation rod 412 retracts, the clevis pin 504 moves in the clevis slot 508 of the hinge plate 416 pivoting the hinge plate 416 about the hinge pin 512 (e.g., pivot axis) in a second hinge plate rotation 506B. In this open position, the hinge pinch protrusion 516 is brought out of deforming contact with the multiple tubes 124. In some examples, the multiple tubes 124 may return to an undeformed state and the fluid flow lumens of each of the multiple tubes 124 may open in this state. When the multi-tubing pinch valve assembly 400 is in the tubing-open state, the multiple tubes 124 may be removed from, or loaded into, the clamp platen 420. While described as moving between a closed and an open state, it should be appreciated that the multi-tubing pinch valve assembly 400 may move between an open and closed state by reversing the order and movements described above.



FIGS. 6A and 6B show perspective views of a multi-tubing pinch valve assembly 400 in an array configuration in accordance with examples of the present disclosure. As described above, the array of valves may comprise a plurality of linear actuators 410 and hinge plates 616 that are similar, if not identical, to the hinge plate 416 described above. In FIGS. 6A and 6B, the multi-tubing pinch valve assembly 400 and array may include two immediately adjacent valves that share a dual clamp platen 620. The dual clamp platen 620 may comprise a first platen pinch protrusion 520 extending from a first surface toward a first hinge plate 616 and a second platen pinch protrusion 520 extending from an opposite second surface toward a second hinge plate 616. Among other things, this arrangement may allow for a more compact arrangement of valves in the array of valves making up the multi-tubing pinch valve assembly 400.



FIG. 7 shows a perspective view of a multi-tubing pinch valve assembly 700 in an array configuration, for example, in a multiple-bioreactor system. In some examples, the multi-tubing pinch valve assembly 700 may correspond to the multi-tubing pinch valve assembly 400 described in FIGS. 4A-6B. In FIG. 7, the bioreactor support frame 744 includes a plurality of recesses 142 configured to receive and hold a respective bioreactor 704A-704E. As shown in FIG. 7, the multi-tubing pinch valve assembly 700 may include five separate bioreactors 704A-704E. In this example, the multi-tubing pinch valve assembly 700 may include an array of valves comprising five separate valves, one valve per bioreactor 704A-704E. Each valve in the array of valves of the multi-tubing pinch valve assembly 700 may be configured to pinch multiple tubes 124 for each bioreactor 704A-704E. For instance, each bioreactor 704A-704E may include at least four tubes. A first pair of these four tubes may be associated with an intracapillary loop of a respective bioreactor 704A-704E and a second pair of these four tubes may be associated with the extracapillary loop of the respective bioreactor 704A-704E. Among other things, the multi-tubing pinch valve assembly 700 may allow independent opening and closing of the multiple tubes 124 for each bioreactor 704A-704E.



FIG. 8 is a schematic block diagram 800 of a hydraulic layout for a cell expansion system having a single bioreactor 704A in accordance with examples of the present disclosure. As shown, the bioreactor of FIG. 8 includes an intracapillary circulation (IC) loop 810 and an extracapillary circulation (EC) loop 812. In a single bioreactor these loops may be opened and closed by one or more valves. A cell inlet bag attachment point is at 820. A cell inlet line extends through a cell inlet valve 822 to an IC inlet pump 824. From the pump 824, the line extends to an air removal chamber/level detection 826. From the air removal chamber/level detection 826, the line branches off to waste 828 and to IC circulation valve 830. From valve 830 the line extends into the bioreactor 704A. From the bioreactor 704A, the line branches to waste 828, IC circulation pump 832, and to harvest 836. Harvest valve 892 controls flow to harvest 836. From pump 832, the line goes to IC inlet pressure sensor 834 and to the IC circulation valve 830.


A reagent attachment point is at 838. A regent line extends through a reagent valve 840 to the cell inlet line. An IC media attachment point is at 842. An IC media line extends through IC media valve 844 to the reagent line.


An EC media attachment point is at 850. From the EC media attachment point 850, an EC line extends through EC media valve 852. A wash connection point is at 854, and a wash valve is at 856. A distribution valve is along a line connecting the EC loop 812 and the IC loop 810. The EC loop 812 includes an EC inlet pump 870, which is downstream from an EC fluid detector 872. The EC loop 812 further includes a GTM chamber 880, an EC inlet pressure sensor 882, an EC circulation pump 884, and an EC outlet pressure sensor 886. An EC waste valve 888 is on an EC waste line extending to waste 828. An IC waste valve 890 and an IC outlet pressure sensor 894 are upstream of waste 828 on the IC side.



FIG. 9 is a schematic block diagram 900 of a hydraulic layout for a cell expansion system having multiple bioreactors and a multi-tubing pinch valve assembly 100, 400, 700 in accordance with examples of the present disclosure. As shown in the schematic block diagram 900, the tubing associated with the IC loop and the EC loop of each of the five bioreactors may be controlled by the valves in the valve array. These valves may correspond to any of valves shown in the multiple-tube pinch valve assemblies 100, 400, 700 described herein. In some examples, the valve array shown in the schematic block diagram 900 may correspond to the valve array 148A-148E described in conjunction with FIGS. 1A-3C. In one example, each valve in the valve array shown in the schematic block diagram 900 may correspond to the hinge plate 416 and clamp platen 420 of the multi-tubing pinch valve assembly 400 described in conjunction with FIGS. 4A-5C and/or the hinge plate 616 and dual clamp platen 620 shown in FIGS. 6A and 6B.



FIGS. 10-13 illustrate a multitube pinch valve assembly 1100 in accordance with the present disclosure. The assembly 1100 generally includes a base 1110 and a bioreactor support frame 1310. With particular reference to FIGS. 11 and 12, the base 1110 includes a plurality of hinge plates 1112A-1112E. Any suitable number of the hinge plates may be included. In the example illustrated, five hinge plates 1112A, 1112B, 1112C, 1112D, and 1112E are included. Each one of the hinge plates 1112A-1112E includes a hinge pinch protrusion 1114. The hinge plates 1112A-1112E are each individually actuated by any suitable actuation mechanism. In the example illustrated, each one of the hinge plates 1112A-1112E is actuated by a different actuation mechanism 1120A, 1120B, 1120C, 1120D, 1120E respectively. Each one of the actuation mechanisms 1120A-1120E may include any suitable linear actuator, such as any suitable solenoid, linear stepper motor, pneumatic actuator, etc., for example.


The base 1110 further includes a plurality of support posts 1150. The support posts 1150 are configured to cooperate with the bioreactor support frame 1310 as explained below to support the bioreactor support frame 1310 on the base 1110 and over the hinge plates 1112A-1112E. A strap 1152 is included to hold the bioreactor support frame 1310 on the base 1110.


The multitube pinch valve assembly 1100 further includes a rocker assembly 1160. The rocker assembly 1160 includes a rocker rod 1162, which cooperates with the base 1110 at an aperture 1164 defined by the base 1110. The rocker assembly 1160 includes a motor configured to rotate the rocker rod 1162. The rocker rod 1162 is mounted to the base 1110 in any suitable manner such that rotation of the rocker rod 1162 rocks the base 1110 and the bioreactors 704A-704E mounted thereto. In come configurations, the rocker assembly 1160 may be configured to invert the bioreactors 704A-704E.


With particular reference to FIG. 13, the bioreactor support frame 1310 may be configured to support five bioreactors 704A, 704B, 704C, 704D, 704E, or any other suitable number of bioreactors. The number of bioreactors included with the bioreactor support frame 1310 typically equals, or is less than, the number of hinge plates 1112A-1112E. The support frame 1310 includes a tubing platen 1320. The tubing platen 1320 includes a plurality of tube receiving apertures 1322 configured to secure the tubes 124 of the bioreactors 704A-704E to the tubing platen 1320. The tubes 124 extend generally parallel to lengths of the bioreactors 704A-704E. In some applications, the tubes 124 may extend perpendicular to the bioreactors 704A-704E, or at any other suitable angle.


The bioreactor support frame 1310 further includes a plurality of receptacles 1340, each of which are configured to cooperate with the support posts 1150 of the base 1110. The support posts 1150 support the bioreactor support frame 1310 on top of the base 1110 and position the support frame 1310 such that the tubes 124 are arranged opposite to, and extend perpendicularly across, the hinge pinch protrusions 1114 of the hinge plates 1112A-1112E. Actuation of the different hinge plates 1112A-1112E moves the hinge pinch protrusions 1114 towards tubes to pinch the tubes 124 and restrict fluid flow through the tubes 124 and to the bioreactors 704A-704E in generally the same manner illustrated in FIGS. 5A, 5B, and 5C illustrating the multi-tubing pinch valve assembly 400. When actuated upward, the hinge pinch protrusions 1114 will contact the tubes 124 on either side of any of the receiving apertures 1322 to bend the tubes 124 into occlusion. Bending the tubes 124 into occlusion reduces the amount of pinch force required from the actuation mechanisms 1120A-1120E as compared to when the pinch protrusions 1114 directly contact an opposing platen pinch protrusion. In some applications, the tubing platen 1320 may include platen pinch protrusions aligned with the hinge pinch protrusions 1114.



FIGS. 14-18 illustrate an additional multitube pinch valve assembly 1500 in accordance with the present disclosure. The assembly 1500 generally includes a base 1510 and a bioreactor support frame 1710. With particular reference to FIGS. 14 and 15, the base 1510 includes a latch 1512, which is rotatable between a closed position and an open position. In the open position, a rail 1520 of the base 1510 is accessible. The rail 1520 extends across the base 1510, and is configured to cooperate with the bioreactor support frame 1710, as explained herein. The rail 1520 may include a planar undersurface, or a pinch protrusion similar to the platen pinch protrusion 1330.


Opposite to the rail 1520, and seated within a housing 1530, are a plurality of actuation plates 1540A, 1540B, 1540C, 1540D, and 1540E. In the example illustrated, five actuation plates 1540A-1540E are included. The base 1510 may include any suitable number of actuation plates, however. Each one of the actuation plates 1540A-1540E includes a pinch protrusion 1542.


The actuation plates 1540A-1540E are individually actuatable by any suitable actuation mechanism. In the example illustrated, each one of the actuation plates 1540A-1540E is actuated by a different actuation mechanism 1550A, 1550B, 1550C, 1550D, 1550E respectively. The actuation mechanisms 1550A-1550E may include any suitable linear actuator, such as any suitable solenoid, linear stepper motor, pneumatic actuator, etc. The actuation mechanisms 1550A-1550E may be individually actuated to control fluid flow through tubes 124 of the bioreactors 704A-704E.


With particular reference to FIG. 18, the bioreactor support frame 1710 includes a tubing platen 1730. The tubing platen 1730 defines a plurality of tube receiving apertures 1732 configured to secure the tubes 124 of the bioreactors 704A-704E to the tubing platen 1730. The tube receiving apertures 1732 are configured to support the tubes 124 so that the tubes 124 extend parallel to the lengths of the bioreactors 704A-704E.


The tubing platen 1730 further defines a center channel 1740 configured to receive the rail 1520 therein. At a rear of the center channel 1740 is a rear aperture 1742. The center channel 1740 extends perpendicular to the lengths of the bioreactors 704A-704E, and perpendicular to the tubes 124 supported by the tube receiving apertures 1732. At a rear end of the tubing platen 1730 are rear tabs 1750. At a front end of the tubing platen 1730 are front tabs 1752.


To connect the bioreactor support frame 1710 to the base 1510, the latch 1512 is folded downward, the tubing platen 1730 is positioned so that the rail 1520 enters through the rear aperture 1742, and then the tubing platen 1730 is slid onto the rail 1520 so that the rail 1520 extends along the center channel 1740. The tubing platen 1730 is slid along the rail 1520 until the rear tabs 1750 are seated within rear openings 1560 of the base 1510. The latch 1512 is then closed onto the front tabs 1752 so that the front tabs 1752 are seated within recesses 1562 defined on an inner surface of the latch 1512 to lock the tubing platen 1730 into position. The rear tabs 1750 and the front tabs 1752 improve alignment of the tubes 124 relative to the pinch protrusions 1542, and prevent loading the bioreactors backwards. Also, when the assembly 1500 includes a rocker, the tabs 1750, 1752 keep the bioreactors 704A-704E and tubes 124 in the correct position relative to the rod 1520. The tubing platen 1730 is oriented so that the pinch protrusions 1542 are perpendicular to the tubes 124. Actuation of the different actuation plates 1540A-1540E moves the pinch protrusions 1542 towards and into the center channel 1740 to pinch the tubes 124 between the pinch protrusions 1542 and the rail 1520 to restrict fluid flow through the tubes 124 in generally the same manner illustrated in FIGS. 5A, 5B, and 5C illustrating the multi-tubing pinch valve assembly 400. In some applications, there may be a material between the tubes 124 and the rail 1520. The actuation plates 1540A-1540E may be individually actuated by the actuation mechanisms 1550A-1550E to selectively pinch the tubes 124, which selectively controls flow through the different tubes 124 and through the different bioreactors 704A-704E.


While the operations and steps above have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.


The exemplary systems and methods of this disclosure have been described in relation to pinch valves and multiple-tubing systems. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scope of the claimed disclosure. Specific details are set forth to provide an understanding of the present disclosure. It should, however, be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.


A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.


References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” “some embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in conjunction with one embodiment, it is submitted that the description of such feature, structure, or characteristic may apply to any other embodiment unless so stated and/or except as will be readily apparent to one skilled in the art from the description. The present disclosure, in various embodiments, configurations, and aspects, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the systems and methods disclosed herein after understanding the present disclosure. The present disclosure, in various embodiments, configurations, and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease, and/or reducing cost of implementation.


The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.


Moreover, though the description of the disclosure has included description of one or more embodiments, configurations, or aspects and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights, which include alternative embodiments, configurations, or aspects to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.


Exemplary aspects are directed to a multiple-tube pinch valve assembly, comprising: a camshaft extending a length along a longitudinal axis of the camshaft, the camshaft comprising at least one cam disposed along the length, the at least one cam comprising a cam profile shape defined around the longitudinal axis and a periphery of the camshaft and; a platen offset a distance from the longitudinal axis, the distance at least partially defining a space configured to receive multiple fluid flow tubes; and an anvil assembly comprising a cam contact portion disposed on a first side of the anvil assembly and a pinch edge disposed on a second side of the anvil assembly, wherein the anvil assembly is moveable between a retracted state such that the pinch edge is disposed outside of the space and an extended state such that the pinch edge is disposed inside the space adjacent the platen, and wherein the anvil assembly moves between the retracted state and the extended state by a rotation of the camshaft and the at least one cam.


