This disclosure relates to the field of hand-held tools and, more particularly, to a multiple use open-end wrench with at least one wrenching head, the wrenching head formed with an opening comprising a plurality of differing sized opening portions, each of which being adapted for receiving, holding and turning a differing sized fastener, and where the sizes of the opening portions decrease in graduated fashion as a function of the distance of the respective opening portions away from end tips of the opposing jaw surfaces, to accommodate appropriately sized fasteners.
Consumers have been using or purchasing tools for thousands of years. Many of these tools, such as drills, hammers, screwdrivers and wrenches are not necessarily used on a daily basis, or may be infrequently used at all. Nonetheless, tools of such nature are considered must-have tools for homeowners, appear in many American households, and serve their respectively intended purposes.
Various tools may be used for tightening bolts, nuts, or screws, as an example. In the art, it is necessary to possess multiple individual wrenches to perform various sizes of work. Decreasing the number of tools and increasing efficiency of tools is desirable to consumers. Tools, and, more particularly, wrenches with interchangeable head and end portions are not uncommon in the art. A tool with a body that converts a wrench to a screw-driver, or vice-versa, as an example, are taught in the art. However, tools taught in the art often contain more than one part or piece.
Thus, consistent with the goal of decreasing the number of tools and increasing efficiency of tools, an open-end wrench with a plurality of grooves on its wrenching heads may enable consumers to replace a plurality of standard combination wrenches with an individual tool.
In accordance with an aspect of the disclosure, an open-end wrench includes an elongated handle. The elongated handle comprises a proximal end and an opposing distal end. The elongated handle has a longitudinal axis extending between the proximal and distal ends. At at least one of the proximal and distal ends, and preferably, at both the proximal and distal ends, is positioned a wrenching head.
The wrenching head(s) include(s) an opening formed between opposing surfaces of a first stationary jaw and a second stationary jaw. The opening comprises multiple graduated opening portions, for example, three (3), a first largest opening portion, a second smaller opening portion contiguous to or with the first largest opening portion and a third smallest opening portion contiguous to or with the second smaller opening portion, moving inwards and away from the outermost extents or tips of the opposing jaw surfaces. Each opening portion is defined with a depth; the opposing jaw surfaces in any of the three (3) opening portions are parallel, and equal in length.
In one embodiment, the inventive multiple use open-end wrench comprises only a single wrenching head at the proximal end, where the wrenching head has an opening comprising three (3) opening portions. The wrench and wrenching head so configured enables the wrenching head to receive (and the wrench turn) 3 different sized fasteners. The largest of the three (3) opening portions seats a first and largest sized fastener, of the three (3) different sized fasteners, and allows the second smaller and third smallest sized fasteners to pass through the first opening portion. The second opening portion is sized to seat the second smaller-sized fasteners, where the third smallest sized fastener would pass through the first and second opening portions, and seat in the third smallest sized opening portion. The third smallest sized opening portion is sized to receive the third and smallest sized fastener. Turning the wrench turns the wrenching head and the fastener received and seated in the respectively-sized opening portion.
Where the wrenching head opening comprises three (3) opening portions, the sum of the three (3) separate depths (including opening portion jaw surfaces and any transitions, depending on the intended fasteners) is equal the aggregate depth D of the opening. It should be noted that the dimensions of the opening portions must be slightly larger than the actual dimensions of the hex fasteners, in order to fit, for example, 1 to 5%, preferably 2%. If the surfaces of the fasteners and the jaw surfaces of the opening portions were exactly the same size, it would be problematic to seat the fasteners.
A separation between the equal and parallel surfaces of the first and the second stationary jaw surfaces (and transitions where the fasteners are hexagonal fasteners), in each of the three (3) opening portions, is fixed, defining the sizes of the three (3) graduated smaller opening portions (moving in from the outermost tips of the jaws of the wrenching head). If the fastener is square, the depth of the respective opening portions (which are some part of the aggregate depth D of the entire opening) and the separation between the first and second parallel jaw surfaces for each respective opening portions are equal to the respective depths.
However, if the fasteners to be seated in the respective opening portions of the wrenching head are hexagonal fasteners, which are shaped as regular polygons, the depths of the respective opening portions are not simply calculated. The depths associated with each opening portion adapted for each hex fastener includes must include the length of the side of each fastener plus a vertical component of the transition between opening portions. The transition includes a vertical and horizontal component embodying legs of a right triangle, where the length of the transition is the hypotenuse of the right triangle (see
The last or smallest opening portion must have a transition equivalent to the length of the jaw surfaces (slightly larger than the length of the side S of the hexagonal fastener), plus the vertical component of the side ending at the lowest point of the hex fastener when seated. This is S×sin 30, or ½ S. For that matter, for each opening portion, the distance between the parallel sides is approximately equal to 2×S×cos 30 degrees or 2×(31/2)/2×S, where S is the length of the sides of the hex surfaces; this is (31/2)×S. Please note that the length of the respective jaw surfaces for each opening portion must be slightly larger than the length of the corresponding hex nut fastener surfaces, and the distance between the jaw surfaces in each opening portion must be slightly larger than (31/2)×S of the hex fastener surface in order to readily accommodate each respective hex nut in each respective opening portion.
