The current invention relates to infusion devices, specifically to peripheral intravenous (IV) catheters. In particular, the invention relates to peripheral IV catheter assemblies having features to enable selective and reversible activation of fluid flow through the catheter assembly.
Catheters are commonly used for a variety of infusion therapies. For example, catheters are used for infusing fluids, such as normal saline solution, various medicaments, and total parenteral nutrition, into a patient, withdrawing blood from a patient, or monitoring various parameters of the patient's vascular system.
Catheters and/or needles are typically coupled to a catheter adapter to enable attachment of IV tubing to the catheter. Thus, following placement of the catheter or needle into the vasculature of a patient, the catheter adapter is coupled to a fluid source via a section of IV tubing. In order to verify proper placement of the needle and/or catheter in the blood vessel, the clinician generally confirms that there is “flashback” of blood in a flashback chamber of the catheter assembly.
Once proper placement of the catheter is confirmed, the clinician must then attach the catheter adapter to a section of IV tubing, or continue to manually occlude the vein to prevent undesirable exposure to blood. The process of coupling the catheter adapter to the section of IV tubing requires the clinician to awkwardly maintain pressure on the vein of the patient while simultaneously coupling the catheter adapter and the IV tubing. A common, yet undesirable practice is to permit blood to temporarily and freely flow from the catheter adapter while the clinician locates and couples the IV tubing to the catheter adapter. Another common practice is to attach the catheter adapter to the IV tubing prior to placing the needle or catheter into the vein of the patient. While this method may prevent undesirable exposure to blood, positive pressure within the IV line may also prevent desirable flashback.
Some catheter assemblies further utilize a septum actuator and a split septum, wherein the septum actuator is mechanically advanced through a slit of the septum to provide a fluid pathway through the septum. However, once advanced through the septum, the septum actuator becomes lodged within the slit of the septum and is unable to return to its initial position. As such, the fluid pathway remains in an opened position thereby enabling uncontrolled flow of fluids through the septum.
Accordingly, there is a need in the art for a catheter assembly that permits user controlled fluid flow. Various embodiments of such a catheter assembly is disclosed herein.
In order to overcome the limitations discussed above, the present invention relates to a flushable peripheral IV catheter assembly having features to enable selective activation of fluid flow through the catheter assembly. The catheter assembly of the present invention generally includes a catheter coupled to a catheter adapter. The catheter generally includes a metallic material, such as titanium, surgical steel or an alloy as is commonly known in the art. In some embodiments, a polymeric catheter may be used in combination with a metallic introducer needle, as is commonly known and used in the art.
In some embodiments of the present invention, a septum is positioned within a lumen of the catheter assembly to prevent or limit flow of a fluid through the catheter adapter. The septum generally includes a flexible or semi-flexible material that is compatible with exposure to blood, medicaments, and other fluids commonly encountered during infusion procedures. In some embodiments, a groove is provided on an inner surface of the catheter adapter, wherein the septum is seated within the groove. As such, the position of the septum within the catheter adapter is maintained.
In some implementations of the present invention, a closed or partially closed pathway, such as a slit or plurality of slits is further provided in a barrier surface of the septum. The pathway permits fluid to bypass the septum and flow through the catheter adapter. In some embodiments, the pathway is a slit that is closed prior to being opened or activated by a probe or septum actuator positioned within the lumen of the catheter adapter. Prior to being opened or activated, the slit prevents passage of fluid through the catheter adapter. Thus, in some embodiments a plurality of air vent channels are interposed between the septum and the groove to permit air flow through the catheter adapter prior to the slit being opened. The air vents prevent buildup of positive pressure within the catheter adapter thereby permitting flashback of blood into the catheter and a forward chamber of the catheter adapter.
The septum actuator generally includes a plastic or metallic tubular body having a probing end and a contact end. The probing end is positioned adjacent to the pathway of the septum, and the contact end is positioned adjacent to a proximal opening of the catheter adapter. The probing end of the septum actuator is advanced against the septum when a probe is inserted into the proximal opening of the catheter adapter. As the probe contacts the contact surface of the septum actuator, the septum actuator is advanced in a distal direction thereby deforming or otherwise displacing the barrier surface of the septum and a distal direction. When in the stressed position, the slit or slits in the barrier surface assume an opened position thereby enabling free flow of fluid through the catheter assembly. Upon release of the septum actuator, the slit or slits in the barrier surface resume their closed position.
In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only typical embodiments of the invention and are not therefore to be considered to limit the scope of the invention.
