The embodiments disclosed herein relate generally to candle wicks and methods of making the same. More specifically, the embodiments disclosed herein relate to candle wick assemblies having multiple individual candle wicks that can be associated with a solid candle wax fuel as part of an integral wick system. When lit, the candle wick assemblies allow the multiple candle wicks to separate from one another so as to achieve a broader and shorter flame thereby in turn causing an expanded liquid wax pool to be formed on the surface of the candle.
Candles employing a wick have been in existence for many centuries. A typical candle has a single wick, or multitude of wicks, that extends longitudinally through the body of the candle. Single wicks are usually centrally disposed in the candle body. The combustible candle body is typically a thermoplastic blend of petroleum (paraffin) wax, mineral (montan) wax, synthetic wax (polyethylene or Fischer-Tropsch (FT) waxes) or natural waxes (vegetable or animal waxes). Clear candle waxes, known as gel candles, have diverse decorating potential. These gel candles are made from mineral oil and special resins. Natural, plant based soybean wax is gaining popularity as a cost competitive, environmental or “green” wax derived from renewable resources. Various additives used to modify the candle hardness, color, burn rate and aroma are well known in the trade and include, for example, stearic acid, UV inhibitors, polyethylene, scent oils and color pigments. Upon lighting a candle wick, the heat melts the wax which then travels up the wick by capillary action and is vaporized. Performance requirements of a wick in a candle include the ability to create and maintain the desired burn rate, the ability to create and maintain the desired wax pool and, if specified or required, the ability to bend or curl to maintain the proper wick height (referred to in the trade as “self-trimming”). In addition to these performance requirements, it is important that the finished wick be stable and not subject to size fluctuation when tension is applied to the wick during the candle making or wick pre-waxing process. The ability of the wick to be self-supporting may be preferred, or even required, in certain candle types or candle manufacturing processes, e.g., so-called poured candle constructions where the molten wax fuel is poured into a mold around a pre-positioned and pre-waxed wick and thereafter allowed to solidify.
One performance characteristic of scented candles that may be employed for environmental scent freshening or aroma therapy is the size of the liquid pool of wax fuel that forms on the top of the candle. In general, manufacturers of scented candles prefer to have a large liquid pool of wax fuel as this increases the scent released into the ambient environment. At the same time, however, flame height cannot be too high or the candle flame will then emit undesirable soot that can mar the appearance of the candle and candle holder and nearby surfaces, i.e., by visible smoke being emitted from the candle flame and being deposited as soot on the candle holder and into the environment and/or by the presence of undesirable black carbon droppings that are visible in the liquid wax pool. These carbon deposits, can cause secondary ignition, a safety hazard near the end of the candle life. A single conventional wick large enough to produce the necessary heat to form the desired size liquid wax pool often results in an unreasonably high flame, carbon deposits and excess sooting all of which are undesirable and some of which are unsafe.
It is known that providing multiple spaced-apart wicks will increase the size of the liquid wax pool while maintaining several smaller flames. However, increasing the number of wicks will in turn increase manufacturing costs (and hence increase the cost of the finished candle product) since multiple wick insertions must be made into the solid wax fuel during production. Additionally, conventional multiple wick candles produce a much less consistent burn environment within the candle. Having two or more independent flames causes considerable air turbulence which changes as the wax level in the candle container drops over time. This air turbulence within the candle container can cause the flame height to fluctuate significantly from under ¼″ to over 1.5″ over the life of the candle.
It would therefore be highly desirable if a candle wick could be provided as a single wick assembly having multiple individual wicks that are capable of separating one from another when lit to thereby achieve an increased liquid wax pool size which is of substantially uniform diameter with a single stable and broader flame exhibiting decreased flame height comparable to conventional multiple wick candles, yet can be produced using single wick manufacturing techniques (i.e., since the multiple wicks are separably contained within a single wick assembly). It is towards fulfilling such needs that the embodiments disclosed herein are directed.