Any one or more of the above aspects include wherein the cam profile shape comprises at least one cam lobe and at least one cam heel, wherein the anvil assembly is in the extended state when the cam lobe is disposed in contact with the cam contact portion, and wherein the anvil assembly is in the retracted state when the cam heel is disposed in contact with the cam contact portion. Any one or more of the above aspects include wherein the cam contact portion comprises at least one cam follower. Any one or more of the above aspects include wherein the space comprises a plurality of tube receiving apertures arranged side-by-side along a direction that is parallel to the longitudinal axis of the camshaft. Any one or more of the above aspects include wherein each tube receiving aperture of the plurality of tube receiving apertures extend in a direction that is perpendicular to the longitudinal axis of the camshaft. Any one or more of the above aspects further comprising: a plurality of tubes removably engaged with the plurality of tube receiving apertures such that a section of each tube of the plurality of tubes is disposed in the space adjacent the platen, wherein, in the retracted state, a lumen of each tube of the plurality of tubes is open along the section of each tube of the plurality of tubes, and wherein, in the extended state, the lumen of each tube of the plurality of tubes is closed at a point along the section of each tube of the plurality of tubes. Any one or more of the above aspects further comprising: a motor comprising an output shaft; a drive body attached to the output shaft of the motor; and a cam drive body attached to the camshaft, wherein rotation of the output shaft of the motor transmits power from the drive body to the cam drive body causing the camshaft to rotate relative to the anvil assembly. Any one or more of the above aspects further comprising: a support frame comprising a plurality of recesses, wherein each recess of the plurality of recesses is configured to hold a respective bioreactor, and wherein each tube of the plurality of tubes is associated with the respective bioreactor. Any one or more of the above aspects include wherein the anvil assembly, when moving between the retracted state and the extended state, translates along a plane that is perpendicular to a plane running through the plurality of tubes, and wherein, in the extended state, the pinch edge of the anvil assembly contacts and closes each tube of the plurality of tubes. Any one or more of the above aspects further comprising: an array of valves disposed along a length of the longitudinal axis of the camshaft, wherein each valve in the array of valves comprises a plurality of tube receiving apertures, and wherein each valve in the array of valves comprises a respective anvil assembly that is capable of moving between the retracted state and the extended state by the rotation of the camshaft and the at least one cam. Any one or more of the above aspects include wherein the respective anvil assembly of each valve in the array of valves is capable of moving between the retracted state and the extended state based on a position of a respective cam connected to the camshaft. Any one or more of the above aspects include wherein a first valve in the array of valves is capable of closing tubing contained within a first set of tube receiving apertures associated with the first valve at a same time or a different time as a second valve in the array of valves closes tubing contained within a second set of tube receiving apertures associated with the second valve. Any one or more of the above aspects include wherein, at a first time as the camshaft rotates, a first valve in the array of valves closes tubing contained within a first set of tube receiving apertures associated with the first valve, wherein, at a second time as the camshaft rotates, a second valve in the array of valves closes tubing contained within a second set of tube receiving apertures associated with the second valve. Any one or more of the above aspects include wherein, at a third time as the camshaft rotates, a third valve in the array of valves closes tubing contained within a third set of tube receiving apertures associated with the third valve, wherein, at a fourth time as the camshaft rotates, a fourth valve in the array of valves closes tubing contained within a fourth set of tube receiving apertures associated with the fourth valve, and wherein at a fifth time as the camshaft rotates, a fifth valve in the array of valves closes tubing contained within a fifth set of tube receiving apertures associated with the fifth valve. Any one or more of the above aspects include wherein the first set of tube receiving apertures, the second set of tube receiving apertures, the third set of tube receiving apertures, the fourth set of tube receiving apertures, and the fifth set of tube receiving apertures each comprise four tube receiving apertures.


Exemplary aspects are directed to a multiple-tube pinch valve assembly, comprising: a motor comprising an output shaft; a drive body attached to the output shaft of the motor; a camshaft extending a length along a longitudinal axis of the camshaft, the camshaft comprising at least one cam disposed along the length, the at least one cam comprising a cam profile shape defined around the longitudinal axis and a periphery of the camshaft and; a cam drive body attached to the camshaft; a platen offset a distance from the longitudinal axis, the distance at least partially defining a space configured to receive multiple fluid flow tubes; and an anvil assembly comprising at least one cam follower disposed on a first side of the anvil assembly and a pinch edge disposed on a second side of the anvil assembly, wherein rotation of the output shaft of the motor transmits power from the drive body to the cam drive body causing the camshaft to rotate relative to the anvil assembly and move the anvil assembly between a retracted state, such that the pinch edge is disposed outside of the space, and an extended state, such that the pinch edge is disposed inside the space adjacent the platen, and wherein the anvil assembly moves between the retracted state and the extended state by rotation of the camshaft and the at least one cam.


Exemplary aspects are directed to a multi-tubing pinch valve assembly, comprising: a hinge plate extending a length from a first point to a second point, the hinge plate comprising: a pivot axis disposed adjacent the first point of the hinge plate; and a pinch protrusion disposed between the first point and the second point, the pinch protrusion extending from a surface of the hinge plate; a platen comprising a body offset a distance from the hinge plate, the platen comprising a tubing contact portion disposed on a surface of the platen; an actuator operatively connected to the hinge plate adjacent the second point, wherein the actuator is moveable between a retracted state and an extended state, wherein, in the retracted state, the hinge plate is pivoted about the pivot axis such that the second point of the hinge plate is separated from the platen by a first distance, wherein, in the extended state, the hinge plate is pivoted about the pivot axis such that the second point of the hinge plate is separated from the platen by a second distance, and wherein the first distance is greater than the second distance.


Any one or more of the above aspects include wherein, in the extended state, the pinch protrusion of the hinge plate is adjacent the tubing contact portion of the platen, and wherein in the retracted state, the pinch protrusion of the hinge plate is offset from the tubing contact portion of the platen creating a receiving space between the hinge plate and the platen. Any one or more of the above aspects include wherein, in the retracted state, the pinch protrusion of the hinge plate is offset from the tubing contact portion of the platen by a first dimension defining a receiving space capable of receiving a plurality of tubes. Any one or more of the above aspects include wherein, in the extended state, the pinch protrusion of the hinge plate is offset from the tubing contact portion of the platen by a second dimension defining a pinched receiving space that is sized to pinch the plurality of tubes disposed between the hinge plate and the platen. Any one or more of the above aspects further comprising the plurality of tubes disposed in between the hinge plate and the platen, wherein the plurality of tubes provide fluid flow paths therethrough when in the retracted state, and wherein the fluid flow paths are restricted by the pinch protrusion of the hinge plate and the tubing contact portion of the platen when in the extended state. Any one or more of the above aspects include wherein the pinch protrusion of the hinge plate and the tubing contact portion of the platen completely restrict fluid flow in the plurality of tubes when in the extended state. Any one or more of the above aspects further comprising: a clevis disposed adjacent the second point of the hinge plate; and a clevis pin engaged with the clevis, the clevis pin being connected to an end of a translation rod of the actuator. Any one or more of the above aspects include wherein the tubing contact portion comprises a platen pinch protrusion extending from a surface of the platen, and wherein the surface of the platen faces the hinge plate. Any one or more of the above aspects include wherein the pivot axis is defined by a hinge pin engaged with the hinge plate and a hinge support block. Any one or more of the above aspects include wherein the actuator is one of a solenoid, a screw-type actuator, and a stepper motor actuated screw. Any one or more of the above aspects include wherein the clevis pin engages with a slot in the clevis.


Exemplary aspects are directed to a multi-tubing pinch valve assembly, comprising: an array of valves disposed adjacent one another, wherein each valve in the array of valves comprises: a hinge plate extending a length from a first point to a second point, the hinge plate comprising: a pivot axis disposed adjacent the first point of the hinge plate; and a pinch protrusion disposed between the first point and the second point, the pinch protrusion extending from a surface of the hinge plate; a tubing contact body offset a distance from the hinge plate; an actuator operatively connected to the hinge plate adjacent the second point, wherein the actuator is moveable between a retracted state and an extended state, wherein, in the retracted state, the hinge plate is pivoted about the pivot axis such that the second point of the hinge plate is separated from the tubing contact body by a first distance, wherein, in the extended state, the hinge plate is pivoted about the pivot axis such that the second point of the hinge plate is separated from the tubing contact body by a second distance, and wherein the first distance is greater than the second distance.


Any one or more of the above aspects include wherein, in the extended state, the pinch protrusion of the hinge plate is adjacent the tubing contact body, and wherein in the retracted state, the pinch protrusion of the hinge plate is offset from the tubing contact body creating a receiving space between the hinge plate and the tubing contact body. Any one or more of the above aspects include wherein each valve in the array of valves is configured to receive a plurality of tubes in the receiving space. Any one or more of the above aspects include wherein each valve in the array of valves is configured to pinch the plurality of tubes in the receiving space in the extended state of the actuator. Any one or more of the above aspects include wherein each valve in the array of valves is independently operable such that each hinge plate of each valve is moveable between the retracted state and the extended state independently. Any one or more of the above aspects include wherein a first valve in the array of valves is operable together with and/or separately from a second valve in the array of valves. Any one or more of the above aspects further comprising: a support frame comprising a plurality of recesses, wherein each recess of the plurality of recesses is configured to hold a respective bioreactor, and wherein each tube of the plurality of tubes is associated with the respective bioreactor.


Exemplary aspects are directed to a multiple-bioreactor assembly comprising the multi-tubing pinch valve assembly of any of the above aspects.


Any one or more of the above aspects/embodiments as substantially disclosed herein.


Any one or more of the aspects/embodiments as substantially disclosed herein optionally in combination with any one or more other aspects/embodiments as substantially disclosed herein.


One or means adapted to perform any one or more of the above aspects/embodiments as substantially disclosed herein.


Any one or more of the features disclosed herein.


Any one or more of the features as substantially disclosed herein.


Any one or more of the features as substantially disclosed herein in combination with any one or more other features as substantially disclosed herein.


Any one of the aspects/features/embodiments in combination with any one or more other aspects/features/embodiments.


Use of any one or more of the aspects or features as disclosed herein.


It is to be appreciated that any feature described herein can be claimed in combination with any other feature(s) as described herein, regardless of whether the features come from the same described embodiment.


As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “include,” “including,” “includes,” “comprise,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The term “and/or” includes any and all combinations of one or more of the associated listed items.


The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.


The phrases “at least one,” “one or more,” “or,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or a class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).


The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”


The terms “determine,” “calculate,” “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation, or technique.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this disclosure.