The presently preferred embodiment of the present invention will be best understood by reference to the drawings, wherein like reference numbers indicate identical or functionally similar elements. It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description, as represented in the figures, is not intended to limit the scope of the invention as claimed, but is merely representative of presently preferred embodiments of the invention.
Referring now to
One of skill in the art will appreciate that the features of the present invention may be incorporated for use with an over-the-needle catheter assembly. For example, one of skill in the art will appreciate that a flexible or semi-flexible polymer catheter may be used in combination with a rigid introducer needle to enable insertion of the catheter into a patient. One of skill in the art will further appreciate that surgically implanted catheters may also be used in combination with the present invention.
Once inserted into a patient, the catheter 12 and catheter adapter 14 provide a fluid conduit to facilitate delivery of a fluid to and/or retrieval of a fluid from a patient, as required by a desired infusion procedure. Thus, in some embodiments the material of the catheter 12 and the catheter adapter 14 are selected to be compatible with bio-fluids and medicaments commonly used in infusion procedures. Additionally, in some embodiments a portion of the catheter 12 and/or catheter adapter 14 is configured for use in conjunction with a section of intravenous tubing 40 to further facilitate delivery of a fluid to or removal of a fluid from a patient.
In some embodiments, a proximal end 22 of the catheter adapter 14 includes a flange 28. The flange 28 provides a positive surface which may be configured to enable coupling of an intravenous tubing or patient conduit 40 to the catheter assembly 10. In some embodiments, the flange 28 includes a set of threads 30. The threads 30 are generally provided and configured to compatibly receive a complementary set of threads 44 comprising a portion of a male luer or conduit coupler 42. The conduit coupler 42 is generally coupled to an end portion of the patient conduit 40 in a fluid-tight manner. In some embodiments, an inner portion of the conduit coupler 42 is extended outwardly to provide a probe surface 46.
The probe surface 46 is generally configured to compatibly insert within a proximal end 22 of the catheter adapter 14. Following insertion of the probe 46 into the proximal end 22 of the catheter adapter 14, the conduit coupler 42 is rotated to interlock the coupler 42 and the flange 28 (via the sets of threads 30 and 44). During the process of interlocking the coupler 42 and the flange 28, the probe surface 46 is advanced into the lumen 16 of the catheter adapter 14 to an inserted position. The inserted position of the probe surface 46 activates the catheter assembly 10 to enable flow of fluid through the catheter 12 and catheter adapter 14. Once the conduit coupler 42 and the catheter adapter 14 are attached, a fluid may be delivered to a patient via the patient conduit 40 and the inserted catheter 12.
Referring now to
For example, in some embodiments the barrier surface 52 of the septum 50 is configured to include a slit 56. The slit 56 is configured to provide selective access or flow of a fluid through the barrier surface 52. In some embodiments, the slit 56 is configured to remain in a closed, fluid-tight position until activated or stressed into an opened configuration by advancing a septum actuator 80 against barrier surface 52 in a distal direction 290. In some embodiments, slit 56 is configured to permit the passage of an introducer needle or other probing device to assist in catheterization or subsequent treatment of the patient. In some embodiments, the barrier surface 52 comprises one slit 56. In other embodiments, the barrier surface 52 plurality of slits.
In general, slit 56 forms a fluid tight seal prior to being actuated by septum actuator 80. However, for some infusion therapy techniques, it may be desirable to permit a controlled flow of fluid through the septum 50 prior to activating the septum 50 with the septum actuator 80. Thus, in some embodiments slit 56 does not form a fluid tight seal. Rather, slit 56 forms a leak orifice to permit controlled flow of liquid or air between the forward and rearward chambers 62 and 64 (not shown).
The groove or channel 60 into which the septum is seated comprises a recessed portion of the inner surface 24 of the catheter adapter 14. The outer diameter of the septum 50 is generally configured to compatibly and securely seat within the channel 60. For example, in some embodiments the outer diameter of the septum 50 is selected to be both slightly smaller than the diameter of the channel 60 and slightly larger than the diameter of the inner lumen 16. As such, the septum 50 is retained within the channel 60 during use of the catheter assembly 10.
