The present invention relates to a frictional, indexing, mechanical scissor clamp hereinafter also called “handling system” that has been designed to be used together with new pre-cast, concrete segmental retaining wall units, also called “SRW block”.
The clamp is used for the construction of a segmental retaining wall, allowing the user to move SRW blocks from the shipping pallet to the wall. The clamp and blocks are lifted using traditional construction machinery such as a backhoe, crane, bobcat, etc. The significant innovation of this clamp/block system is the ability to lift and place more than one large segmental retaining wall block with each installation cycle, substantially increasing installation efficiency.
Segmental retaining walls are a category of earth retention systems that utilize modular, dry stacked, pre-cast concrete blocks to create a stable mass with sufficient weight to resist earth pressures developed by the adjacent soil.
The modular, segmental retaining wall units (SRW blocks) vary in shape and size. Smaller units can be placed by hand (up to 80 lbs) using manual labour. It has been our experience that landscape and construction contractors are having an increasingly difficult time finding reliable manual labourers to install hand placed blocks.
As such, machine placeable units are becoming more and more popular each year. Machine placeable units are SRW blocks that are too large (heavy) to be placed by hand, and require the use of heavy construction machinery (backhoe, crane, etc.) that is outfitted with a specialized clamping device to move them.
As will be explained hereinafter, the present invention is actually an improvement to the existing scissor clamps of which the basic structure is disclosed below, which improvement is adapted for use in combination with a new SRW unit that has been designed to accommodate it.
Existing scissor clamps are actually mechanical devices, normally fabricated from structural steel components, that are designed to securely hold and lift construction materials. These clamps are commonly used to handle individual concrete retaining wall units, concrete pavers, building blocks, etc.
These clamps use freely rotating pin connections to create a scissor configuration with a system of structural steel elements.
The “arms” of each scissor clamp are configured to rotate towards each other about two fixed points in reaction to the clamp being lifted vertically from the midpoint. The arms rotate inwards and generate a compression force on the object to be lifted. At the interface between the object (concrete unit, block) and the clamp arms are rubberized pads. The compression force generated as the clamp arms rotate towards each other results in friction between the object and pads. The frictional force is sufficient to securely hold the self weight of the object, and prevent it from slipping out of the clamp. Essentially, the self weight of the clamp and block is used to generate this clamping action.
With the concrete block held securely in place, the construction machinery is able to lift and move the clamp and object from point to point.
In the context of machine placed segmental retaining walls, the existing scissor clamps have been designed to pick up one (1) unit at a time. Most commonly, each scissor clamp is oriented perpendicular to the unit, and the pads are facing the front and back of the block.
In most cases, the units arrive at the site in bundles on large wood pallets. The units are normally facing each other on the pallet.
In order to pick an SRW block up from the front and back face (perpendicular orientation to the block) using the existing scissor clamp as described above, the SRW blocks on the pallet must be separated to allow the clamp to slide into place. This is often done by a worker using a crow bar and can be difficult and time consuming.
As aforesaid, the present invention is directed to a multi-unit indexing, mechanical scissor clamp intended to be used in conjunction with a very specific SRW block especially designed to be used with it. As a result, several aspects are improved upon to allow for increased efficiency and speed of construction. The clamp is designed to pinch the units end to end (clamp arms are parallel to the unit), putting the entire block in compression along its length.
More particularly, the invention is directed to a multiple-unit indexing, mechanical scissor clamp for handling one or more modular segmental retaining wall units, also called “SRW blocks” having opposite ends each provided with a vertical groove, wherein said indexing clamp comprises:
As may be understood, the SRW blocks used with the clamp according to the invention, are designed to accommodate the arms of the clamp (that are optionally provided with gripping pads, by incorporating vertical grooves also called “channels”) in opposite ends of the block. These channels are perfectly centered to balance the block within the clamp. These channels not only provide enough room for the clamp arms, but allow the block to be placed immediately adjacent to another unit.
Without the channels, a block would have to be placed next to another block, the clamp would have to be removed, then the blocks would have to be shifted together manually. As the clamp grabs the unit from its ends, there is no longer a need to separate the columns on the pallet.
As also mentioned above, the scissor clamp according to the invention is provided with an intricate indexing element and an index foot which allow the placement of multiple units with each installation cycle. The clamp can grasp an entire column from the pallet. In the case of the current system, the SRW units are stacked three courses high, although this number could be increased. Then, the clamp transfers the SRW unit directly to the wall. The travel of the index foot determines the number of units that can be picked up. That is, the travel of the index foot determines the “bay size” of the clamp.
The invention and its use will be better understood upon reading the following non restrictive description of a preferred embodiment thereof made with reference to the drawings.
a is a perspective view of the clamp with three units in bay area;
b is a perspective view of the clamp with two units in bay area;
c is a perspective view of the clamp with one unit in bay area;
Referring to
The indexing foot begins at position “A” in the slotted indexing template. The clamp is lowered over the stack of blocks (in this example, three blocks). As the clamp is lowered, the indexing foot contacts the top of the stack and the foot is pushed up the index element, stopping at position “B”. At this location, the indexing foot is at the highest travel point, and therefore, the gripping arms of the clamp are at the lowest (bottom of the stack—Refer to
During the upward motion, the scissor clamp grips the lowest block tightly. With the lowest block securely held, the entire stack is lifted and moved to the wall. The stack is then lowered on to the wall. As the stack and clamp are lowered, the clamp locking mechanism locks the arms in the “open” position. Once the arms are locked, the clamp is then lifted and the arms slide up the stack (within the vertical grooves), leaving the bottom block in place on the wall. The index foot moves to position “C” as the clamp is being lifted, where it catches in the bottom of the channel. Once the foot catches, essentially setting the new “bay” size (from 3 units to 2 units), the clamp is then dropped again, pushing the pin into the “D” position. This action unlocks the clamp arms in the new “2 blocks” position. As with the “B” position, the clamp is ready to pick up the remaining units on the stack, and the arms grip the lowest block as before. The cycle is continued again, lowering the clamp and blocks, placing the bottom unit, shifting the clamp up to the next unit to be placed, and lifting. Once all blocks are placed, the clamp moves back to the pallet to pick up the next stack of units. A pin hole has also been included which allows the contractor to lock the index foot in the “F” position, restricting the clamp to picking up 1 unit at a time.
As can therefore be understood, the invention relates to an indexing, multi-unit scissor clamp that allows for the placement of multiple SRW blocks during construction.
In accordance with the invention, such is achieved as follows:
As it was already mentioned before, the existing scissor clamps are limited to placing one SRW block at a time. The efficiency of installation is therefore limited to one SRW block per installation cycle. This, in turn, limits the potential for greater productivity and cost savings in man and machine time during construction.
Moreover, the existing scissor clamps grasp the block in the following two ways:
The clamp/block combination according to the invention, addresses the above problems as follows:
So, the present invention is clearly an improvement to the existing equipment.
Applicants claims priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/384,869 filed Sep. 21, 2010, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1577347 | Neumann | Mar 1926 | A |
1974892 | Poliakoff | Sep 1934 | A |
2088519 | Hershey | Jul 1937 | A |
2229359 | York | Jan 1941 | A |
2812972 | Elberty | Nov 1957 | A |
3051521 | Skowron | Aug 1962 | A |
3451711 | Carpenter | Jun 1969 | A |
6331025 | Douglas | Dec 2001 | B1 |
6568731 | Alexander et al. | May 2003 | B2 |
7673918 | Cveykus | Mar 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20120068485 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61384869 | Sep 2010 | US |