In general, the embodiments disclosed herein provide multiple candle wicks that may be placed into a candle wax (paraffin) body utilizing conventional single candle wick manufacturing techniques. When lit, the multiple candle wicks as described herein will therefore provide for an increased wax pool diameter (thereby increasing the amount of liberated scents from the candle body) with lower flame height (and thereby decreased risk of sooting) at wax burn rates that are comparable to single candle wicks.
In some preferred embodiments, the multiple candle wicks as disclosed herein will include a wick construction having at least one pair of substantially parallel elongate candle wicks which are laterally separated from one another, and a ladder filament connecting the pair of candle wicks. The ladder filament extends back and forth between the candle wicks (e.g., at substantially 90° relative to the elongate axes of the wicks) so as to establish respective crossing portions that are spaced apart from one another along a lengthwise direction of the construction. The ladder filament is of sufficient flexural stiffness so as to resiliently bias the pair of candle wicks from a compacted position wherein the candle wicks are closely laterally spaced apart relative to one another and into a spread position wherein the candle wicks are further laterally spaced apart relative to one another following release of an applied bending force sufficient to cause the connecting portions to bend about a longitudinal axis of the construction. The ladder filament may be a thermoplastic monofilament, for example a monofilament formed of polyolefin (e.g., polypropylene), nylon, polyester or like thermoplastic materials.
Virtually any conventional candle wick may be employed in the embodiments disclosed herein. For example, the candle wicks may be formed of braided or knitted wick yarns of spun cotton or rayon. The candle wicks may include elongate stiffening elements along the longitudinal extent thereof so as to impart self-supporting characteristics to the candle wicks.
A wick assembly is also provided according to the embodiments disclosed herein wherein a wick construction as briefly described above is bent around an exterior circumferential portion of an elongate core element. The crossing portions of the ladder filament may therefore be resiliently bent so that the wick construction assumes a general U-shape around the exterior circumferential portion of the core element to place the candle wicks into the compacted position thereof. An external wax coating may be applied over the core element and the wick construction so as to maintain the candle wicks in the compacted position thereof. The core element may be provided with a core filament and a wax bonding layer on an exterior surface of the core filament.
The wick construction may be formed by providing at least one pair of parallel elongate candle wicks which are laterally separated from one another and connecting such candle wicks to one another with the ladder filament so the ladder filament extends back and forth between the candle wicks so as to establish respective crossing portions that are spaced apart from one another along a lengthwise direction of the construction. According to one embodiment, the wick yarns are knitted into respective candle wicks while simultaneously inserting the ladder filament into the knit structure as a throw yarn back and forth between the knit candle wicks during the knitting process. Alternatively, the wick yarns may be braided to form respective candle wicks, in which case the ladder filament may be stitched to the candle wicks in a back and forth manner. Alternatively, the wick yarns may be woven to form respective candle wicks, in which case the ladder filament may be woven into or stitched to the candle wicks in a back and forth manner.
The candle wick construction may be joined with the elongate core element to form the multiple candle wick assembly by bending the crossing portions of the ladder filament about an exterior circumferential portion of the core element so as to place the candle wicks into the compacted position thereof. The candle wicks are maintained in such compacted position by means of a suitable releasable connection with the core element. For example, such releasable connection may be in the form of a thermally releasable wax or thermoplastic adhesive that melts at the ignition temperature of the solid candle wax fuel. According to embodiments herein, a wax or thermoplastic coating may be applied onto such a structure by advancing the core element and the candle wick construction with the crossing portions of the ladder filament bent therearound to an applicator and applying the coating thereto so as to maintain the candle wicks in the compacted position thereof. Allowing the applied coating material to cool and harden therefore maintains the individual wicks in their compacted position with the crossing portions of the ladder filament bent around the circumferential portion of the core element.
The candle wick assembly may then be positioned in a body of conventional candle wax (paraffin). In this regard, one technique involves inserting the wick assembly into a pre-formed hole in a solid wax body. The candle wick assembly may be anchored to the wax body using a conventional metal anchor tab. Another technique that may be practiced includes positioning the wick assembly within a candle mold or container, pouring molten candle wax into the mold or container and allowing the wax to cool to thereby form the wax body and embed the wick assembly therein.