For some infusion therapy techniques, air flow between the forward and rearward chambers 62 and 64 may be desirable. For example, for those embodiments comprising a septum 50 having a fluid-tight slit 56 and 66, passage of air from the forward chamber 62 to the rearward chamber 64 is prohibited prior to opening or actuating septum 50 via septum actuator 80, as previously discussed. Thus, when the catheter 12 of the catheter assembly 10 is inserted into the vascular system of a patient, a positive pressure develops within the forward chamber 62 thereby preventing a desired flashback of the patient's blood into the catheter adapter 14. An observable flashback is generally desirable to confirm accurate placement of the catheter tip 20 within the vein of the patient. Thus, some embodiments of the present invention include features or elements to enable airflow between the forward chamber 62 and the rearward chamber 64, without requiring activation of the septum 50 with the septum actuator 80. As such, some embodiments of the present invention provide an observable flashback, as generally desired for infusion procedures.
For example, in some embodiments slit 56 is modified so as to permit controlled leakage of air or liquid, as previously discussed. In other embodiments, a plurality of air vent channels 70 is interposed between the septum 50 and the inner surface 24 of the catheter adapter 14. The air vent channels 70 relieve the positive pressure within the forward chamber 62 by providing an access for air to bypass the septum 50 into the rearward chamber 64. In some embodiments, the air vent channels 70 are constructed by removing portions of the channel 60 surface, resulting in a plurality of generally parallel grooves. In other embodiments, an outer surface of septum 50 is modified to include a plurality of generally parallel grooves (not shown), as shown and taught in U.S. patent application Ser. No. 12/544,625, which is incorporated herein by reference.
With continued reference to
The distal end 84 of the tubular body 82 is configured to compatibly abut and thereby deform barrier surface 52 of septum 50. Distal end 84 is generally configured to compatibly insert within opening 54 of septum 50. The distal end 84 further includes a probing surface 90 which extends through the opening 54 of the septum 50 to a position proximal to the barrier surface 52 of the septum 50. The probing surface 90 is advanced against barrier surface 52 as septum actuator 80 is advanced through the catheter adapter 14 in distal direction 290.
Referring now to
In some embodiments, the septum actuator and septum are integrated into a single flexi-plunger unit, as shown in
In some embodiments the inner surface of catheter adapter 14 further comprises a plurality of grooves such that as septum 50 is biased in distal direction 290, the perimeter surface of septum 50 overlaps grooves 78 thereby disrupting the fluid tight seal around its perimeter surface, as shown in
Referring now to
Referring now to
In some embodiments, catheter assembly 10 further comprises a disruption cone 66. Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
With reference to
In other embodiments, septum 50 comprises an integrated septum actuator, shown as septum activation post 98. Activation post 98 is positioned such that when probe device 46 is inserted into catheter adapter 14, probe device 46 contacts activation post 98 thereby biasing a portion of barrier surface 52 in a distal direction 290, thereby opening slit 56, as shown in
In some embodiments, septum 50 comprises a collapsible septum, as shown in
The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/544,238, filed Oct. 6, 2011 and entitled MULTIPLE USE STRETCHING AND NON-PENETRATING BLOOD CONTROL VALVES, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4387879 | Tauschinski | Jun 1983 | A |
4449693 | Gereg | May 1984 | A |
4758225 | Cox et al. | Jul 1988 | A |
4773552 | Boege et al. | Sep 1988 | A |
4781702 | Herrli | Nov 1988 | A |