It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

Claims
  • 1. A multiple-tube pinch valve assembly comprising: a frame configured to hold a plurality of bioreactors and tubing connected to the bioreactors;a base configured to support the frame, the base including a plurality of pinch protrusions; anda plurality of actuators included with the base, each one of the plurality of actuators is connected to, and configured to actuate, a different one of the plurality of pinch protrusions;wherein: the frame and the base are configured to cooperate to retain the frame on the base and orient the frame such that the plurality of pinch protrusions are opposite to, and perpendicular to, the tubing connected to the bioreactors;the plurality of actuators are configured to individually actuate each one of the plurality of pinch protrusions between a retracted position and an extended position, in the retracted position the pinch protrusions are spaced apart from the tubing, in the extended position the plurality of pinch protrusions pinch the tubing to restrict fluid flow through the tubing; andthe pinch protrusions are oriented such that in the extended position the pinch protrusions bend the tubing.
  • 2. The multiple-tube pinch valve assembly of claim 1, wherein the plurality of actuators are linear actuators.
  • 3. The multiple-tube pinch valve assembly of claim 1, further comprising a rocker assembly configured to rock the frame and the plurality of bioreactors.
  • 4. The multiple-tube pinch valve assembly of claim 1, wherein in the retracted position the pinch protrusions are within a housing of the base, and in the extended position the pinch protrusions protrude out from within the housing.
  • 5. The multiple-tube pinch valve assembly of claim 1, wherein the plurality of actuators are configured to individually actuate each one of the plurality of pinch protrusions to an intermediate position that is between the retracted position and the extended position, in the intermediate position the pinch protrusions pinch the tubing less than in the extended position.
  • 6. The multiple-tube pinch valve assembly of claim 1, wherein the frame is configured to hold the tubing such that the tubing extends across the frame parallel to lengths of the plurality of bioreactors.
  • 7. The multiple-tube pinch valve assembly of claim 1, further comprising a plurality of hinge plates, each one of the plurality of hinge plates includes one of the plurality of pinch protrusions; wherein the plurality of actuators are each connected to a first end of the plurality of hinge plates, and actuation of the plurality of hinge plates by the plurality of actuators pivots the plurality of hinge plates about a rotation axis at a second end of the plurality of hinge plates.
  • 8. The multiple-tube pinch valve assembly of claim 1, wherein the frame includes a platen pinch protrusion opposite to the pinch protrusions such that in the extended position the pinch protrusions pinch the tubing against the platen pinch protrusion.
  • 9. The multiple-tube pinch valve assembly of claim 1, wherein: the base further includes a rail suspended over the pinch protrusions; andin the extended position the pinch protrusions pinch the tubing against the rail.
  • 10. The multiple-tube pinch valve assembly of claim 9, wherein the frame is configured to slide onto the rail, the frame defining a channel configured to receive the rail therein.
  • 11. A multiple-tube pinch valve assembly configured to cooperate with a frame holding a plurality of bioreactors and tubing connected to the bioreactors, the multiple-tube pinch valve assembly comprising: a plurality of hinge plates, each one of the plurality of hinge plates including a hinge pinch protrusion;a plurality of actuators, each one of the plurality of actuators is connected to, and configured to actuate, a different one of the plurality of hinge plates; andmounts configured to cooperate with the frame to support and orientate the frame such that the tubes are opposite to, and extend perpendicular to, the hinge pinch protrusions;wherein the plurality of actuators are configured to individually actuate each one of the plurality of hinge plates between a retracted position and an extended position, in the retracted position the hinge pinch protrusions are spaced apart from the tubing, in the extended position the hinge pinch protrusions pinch the tubing to restrict fluid flow through the tubing.
  • 12. The multiple-tube pinch valve assembly of claim 11, wherein the mounts include mounting posts configured to cooperate with receptacles of the frame.
  • 13. The multiple-tube pinch valve assembly of claim 11, further comprising a rocker assembly configured to rock the frame when the frame is in cooperation with the mounts.
  • 14. The multiple-tube pinch valve assembly of claim 11, further comprising a housing including the plurality of hinge plates and the plurality of actuators; wherein in the retracted position the hinge pinch protrusions are within the housing, and in the extended position the hinge pinch protrusions protrude out from within the housing.
  • 15. A multiple-tube pinch valve assembly configured to cooperate with a frame holding a plurality of bioreactors and tubing connected to the bioreactors, the multiple-tube pinch valve assembly comprising: a plurality of pinch protrusions;a plurality of actuators, each one of the plurality of actuators is connected to, and configured to actuate, a different one of the plurality of pinch protrusions; anda rail supported over the pinch protrusions, the rail configured to cooperate with the frame to support the frame over the pinch protrusions and orientate the frame such that the tubes are opposite to, and extend perpendicular to, the pinch protrusions;wherein the plurality of actuators are configured to individually actuate each one of the plurality of pinch protrusions between a retracted position and an extended position, in the retracted position the pinch protrusions are spaced apart from the tubing, in the extended position the pinch protrusions pinch the tubing against the rail to restrict fluid flow through the tubing.
  • 16. The multiple-tube pinch valve assembly of claim 15, further comprising a housing including the plurality of pinch protrusions and the plurality of actuators; wherein in the retracted position the pinch protrusions are within the housing, and in the extended position the pinch protrusions protrude out from within the housing.
  • 17. The multiple-tube pinch valve assembly of claim 15, further comprising the frame, the frame including a channel configured to cooperate with the rail.
  • 18. The multiple-tube pinch valve assembly of claim 15, further comprising a latch, the latch movable between an open position and a closed position, in the open position the rail is accessible to allow the frame to slide onto the rail, and in the closed position the frame is locked onto the rail.
  • 19. The multiple-tube pinch valve assembly of claim 15, wherein the plurality of actuators are linear actuators.
CROSS-REFERENCE TO RELATED PATENT APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 63/314,931 filed on Feb. 28, 2022, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (997)
Number Name Date Kind
2821434 Hunter Jan 1958 A
2997077 Rodrigues Aug 1961 A
3013435 Rodrigues Dec 1961 A
3067915 Shapiro et al. Dec 1962 A
3191807 Rodrigues Jun 1965 A
3283727 Rodrigues Nov 1966 A
3613729 Dora Oct 1971 A
3650296 Johnson Mar 1972 A
3701717 Ingvorsen Oct 1972 A
4173415 Wyatt Nov 1979 A
4301010 Eddleman et al. Nov 1981 A
4301118 Eddleman et al. Nov 1981 A
4412990 Lundblad et al. Nov 1983 A
4418691 Yannas et al. Dec 1983 A
4439901 Eddleman Apr 1984 A
4478829 Landaburu et al. Oct 1984 A
4486188 Altshuler et al. Dec 1984 A
4509695 Bessman Apr 1985 A
4585654 Landaburu et al. Apr 1986 A
4618586 Walker Oct 1986 A
4629686 Gruenberg Dec 1986 A
4670544 Schwinn et al. Jun 1987 A
4727059 Binder et al. Feb 1988 A
4828706 Eddleman May 1989 A
4897358 Carrasco Jan 1990 A
4960521 Keller Oct 1990 A
4988623 Schwarz et al. Jan 1991 A
5015585 Robinson May 1991 A
5019054 Clement et al. May 1991 A
5126238 Gebhard et al. Jun 1992 A
5130141 Law et al. Jul 1992 A
5149544 Gentile et al. Sep 1992 A
5169930 Ruoslahti et al. Dec 1992 A
5192553 Boyse et al. Mar 1993 A
5197985 Caplan et al. Mar 1993 A
5202254 Amiot et al. Apr 1993 A
5225346 Matsumiya et al. Jul 1993 A
5226914 Caplan et al. Jul 1993 A
5240614 Ofsthun et al. Aug 1993 A
5240861 Bieri Aug 1993 A
5283058 Faustman Feb 1994 A
5310676 Johansson et al. May 1994 A
5324428 Flaherty Jun 1994 A
5342752 Platz et al. Aug 1994 A
5422197 Zito Jun 1995 A
5436151 McGlave et al. Jul 1995 A
5437994 Emerson et al. Aug 1995 A
5439757 Zito Aug 1995 A
5459069 Palsson et al. Oct 1995 A
5460964 McGlave et al. Oct 1995 A
H1509 Eran et al. Dec 1995 H
5478739 Slivka et al. Dec 1995 A
5486359 Caplan et al. Jan 1996 A
5496659 Zito Mar 1996 A
5507949 Ho Apr 1996 A
5512180 Ho Apr 1996 A
5527467 Ofsthun et al. Jun 1996 A
5543316 Zawadzka et al. Aug 1996 A
5545492 Zito Aug 1996 A
5549674 Humes et al. Aug 1996 A
5571720 Grandics et al. Nov 1996 A
5591625 Gerson et al. Jan 1997 A
5593580 Kopf Jan 1997 A
5595909 Hu et al. Jan 1997 A
5599703 Davis et al. Feb 1997 A
5605822 Emerson et al. Feb 1997 A
5605829 McGlave et al. Feb 1997 A
5605835 Hu et al. Feb 1997 A
5622857 Goffe Apr 1997 A
5626731 Cooley et al. May 1997 A
5627070 Gruenberg May 1997 A
5635386 Palsson et al. Jun 1997 A
5635387 Fei et al. Jun 1997 A
5643736 Bruder et al. Jul 1997 A
5646043 Emerson et al. Jul 1997 A
5654186 Cerami et al. Aug 1997 A
5656421 Gebhard et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667985 O'Leary et al. Sep 1997 A
5670147 Emerson et al. Sep 1997 A
5674750 Kraus et al. Oct 1997 A
5684712 Goffe et al. Nov 1997 A
5686289 Humes et al. Nov 1997 A
5695989 Kalamasz Dec 1997 A
5700289 Breitbart et al. Dec 1997 A
5705534 D'Agostino et al. Jan 1998 A
5707859 Miller et al. Jan 1998 A
5712163 Parenteau et al. Jan 1998 A
5728581 Schwartz et al. Mar 1998 A
5733541 Taichman et al. Mar 1998 A
5733542 Haynesworth et al. Mar 1998 A
5736396 Bruder et al. Apr 1998 A
5744347 Wagner et al. Apr 1998 A
5750651 Oppermann et al. May 1998 A
5753506 Johe May 1998 A
5763197 Tsukamoto et al. Jun 1998 A
5763266 Palsson et al. Jun 1998 A
5766944 Ruiz Jun 1998 A
5772994 Idstad et al. Jun 1998 A
5783075 Eddleman et al. Jul 1998 A
5783216 Faustman Jul 1998 A
5785912 Cooley et al. Jul 1998 A
5804446 Cerami et al. Sep 1998 A
5806529 Reisner et al. Sep 1998 A
5807686 Wagner et al. Sep 1998 A
5811094 Caplan et al. Sep 1998 A
5811397 Francavilla et al. Sep 1998 A
5817773 Wilson et al. Oct 1998 A
5821218 Toback et al. Oct 1998 A
5827735 Young et al. Oct 1998 A
5827740 Pittenger Oct 1998 A
5830921 Cooley et al. Nov 1998 A
5833979 Schinstine et al. Nov 1998 A
5837258 Grotendorst Nov 1998 A
5837539 Caplan et al. Nov 1998 A
5840502 Van Vlasselaer Nov 1998 A
5840576 Schinstine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5843633 Yin et al. Dec 1998 A
5846796 Cerami et al. Dec 1998 A
5853247 Shroyer Dec 1998 A
5853717 Schinstine et al. Dec 1998 A
5855608 Brekke et al. Jan 1999 A
5855613 Antanavich et al. Jan 1999 A
5855619 Caplan et al. Jan 1999 A
5858747 Schinstine et al. Jan 1999 A
5858782 Long et al. Jan 1999 A
5861315 Nakahata Jan 1999 A
5866115 Kanz et al. Feb 1999 A
5866420 Talbot et al. Feb 1999 A
5868930 Kopf Feb 1999 A
5882295 Kope Mar 1999 A
5882918 Goffe Mar 1999 A
5882929 Fofonoff et al. Mar 1999 A
5888807 Palsson et al. Mar 1999 A
5902741 Purchio et al. May 1999 A
5906827 Khouri et al. May 1999 A
5906934 Grande et al. May 1999 A
5908782 Marshak et al. Jun 1999 A
5908784 Johnstone et al. Jun 1999 A
5912177 Turner et al. Jun 1999 A
5914108 Tsukamoto et al. Jun 1999 A
5922597 Verfaillie et al. Jul 1999 A
5922847 Broudy et al. Jul 1999 A
5925567 Kraus et al. Jul 1999 A
5928945 Seliktar et al. Jul 1999 A
5935849 Schinstine et al. Aug 1999 A
5938929 Shimagaki et al. Aug 1999 A
5939323 Valentini et al. Aug 1999 A
5942225 Bruder et al. Aug 1999 A
5955353 Amiot Sep 1999 A
5958763 Goffe Sep 1999 A
5965436 Thiede et al. Oct 1999 A
5972703 Long et al. Oct 1999 A
5980795 Klotzer et al. Nov 1999 A
5981211 Hu et al. Nov 1999 A
5981708 Lawman et al. Nov 1999 A
5998184 Shi Dec 1999 A
6001585 Gramer Dec 1999 A
6001643 Spaulding Dec 1999 A
6001647 Peck et al. Dec 1999 A
6004743 Kenyon et al. Dec 1999 A
6010696 Caplan et al. Jan 2000 A
6015554 Galy Jan 2000 A
6022540 Bruder et al. Feb 2000 A
6022742 Kopf Feb 2000 A
6022743 Naughton et al. Feb 2000 A
6027743 Khouri et al. Feb 2000 A
6030836 Thiede et al. Feb 2000 A
6040180 Johe Mar 2000 A
6045818 Cima et al. Apr 2000 A
6048721 Armstrong et al. Apr 2000 A
6048727 Kopf Apr 2000 A
6049026 Muschler Apr 2000 A
6054121 Cerami et al. Apr 2000 A
6060270 Humes May 2000 A
6066317 Yang et al. May 2000 A
6071691 Hoekstra et al. Jun 2000 A
6074366 Rogers et al. Jun 2000 A
6082364 Balian et al. Jul 2000 A
6083747 Wong et al. Jul 2000 A
6086643 Clark et al. Jul 2000 A
6087113 Caplan et al. Jul 2000 A
6096537 Chappel Aug 2000 A
6103117 Shimagaki et al. Aug 2000 A
6103522 Torok-Storb et al. Aug 2000 A
6110176 Shapira Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6114307 Jaspers et al. Sep 2000 A
6117985 Thomas et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6127141 Kopf Oct 2000 A
6129911 Faris Oct 2000 A
6143293 Weiss et al. Nov 2000 A
6146360 Rogers et al. Nov 2000 A
6146888 Smith et al. Nov 2000 A
6149902 Artavanis-Tsakonas et al. Nov 2000 A
6149906 Mosca Nov 2000 A
6150164 Humes Nov 2000 A
6152964 Van Blitterswijk et al. Nov 2000 A
6162643 Wille, Jr. Dec 2000 A
6165225 Antanavich et al. Dec 2000 A
6165785 Ogle et al. Dec 2000 A
6174333 Kadiyala et al. Jan 2001 B1
6174526 Cerami et al. Jan 2001 B1
6174666 Pavlakis et al. Jan 2001 B1
6179871 Halpern Jan 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6197575 Griffith et al. Mar 2001 B1
6200606 Peterson et al. Mar 2001 B1
6214369 Grande et al. Apr 2001 B1
6214574 Kopf Apr 2001 B1
6224860 Brown May 2001 B1
6225119 Qasba et al. May 2001 B1
6225368 D'Agostino et al. May 2001 B1
6228117 De Bruijn et al. May 2001 B1
6228607 Kersten et al. May 2001 B1
6238908 Armstrong et al. May 2001 B1
6239157 Mbalaviele May 2001 B1
6242252 Reid et al. Jun 2001 B1
6248319 Zsebo et al. Jun 2001 B1
6248587 Rodgers et al. Jun 2001 B1
6255112 Thiede et al. Jul 2001 B1
6258597 Bachovchin et al. Jul 2001 B1
6258778 Rodgers et al. Jul 2001 B1
6261549 Fernandez et al. Jul 2001 B1
6280718 Kaufman et al. Aug 2001 B1