These and other aspects and advantages of the present invention will become more clear after careful consideration is given to the following detailed description of the preferred exemplary embodiments thereof.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The disclosed embodiments of the present invention will be better and more completely understood by referring to the following detailed description of exemplary non-limiting illustrative embodiments in conjunction with the drawings of which:
As used herein and in the accompanying claims, the terms below are intended to have the following definitions:
“Filament” means a fibrous strand of extreme or indefinite length.
“Fiber” means a fibrous strand of definite length, such as a staple fiber.
“Yarn” means a collection of numerous filaments or fibers which may or may not be textured, spun, twisted or laid together.
“Knit” or “knitted” refers to the forming of loops of yarn with the aid of thin, pointed needles or shafts. As new loops are formed, they are drawn through those previously shaped. This inter-looping and the continued formation of new loops produces a knit material.
“Braid” or “braided” refers to a relatively narrow textile band or cord formed by plaiting or intertwining three or more strands of yarn diagonally relative to the production axis of the band or cord so as to create a regular diagonal pattern down its length.
“Woven” means a fabric structure formed by weaving or interlacing warp-wise and weft-wise yarns or filaments of indefinite length at substantially right angles to one another.
“Warp-wise” and “weft-wise” denote the general orientations of yarns as being generally in the machine direction and cross-machine direction, respectively.
“Laid-in yarn” refers to the yarn or yarns that are laid-in with the warp yarns and do not form part of the fabric, e.g., do not form interlocking loops such that the warp yarns are knit around such laid-in yarns.
“Wick curl” is the arc from the top of the wax pool to the terminal end of the wick that is formed by the wick after it is burned in the candle, expressed in degrees. Preferably, the wicks as disclosed herein exhibit a wick curl having no more than about 90° (i.e., so that the terminal end of the wick does not extend substantially beyond a horizontal plane relative to a vertical axis of the candle in which the wick is formed).
“Self-trimming” is the regulation of the wick height and length, to an acceptable size so that it burns clean with little carbon build-up or smoking, by the candle burning process. A certain amount of “wick curl” is required for a wick to be “self-trimming”.
“Self-supporting” refers to a property of a wick whereby a finite length of the wick remains generally oriented along the wick's elongate axis when held upright without lateral support.
“Stable wax pool” means a wax pool that has attained a maximum diameter which does not increase over time during candle burning.
“Uniform diameter wax pool” refers to a wax pool that has a substantially uniform circular diameter.
“Burn rate” is the amount of wax fuel, expressed by weight, consumed over a period of time, e.g. grams of wax fuel per hour (gm/hr).
“Flexural stiffness” or “bending stiffness” is the property of an elongate yarn or filament to bend under applied force with sufficient memory to return to its original elongate state. Yarns and fibers having relatively high flexural or bending stiffness will also typically possess a relatively high Young's modulus. Those fiber elements which require a relatively high flexural or bending stiffness will thus typically possess a Young's modulus of between about 0.5 to about 10 MPa, e.g., between about 0.5 to about 5.0 MPa or between about 1.0 to about 3.0 MPa.
Accompanying
As is shown in
The wicks 14a, 14b are provided as part of a self-supporting wick assembly 20 which may be embedded in the wax body 12 of the candle 10. One advantage of the wick assembly 20 containing multiple wicks 14a, 14b is that it may be inserted into a conventional metal anchor tab 22 that is used by numerous manufacturers to anchor a single wick into the wax body of the candle.
As shown more specifically in
Each of the wicks 14a, 14b may be in the form of conventional braided, knit or woven yarns formed of conventional wick fibers, e.g., cotton, rayon, bamboo, linen, hemp and/or other cellulosic fibers. In one embodiment, the wicks 14a, 14b may be knit as described more fully in U.S. Pat. No. 6,699,034, the entire content of which is expressly incorporated hereinto by reference. Braided wicks that may be employed in the practice of this invention are also well known in the art as evidenced by U.S. Pat. Nos. 1,496,837, 1,671,267, and 5,124,200, the entire contents of each being expressly incorporated hereinto by reference.