For example, if the first largest hex fastener is identified as ¾″ hex fastener, the opposing sides are ⅝ inch. Then, the distance between the ⅝ inch parallel sides is 2×adjacent side of the right triangles formed by bisecting the two opposing equilateral triangles defining the parallel sides. This is 2×cos 30×hypotenuse. The hypotenuse is the length of the parallel sides, or S. Hence, the distance is 2×cos 30×S, or S×square root 3. When S is ⅝ inch, the distance between the sides (and the jaws plus about 2% to accommodate the hex nuts therein) is 3(31/2)/8. Half the distance between parallel side of the ¾ inch hex nut with ⅝ inch sides is 3/16×31/2.
For the second smaller hex fastener, which is ⅝ inch, the length of the opposing hex surfaces are approximately 9/16 inch, and the distance between the 9/16 inch sides is 2×cos 30×hypotenuse (or 9/16), or 9/16 square root 3. Half the distance is 9/32×31/2.
For the third smallest hex fastener, which is ½ inch, the opposing sides are 7/16 inch, and the distance between the 7/16 inch sides is cos 30×hypotenuse ( 7/16)×2, or 7/16 square root 3. Half the distance is 7/32×31/2.
It follows that the minimal transition between opening portions for the ¾ inch fastener and the ⅝ inch fasteners forms a proportional right triangle. The transition is the hypotenuse of the right triangle where the horizontal component is the difference between the distances between the opposing surfaces of the ¾ inch and ⅝ inch fasteners, or ⅝-½, or ⅛ inch. The hypotenuse is adjacent over cosine 30, or ⅛/(31/2)/2, or 1/(4×(31/2)). With the hypotenuse and the horizontal component known, the vertical component is then sin 30°×hypotenuse, or 1/32 (31/2).
The inventive multiple use open-ended wrench preferably includes a second wrenching head, configured to receive and turn three differently sized fasteners, such as hex nuts. In an exemplary embodiment, the first wrenching head is arranged as in the first exemplary embodiment, as explained above, and the second wrenching end is configured to receive fasteners, for example, sized at 7/16 inch, ⅜ inch and 5/16 inch. The arrangement of the opening portions of the opening in the second wrenching head, to accommodate the 7/16, ⅜ and 5/16 inch fasteners follows the arrangement for the wrenching head described above.
Please note that while the exemplary embodiments described include three wrenching heads, at one or more of the proximal and distal ends, the invention is not limited thereto. The inventive wrench may have two, three, four, and five opening portions at each wrenching head without deviating from the scope and spirit of the invention.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and features of the disclosure and, together with the detailed description below, serve to further explain the disclosure, in which:
Descriptions of technical features or aspects of an exemplary embodiment of the disclosure should typically be considered as available and applicable to other similar features or aspects in another exemplary embodiment of the disclosure. Accordingly, technical features described herein according to one exemplary embodiment of the disclosure may be applicable to other exemplary embodiments of the disclosure, and thus duplicative descriptions may be omitted herein.
Exemplary embodiments of the disclosure will be described more fully below (e.g., with reference to the accompanying drawings). Descriptions of technical features or aspects of embodiments may be described using the United States customary units, which include, inter alia, inches. Please note, however, that while described in US imperial units, the inventive wrenches are not so limited, and may also be manufactured in metric unit sizes. Accordingly, the technical features or aspects of embodiments described herein should be interpreted to include both the US units and metric units, i.e., inches, centimeters, millimeters, without deviating from the scope and spirit of the invention.
The distal end is configured as a second, multiple use wrenching head 50, with an opening between third JIIa and fourth JIIb opposing stationary jaws for receiving square fasteners for turning. The opening extends from outermost tips TIIa and TIIb of the first and second opposing stationary jaws JIIa, JIIb (of the second multiple use wrenching head 50) for an aggregate depth DII, defining 3, graduated, decreasingly sized opening portions. The 3 decreasingly-sized opening portions are adapted for use with three (3) different sized square fasteners, e.g., ⅜, 5/16, ¼, 3/16 inches, etc., without limitation. Preferably, the sizes of the three opening portions of wrenching head 30 are different than those of wrenching head 50.