6280724 Moore Aug 2001 B1
6281012 McIntosh et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6287864 Bagnis et al. Sep 2001 B1
6291249 Mahant et al. Sep 2001 B1
6297213 Oppermann et al. Oct 2001 B1
6299650 Van Blitterswijk et al. Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6306575 Thomas et al. Oct 2001 B1
6322784 Pittenger et al. Nov 2001 B1
6322786 Anderson Nov 2001 B1
6326198 Emerson et al. Dec 2001 B1
6326201 Fung et al. Dec 2001 B1
6328765 Hardwick et al. Dec 2001 B1
6328960 McIntosh et al. Dec 2001 B1
6333029 Vyakamam et al. Dec 2001 B1
6335195 Rodgers et al. Jan 2002 B1
6338942 Kraus et al. Jan 2002 B2
6340592 Stringer Jan 2002 B1
6342370 Connolly et al. Jan 2002 B1
6355239 Bruder et al. Mar 2002 B1
6358252 Shapira Mar 2002 B1
6361997 Huss Mar 2002 B1
6365149 Vyakarnam et al. Apr 2002 B2
6368636 McIntosh et al. Apr 2002 B1
6372210 Brown Apr 2002 B2
6372244 Antanavich et al. Apr 2002 B1
6372494 Naughton et al. Apr 2002 B1
6372892 Ballinger et al. Apr 2002 B1
6376742 Zdrahala et al. Apr 2002 B1
6379953 Bruder et al. Apr 2002 B1
6387367 Davis-Sproul et al. May 2002 B1
6387369 Pittenger et al. May 2002 B1
6387693 Rieser et al. May 2002 B2
6387964 D'Agostino et al. May 2002 B1
6392118 Hammang et al. May 2002 B1
6394812 Sullivan et al. May 2002 B1
6399580 Elias et al. Jun 2002 B1
6410320 Humes Jun 2002 B1
6414219 Denhardt et al. Jul 2002 B1
6416496 Rogers et al. Jul 2002 B1
6417205 Cooke et al. Jul 2002 B1
6419829 Ho et al. Jul 2002 B2
6420138 Gentz et al. Jul 2002 B1
6423681 Barasch et al. Jul 2002 B1
6426332 Rueger et al. Jul 2002 B1
6428802 Atala Aug 2002 B1
6429012 Kraus et al. Aug 2002 B1
6429013 Halvorsen et al. Aug 2002 B1
6432653 Okarma Aug 2002 B1
6432711 Dinsmore et al. Aug 2002 B1
6440407 Bauer et al. Aug 2002 B1
6440734 Pykett et al. Aug 2002 B1
6451562 Ruben et al. Sep 2002 B1
6454811 Sherwood et al. Sep 2002 B1
6455678 Yin et al. Sep 2002 B1
6458585 Vachula et al. Oct 2002 B1
6458589 Rambhatla et al. Oct 2002 B1
6461495 Morrissey et al. Oct 2002 B1
6461853 Zhu Oct 2002 B1
6464983 Grotendorst Oct 2002 B1
6465205 Hicks, Jr. Oct 2002 B2
6465247 Weissman et al. Oct 2002 B1
6465249 Reya et al. Oct 2002 B2
6468794 Uchida et al. Oct 2002 B1
6472200 Mitrani Oct 2002 B1
6475481 Talmadge Nov 2002 B2
6479064 Atala Nov 2002 B1
6482231 Abatangelo et al. Nov 2002 B1
6482411 Ahuja et al. Nov 2002 B1
6482645 Atala Nov 2002 B2
6482926 Thomas et al. Nov 2002 B1
6488925 Ruben et al. Dec 2002 B2
6491918 Thomas et al. Dec 2002 B1
6495129 Li et al. Dec 2002 B1
6495364 Hammang et al. Dec 2002 B2
6497875 Sorrell et al. Dec 2002 B1
6498034 Strobl Dec 2002 B1
6506574 Rambhatla et al. Jan 2003 B1
6511510 de Bruijn et al. Jan 2003 B1
6511767 Calver et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6524452 Clark et al. Feb 2003 B1
6528052 Smith et al. Mar 2003 B1
6528245 Sanchez-Ramos et al. Mar 2003 B2
6531445 Cohen et al. Mar 2003 B1
6534084 Vyakarnam et al. Mar 2003 B1
6537807 Smith et al. Mar 2003 B1
6541024 Kadiyala et al. Apr 2003 B1
6541249 Wager et al. Apr 2003 B2
6544506 Reisner Apr 2003 B2
6548734 Glimcher et al. Apr 2003 B1
6554589 Grapes Apr 2003 B2
6555324 Olweus et al. Apr 2003 B1
6555374 Gimble et al. Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6562616 Toner et al. May 2003 B1
6565843 Cohen et al. May 2003 B1
6569421 Hodges May 2003 B2
6569427 Boyse et al. May 2003 B1
6569428 Isner et al. May 2003 B1
6569654 Shastri et al. May 2003 B2
6576188 Rose et al. Jun 2003 B1
6576428 Assenmacher et al. Jun 2003 B1
6576464 Gold et al. Jun 2003 B2
6576465 Long Jun 2003 B1
6582471 Bittmann et al. Jun 2003 B1
6582955 Martinez et al. Jun 2003 B2
6586192 Peschle et al. Jul 2003 B1
6589728 Csete et al. Jul 2003 B2
6589786 Mangano et al. Jul 2003 B1
6596274 Abatangelo et al. Jul 2003 B1
6599300 Vibe-Hansen et al. Jul 2003 B2
6599520 Scarborough et al. Jul 2003 B2
6610535 Lu et al. Aug 2003 B1
6613798 Porter et al. Sep 2003 B1
6616912 Eddleman et al. Sep 2003 B2
6617070 Morrissey et al. Sep 2003 B1
6617152 Bryhan et al. Sep 2003 B2
6617159 Cancedda et al. Sep 2003 B1
6623749 Williams et al. Sep 2003 B2
6623942 Ruben et al. Sep 2003 B2
6624108 Clark et al. Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6627191 Bartelmez et al. Sep 2003 B1
6632425 Li et al. Oct 2003 B1
6632620 Makarovskiy Oct 2003 B1
6632934 Moreadith et al. Oct 2003 B1
6638765 Rosenberg Oct 2003 B1
6642048 Xu et al. Nov 2003 B2
6642049 Chute et al. Nov 2003 B1
6642201 Khavinson et al. Nov 2003 B1
6645489 Pykett et al. Nov 2003 B2
6645727 Thomas et al. Nov 2003 B2
6645763 Kobayashi et al. Nov 2003 B2
6649189 Talmadge et al. Nov 2003 B2
6649595 Clackson et al. Nov 2003 B2
6649631 Orme et al. Nov 2003 B1
6653105 Triglia et al. Nov 2003 B2
6653134 Prockop et al. Nov 2003 B2
6660523 Blom et al. Dec 2003 B2
6662805 Frondoza et al. Dec 2003 B2
6667034 Palsson et al. Dec 2003 B2
6667176 Funk et al. Dec 2003 B1
6670169 Schob et al. Dec 2003 B1
6670175 Wang et al. Dec 2003 B2
6673603 Baetge et al. Jan 2004 B2
6673606 Tennekoon et al. Jan 2004 B1
6677306 Veis et al. Jan 2004 B1
6683192 Baxter et al. Jan 2004 B2
6685936 McIntosh et al. Feb 2004 B2
6685971 Xu Feb 2004 B2
6686198 Melton et al. Feb 2004 B1
6696575 Schmidt et al. Feb 2004 B2
6699716 Sullivan et al. Mar 2004 B2
6703017 Peck et al. Mar 2004 B1
6703209 Baetscher et al. Mar 2004 B1
6706293 Quintanilla Almagro et al. Mar 2004 B1
6709864 Pittenger et al. Mar 2004 B1
6712850 Vyakamam et al. Mar 2004 B2
6719969 Hogaboam et al. Apr 2004 B1
6719970 Costantino et al. Apr 2004 B1
6720340 Cooke et al. Apr 2004 B1
6730314 Jeschke et al. May 2004 B2
6730315 Usala et al. May 2004 B2
6730510 Roos et al. May 2004 B2
6733746 Daley et al. May 2004 B2
6734000 Chin et al. May 2004 B2
6740493 Long et al. May 2004 B1
6759039 Tsang et al. Jul 2004 B2
6759245 Toner et al. Jul 2004 B1
6761883 Weissman et al. Jul 2004 B2
6761887 Kavalkovich et al. Jul 2004 B1
6767699 Polo et al. Jul 2004 B2
6767737 Wilson et al. Jul 2004 B1
6767738 Gage et al. Jul 2004 B1
6767740 Sramek et al. Jul 2004 B2
6770478 Crowe et al. Aug 2004 B2
6777227 Ricci et al. Aug 2004 B2
6777231 Katz et al. Aug 2004 B1
6780612 Ford et al. Aug 2004 B1
6787355 Miller et al. Sep 2004 B1
6790455 Chu et al. Sep 2004 B2
6793939 Badylak Sep 2004 B2
6797269 Mosca et al. Sep 2004 B2
6797514 Berenson et al. Sep 2004 B2
6800480 Bodnar et al. Oct 2004 B1
6802971 Gorsuch et al. Oct 2004 B2
6805860 Alt Oct 2004 B1
6809117 Enikolopov et al. Oct 2004 B2
6811773 Gentz et al. Nov 2004 B1
6811776 Kale et al. Nov 2004 B2
6814961 Jensen et al. Nov 2004 B1
6821513 Fleming Nov 2004 B1
6821790 Mahant et al. Nov 2004 B2
6828145 Avital et al. Dec 2004 B2
6833269 Carpenter Dec 2004 B2
6835377 Goldberg et al. Dec 2004 B2
6835566 Smith et al. Dec 2004 B2
6838284 de Bruijn et al. Jan 2005 B2
6841150 Halvorsen et al. Jan 2005 B2
6841151 Stringer Jan 2005 B2
6841294 Morrissey et al. Jan 2005 B1
6841355 Livant Jan 2005 B2
6841386 Kraus et al. Jan 2005 B2
6841542 Bartelmez et al. Jan 2005 B2
6844011 Faustman Jan 2005 B1
6849051 Sramek et al. Feb 2005 B2
6849255 Gazit et al. Feb 2005 B2
6849454 Kelly et al. Feb 2005 B2
6849662 Enikolopov et al. Feb 2005 B2
6852308 Kohn et al. Feb 2005 B2
6852321 Colucci et al. Feb 2005 B2
6852533 Rafii et al. Feb 2005 B1
6855242 Comninellis et al. Feb 2005 B1
6855542 DiMilla et al. Feb 2005 B2
6863900 Kadiyala et al. Mar 2005 B2
6866843 Habener et al. Mar 2005 B2
6872389 Faris Mar 2005 B1
6875430 McIntosh et al. Apr 2005 B2
6887600 Morrissey et al. May 2005 B2
6887704 Peled et al. May 2005 B2
6908763 Akashi et al. Jun 2005 B1
6911201 Merchav et al. Jun 2005 B1
6914279 Lu et al. Jul 2005 B2
6939955 Rameshwar Sep 2005 B2
6965018 Mikesell et al. Nov 2005 B2
6979321 Geis et al. Dec 2005 B2
6988004 Kanno et al. Jan 2006 B2
7008394 Geise et al. Mar 2006 B2
7015037 Furcht et al. Mar 2006 B1
7029666 Bruder et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7045098 Stephens May 2006 B2
7052517 Murphy et al. May 2006 B2
7056493 Kohn et al. Jun 2006 B2
7118672 Husain et al. Oct 2006 B2
7122178 Simmons et al. Oct 2006 B1
7160719 Nyberg Jan 2007 B2
7169295 Husain et al. Jan 2007 B2
7172696 Martinez et al. Feb 2007 B1
7175763 Husain et al. Feb 2007 B2
7192776 Stephens Mar 2007 B2
7195711 Gorsuch et al. Mar 2007 B2
7250154 Kohn et al. Jul 2007 B2
7271234 Kohn et al. Sep 2007 B2
7294259 Cote et al. Nov 2007 B2
7300571 Cote et al. Nov 2007 B2
7303676 Husain et al. Dec 2007 B2
7303677 Cote et al. Dec 2007 B2
7341062 Chachques et al. Mar 2008 B2
7358001 Morrissey et al. Apr 2008 B2
7361493 Hammond et al. Apr 2008 B1
7368169 Kohn et al. May 2008 B2
7378271 Bader May 2008 B2
7399872 Webster et al. Jul 2008 B2
7416884 Gemmiti et al. Aug 2008 B2
7425440 Malinge et al. Sep 2008 B2
7435586 Bartlett et al. Oct 2008 B2
7438902 Habener et al. Oct 2008 B2
7439057 Frangos et al. Oct 2008 B2
7452529 Brown, Jr. et al. Nov 2008 B2
7491388 McIntosh et al. Feb 2009 B1
7494811 Wolfinbarger, Jr. et al. Feb 2009 B2
7514074 Pittenger et al. Apr 2009 B2
7514075 Hedrick et al. Apr 2009 B2
7524676 Reiter et al. Apr 2009 B2
7534609 Merchav et al. May 2009 B2
7572374 Gorsuch et al. Aug 2009 B2
7579179 Bryhan et al. Aug 2009 B2
7585412 Gorsuch et al. Sep 2009 B2
7588938 Ma Sep 2009 B2
7598075 Smith et al. Oct 2009 B2
7608447 Cohen et al. Oct 2009 B2
7659118 Furcht et al. Feb 2010 B2
7678573 Merchav et al. Mar 2010 B2
7682823 Runyon Mar 2010 B1
7722896 Kohn et al. May 2010 B2
D620732 Andrews Aug 2010 S
7838122 Kohn et al. Nov 2010 B2
7838289 Furcht et al. Nov 2010 B2
7892829 Pittenger et al. Feb 2011 B2
7919307 Klaus et al. Apr 2011 B2
7927587 Blazer et al. Apr 2011 B2
7989851 Lu et al. Aug 2011 B2
8008528 Kohn et al. Aug 2011 B2
8034365 Baluca Oct 2011 B2
8075881 Verfaillie et al. Dec 2011 B2
8147824 Maziarz et al. Apr 2012 B2
8147863 Kohn et al. Apr 2012 B2
8158120 Pittenger et al. Apr 2012 B2
8158121 Pittenger et al. Apr 2012 B2
8235067 Gagne Aug 2012 B2
8252280 Verfaillie et al. Aug 2012 B1
8252887 Bolikal et al. Aug 2012 B2
8288159 Warren et al. Oct 2012 B2
8288590 Kohn et al. Oct 2012 B2
8298823 Warren et al. Oct 2012 B2
8361453 Uhrich et al. Jan 2013 B2
8377683 Lu et al. Feb 2013 B2
8383397 Wojciechowski et al. Feb 2013 B2
8383806 Rameshwar Feb 2013 B2
8399245 Leuthaeuser et al. Mar 2013 B2
8415449 Kohn et al. Apr 2013 B2
8435781 Kodama May 2013 B2
8461289 Kohn et al. Jun 2013 B2
8476399 Bolikal et al. Jul 2013 B2
8486621 Luo et al. Jul 2013 B2
8486695 Danilkovitch et al. Jul 2013 B2
8492140 Smith et al. Jul 2013 B2
8492150 Parker et al. Jul 2013 B2
8524496 Meiron et al. Sep 2013 B2
8529888 Meiron et al. Sep 2013 B2
8540499 Page et al. Sep 2013 B2
8551511 Brandom et al. Oct 2013 B2
8580249 Blazar et al. Nov 2013 B2
8678638 Wong Mar 2014 B2
8852570 Pittenger et al. Oct 2014 B2
8852571 Pittenger et al. Oct 2014 B2
8852572 Pittenger et al. Oct 2014 B2
8852573 Pittenger et al. Oct 2014 B2
8852574 Pittenger et al. Oct 2014 B2
8852575 Pittenger et al. Oct 2014 B2
9109193 Galliher et al. Aug 2015 B2
9220810 Ma et al. Dec 2015 B2
9441195 Wojciechowski et al. Sep 2016 B2
9534198 Page et al. Jan 2017 B2
9732313 Hirschel et al. Aug 2017 B2
9777847 Tuccelli Oct 2017 B2
10024457 Saito Jul 2018 B2
10093956 Hirschel et al. Oct 2018 B2
10143795 Chen Dec 2018 B2
10351282 Tarumoto Jul 2019 B2
10494421 Castillo Dec 2019 B2
20010017188 Cooley et al. Aug 2001 A1
20010019705 Ruediger et al. Sep 2001 A1
20010020086 Hubbell et al. Sep 2001 A1
20010021516 Wei et al. Sep 2001 A1
20010029046 Beaulieu Oct 2001 A1
20010033834 Wilkison et al. Oct 2001 A1
20010036663 Kraus et al. Nov 2001 A1
20010041687 Mruk Nov 2001 A1
20010044413 Pierce et al. Nov 2001 A1
20010049139 Lagasse et al. Dec 2001 A1
20020015724 Yang et al. Feb 2002 A1
20020018804 Austin et al. Feb 2002 A1
20020028510 Sanberg et al. Mar 2002 A1
20020031757 Ohgushi et al. Mar 2002 A1
20020037278 Ueno et al. Mar 2002 A1
20020045260 Hung et al. Apr 2002 A1
20020064869 Ebner et al. May 2002 A1
20020076400 Katz et al. Jun 2002 A1
20020077687 Ahn Jun 2002 A1
20020082698 Parenteau et al. Jun 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020128581 Vishnoi et al. Sep 2002 A1
20020128582 Farrell et al. Sep 2002 A1
20020128583 Min et al. Sep 2002 A1
20020128584 Brown et al. Sep 2002 A1
20020130100 Smith Sep 2002 A1
20020132343 Lum Sep 2002 A1
20020139743 Critz et al. Oct 2002 A1
20020142457 Umezawa et al. Oct 2002 A1
20020146678 Benvenisty Oct 2002 A1
20020146817 Cannon et al. Oct 2002 A1
20020150989 Greene et al. Oct 2002 A1
20020151056 Sasai et al. Oct 2002 A1
20020159981 Peled et al. Oct 2002 A1
20020160032 Long et al. Oct 2002 A1
20020160510 Hariri Oct 2002 A1
20020168765 Prockop et al. Nov 2002 A1
20020169408 Beretta et al. Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020182664 Dolecek et al. Dec 2002 A1
20020188962 Denhardt et al. Dec 2002 A1
20020197240 Chiu Dec 2002 A1
20030021850 Xu Jan 2003 A1
20030022390 Stephens Jan 2003 A1
20030027330 Lanza et al. Feb 2003 A1
20030027331 Yan et al. Feb 2003 A1
20030032143 Neff et al. Feb 2003 A1
20030036168 Ni et al. Feb 2003 A1
20030040113 Mizuno et al. Feb 2003 A1
20030049236 Kassem et al. Mar 2003 A1
20030054331 Fraser et al. Mar 2003 A1
20030059851 Smith Mar 2003 A1
20030059939 Page et al. Mar 2003 A1
20030078345 Morrisey Apr 2003 A1
20030082795 Shuler et al. May 2003 A1
20030086915 Rader et al. May 2003 A1
20030089471 Gehr et al. May 2003 A1
20030092101 Ni et al. May 2003 A1
20030101465 Lawman et al. May 2003 A1
20030103957 McKerracher Jun 2003 A1
20030104568 Lee Jun 2003 A1
20030113813 Heidaran et al. Jun 2003 A1
20030113910 Levanduski Jun 2003 A1
20030124091 Tuse et al. Jul 2003 A1
20030124721 Cheatham et al. Jul 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030133918 Sherley Jul 2003 A1
20030138950 McAllister et al. Jul 2003 A1
20030143727 Chang Jul 2003 A1
20030148152 Morrisey Aug 2003 A1
20030149011 Ackerman et al. Aug 2003 A1
20030152558 Luft et al. Aug 2003 A1
20030157078 Hall et al. Aug 2003 A1
20030157709 DiMilla et al. Aug 2003 A1
20030161817 Young et al. Aug 2003 A1
20030166272 Abuljadayel Sep 2003 A1
20030170214 Bader Sep 2003 A1
20030180296 Salcedo et al. Sep 2003 A1
20030185817 Thomas et al. Oct 2003 A1
20030202938 Rameshwar Oct 2003 A1
20030203483 Seshi Oct 2003 A1
20030204323 Morrisey Oct 2003 A1
20030211602 Atala Nov 2003 A1
20030211603 Earp et al. Nov 2003 A1
20030216718 Hamblin et al. Nov 2003 A1
20030219898 Sugaya et al. Nov 2003 A1
20030223968 Yang Dec 2003 A1
20030224420 Hellerstein et al. Dec 2003 A1
20030224510 Yamaguchi et al. Dec 2003 A1
20030225010 Rameshwar Dec 2003 A1
20030232432 Bhat Dec 2003 A1
20030232752 Freeman et al. Dec 2003 A1