If the wicks 14a, 14b are braided, then the ladder filament 32 may be stitched to each wick 14a, 14b in a zig-zag manner so as to join the wicks 14a, 14b together in a parallel spaced-apart manner with the ladder filament 32 extending therebetween as shown in
As noted previously, the wicks 14a, 14b are formed of a conventional candle wick material, e.g., yarns comprised of cotton, rayon, linen, hemp, bamboo and/or other cellulosic fibers. The stiffener elements 24a, 24b, on the other hand may be a filament or yarn formed of any suitable synthetic or natural fibrous material provided it imparts the requisite stiffening properties to the wicks 14a, 14b. Thus, stiffener elements 24a, 25b having a flexural stiffness (Young's modulus) of between about 0.5 to about 10 MPa can satisfactorily be employed in the practice of the embodiments of this invention.
One suitable class of materials from which the stiffener elements 24a, 24b may be made include thermoplastics, e.g., polyolefins such as polypropylene or polyethylene, nylons, polyesters and the like. In some embodiments, the stiffener elements 24a, 24b are monofilaments of polypropylene as such a material provides the desired stiffness in order to promote self-supporting capabilities to the wicks 14a, 14b so as to be capable of extending upright along the axes A1, A2, respectively, without the aid of external support. In addition, the monofilaments forming the stiffener elements 24a, 24b will exhibit a required melting temperature of greater than the melt temperature of the wax body 12, e.g., greater than about 220° F. (105° C.). One preferred form of wick stiffener elements 24a, 24b can therefore be polypropylene monofilaments having a diameter from about 0.01 inch to about 0.05 inch.
The stiffener elements 24a, 24b may also be formed of a multifilamentary yarn of spun natural fibers, such as cotton or rayon, provided with a coating material to impart stiffness to the yarn. Suitable thermoplastic coating materials such as polyolefins, nylons, polyesters, polyurethanes and the like may be employed for the purpose of imparting stiffness to the natural fibers of the multifilamentary yarn so that the elements 24a, 24b will exhibit the desired flexural stiffness as discussed previously. A finished multifilamentary yarn of spun natural fibers coated with a suitable thermoplastic coating material can be between about 1400 to about 3600 denier.
As noted above, the stiffener elements 24a, 24b may be laid-in when forming the wicks 14a, 14b or stitched between the wicks 14a, 14b so as to be part of the wick structure.
Important to the embodiments disclosed herein, the wick construction 30 will be folded about the core element 40 so that the crossing portions 32a of ladder filament 32 are positioned about a circumferential portion of the exterior surface of the core element 40. As shown in
The ladder filament 32 must therefore possess sufficient flexural stiffness in order to achieve the required resiliency and exert spring bias force to spread the wicks 14a, 14b when folded about the core element 40. The ladder filament 32 may thus be similar to the stiffener elements 24a, 24b and thus may be formed of a thermoplastic polymer, e.g., polyolefins, such as polypropylene, nylons, polyesters and the like or thermoplastic coated multifilamentary yarns of spun natural fibers. In a preferred embodiment, the ladder filament is a polypropylene monofilament having a diameter of between about 0.004 inch to about 0.015 inch, e.g., about 0.008 inch.
The core element 40 can be virtually any elongated filamentary element having sufficient structural integrity to allow the ladder filament 32 to be folded therearound. The core element 40 may therefore be virtually any filamentary or multi-fibrous element which includes spun yarns of staple fibers, multifilament bonded yarns or monofilaments made of thermoplastic materials. One such filament that may satisfactorily be employed in the embodiments disclosed herein as the core element 40 is a polypropylene monofilament having a diameter of between about 0.004 inch to about 0.016 inch, e.g., about 0.006 inch.
The core element 40 may optionally include a core filament 42 which is surrounded by a wax bonding layer 44. The wax bonding layer 44 serves to releasably bond the wicks 14a, 14b to the core element 40 and thereby maintain the wick construction 30 folded in a U-shaped configuration therearound until the final wax coating 50 can be applied. The wax bonding layer 42 preferably has a melt temperature that is the same or less than temperature of the liquid wax pool 18, e.g., a melt temperature which is typically 220° F. (105° C.) or less.