The first jaw opening portion is the largest in both wrenching heads 30, 50. For example, first wrenching head 30 is adapted to accommodate square nuts sized as 9/16 inch between opposing jaw set JIla, JIra, ½ inch between opposing jaw set JIlb, JIrb) and 7/16 inch between opposing jaw set JIlc, JIrc, as shown. The 9/16 sized square nut, which is the largest, can only be seated in the first opening portion of wrenching head 30 defined by the first opposing jaw set JIla, JIra, with jaw surfaces separated by 9/16 inch for a portion 9/16 inch portion of the aggregate 3/2 inch depth of D1. No larger square nut can be received in the first opening portion, but smaller sized square nuts can pass through. That is, smaller sized square nut fasteners, such as the ½ inch and 7/16 inch will not seat in the first opening portion because they are smaller than the 9/16 inch by 9/16 size of same. For example, a ½ inch square fastener will not seat in the first opening portion formed by 9/16 inch jaw set JIla, JIra, but only in the second opening formed by second ½ inch jaw set JIlb, JIrb). The ½ inch square nut fastener cannot move further in past the second opening, which is ½ inch by ½ inch, into the third opening portion, because the distance between the jaw set JIlc, JIrc of the third opening surfaces is 7/16 inch, so the third opening is 7/16 inch by 7/16 inch square. Only a 7/16 inch square nut can seat properly in the third opening in the exemplary embodiment—can't get a B inch square nut in an opening adapted for a 7/16 inch square nut fastener.
The second, multiple use wrenching head 50 (as shown in
Likewise, the 5/16 inch fastener will not properly seat in the first opening portion of the first jaw set JIIld, JIIrd of the second wrenching head 50, but only in the second opening portion defined by the 5/16 inch depth or length, and 5/16 inch distance between the second jaw set surfaces JIIle, JIIre. The 5/16 inch square nut fastener cannot move further in past the first 5/16 by 5/16 inch second opening portion, into the third opening portion formed by the third ¼ inch jaw set (JIIlf, JIIrf), because the third opening is ¼ inch by ¼ inch. Moreover, the ¼ inch×¼ inch square nut fastener cannot be properly seated in the second 5/16 by 5/16 inch opening portion, as should be apparent.
Please note that while the
The design of the double-sided wrench will/can have alternating sized openings on either end, for the purpose of balance, strength, and esthetics. In the example of metric sizing (millimeters), the wrench would have all of the odd sizes on one end of the wrench while even sizes would be on the other. Ex: 15 mm-13 mm-11 mm and 14 mm-12 mm-10 mm. In the sizes used by the Society of Automotive Engineers (SAE—inches), the same alternating design would occur, Ex: ¾- 9/16- 7/16 and ⅝-½-⅜. Alternating, sequential sizes strengthen the openings, provide balance to the wrench in its entirety, and improves overall appearance. If the sizes of the openings were not alternated, then the openings on the wrench would be of minimal contrast to the next size and the wrench would be lopsided in appearance and actual weight, having the three largest openings on one side, and the three smallest openings on the other.
The multiple, differently-sized opening portions defined by the varying distances between the jaw set surface of the first wrenching head 30, and/or the second wrenching head 50, of
For that matter, while wrench 10 is shown in
In accordance with some embodiments, the elongated handle 20, 20′, 20″, 20″′ and 20″″, preferably include a plurality of finger grip indents formed in a rear surface of the proximal end 30, 30′, 30″, 30″′. In some aspects, the elongated handles can include a plurality of finger grip indents formed in a rear surface of the distal end, in some aspects, the elongated handle includes a plurality of finger indents formed in a rear surface of the proximal end as well as a plurality of finger grip indents formed in a rear surface of the distal end. In some aspects, a rubber sleeve may be positioned on the elongated handle. For that matter, the plurality of finger grip indents may be disposed on the rubber sleeve on the elongated handle.
The first largest opening portion (formed to accommodate a 9/16 inch hex nut) is bound or defined by jaw sets JIla, JIra and transitions XIlab, XIrab. The second, smaller opening portion (formed to accommodate a ½ inch hex nut) is bound or defined by jaw sets JIlb, JIrb and transitions XIlbc, XIrbc. The third, smallest opening portion (formed to accommodate a 7/16 inch hex nut) is bound or defined by jaw sets JIlc, JIrc and transitions XIlc, XIrc, as shown. The 9/16 hex fastener, which is the largest, can only be seated in the first, largest opening portion, as it is too large to gain entry to the second smaller and third smallest opening portions. The second ½ inch hex nut is too small to seat properly in the first opening portion, and too large to fit into the third, smallest opening portion.