20030235909 Hariri et al. Dec 2003 A1
20040009158 Sands et al. Jan 2004 A1
20040009589 Levenberg et al. Jan 2004 A1
20040010231 Leonhardt et al. Jan 2004 A1
20040014209 Lassar et al. Jan 2004 A1
20040018174 Palasis Jan 2004 A1
20040018617 Hwang Jan 2004 A1
20040023324 Sakano et al. Feb 2004 A1
20040023370 Yu et al. Feb 2004 A1
20040033214 Young et al. Feb 2004 A1
20040033599 Rosenberg Feb 2004 A1
20040037811 Penn et al. Feb 2004 A1
20040037815 Clarke et al. Feb 2004 A1
20040038316 Kaiser et al. Feb 2004 A1
20040053869 Andrews et al. Mar 2004 A1
20040062753 Rezania et al. Apr 2004 A1
20040063205 Xu Apr 2004 A1
20040067585 Wang et al. Apr 2004 A1
20040071668 Bays et al. Apr 2004 A1
20040072259 Scadden et al. Apr 2004 A1
20040077079 Storgaard et al. Apr 2004 A1
20040079248 Mayer et al. Apr 2004 A1
20040087016 Keating et al. May 2004 A1
20040091936 West May 2004 A1
20040096476 Uhrich et al. May 2004 A1
20040097408 Leder et al. May 2004 A1
20040101959 Marko et al. May 2004 A1
20040107453 Furcht et al. Jun 2004 A1
20040110286 Bhatia Jun 2004 A1
20040115804 Fu et al. Jun 2004 A1
20040115806 Fu Jun 2004 A1
20040120932 Zahner Jun 2004 A1
20040121461 Honmou et al. Jun 2004 A1
20040121464 Rathjen et al. Jun 2004 A1
20040126405 Sahatjian et al. Jul 2004 A1
20040128077 Koebler et al. Jul 2004 A1
20040131601 Epstein et al. Jul 2004 A1
20040132184 Dennis et al. Jul 2004 A1
20040136967 Weiss et al. Jul 2004 A1
20040137612 Baksh Jul 2004 A1
20040137613 Vacanti et al. Jul 2004 A1
20040143174 Brubaker Jul 2004 A1
20040143863 Li et al. Jul 2004 A1
20040151700 Harlan et al. Aug 2004 A1
20040151701 Kim et al. Aug 2004 A1
20040151706 Shakhov et al. Aug 2004 A1
20040151729 Michalopoulos et al. Aug 2004 A1
20040152190 Sumita Aug 2004 A1
20040161419 Strom et al. Aug 2004 A1
20040171533 Zehentner et al. Sep 2004 A1
20040180347 Stanton et al. Sep 2004 A1
20040191902 Hambor et al. Sep 2004 A1
20040197310 Sanberg et al. Oct 2004 A1
20040197375 Rezania et al. Oct 2004 A1
20040208786 Kevy et al. Oct 2004 A1
20040214275 Soejima et al. Oct 2004 A1
20040219134 Naughton et al. Nov 2004 A1
20040219136 Hariri Nov 2004 A1
20040219563 West et al. Nov 2004 A1
20040224403 Bhatia Nov 2004 A1
20040229351 Rodriguez et al. Nov 2004 A1
20040234972 Owens et al. Nov 2004 A1
20040235158 Bartlett et al. Nov 2004 A1
20040235160 Nishikawa et al. Nov 2004 A1
20040235166 Prockop et al. Nov 2004 A1
20040242469 Lee et al. Dec 2004 A1
20040258669 Dzau et al. Dec 2004 A1
20040259242 Malinge et al. Dec 2004 A1
20040259254 Honmou et al. Dec 2004 A1
20040260058 Scheek et al. Dec 2004 A1
20040260318 Hunter et al. Dec 2004 A1
20040265996 Schwarz et al. Dec 2004 A1
20050002914 Rosen et al. Jan 2005 A1
20050003460 Nilsson et al. Jan 2005 A1
20050003527 Lang et al. Jan 2005 A1
20050003534 Huberman et al. Jan 2005 A1
20050008624 Peled et al. Jan 2005 A1
20050008626 Fraser et al. Jan 2005 A1
20050009178 Yost et al. Jan 2005 A1
20050009179 Gemmiti et al. Jan 2005 A1
20050009181 Black et al. Jan 2005 A1
20050013804 Kato et al. Jan 2005 A1
20050014252 Chu et al. Jan 2005 A1
20050014253 Ehmann et al. Jan 2005 A1
20050014254 Kruse Jan 2005 A1
20050014255 Tang et al. Jan 2005 A1
20050019801 Rubin et al. Jan 2005 A1
20050019908 Hariri Jan 2005 A1
20050019910 Takagi et al. Jan 2005 A1
20050019911 Gronthos et al. Jan 2005 A1
20050026836 Dack et al. Feb 2005 A1
20050031587 Tsutsui et al. Feb 2005 A1
20050031595 Peled et al. Feb 2005 A1
20050031598 Levenberg et al. Feb 2005 A1
20050032122 Wang et al. Feb 2005 A1
20050032207 Wobus et al. Feb 2005 A1
20050032209 Messina et al. Feb 2005 A1
20050032218 Gerlach Feb 2005 A1
20050036980 Chaney et al. Feb 2005 A1
20050037488 Mitalipova et al. Feb 2005 A1
20050037490 Rosenberg et al. Feb 2005 A1
20050037492 Xu et al. Feb 2005 A1
20050037493 Mandalam et al. Feb 2005 A1
20050037949 O'Brien et al. Feb 2005 A1
20050106119 Brandom et al. May 2005 A1
20050106127 Kraus et al. May 2005 A1
20050112447 Fletcher et al. May 2005 A1
20050112762 Hart et al. May 2005 A1
20050118712 Tsai et al. Jun 2005 A1
20050130297 Sarem et al. Jun 2005 A1
20050136093 Denk Jun 2005 A1
20050137517 Blickhan et al. Jun 2005 A1
20050142162 Hunter et al. Jun 2005 A1
20050149157 Hunter et al. Jul 2005 A1
20050152946 Hunter et al. Jul 2005 A1
20050158289 Simmons et al. Jul 2005 A1
20050172340 Logvinov et al. Aug 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050180957 Scharp et al. Aug 2005 A1
20050181502 Furcht et al. Aug 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050183731 Hunter et al. Aug 2005 A1
20050186244 Hunter et al. Aug 2005 A1
20050186671 Cannon et al. Aug 2005 A1
20050187140 Hunter et al. Aug 2005 A1
20050196421 Hunter et al. Sep 2005 A1
20050208095 Hunter et al. Sep 2005 A1
20050244963 Teplyashin Nov 2005 A1
20050249731 Aslan et al. Nov 2005 A1
20050255118 Wehner Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050277577 Hunter et al. Dec 2005 A1
20050281790 Simmons et al. Dec 2005 A1
20050282733 Prins et al. Dec 2005 A1
20050283844 Furcht et al. Dec 2005 A1
20060002900 Binder et al. Jan 2006 A1
20060008452 Simmons et al. Jan 2006 A1
20060019389 Yayon et al. Jan 2006 A1
20060054941 Lu et al. Mar 2006 A1
20060083720 Fraser et al. Apr 2006 A1
20060099198 Thomson et al. May 2006 A1
20060166364 Senesac Jul 2006 A1
20060172008 Yayon et al. Aug 2006 A1
20060193840 Gronthos et al. Aug 2006 A1
20060228798 Verfaillie et al. Oct 2006 A1
20060239909 Anderson et al. Oct 2006 A1
20060258586 Sheppard et al. Nov 2006 A1
20060258933 Ellis et al. Nov 2006 A1
20060259998 Brumbley et al. Nov 2006 A1
20060280748 Buckheit Dec 2006 A1
20060286077 Gronthos et al. Dec 2006 A1
20070005148 Barofsky et al. Jan 2007 A1
20070011752 Paleyanda Jan 2007 A1
20070042462 Hildinger Feb 2007 A1
20070065938 Gronthos et al. Mar 2007 A1
20070105222 Wolfinbarger et al. May 2007 A1
20070116612 Williamson May 2007 A1
20070117180 Morikawa et al. May 2007 A1
20070123996 Sugaya et al. May 2007 A1
20070166834 Williamson et al. Jul 2007 A1
20070178071 Westenfelder Aug 2007 A1
20070196421 Hunter et al. Aug 2007 A1
20070197957 Hunter et al. Aug 2007 A1
20070198063 Hunter et al. Aug 2007 A1
20070202485 Nees et al. Aug 2007 A1
20070203330 Kretschmar et al. Aug 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070258943 Penn et al. Nov 2007 A1
20070274970 Gordon et al. Nov 2007 A1
20070275457 Granchelli et al. Nov 2007 A1
20070295651 Martinez et al. Dec 2007 A1
20070298015 Beer et al. Dec 2007 A1
20080003663 Bryhan et al. Jan 2008 A1
20080009458 Dornan et al. Jan 2008 A1
20080032398 Cannon et al. Feb 2008 A1
20080050770 Zhang et al. Feb 2008 A1
20080063600 Aguzzi et al. Mar 2008 A1
20080064649 Rameshwar Mar 2008 A1
20080069807 Jy et al. Mar 2008 A1
20080095676 Andretta Apr 2008 A1
20080095690 Liu Apr 2008 A1
20080103412 Chin May 2008 A1
20080110827 Cote et al. May 2008 A1
20080113426 Smith et al. May 2008 A1
20080113440 Gurney et al. May 2008 A1
20080153077 Henry Jun 2008 A1
20080160597 van der Heiden et al. Jul 2008 A1
20080166808 Nyberg Jul 2008 A1
20080181879 Catelas et al. Jul 2008 A1
20080190857 Beretta et al. Aug 2008 A1
20080194017 Esser et al. Aug 2008 A1
20080206831 Coffey et al. Aug 2008 A1
20080220524 Noll et al. Sep 2008 A1
20080220526 Ellison et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080227189 Bader Sep 2008 A1
20080268165 Fekety et al. Oct 2008 A1
20080306095 Crawford Dec 2008 A1
20090004738 Merchav et al. Jan 2009 A1
20090011399 Fischer Jan 2009 A1
20090047289 Denhardt et al. Feb 2009 A1
20090074728 Gronthos et al. Mar 2009 A1
20090075881 Catelas et al. Mar 2009 A1
20090076481 Stegmann et al. Mar 2009 A1
20090081770 Srienc et al. Mar 2009 A1
20090081797 Fadeev et al. Mar 2009 A1
20090092608 Ni et al. Apr 2009 A1
20090098103 Madison et al. Apr 2009 A1
20090098645 Fang et al. Apr 2009 A1
20090100944 Newby Apr 2009 A1
20090104163 Deans et al. Apr 2009 A1
20090104692 Bartfeld et al. Apr 2009 A1
20090104699 Newby et al. Apr 2009 A1
20090118161 Cruz May 2009 A1
20090181087 Kraus et al. Jul 2009 A1
20090183581 Wilkinson et al. Jul 2009 A1
20090191627 Fadeev et al. Jul 2009 A1
20090191632 Fadeev et al. Jul 2009 A1
20090191634 Martin et al. Jul 2009 A1
20090203065 Gehman et al. Aug 2009 A1
20090203129 Furcht et al. Aug 2009 A1
20090203130 Furcht et al. Aug 2009 A1
20090214382 Burgess et al. Aug 2009 A1
20090214481 Muhs et al. Aug 2009 A1
20090214652 Hunter et al. Aug 2009 A1
20090215022 Page et al. Aug 2009 A1
20090227024 Baker et al. Sep 2009 A1
20090227027 Baker et al. Sep 2009 A1
20090233334 Hildinger et al. Sep 2009 A1
20090233353 Furcht et al. Sep 2009 A1
20090233354 Furcht et al. Sep 2009 A1
20090258379 Klein et al. Oct 2009 A1
20090269841 Wojciechowski et al. Oct 2009 A1
20090270725 Leimbach et al. Oct 2009 A1
20090280153 Hunter et al. Nov 2009 A1
20090280565 Jolicoeur et al. Nov 2009 A1
20090291890 Madison et al. Nov 2009 A1
20100009409 Hubbell et al. Jan 2010 A1
20100021954 Deshayes et al. Jan 2010 A1
20100021990 Edwards et al. Jan 2010 A1
20100028311 Motlagh et al. Feb 2010 A1
20100075410 Desai et al. Mar 2010 A1
20100086481 Baird et al. Apr 2010 A1
20100092536 Hunter et al. Apr 2010 A1
20100093607 Dickneite Apr 2010 A1
20100111910 Rakoczy May 2010 A1
20100129376 Denhardt et al. May 2010 A1
20100129912 Su et al. May 2010 A1
20100136091 Moghe et al. Jun 2010 A1
20100144634 Zheng et al. Jun 2010 A1
20100183561 Sakthivel et al. Jul 2010 A1
20100183585 Van Zant et al. Jul 2010 A1
20100203020 Ghosh Aug 2010 A1
20100230203 Karayianni Sep 2010 A1
20100248366 Fadeev et al. Sep 2010 A1
20100278933 Sayeski et al. Nov 2010 A1
20100285453 Goodrich Nov 2010 A1
20100285590 Verfaillie et al. Nov 2010 A1
20100291180 Uhrich Nov 2010 A1
20100291181 Uhrich et al. Nov 2010 A1
20100297234 Sugino et al. Nov 2010 A1
20100304427 Faris et al. Dec 2010 A1
20100304482 Deshayes et al. Dec 2010 A1
20100310524 Bechor et al. Dec 2010 A1
20100316446 Runyon Dec 2010 A1
20110085746 Wong et al. Apr 2011 A1
20110111498 Oh et al. May 2011 A1
20110129447 Meretzki et al. Jun 2011 A1
20110129486 Meiron Jun 2011 A1
20110143433 Oh et al. Jun 2011 A1
20110159584 Gibbons et al. Jun 2011 A1
20110171182 Abelman Jul 2011 A1
20110171659 Furcht et al. Jul 2011 A1
20110177595 Furcht et al. Jul 2011 A1
20110212493 Hirschel et al. Sep 2011 A1
20110256108 Meiron et al. Oct 2011 A1
20110256160 Meiron et al. Oct 2011 A1
20110293583 Aberman Dec 2011 A1
20120028352 Oh et al. Feb 2012 A1
20120051976 Lu et al. Mar 2012 A1
20120058554 Deshayes et al. Mar 2012 A1
20120064047 Verfaillie et al. Mar 2012 A1
20120064583 Edwards et al. Mar 2012 A1
20120118919 Cianciolo May 2012 A1
20120122220 Merchav et al. May 2012 A1
20120135043 Maziarz et al. May 2012 A1
20120145580 Paruit et al. Jun 2012 A1
20120156779 Anneren et al. Jun 2012 A1
20120178885 Kohn et al. Jul 2012 A1
20120189713 Kohn et al. Jul 2012 A1
20120208039 Barbaroux et al. Aug 2012 A1
20120219531 Oh et al. Aug 2012 A1
20120219737 Sugino et al. Aug 2012 A1
20120226013 Kohn et al. Sep 2012 A1
20120231519 Bushman et al. Sep 2012 A1
20120237557 Lewitus et al. Sep 2012 A1
20120295352 Antwiler Nov 2012 A1
20120308531 Pinxteren et al. Dec 2012 A1
20120315696 Luitjens et al. Dec 2012 A1
20130004465 Aberman Jan 2013 A1
20130039892 Aberman Feb 2013 A1
20130058907 Wojciechowski et al. Mar 2013 A1
20130059383 Dijkhuizen Borgart et al. Mar 2013 A1
20130101561 Sabaawy Apr 2013 A1
20130143313 Niazi Jun 2013 A1
20130157353 Dijkhuizen Borgart et al. Jun 2013 A1
20130259843 Duda et al. Oct 2013 A1
20130319575 Mendyk Dec 2013 A1
20130323213 Meiron et al. Dec 2013 A1
20130337558 Meiron et al. Dec 2013 A1
20140004553 Parker et al. Jan 2014 A1
20140017209 Aberman et al. Jan 2014 A1
20140030805 Kasuto et al. Jan 2014 A1
20140051162 Nankervis Feb 2014 A1
20140051167 Nankervis et al. Feb 2014 A1
20140112893 Tom et al. Apr 2014 A1
20140186937 Smith et al. Jul 2014 A1
20140193895 Smith et al. Jul 2014 A1
20140193911 Newby et al. Jul 2014 A1
20140242039 Meiron et al. Aug 2014 A1
20140248244 Danilkovitch et al. Sep 2014 A1
20140315300 Oh et al. Oct 2014 A1
20140342448 Nagels Nov 2014 A1
20150004693 Danilkovitch et al. Jan 2015 A1
20150104431 Pittenger et al. Apr 2015 A1
20150111252 Hirschel et al. Apr 2015 A1
20150125138 Kamieli et al. May 2015 A1
20150175950 Hirschel et al. Jun 2015 A1
20150225685 Hirschel et al. Aug 2015 A1
20150247122 Tom et al. Sep 2015 A1
20150259749 Santos et al. Sep 2015 A1
20160362650 Wojciechowski et al. Dec 2016 A1
20160362652 Page et al. Dec 2016 A1
20180010082 Jaques et al. Jan 2018 A1
20180030398 Castillo Feb 2018 A1
20180155668 Hirschel et al. Jun 2018 A1
20190194628 Rao et al. Jun 2019 A1
20190344269 Johnson et al. Nov 2019 A1
20230366483 Tanabe Nov 2023 A1
Foreign Referenced Citations (246)
Number Date Country
1016332 Aug 1977 CA
4007703 Sep 1991 DE
10244859 Apr 2004 DE
10327988 Jul 2004 DE
102012200939 Jul 2013 DE
102014116592 May 2016 DE
750938 Jan 1997 EP
906415 Apr 1999 EP
959980 Dec 1999 EP
1007631 Jun 2000 EP
1028737 Aug 2000 EP
1028991 Aug 2000 EP
1066052 Jan 2001 EP
1066060 Jan 2001 EP
1084230 Mar 2001 EP
1147176 Oct 2001 EP
1220611 Jul 2002 EP
1223956 Jul 2002 EP
1325953 Jul 2003 EP
1437404 Jul 2004 EP
1437406 Jul 2004 EP
1447443 Aug 2004 EP
1452594 Sep 2004 EP
1062321 Dec 2004 EP
1484080 Dec 2004 EP
1498478 Jan 2005 EP
1036057 Oct 2005 EP
1605044 Dec 2005 EP
1756262 Feb 2007 EP
1771737 Apr 2007 EP
1882030 Jan 2008 EP
1908490 Apr 2008 EP
1971679 Sep 2008 EP
1991668 Nov 2008 EP
2027247 Feb 2009 EP
2200622 Jun 2010 EP
2208782 Jul 2010 EP
2264145 Dec 2010 EP
2303293 Apr 2011 EP
2311938 Apr 2011 EP
2331957 Jun 2011 EP
2334310 Jun 2011 EP
2334783 Jun 2011 EP
2361968 Aug 2011 EP
2366775 Sep 2011 EP
2465922 Jun 2012 EP
2548951 Jan 2013 EP
2561066 Feb 2013 EP
2575831 Apr 2013 EP
2591789 May 2013 EP
2624845 Aug 2013 EP
2626417 Aug 2013 EP
2641606 Sep 2013 EP
2689008 Jan 2014 EP
2694639 Feb 2014 EP
2697362 Feb 2014 EP
2739720 Jun 2014 EP
2807246 Dec 2014 EP
1414671 Nov 1975 GB
2297980 Aug 1996 GB
2360789 Oct 2001 GB
3285 May 2007 HU
2003052360 Feb 2003 JP
5548207 Jul 2014 JP
115206 Apr 2003 MY
9013306 Nov 1990 WO
9105238 Apr 1991 WO
9106641 May 1991 WO
9109194 Jun 1991 WO
9425571 Nov 1994 WO
9629395 Sep 1996 WO
9639035 Dec 1996 WO
9705826 Feb 1997 WO
9729792 Aug 1997 WO
9739104 Oct 1997 WO
1997-040137 Oct 1997 WO
9831403 Jul 1998 WO
9851317 Nov 1998 WO
9851785 Nov 1998 WO
9905180 Feb 1999 WO
9924391 May 1999 WO
9924490 May 1999 WO
9927167 Jun 1999 WO
9949015 Sep 1999 WO
0006704 Feb 2000 WO
0009018 Feb 2000 WO
0016420 Mar 2000 WO
0017326 Mar 2000 WO
0029002 May 2000 WO
0032225 Jun 2000 WO
0044058 Jul 2000 WO
0054651 Sep 2000 WO
0056405 Sep 2000 WO
0059933 Oct 2000 WO
0069449 Nov 2000 WO