As an alternative embodiment, the core element 40 may be formed entirely of a wax material, i.e., the core filament 42 may then be omitted. If made entirely of a wax material, the core element 40 may then serve the function of bonding the wicks 14a, 14b together in a compacted position (in which case the wax coating 50 may not necessarily be required for such purpose) while at the same time keeping the wicks 14a, 14b physically separated by virtue of the core element's diameter.
All of the thermoplastic components of the wick construction 30, e.g., the stiffener elements 24a, 24b, the ladder filament 32 and the core element 40 will be consumed by the flame 16 thereby allowing the wicks 14a, 14b to curl outwardly as described above. Thus, all thermoplastic elements near the flame 16 will be consumed to thereby leave only the wicks 14a, 14b in contact with the liquid wax pool 18.
A schematic diagram of a continuous manufacturing process to form the multiple wick construction 30 and the wick assembly 20 is depicted in accompanying
The wick construction 30 may then be continuously passed on to the wax coater 72 simultaneously with the core element 40 being supplied to the coater 72 from a spool 74 thereof. The core element 40 is joined with the wick construction 30 at junction rollers 78 which are configured so as to fold the latter around the former before proceeding on to the wax coater 72. The core element 40 may optionally be passed through a core element coater 78 before being joined to the wick construction 30 so as to provide the core element 40 with the wax coating 44 as described previously. The wick assembly 20 thereby exits the coater 72 and is cooled to allow the exterior wax coating 50 to solidify (e.g., by either ambient air or by being passed through a cooling chamber) before being taken upon on a spool 80.
The process shown in
Other changes and modifications can be envisioned. In this regard, the assembly shown in
Alternatively, the wick assembly 20 may be provided as a self-supporting structure in a poured candle manufacturing process, i.e., a process whereby molten wax fuel is poured into a mold in which the wick assembly 20 is positioned. Contact between the molten wax and the wax coating 50 will thus cause the latter to melt and become a physical part of the wax fuel which in turn allows the wicks 14a, 14b to separate in the molten wax by virtue of the resilient spring force provided by the cross-connected ladder filament 32. The stiffener elements 24a, 24b will thus retain the self-supporting characteristics of the individual wicks 14a, 14b during such separation and will therefore retain the wicks 24a, 24b in an upright manner until the molten wax solidifies. A terminal end portion of the wick assembly 20 that was not contacted by the molten wax during the pouring operation will thus extend upwardly from the candle body and present itself as a single wick element. Upon being lit, however, the wax coating 50 will melt along with the other thermoplastic filament components to allow the wicks 14a, 14b to spread apart and thereby function as previously described.
A dual wick assembly in accordance with an embodiment of the invention described above (designated as “V-Wick”) was prepared using the following components:
Wicks: Two knitted cotton yarns having an individual weight of 0.475 g/m and a combined weight of 0.95 g/m
Stiffener element: 0.008″ diameter polypropylene monofilament
Ladder filament: 0.008″ diameter polypropylene monofilament
Core Element: 10/1 spun polypropylene yarn
Coating Wax: 160° F. Melt Point paraffin wax
The dual wick assembly (“V-wick”) was placed in a glass container and a blend of molten paraffin and palm waxes with fragrance and colorant was poured around the wick and allowed to solidify. As a comparison, a conventional single candle wick (conventional knitted cotton wick having a weight of 1.74 g/m) was also coated with a 160° F. melt point paraffin wax which was then placed in an identical glass container and the identical wax blend poured around it to produce the same candle with different wicks. The comparative single candle wick was observed to produce the same consumption rate as the V-wick in accordance with an embodiment of the present invention, but produced higher flame and smaller melt pool. The comparative single candle wick tested also had two times the amount of cotton as did the V-wick in accordance with the embodiment of the invention.