The aggregate depth of the first, second and third opening portions of first, proximal end wrenching head 30″″ and the second, distal end wrenching head 50″″, are equal to DI and DII, respectively, as shown. However, calculating the aggregate depth of the openings of the first and second wrenching heads 30″″ and 50″″ is more complicated than calculating the size of the openings adapted to receive square nuts. This is because the opening portions are formed to accommodate hex nuts (a largest F1 and smaller F2 of which are depicted in
While the respective depths or lengths of the jaw set surfaces of the respective first, second and third opening portions (JIla, JIra; JIlb, JIrb; JIlc, JIrc) are substantially equivalent to the length of the 6 parallel surfaces of each of three corresponding hex nuts (parallel surfaces S1, S2 of 2 hex nuts F1 and F2 depicted in
A hex nut may be thought of as comprising 6 virtual equilateral triangles arranged so that the 6 respective peaks meet at the center of the hex shape of the hex nuts, as shown in
Relying on SohCahToa, and that the hypotenuse lengths of the 6 respective equilateral triangles of hex nuts F1, F2, are equal to the parallel sides S1, S2 (and substantially equivalent to the slightly larger surfaces JIla and JIra; and JIlb and JIrb, respectively). The adjacent side (Iadj) of the right triangle is the cosine 30 degrees times the hypotenuse (S1). Cosine 30 degrees is equal to square root 3 over 2, so the adjacent side of the right triangle is (((3)1/2)/2)S1. The length of the bases of the right triangles are S1/2, and the length of the hypotenuse are S1. And as explained, the parallel distance between sides S1 of any of the opposing pairs of equilateral triangles making up the shape of the hex nut fastener, is two times the adjacent side (Iadj), or 2((3)1/2)/2)S1=((3)1/2)S1.
The same principle or algorithm applies to any hex nut, such as the smaller hex nut F2 with opposing parallel sides S2, as shown. That is, for fastener F2, the fastener's virtual equilateral triangles between opposing hex surfaces may be bisected laterally, creating 4 right triangles, as shown in
The minimal transitions XIlab, XIlbc, and XIlc, which are required to accommodate the part of the hex nuts F1, F2, below the extent of the parallel sides (
Hence, the hypotenuse is (Iadj−IIadj)/(Cos 30 degrees), or 2(Iadj−IIadj)/(31/2), or 2(Iadj−IIadj)(3−1/2). But the hypotenuse also can be calculated as the square root of the sum of the vertical component squared, and the horizontal component squared. This is ((b1−b2)2+(Iadj−IIadj)2)1/2.
To derive the diagonal extent of the transition (XIlab and XIlbc in
Returning to
Likewise, the 5/16 inch hex fastener will not seat in the opening portion of the first set of jaws (JIIld, JIIrd), but only in the opening portion of the second set of jaws (JIIle, JIIre); the 5/16 inch hex fastener cannot move further in past the second opening portion formed by jaw surfaces (JIIle, JIIre) because the fastener faces/surfaces are 5/16 inch, and the separation between the third set of jaw surfaces (JIIlf, JIIrf) is ¼ inch×(31/2). Moreover, the ¼ inch×¾ inch hex fastener or bolt head cannot be seated in the second opening portion, which is a 5/16×(31/2) inch opening portion.
Please note that while the
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise.
Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application derives the benefit of the filing date of U.S. Provisional Patent Application No. 63/132,546, filed Dec. 31, 2020. The contents of the provisional application are incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
529707 | Clay | Nov 1894 | A |
562611 | Hummel et al. | Jun 1896 | A |
1297846 | Herrman | Mar 1919 | A |
1479772 | Cook | Jan 1924 | A |
1550564 | Yashuhiko | Aug 1925 | A |
1624508 | Reilly | Apr 1927 | A |
1640383 | Thomas | Aug 1927 | A |
D120489 | Musselman | May 1940 | S |
D167245 | Anderson | Jul 1952 | S |
2705433 | Goldman | Apr 1955 | A |
2716367 | Montgomery | Aug 1955 | A |
2803158 | King | Aug 1957 | A |
2900857 | Burnette | Aug 1959 | A |
3738203 | Cudd | Jun 1973 | A |
3858464 | Evans | Jan 1975 | A |
3931749 | Evans | Jan 1976 | A |
5259281 | Burke | Nov 1993 | A |
5313860 | Liou | May 1994 | A |
D356240 | Meldahl | Mar 1995 | S |
D393578 | Keddie | Apr 1998 | S |
D402515 | McIntyre | Dec 1998 | S |
5931063 | Kuo | Aug 1999 | A |
D422467 | Mollack | Apr 2000 | S |
6131492 | Mai | Oct 2000 | A |
D434621 | Tonkin | Dec 2000 | S |
D448981 | Solanki | Oct 2001 | S |
6343529 | Pool | Feb 2002 | B1 |
D462245 | Friedman | Sep 2002 | S |
6523440 | Friedman | Feb 2003 | B2 |
9452511 | Nguyen | Sep 2016 | B2 |
D786640 | Hilman | May 2017 | S |
20020078799 | Friedman | Jun 2002 | A1 |
Entry |
---|
Cross Reference Chart http://www.dansmc.com/wrench_referance.jpg (Jul. 6, 2016) (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
63132546 | Dec 2020 | US |