0075196 Dec 2000 WO
0077236 Dec 2000 WO
2001000783 Jan 2001 WO
2001011011 Feb 2001 WO
2001018174 Mar 2001 WO
2001021766 Mar 2001 WO
2001025402 Apr 2001 WO
2001029189 Apr 2001 WO
0122810 Apr 2001 WO
2001034167 May 2001 WO
2001049851 Jul 2001 WO
2001054706 Aug 2001 WO
2001-094541 Dec 2001 WO
2002042422 May 2002 WO
2002057430 Jul 2002 WO
2002092794 Nov 2002 WO
2002101385 Dec 2002 WO
2003010303 Feb 2003 WO
2003014313 Feb 2003 WO
2003016916 Feb 2003 WO
2003023018 Mar 2003 WO
2003023019 Mar 2003 WO
2003025167 Mar 2003 WO
2003029402 Apr 2003 WO
2003040336 May 2003 WO
2003042405 May 2003 WO
2003046161 Jun 2003 WO
2003055989 Jul 2003 WO
2003061685 Jul 2003 WO
2003061686 Jul 2003 WO
2003068961 Aug 2003 WO
2003072064 Sep 2003 WO
2003078609 Sep 2003 WO
2003078967 Sep 2003 WO
2003080816 Oct 2003 WO
2003082145 Oct 2003 WO
2003085099 Oct 2003 WO
2003089631 Oct 2003 WO
2003091398 Nov 2003 WO
2003095631 Nov 2003 WO
2004001697 Dec 2003 WO
2004012226 Feb 2004 WO
2004016779 Feb 2004 WO
2004018526 Mar 2004 WO
2004018655 Mar 2004 WO
2004026115 Apr 2004 WO
2004029231 Apr 2004 WO
2004042023 May 2004 WO
2004042033 May 2004 WO
2004042040 May 2004 WO
2004044127 May 2004 WO
2004044158 May 2004 WO
2004046304 Jun 2004 WO
2004050826 Jun 2004 WO
2004053096 Jun 2004 WO
2004055155 Jul 2004 WO
2004056186 Jul 2004 WO
2004065616 Aug 2004 WO
2004069172 Aug 2004 WO
2004070013 Aug 2004 WO
2004072264 Aug 2004 WO
2004073633 Sep 2004 WO
2004074464 Sep 2004 WO
2004076642 Sep 2004 WO
2004076653 Sep 2004 WO
2004087870 Oct 2004 WO
2004094588 Nov 2004 WO
2004096975 Nov 2004 WO
2004104166 Dec 2004 WO
2004106499 Dec 2004 WO
2004113513 Dec 2004 WO
2005001033 Jan 2005 WO
2005001081 Jan 2005 WO
2005003320 Jan 2005 WO
2005007799 Jan 2005 WO
2005010172 Feb 2005 WO
2005011524 Feb 2005 WO
2005012480 Feb 2005 WO
2005012510 Feb 2005 WO
2005012512 Feb 2005 WO
05014775 Feb 2005 WO
2005028433 Mar 2005 WO
05044972 May 2005 WO
2005056747 Jun 2005 WO
05051316 Jun 2005 WO
2005063303 Jul 2005 WO
2005075636 Aug 2005 WO
2005107760 Nov 2005 WO
2006009291 Jan 2006 WO
2006032075 Mar 2006 WO
2006032092 Mar 2006 WO
2006108229 Oct 2006 WO
2006113881 Oct 2006 WO
2006121445 Nov 2006 WO
06124021 Nov 2006 WO
06129312 Dec 2006 WO
2007115367 Oct 2007 WO
2007115368 Oct 2007 WO
2008006168 Jan 2008 WO
2008011664 Jan 2008 WO
2008017128 Feb 2008 WO
2008028241 Mar 2008 WO
08040812 Apr 2008 WO
2008116261 Oct 2008 WO
2008149129 Dec 2008 WO
2009026635 Mar 2009 WO
09058146 May 2009 WO
09080054 Jul 2009 WO
09081408 Jul 2009 WO
2009140452 Nov 2009 WO
09132457 Nov 2009 WO
2009144720 Dec 2009 WO
10005527 Jan 2010 WO
2010019886 Feb 2010 WO
10014253 Feb 2010 WO
10019997 Feb 2010 WO
2010026573 Mar 2010 WO
2010026574 Mar 2010 WO
2010026575 Mar 2010 WO
2010036760 Apr 2010 WO
2010059487 May 2010 WO
10061377 Jun 2010 WO
10068710 Jun 2010 WO
10071826 Jun 2010 WO
10083385 Jul 2010 WO
10111255 Sep 2010 WO
10119036 Oct 2010 WO
10123594 Oct 2010 WO
2011025445 Mar 2011 WO
2011132087 Oct 2011 WO
2011147967 Dec 2011 WO
2012072924 Jun 2012 WO
2012127320 Sep 2012 WO
2012138968 Oct 2012 WO
2012140519 Oct 2012 WO
2012171026 Dec 2012 WO
2012171030 Dec 2012 WO
2013110651 Aug 2013 WO
2014037862 Mar 2014 WO
2014037863 Mar 2014 WO
2014068508 May 2014 WO
2014128306 Aug 2014 WO
2014128634 Aug 2014 WO
2014131846 Sep 2014 WO
2014141111 Sep 2014 WO
2015004609 Jan 2015 WO
2015118148 Aug 2015 WO
2015118149 Aug 2015 WO
2015131143 Sep 2015 WO
2017072201 May 2017 WO
2019-155027 Aug 2019 WO
Non-Patent Literature Citations (263)
Entry
U.S. Appl. No. 18/113,151, filed Feb. 23, 2023, Andrew Gloor et al.
Nehlin JO, Just M, Rustan AC (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12: 349-365.
Unknown author, “New Victories for Adult Stem Cell Research,” New York, Feb. 6, 2007.
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016; 17(6):618-25.
Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129.
Nikolaychik, V. V., M. M. Samet, and P. I. Lelkes. “A New, Cryoprecipitate Based Coating for Improved Endothelial Cell Attachment and Growth on Medical Grade Artificial Surfaces.” ASAIO Journal (American Society for Artificial Internal Organs: 1992) 40.3 (1994): M846-52.
Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, Yu S, Yan X, Lee HK, Pasman L, Brodsky I, Yordy B, Zhao H, Bruning J, Medzhitov R. T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife. 2014;3: e01949.
Niwayama, Jun, et al. “Analysis of hemodynamics during blood purification therapy using a newly developed noninvasive continuous monitoring method.” Therapeutic Apheresis and Dialysis 10.4 (2006): 380-386.
Nugent, Helen M., et al. “Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts.” Journal of vascular surgery 46.3 (2007): 548-556.
Okano et al (Tokyo Women's Medical College, Japan) demonstrated the recovery of endothelial cells and hepatocytes from plasma-treated polystyrene dishes grafted with PNIAAm (Journal of Biomedical Materials Research, 1993).
Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105(29):10113-8.
Onyszchuk G, LeVine SM, Brooks WM, Berman NE. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: A magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neuroscience letters. 2009;452:204-208.
Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F, Coccia EM, Bonacina F, Mitro N, Norata GD, Rossetti G, Ranzani V, Pagani M, Giorda E, Wei Y, Matarese G, Barnaba V, Piconese S. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A. 2018;115(28):E6546-E6555.
Parhi, Purnendu, Avantika Golas, and Erwin A. Vogler. “Role of Proteins and Water in the Initial Attachment of Mammalian Cells to Biomedical Surfaces: A Review.” Journal of Adhesion Science and Technology 24.5 (2010): 853-888.
Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, Zhao J, Letourneau PA, Huby MP, Baer LA, Salsbury JR, Kozar RA, Wade CE, Walker PA, Dash PK, Cox CS, Jr., Doursout MF, Holcomb JB. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS one. 2011;6:e25171.
Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Reitz MS, Holcomb JB, Dash PK. Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/beta-catenin signaling. Stem cells and development. 2011;20:89-101.
Peters JH, Preijers FW, Woestenenk R, Hilbrands LB, Koenen HJ, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 Depletion, Treg expansion, and Treg cryopreservation. PLoS One. 2008;3(9):e3161.
Peters, R.; Jones, M.; Brecheisen, M.; Startz, T.; Vang, B.; Nankervis, B.; Frank, N.; Nguyen, K. (2012) TerumoBCT. https://www.terumobct.com/location/north-america/products-and-services/Pages/Quantum-Materials.aspx.
Porter CM, Horvath-Arcidiacono JA, Singh AK, Horvath KA, Bloom ET, Mohiuddin MM. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Xenotransplantation. 2007; 14(4):298-308.
Povsic TJ, O'Connor CM, Henry T, et al. (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162(4): 654-662.
Prockop, Darwin J., Carl A. Gregory, and Jeffery L. Spees. “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.” Proceedings of the National Academy of Sciences 100.suppl_1 (2003): 11917-11923.
Q. L. Hao, et al. A functional comparison of CD34+CD38= cells in cord blood and bone marrow. Blood 86:3745-3753, 1995.
Rahmahwati, Nurlaela, Deana Wahyuningrum, and Anita Alni. “The Synthesis of Polyethersulfone (PES) Derivatives for the Immobilization of Lipase Enzyme.” Key Engineering Materials. vol. 811. Trans Tech Publications Ltd, 2019.
Rey-Jurado, Emma, et al. “Assessing the importance of domestic vaccine manufacturing centers: an overview of immunization programs, vaccine manufacture, and distribution.” Frontiers in immunology 9 (2018): 26.
Roballo KC, Dhungana S, Z. J, Oakey J, Bushman J. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1-9.
Rodrigues, C., Fernandes, T., Diogo, M., Lobato da Silva, C., Cabral, J. Stem Cell Cultivation in Bioreactors. 2011. Biotechnology Advances v. 29, pp. 815-829.
Ronco C1, Levin N, Brendolan A, Nalesso F, Cruz D, Ocampo C, Kuang D, Bonello M, De Cal M, Corradi V, Ricci Z. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial Int. Oct. 2006; 10(4):380-8.
Ronco, C., Brendolan, A., Crepaldi, C., Todighiero, M., Scabardi, M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. 2002. Journal of the American Society of Nephrology. V. 13, pp. S53-S61.
Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16(2):90-101.
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR, Jr., Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58.
Rudensky, Alexander Y. “Regulatory T cells and Foxp3.” Immunological reviews 241.1 (2011): 260-268.
Ryu, Min-Hyung, and Mark Gomelsky. “Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.” ACS synthetic biology 3.11 (2014): 802-810.
S. Koestenbauer, et al. Protocols for Hematopoietic Stem Cell Expansion from Umbilical Cord Blood. Cell Transplantation 18: 1059-1068, 2009.
S. L. Smith, et al. Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow. Experimental Hematology 21:870-877, 1993.
Safinia N, Grageda N, Scotta C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol. 2018;9:354.
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466-470.
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.
Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18-32.
Schild, Howard G. “Poly (N-isopropylacrylamide): experiment, theory and application.” Progress in polymer science 17.2 (1992): 163-249.
Schmitz R, Alessio A, Kina P. The Physics of PET/CT scanners. Imaging Research Laboratory, Department of Radiology, University of Washington http://depts.washington.edu/imreslab/education/Physics%20of%20PET.pdf, 2013, 16 pages.
Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305-34.
Shevkoplyas et al., “The Force Acting on a Superparamagnetic Bead due to an Applied Magnetic Field,” Lab on a Chip , 7, pp. 1294-1302, 2007.
Shimazu Y, Shimazu Y, Hishizawa M, Hamaguchi M, Nagai Y, Sugino N, Fujii S, Kawahara M, Kadowaki N, Nishikawa H, Sakaguchi S, Takaori-Kondo A. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia. Cancer Immunol Res. 2016;4(2):136-45.
Shimizu et all., “Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces,” Circulation Research, vol. 90, Feb. 22, 2022, e40-e48, pp. 1-9.
Sigma-Aldrich Cheimcals Mitomycin C (M4287) MSDS, v4.4, Jul. 7, 2011.
Sirsi, S. and Borden, M., “Microbubble Composition, Properties, and Biomedical Applications,” Bubble Science, Engineering & Technolology, vol. 1, No. 1-2, pp. 3-17, 2009.
Smith C, Okern G, Rehan S, et al. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement. Clinical & Translational Immunology 2015;4:e31.
Somerville et al., “Clinical Scale Rapid Expansion of Lymphocytes for Adoptive Cell Transfer Therapy in the WAVE® Bioreactor,” Journal of Translational Medicine, vol. 10, No. 69, pp. 1-11, 2012.
Somerville, R. and Dudley, M., “Bioreactors Get Personal,” Oncolmmunology, vol. 1, No. 8, pp. 1435-1437, Nov. 2012.
Spectrum Labs KrosFlo Research IIi TFF System, 2013, Spectrum Laboratories, Inc., 4 pages.
Stafano Tiziani, et al. Metabolomic Profiling of Drug Response in Acute Myeloid Leukaemia Cell lines. PLOSone 4(1):e4251 (Jan. 22, 2009).
Abumiya, et al at National Cardiovascular Center Research Institute in Japan, suggest that subjecting human umbilical vein endothelial cells (HUVECs) to laminar shear stress for a period of 8 hours increased the relative expression of VEGFR-2 mRNA (Ateriosclerosis, Thrombosis, and Vascular Biology, 2002).
Afzali B, Edozie FC, Fazekasova H, Scotta C, Mitchell PJ, Canavan JB, Kordasti SY, Chana PS, Ellis R, Lord GM, John S, Hilton R, Lechler RI, Lombardi G. Comparison of regulatory T cells in hemodialysis patients and healthy controls: implications for cell therapy in transplantation. Clin J Am Soc Nephrol. 2013;8(8):1396-405.
Akram, Khondoker M., et al. “Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms.” Respiratory research 14.1 (2013): 1-16.
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26889.
Alenazi, Noof A., et al. “Modified polyether-sulfone membrane: A mini review.” Designed monomers and polymers 20.1 (2017): 532-546.
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514-524.
Amy Putnam, Todd M. Brusko, Michael R. Lee, Weihong Liu, Gregory L. Szot, Taumoha Ghosh, Mark A. Atkinson, and Jeffrey A. Bluestone. Expansion of human regulatory T-Cells from patients with Type 1 Diabetes. Diabetes, 58: 652-662, 2009.
Anurathapan et al., “Engineered T cells for cancer treatment,” Cytotherapy, vol. 16, pp. 713-733, 2014.
Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC. An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: Analysis of behavioral deficit. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1996;16:705-713.
Arrigoni, Chiara, et al. “Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid.” Biotechnology and bioengineering 100.5 (2008): 988-997.
Azar, Toni, Jody Sharp, and David Lawson. “Heart rates of male and female Sprague-Dawley and spontaneously hypertensive rats housed singly or in groups.” Journal of the American Association for Laboratory Animal Science 50.2 (2011): 175-184.
Baecher-Allan, Clare, et al. “CD4+CD25high regulatory cells in human peripheral blood.” The Journal of Immunology 167.3 (2001): 1245-1253.
Bai/Delaney (Nohla Therapeutics) showed that expanding Cord Blood-derived CD34+CD38-CD45RA—HSPCs in a biodegradable zwitterionic hydrogel with a rNotch ligand cocktail for 24 days mitigated HSPC differentiation and promoted self-renewal of lymphoid and myeloid cell phenotypes in an NSG mouse model (Nature Medicine, 2019).
Ballas CB, Zielske SP, Gerson SL (2002) Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38: 20-28.
Ballke C, Gran E, Baekkevold ES, Jahnsen FL. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa. PLoS One. 2016;11(2):e0148826.
Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1): 121-143.
Barckhausen C, Rice B, Baila S, et al. (2016) GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol 1416: 389-412.
Barker et al. “CD34+ Cell Content of 126 341 Cord Blood Units in the US Inventory: Implications for Transplantation and Banking,” blood Advances, vol. 3, No. 8, pp. 1267-1271, Apr. 23, 2019.
Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. The Journal of head trauma rehabilitation. 2009;24:439-451.
Bending D, Pesenacker AM, Ursu S, Wu Q, Lom H, Thirugnanabalan B, Wedderburn LR. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193(6):2699-708.
Berendse M, Grounds MD, Lloyd CM (2003) Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res 291(2): 435-450.
Bernard, A., Payton, Mar. 1995. “Fermentation and Growth of Escherichia coli for Optimal Protein Production”, John Wiley & Sons. Current Protocols in Protein Science (1995) 5.3.1-5.3.18.