4809679 | Shimonaka et al. | Mar 1989 | A |
4842591 | Luther | Jun 1989 | A |
4874377 | Newgard et al. | Oct 1989 | A |
4917668 | Haindl | Apr 1990 | A |
4935010 | Cox et al. | Jun 1990 | A |
4950257 | Hibbs et al. | Aug 1990 | A |
5041097 | Johnson | Aug 1991 | A |
5053014 | Van Heugten | Oct 1991 | A |
5062836 | Wendell | Nov 1991 | A |
5064416 | Newgard et al. | Nov 1991 | A |
5084023 | Lemieux | Jan 1992 | A |
5085645 | Purdy et al. | Feb 1992 | A |
5098405 | Peterson et al. | Mar 1992 | A |
5108374 | Lemieux | Apr 1992 | A |
5127905 | Lemieux | Jul 1992 | A |
5154703 | Bonaldo | Oct 1992 | A |
5156596 | Balbierz et al. | Oct 1992 | A |
5176652 | Littrell | Jan 1993 | A |
5234410 | Graham et al. | Aug 1993 | A |
5269771 | Thomas et al. | Dec 1993 | A |
5290246 | Yamamoto et al. | Mar 1994 | A |
5295658 | Atkinson et al. | Mar 1994 | A |
5295969 | Fischell et al. | Mar 1994 | A |
5330435 | Vaillancourt | Jul 1994 | A |
5350363 | Goode et al. | Sep 1994 | A |
5352205 | Dales et al. | Oct 1994 | A |
5405323 | Rogers et al. | Apr 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5474544 | Lynn | Dec 1995 | A |
5487728 | Vaillancourt | Jan 1996 | A |
5520666 | Choudhury et al. | May 1996 | A |
5549566 | Elias et al. | Aug 1996 | A |
5549577 | Siegel et al. | Aug 1996 | A |
5575769 | Vaillancourt | Nov 1996 | A |
5613663 | Schmidt et al. | Mar 1997 | A |
5651772 | Arnett | Jul 1997 | A |
5657963 | Hinchliffe et al. | Aug 1997 | A |
5697915 | Lynn | Dec 1997 | A |
5738144 | Rogers | Apr 1998 | A |
5749861 | Guala et al. | May 1998 | A |
5806831 | Paradis | Sep 1998 | A |
5817069 | Arnett | Oct 1998 | A |
5833674 | Turnbull et al. | Nov 1998 | A |
5911710 | Barry et al. | Jun 1999 | A |
5954698 | Pike | Sep 1999 | A |
5967490 | Pike | Oct 1999 | A |
6039302 | Cote, Sr. et al. | Mar 2000 | A |
6077244 | Botich et al. | Jun 2000 | A |
6117108 | Woehr et al. | Sep 2000 | A |
6171287 | Lynn et al. | Jan 2001 | B1 |
6273869 | Vaillancourt | Aug 2001 | B1 |
6287280 | Lampropoulos et al. | Sep 2001 | B1 |
6485473 | Lynn | Nov 2002 | B1 |
6575960 | Becker et al. | Jun 2003 | B2 |
6595981 | Huet | Jul 2003 | B2 |
6699221 | Vaillancourt | Mar 2004 | B2 |
6719726 | Meng et al. | Apr 2004 | B2 |
6740063 | Lynn | May 2004 | B2 |
6883778 | Newton et al. | Apr 2005 | B1 |
7008404 | Nakajima | Mar 2006 | B2 |
7347839 | Hiejima | Mar 2008 | B2 |
7396346 | Nakajima | Jul 2008 | B2 |
7470254 | Basta et al. | Dec 2008 | B2 |
7736339 | Woehr et al. | Jun 2010 | B2 |
7914494 | Hiejima | Mar 2011 | B2 |
7938805 | Harding et al. | May 2011 | B2 |
20060163515 | Ruschke | Jul 2006 | A1 |
20070083157 | Belley et al. | Apr 2007 | A1 |
20070083162 | O'Reagan et al. | Apr 2007 | A1 |
20070233007 | Adams | Oct 2007 | A1 |
20080039796 | Nakajima | Feb 2008 | A1 |
20080108944 | Woehr et al. | May 2008 | A1 |
20080287921 | Bennett | Nov 2008 | A1 |
20090281525 | Harding et al. | Nov 2009 | A1 |
20090287154 | Harding et al. | Nov 2009 | A1 |
20100204648 | Stout et al. | Aug 2010 | A1 |
20100204675 | Woehr et al. | Aug 2010 | A1 |
20100222746 | Burkholz | Sep 2010 | A1 |
20110046570 | Stout et al. | Feb 2011 | A1 |
20110160662 | Stout et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2 133 053 | Mar 1995 | CA |
20 2009 009 602 | Dec 2009 | DE |
0 369 314 | May 1990 | EP |
0 440 426 | Aug 1991 | EP |
0 968 736 | Jan 2000 | EP |
1 129 740 | Sep 2001 | EP |
1 679 043 | Jul 2006 | EP |
9311696 | Jun 1993 | WO |
9641649 | Dec 1996 | WO |
9800195 | Jan 1998 | WO |
9934849 | Jul 1999 | WO |
9938562 | Aug 1999 | WO |
2006037638 | Apr 2006 | WO |
2006059540 | Jun 2006 | WO |
2007044878 | Apr 2007 | WO |
2008014436 | Jan 2008 | WO |
2008052790 | May 2008 | WO |
2009114833 | Sep 2009 | WO |
2010093791 | Aug 2010 | WO |
2012002015 | Jan 2012 | WO |
Entry |
---|
Elson Silva, PhD, “Respecting Hydrology Science in the Patenting System,” pp. 1-7, Jan. 13, 2011. |
Number | Date | Country | |
---|---|---|---|
20130165868 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61544238 | Oct 2011 | US |