The comparative single candle wick of the prior art and the dual V-wick assembly in accordance with an embodiment of the current invention were then trimmed to a wick height of about 0.25 inch and lit. The candles were allowed to burn and visually examined at 30 minutes and 90 minutes post-lighting to determine the wax pool diameter, the flame height and the wax burn rate. The results appear in the table below and are visually presented by
The data from these tests showed that the dual wick assembly of an embodiment according to the present invention was able to increase the wax pool diameter with lower flame height (thereby lower risk of sooting) and a comparable wax burn rate as compared to conventional single wick of the prior art. Moreover, since the wick assembly is capable of being assembled with the candle wax using conventional single wick automated processing equipment, the candle manufacturer can realize considerable cost benefits in addition to performance benefits by the wick assembly of the embodiments described herein.
Various modifications within the skill of those in the art may be envisioned. Therefore, while the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope thereof.
This application is a divisional of U.S. application Ser. No. 15/985,991 filed May 22, 2018 (now U.S. Pat. No. 11,021,677), which is based on and claims domestic priority benefits from U.S. Provisional Patent Application Ser. No. 62/517,287 filed on Jun. 9, 2017, the entire contents of which are expressly incorporated hereinto by reference.
Number | Name | Date | Kind |
---|---|---|---|
15821 | Sanders | Sep 1856 | A |
120105 | Ryder | Oct 1871 | A |
243272 | Joly | Jun 1881 | A |
343567 | Clarke | Jun 1886 | A |
530170 | Ewert et al. | Dec 1894 | A |
1496837 | Atkins | Jun 1924 | A |
1671267 | Atkins | May 1928 | A |
1974037 | Atkins | Sep 1934 | A |
2001377 | Candy, Jr. | May 1935 | A |
2210290 | Heinsohn | Aug 1940 | A |
2302146 | Root | Nov 1942 | A |
2310019 | Hamblet | Feb 1943 | A |
2465762 | Supplee | Mar 1949 | A |
2818718 | Roberts | Jan 1958 | A |
2829511 | Oesterle | Apr 1958 | A |
2845785 | Weglin | Aug 1958 | A |
3090660 | Hoyer | May 1963 | A |
3582251 | Concannon | Jun 1971 | A |
4468147 | Manusch | Aug 1984 | A |
4497187 | Yamaguchi | Feb 1985 | A |
4555231 | Kustka | Nov 1985 | A |
4735568 | Izumisawa | Apr 1988 | A |
5124200 | Mallonee | Jun 1992 | A |
5439376 | Kramer | Aug 1995 | A |
5501750 | Smith | Mar 1996 | A |
D370283 | Simon | May 1996 | S |
5863196 | Rockwell | Jan 1999 | A |
D424716 | Orlandi | May 2000 | S |
D425218 | Orlandi | May 2000 | S |
D426654 | Orlandi | Jun 2000 | S |
D427336 | Orlandi | Jun 2000 | S |
6171103 | Orlandi | Jan 2001 | B1 |
6203313 | Holmes | Mar 2001 | B1 |
D449371 | Bornstein | Oct 2001 | S |
6508644 | Pesu | Jan 2003 | B1 |
6652269 | Stenger | Nov 2003 | B1 |
6699034 | Schoeck | Mar 2004 | B2 |
D676186 | Ramaker | Feb 2013 | S |
D676187 | Ramaker | Feb 2013 | S |
9816053 | DelCotto | Nov 2017 | B2 |
10151477 | Decker | Dec 2018 | B2 |
10472742 | May | Nov 2019 | B1 |
20030013060 | Schoeck | Jan 2003 | A1 |
20030211437 | Wilson | Nov 2003 | A1 |
20060292509 | Reisman et al. | Dec 2006 | A1 |
20090314854 | Tollens | Dec 2009 | A1 |
20130095440 | Cagle | Apr 2013 | A1 |
20140162201 | Jewett | Jun 2014 | A1 |
20170051441 | King | Feb 2017 | A1 |
20170081607 | Schunk | Mar 2017 | A1 |
20180355279 | Staley | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
200352940 | Jun 2004 | KR |
Entry |
---|
Extended European Search Report (EESR), EP Application No. 18211566.7, dated May 2, 2019. |
Number | Date | Country | |
---|---|---|---|
20210102143 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62517287 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15985991 | May 2018 | US |
Child | 17126009 | US |