Berney SM, Schaan T, Wolf RE, van der Heyde H, Atkinson TP. CD2 (OKT11) augments CD3-mediated intracellular signaling events in human T lymphocytes. J Investig Med. 2000;48(2):102-9.
Bioheart Clinical Trial Clinica 1302 Apr. 18, 2008.
Biomolecular and Cellular Interactions with the Hollow Fiber Membrane Currently Used in the Quantum® Cell Expansion System. 12th NJ Symposium on Biomaterials Science, Oct. 6-7, 2014, New Brunswick, NJ.
Blache C, Chauvin JM, Marie-Cardine A, Contentin N, Pommier P, Dedreux I, Francois S, Jacquot S, Bastit D, Boyer O. Reduced frequency of regulatory T cells in peripheral blood stem cell compared to bone marrow transplantations. Biol Blood Marrow Transplant. 2010; 16(3):430-4.
Bluestone et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine 7(315):1-34, 2015.
Bluestone JA, Tang Q. Treg cells-the next frontier of cell therapy. Science. 2018;362(6411):154-155.
Blum S, Moore AN, Adams F, Dash PK. A mitogen-activated protein kinase cascade in the ca1/ca2 subfield of the dorsal hippocampus is essential for long-term spatial memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19:3535-3544.
Boitano, Anthony E., et al. “Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.” Science 329.5997 (2010): 1345-1348.
Bojun Li et al. Heparin-induced conformation changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomaterials Science 3: 73-84, 2015.
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of Stromal Stem Cells from Human Adipose Tissue. Methods Mol Biol. 2006;325:35-46. doi: 10.1385/1-59745-005-7:35. PMID: 16761717.
Borden, M. and Longo, M., “Dissolution Behavior of Lipid Monolayer-Coated, Air-Filled Microbubbles: Effect of Lipid Hydrophobic Chain Length,” Langmuir, vol. 18, pp. 9225-9233, 2002.
Bourke, Sharon L., and Joachim Kohn. “Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol).” Advanced drug delivery reviews 55.4 (2003): 447-466.
Brand, K. and Hermfisse, U., “Aerobic Glycolysis by Proliferating Cells: a Protective Strategy against Reactive Oxygen Species,” The FASEB Journal, vol. 11, pp. 388-395, Apr. 1997.
Brentjens et al., “CD19-Targeted T Cells Rapidly Induce Molecular Remission in Adults with Chemotherapy-Refractory Acute Lympohblastic Leukemia,” Science Translational Medicine, vol. 5, Issue 177, pp. 1-9, Mar. 20, 2013.
Brentjens et al., “Safety and Persistance of Adoptively Transferred Autologous CD19-Target T Cells in Patients with Relapsed or Chemotherapy Refractory B-Cell Leukemias,” Blood, vol. 118, No. 18, pp. 4817-4828, Nov. 3, 2011.
Brunstein C, Miller J, Cao Q, Mckenna D, Hippen K, Curtsinger J, DeFor T, Levine B, June C, Rubinstein P, McGlave P, Blazar B, Wagner J. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117(3):1061-1070.
C. H. Weaver, et al. An Analysis of Engraftment Kinetics as a function of the CD34 Content of the Peripheral Blood Progenitor Cell Collections in 692 Patients After the Administration of Myeloblative Chemotherapy. Blood 86(10): 3691-3969, 1995.
Cano, Àngels, Cristina Minguillon, and Cristina Palet. “Immobilization of endo-1, 4-β-xylanase on polysulfone acrylate membranes: Synthesis and characterization.” Journal of membrane science 280.1-2 (2006): 383-388.
Carswell, K. and Papoutsakis, E. “Culture of Human T Cells in Stirred Bioreactors for Cellular Immunotherapy Applications: Shear, Proliferation, and the IL-2 Receptor,” Biotechnology and Bioengineering, vol. 68, No. 3, pp. 329-338, May 5, 2000.
Celeste Nelson et al., Emergent patterns of growth controlled by multicellular form and mechanics, (in Christopher Chen's Lab demonstrated, in separate experiments, that curved surfaces with a radius of curvature (200 ?m) that is greater than the cell diameter and surfaces that have undulating special patterning (depressions) increase the patterned growth of ECs [PNAS 102(33): 11594-11599, 2005].
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy. 2014;6(12):1295-311.
Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566-78.
Chen, C. and Broden, M., “The Role of Poly(theylene glycol) Brush Architecture in Complement Activation on Targeted Microbubble Surfaces,” Biomaterials, vol. 32, No. 27, pp. 6579-6587, Jun. 17, 2011.
Choi W, Kwon SJ, Jin HJ, et al. (2017) Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med 6(1): 38.
Chullikana A, Majumdar AS, Gottipamula S, et al. (2015) Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 17(3): 250-261.
Coeshott C, Vang B, Jones M, Nankervis B. Large-scale expansion and characterization of CD3(+) T-cells in the Quantum((R)) Cell Expansion System. J Transl Med. 2019;17(1):258.
Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol Rev. 2005;204:184-94.
Coquillard C. mTOR Signaling in Regulatory T cell Differentiation and Expansion. SOJ Immunology. 2015;3(1):1-10.
Creed JA, DiLeonardi AM, Fox DP, Tessler AR, Raghupathi R. Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. Journal of neurotrauma. 2011;28:547-563.
Cuchiara, Maude L., et al. “Covalent immobilization of stem cell factor and stromal derived factor 1a for in vitro culture of hematopoietic progenitor cells.” Acta biomaterialia 9.12 (2013): 9258-9269.
Da Silva, Ricardo MP, Joao F. Mano, and Rui L. Reis. “Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.” TRENDS in Biotechnology 25.12 (2007): 577-583.
Dash PK, Hochner B, Kandel ER. Injection of the camp-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature. 1990;345:718-721.
Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S. Involvement of the glycogen synthase kinase-3 signaling pathway in tbi pathology and neurocognitive outcome. PloS one. 2011;6:e24648.
Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem. 2002;9:167-177.
Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PloS one. 2010;5:e11383.
Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neuroscience letters. 2009;460:103-107.
Davila et al., “Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B cell Acute Lymphoblastic Leukemia,” Science Translational Medicine, vol. 6, No. 224, pp. 1-10, Feb. 19, 2014.
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and ve-cadherin in the control of vascular permeability. Journal of cell science. 2008; 121:2115-2122.
Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and haemostasis. 2001;86:308-315.
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Developmental cell. 2009;16:209-221.
Del Pino A, Ligero G, Lopez MB, et al. (2015) Morphology, cell viability, karyotype, expression of surface markers and plasticity of three primary cell line cultures before and after the cryostorage in LN2 and GN2. Cryobiology 70(1): 1-8.
Delaney, Colleen, et al. “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution.” Nature medicine 16.2 (2010): 232-236.
Ding, Zhongli, Guohua Chen, and Allan S. Hoffman. “Synthesis and purification of thermally sensitive oligomer? enzyme conjugates of poly (N-isopropylacrylamide)? trypsin.” Bioconjugate chemistry 7.1 (1996): 121-125.
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. Journal of neuroscience methods. 1991;39:253-262.
Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317.
Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5(6): 919-932.
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol. 2018;142(6):1710-1718.
Fakin R, Hamacher J, Gugger M, Gazdhar A, Moser H, Schmid RA. Prolonged amelioration of acute lung allograft rejection by sequential overexpression of human interleukin-10 and hepatocyte growth factor in rats. Exp Lung Res. 2011;37(9):555-62.
Fedorov et al., “PD-1- and CTLA-4-Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses,” Science Translational Medicine, vol. 5, No. 215, pp. 1-12, Dec. 11, 2013.
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18(10):749-769.
Fischbach, Michael A., Jeffrey A. Bluestone, and Wendell A. Lim. “Cell-based therapeutics: the next pillar of medicine.” Science translational medicine 5.179 (2013): 179ps7-179ps7.
Fisk, Nicholas M., et al. “Can routine commercial cord blood banking be scientifically and ethically justified?.” PLoS medicine 2.2 (2005): e44.
Forbes Jun. 23, 2014 article “Will this man cure cancer?”.
Fowler DH. Rapamycin-resistant effector T-cell therapy. Immunol Rev. 2014;257(1):210-25.
Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Mol Ther Methods Clin Dev. 2018;8:198-209.
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769-77.
Fuchs A, Gliwinski M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhauser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Golab K, Hafler DA, van Ham SM, Hester J et al. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol. 2017;8:1844.
G0211: Study for Gamma Irradiation of Bioreactor Membranes, undated, available at least one year prior to Jun. 1, 2020, author unknown, 3 pages.
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. J Immunol. 2016;197(7):2567-75.
Garlie, Nina K., et al. “T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer.” Journal of immunotherapy (Hagerstown, Md.: 1997) 22.4 (1999): 336-345.
Gedaly R, De Stefano F, Turcios L, Hill M, Hidalgo G, Mitov MI, Alstott MC, Butterfield DA, Mitchell HC, Hart J, Al-Attar A, Jennings CD, Marti F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation. 2019; 103(4):705-715.
Gimble, Jeffrey M., Adam J. Katz, and Bruce A. Bunnell. “Adipose-derived stem cells for regenerative medicine.” Circulation research 100.9 (2007): 1249-1260.
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807-26.
Godin, Michel, et al. “Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator.” Applied physics letters 91.12 (2007): 123121.
Golab K, Leveson-Gower D, Wang XJ, Grzanka J, Marek-Trzonkowska N, Krzystyniak A, Millis JM, Trzonkowski P, Witkowski P. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol. 2013;16(3):371-5.
Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell stem cell. 2011;8:618-628.
Griesche, Nadine, et al. “A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells.” cells tissues organs 192.2 (2010): 106-115.
Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34(3):396-408.
Haack-Sorensen M, Follin B, Juhl M, et al. (2016) Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med 14(1): 319.
Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. Journal of neurotrauma. 2005;22:252-265.
Hami et al., “GMP Production and Testing of Xcellerated T Cells for the Treatment of Patients with CLL,” Cytotherapy, pp. 554-562, 2004.
Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of neurotrauma. 1992;9:11-20.
Hanley PJ, Mei Z, Durett AG, et al. (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16(8): 1048-1058.
Harimoto, Masami, et al. “Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes.” Journal of Biomedical Materials Research: An Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials 62.3 (2002): 464-470.
He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, Zheng Y, Downes M, Evans RM. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci U S A. 2017;114(47):12542-12547.
He X, Landman S, Bauland SC, van den Dolder J, Koenen HJ, Joosten I. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells. PLoS One. 2016; 11(5):e0156311.
Heskins, Michael, and James E. Guillet. “Solution properties of poly (N-isopropylacrylamide).” Journal of Macromolecular Science—Chemistry 2.8 (1968): 1441-1455.
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27(5):786-800.
Högstedt, Benkt, Anita Karlsson, and Anders Holmén. “Frequency and size distribution of micronuclei in lymphocytes stimulated with phytohemagglutinin and pokeweed mitogen in workers exposed to piperazine.” Hereditas 109.(1988): 139-142.
Hollyman et al., “Manufacturing Validation of Biologicall Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy,” J Immunother, vol. 32, No. 2, pp. 169-180, Feb.-Mar. 2009.
MRI| Small Animal Imaging| University of Colorado Cancer Center, http://www.ucdenver.edu/academics/colleges/medicalschool/centers/cancercenter/Research/sharedresources/AnimalImaging/smallanimalimaging/Pages/MRI.aspx, 2019, 2 pages.
ISCT Webinar “Volume Reduction technology for Large Scale Harvest or Post-thaw Manipulation of Cellular Therapeutics”. Feb. 8, 2012, 60 pages.
Itkin, Tomer, and Tsvee Lapidot. “SDF-1 keeps HSC quiescent at home.” Blood, The Journal of the American Society of Hematology 117.2 (2011): 373-374.
Iwashima, Shigejiro, et al. “Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.” Stem cells and development 18.4 (2009): 533-544.
Jang, Eugene, et al. “Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle.” Proceedings of the National Academy of Sciences 109.5 (2012): 1679-1684.
Jarocha D, Stangel-Wojcikiewicz K, Basta A, Majka M (2014) Efficient myoblast expansion for regenerative medicine use. Int J Mol Med 34(1): 83-91.
Jo CH, Lee YG, Shin WH, et al. (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5): 1254-1266.
Johansson, Ulrika, et al. “Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices.” PloS one 10.6 (2015): e0130169.
John Carvell, et al. Monitoring Live Biomass in Disposable Bioreactors, BioProcess International 14(3)s, Mar. 2016.
John Nicolette, et al (Abbott Laboratories). In Vitro Micronucleus Screening of Pharmaceutical Candidates by Flow Cyto9metry in Chinese Hamster V79 Cells, Environmental and Molecular Mutagenesis 00:000-000, 2010.
John P. Carvell and Jason E. Dowd. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio frequency impedance. Cytotechnology 50: 35-48, 2006.
Johnson, Patrick A., et al. “Interplay of anionic charge, poly (ethylene glycol), and iodinated tyrosine incorporation within tyrosine?derived polycarbonates: Effects on vascular smooth muscle cell adhesion, proliferation, and motility.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 93.2 (2010): 505-514.
Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, Hadaczek P, Federoff HJ, Bankiewicz K, Forsayeth J. Human interleukin-10 gene transfer is protective in a rat model of Parkinson's disease. Mol Ther. 2008;16(8):1392-9.
Jones M, Varella-Garcia M, Skokan M, et al. (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System. Cytotherapy 15(11): 1323-1339.
Jones2016ISCT 2016 Poster 69.
Joy, Abraham, et al. “Control of surface chemistry, substrate stiffness, and cell function in a novel terpolymer methacrylate library.” Langmuir 27.5 (2011): 1891-1899.
Kalamasz et al., “Optimization of Human T-Cell Expansion Ex Vivo Using Magnetic Beads Conjugated with Anti-CD3 and Anti-CD28 Antibodies,” J Immunother, vol. 27, No. 5, pp. 405-418, Sep.-Oct. 2004.
Klapper et al., “Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy,” Journal of Immunological Methods, 345, pp. 90-99, Apr. 21, 2009.
Klein, Elias, Eva Eichholz, and Don H. Yeager. “Affinity membranes prepared from hydrophilic coatings on microporous polysulfone hollow fibers.” Journal of membrane science 90.1-2 (1994): 69-80.
Korpanty et al., “Tageting Vascular Enothelium with Avidin Microbubbles,” Ultrasound in Medicine and Biology, vol. 31, No. 9, pp. 1279-1283, May 24, 2005.
Krauss et al., “Signaling Takes a Breath—New Quantitative Perspectives on Bioenergetics and Signal Transduction,” Immunity, vol. 15, pp. 497-502, Oct. 2001.
Kulikov, A. V., et al. “Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic acid in rats.” Bulletin of experimental biology and medicine 145.4 (2008): 514-519.
Kumar P, Marinelarena A, Raghunathan D, Ragothaman VK, Saini S, Bhattacharya P, Fan J, Epstein AL, Maker AV, Prabhakar BS. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol Immunol. 2019; 16(2):138-153.
Kwan, J. and Borden, M., “Lipid Monolayer Collapse and Microbubble Stability,” Advances in Colloid and Interface Science, vols. 183-184, pp. 82-99, Aug. 21, 2012.
Lee et al., “Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion,” The Journal of Immunology, 168, pp. 1682-1689, 2002.
Lee, Jae W., et al. “Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.” Proceedings of the national academy of Sciences 106.38 (2009): 16357-16362.
Levine, B., “T Lymphocyte Engineering ex vivo for Cancer and Infectious Disease,” Expert Opinion on Biological Therapy, vol. 4, No. 4, pp. 475-489, 2008.
Lum et al., “Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles,” Journal of Controlled Release, 111, pp. 128-134, 2006.
M. R. Koller, et al. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplantion 21:653-663, 1998.
Malin, Stephen F., et al. “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.” (1999): 1651-1658.
Malone et al., “Characterization of Human Tumor-Infiltrating Lymphocytes Expanded in Hollow-Fiber Bioreactors for Immunotherapy of Cancer,” Cancer Biotherapy & Radiopharmaceuticals, vol. 16, No. 5, pp. 381-390, 2001.
Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 112(47): 14452-14459.
Marek-Trzonkowska, Natalia, et al. “Administration of CD4+CD25highCD127- regulatory T cells preserves ß-cell function in type 1 diabetes in children.” Diabetes care 35.9 (2012): 1817-1820.
Streltsova et al., “Recurrent Stimulation of Natural Killer Cell Clones with K562 Expressing Membrane-Bound interleukin-21 Affects Their Phenotype, Interferon-y Production, and Lifespan,” International Journal of Molecular Sciences, vol. 20, No. 443, 2019, pp. 1-18.
Markgraf CG, Clifton GL, Aguirre M, Chaney SF, Knox-Du Bois C, Kennon K, Verma N. Injury severity and sensitivity to treatment after controlled cortical impact in rats. Journal of neurotrauma. 2001; 18:175-186.
Mathew et al. A Phase I Clinical Trials I with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Nature, Scientific Reports 8:7428 (1-12), 2018.
Matthay, Michael A., et al. “Therapeutic potential of mesenchymal stem cells for severe acute lung injury.” Chest 138.4 (2010): 965-972.
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol. 2007;8(9):931-41.
McKenna DH, Jr., Sumstad D, Kadidlo DM, et al. Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy 2017;19:250-62.
McLimans W, Kinetics of Gas Diffusion in Mammalian Cell Culture Systems. Biotechnology and Bioengineering 1968; 10:725-740.
McMurtrey, Richard J. “Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids.” Tissue Engineering Part C: Methods 22.3 (2016): 221-249.
Menge, Tyler, et al. “Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury.” Science translational medicine 4.161 (2012): 161ra150-161ra150.
Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. HIF-1alpha Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep. 2019;27(1):226-237 e4.
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911.
Murugappan, G., et al. “Human hematopoietic progenitor cells grow faster under rotational laminar flows.” Biotechnology progress 26.5 (2010): 1465-1473.
Nankervis B, Jones M, Vang B et al. (2018) Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor. Curr Stem Cell Rep. Advanced online publication. https://doi.org/10.1007/s40778-018-0116-x.
Nankervis, Brian, et al. “Optimizing T cell expansion in a hollow-fiber bioreactor.” Current Stem Cell Reports 4.1 (2018): 46-51.
Nedoszytko B, Lange M, Sokolowska-Wojdylo M, Renke J, Trzonkowski P, Sobjanek M, Szczerkowska-Dobosz A, Niedoszytko M, Gorska A, Romantowski J, Czarny J, Skokowski J, Kalinowski L, Nowicki R. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis. Postepy Dermatol Alergol. 2017;34(5):405-417.
Unknown Author, StAR_Abstract, 2014, 1 page.
Startz et al.May 2016 TBCT T-cell White Paper.
Startz, T., et al. “Maturation of dendritic cells from CD14+ monocytes in an automated functionally closed hollow fiber bioreactor system.” Cytotherapy 16.4 (2014): S29.
Steven M. Bryce, et al.(Litron Laboratories). In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutation Research 630(1-2): 78-91, 2007.
Steven M. Bryce, et al.(Novartis Pharma AG, Johnson & Johnson Pharmaceutical Research, GlaxoSmithKline). Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Genetic Toxicology and Environmental Mutagenesis 650: 181-195, 2008.
Stuart, Martien A. Cohen, et al. “Emerging applications of stimuli-responsive polymer materials.” Nature materials 9.2 (2010): 101-113.
Su LF, Del Alcazar D, Stelekati E, Wherry EJ, Davis MM. Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc Natl Acad Sci U S A. 2016;113(41):E6192-E6198.
Takezawa, Toshiaki, Yuichi Mori, and Katsutoshi Yoshizato. “Cell culture on a thermo-responsive polymer surface.” Bio/technology 8.9 (1990): 854-856.
The effect of rocking rate and angle on T cell cultures grown in Xuri™ Cell Expansion Systems, Aug. 2014, GE Healthcare UK Limited, 4 pages.
Trzonkowski et al., “Ex Vivo Expansion of CD4+ CD25+ T Regulatory Cells for Immunosuppressive Therapy,” Cytometry Part A, 75A, pp. 175-188, 2009.
Trzonkowski, Piotr, et al. “First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127? T regulatory cells.” Clinical immunology 133.1 (2009): 22-26.
Tsvetkov, Ts, et al. “Isolation and cryopreservation of human peripheral blood monocytes.” Cryobiology 23.6 (1986): 531-536.
Underwood, P. Anne, et al. “Effects of base material, plasma proteins and FGF2 on endothelial cell adhesion and growth.” Journal of Biomaterials Science, Polymer Edition 13.8 (2002): 845-862.
Urbich, et al from the Goethe-Universitat, demonstrated that human endothelial cells increased VEGFR-2 mRNA expression when exposed to 5-15 dynes/cm2 of constant shear force for a period of 6-24 hours (FEBS, 2002).
Van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29(1):3-11.
Van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev. 2012;249(1):27-42.
Vera et al., “Accelerated Production of Antigen-Specific T-Cells for Pre-Clinical and Clinical Applications Using Gas-Permeable Rapid Expansion Cultureware (G-Rex),” J Immunother, vol. 33, No. 3, pp. 305-315, Apr. 2010.
Villa, Alma Y. Camacho, et al. “CD133+ CD34+ and CD133+ CD38+ blood progenitor cells as predictors of platelet engraftment in patients undergoing autologous peripheral blood stem cell transplantation.” Transfusion and Apheresis Science 46.3 (2012): 239-244.
Visser EP1, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. Jan. 2009;50(1):139-47.
Von Laer, D., et al. “Loss of CD38 antigen on CD34+ CD38+ cells during short-term culture.” Leukemia 14.5 (2000): 947-948.
Wagner Jr, John E., et al. “Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft.” Cell stem cell 18.1 (2016): 144-155.
Walker, Peter A., et al. “Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NF?B-mediated increase in interleukin-6 production.” Stem cells and development 19.6 (2010): 867-876.
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871-82.
Wang, Jiamian, John A. Jansen, and Fang Yang. “Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review.” Frontiers in Chemistry 7 (2019): 258.
Ward H, Vigues S, Poole S, Bristow AF. The rat interleukin 10 receptor: cloning and sequencing of cDNA coding for the alpha-chain protein sequence, and demonstration by western blotting of expression in the rat brain. Cytokine. 2001;15(5):237-40.
Wawman, Rebecca Ellen, Helen Bartlett, and Ye Htun Oo. “Regulatory T cell metabolism in the hepatic microenvironment.” Frontiers in immunology 8 (2018): 1889.
Weber et al., “White Paper on Adoptive Cell Therapy for Cancer with Tumor-Infiltrating Lymphocytes: A Report of the CTEP Subcommittee on Adoptive Cell Therapy,” Clinical Cancer Research, vol. 17, No. 7, pp. 1664-1673, Apr. 1, 2011.
Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, Phase III clinical trial. Dermatol Surg 33(3): 263-268.
Widdel, F. 2010. “Theory and measurement of bacterial growth” http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf.
Yamada, Noriko, et al. “Thermo?responsive polymeric surfaces; control of attachment and detachment of cultured cells.” Die Makromolekulare Chemie, Rapid Communications 11.11 (1990): 571-576.
Yang, Hee Seok, et al. “Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment.” Cell transplantation 19.9 (2010): 1123-1132.
Yi, Zhuan, et al. “A readily modified polyethersulfone with amino-substituted groups: its amphiphilic copolymer synthesis and membrane application.” Polymer 53.2 (2012): 350-358.
Yoshinari, Masao, et al. “Effect of cold plasma-surface modification on surface wettability and initial cell attachment.” International Journal of Biomedical and Biological Engineering 3.10 (2009): 507-511.
Zappasodi et al., “The Effect of Artificial Antigen-Presenting Cells with Preclustered Anit-CD28/-CD3/LFA-1 Monoclonal Antibodies on the Induction of ex vivo Expansion of Functional Human Antitumor T Cells,” Haematologica, vol. 93, No. 10, pp. 1523-1534, 2008.
Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Publisher Correction: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018; 19(6):645.
Zeng B, Kwak-Kim J, Liu Y, Liao AH. Treg cells are negatively correlated with increased memory B cells in pre-eclampsia while maintaining suppressive function on autologous B-cell proliferation. Am J Reprod Immunol. 2013;70(6):454-63.
Zheng, et al at the University of lowa have shown that the differential effects of pulsatile blood flow and cyclic stretch are an important growth stimulus (American Journal of Physiology—Heart and Circulatory Physiology, 2008).
Anamelechi, Charles C., et al. “Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin.” Langmuir 23.25 (2007): 12583-12588.
Barker, Juliet N., et al. “CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking.” Blood advances 3.8 (2019): 1267-1271.
Bluestone, Jeffrey A., et al. “Type 1 diabetes immunotherapy using polyclonal regulatory T cells.” Science translational medicine 7.315 (2015): 315ra189-315ra189.
Claudio G. Brunstein, Jeffrey S. Miller, Qing Cao, Daivd H. McKenna, Keli L. Hippen, Julie Curtsinger, Todd Defor, Bruce L. Levine, Carl H. June, Pablo Rubinstein, Philip B. McGlave, Bruce R. Blazar, and John E. Wagner. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood, 117(3): 1061-1070, 2010.
Lang, Julie, et al. “Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2nullIl2r?null mouse model: a multivariable optimization approach.” Clinical Immunology 140.1 (2011): 102-116.
Kim, Do-Hyung, et al. “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.” Cell 110.2 (2002): 163-175.
Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, Matarese G, Smith DM, Haas R, Mauro C, Wraith DC, Okkenhaug K, Catapano AL, De Rosa V, Norata GD, Marelli-Berg FM. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47(5):875-889 e10.
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396): ra97.
Lampugnani MG, Caveda L, Breviario F, Del Maschio A, Dejana E. Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Bailliere's clinical haematology. 1993;6:539-558.
Lataillade, Jean-Jacques, et al. “Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival.” Blood, The Journal of the American Society of Hematology 95.3 (2000): 756-768.
Lindstein, Tullia, et al. “Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway.” Science 244.4902 (1989): 339-343.
Liotta, Francesco, et al. “Frequency of regulatory T cells in peripheral blood and in tumour?infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma.” BJU international 107.9 (2011): 1500-1506.
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701-1711.
Mathew, James M., et al. “A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants.” Scientific reports 8.1 (2018): 1-12.
Ueda, Ryosuke, et al. “Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.” Cancer medicine 5.1 (2015): 49-60.
Jin, H., and J. Bae. “Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.” 22nd Annual ISCT Meeting (2016): S29.
Bai, Tao, et al. “Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel.” Nature medicine 25.10 (2019): 1566-1575.
Horwitz, Mitchell E., et al. “Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide.” Journal of Clinical Oncology 37.5 (2019): 367-373.
Lee III, Daniel W., et al. “Long-term outcomes following CD19 Car T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation.” Blood 128.22 (2016): 218.
Goh, Celeste, Sowmya Narayanan, and Young S. Hahn. “Myeloid-derived suppressor cells: the dark knight or the joker in viral infections?.” Immunological reviews 255.1 (2013): 210-221.
Pati, Shibani, and Todd E. Rasmussen. “Cellular therapies in trauma and critical care medicine: Looking towards the future.” PLoS Medicine 14.7 (2017): e1002343.
Pati, Shibani, et al. “Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock.” PloS one 13.2 (2018): e0192363.
Celeste Nelson et al.in Christopher Chen's Lab demonstrated, in separate experiments, that curved surfaces with a radius of curvature (200 ?m) that is greater than the cell diameter and surfaces that have undulating special patterning (depressions) increase the patterned growth of ECs [PNAS 102(33): 11594-11599, 2005].
Maria Streltsova, Dean Lee (Nationwide Children's Hospital, OSU, Columbus, OH) et al (Int'l Journal of Molecular Sciences, 2019).
International Search Report and Written Opinion issued in the corresponding International Application No. PCT/US2023/013826; mailed on Jul. 3, 2023 (total 19 pages).
Related Publications (1)
Number Date Country
20230272862 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
63314931 Feb 2022 US