This disclosure relates to wiper systems for motor vehicles. More specifically, this disclosure facilitates the provision of multiple wiper blades and assemblies on a motor vehicle.
Windshield wipers are a standard feature on almost all vehicles. Windshield wipers maintain driver visibility by removing rain, ice, snow, bugs, and other debris from the windshield which can obstruct a driver's field of vision. In order to facilitate the removal of such debris, known vehicles usually provide for a wiper fluid sprayer. The fluid facilitates the dislodging of debris and ice by the windshield wiper.
However, presently provided and readily available windshield wiper systems (including the sprayer) have various drawbacks. Specifically, known windshield wipers are frequently inadequate at removal of debris and ice, leading to obscured driver vision. As a result, many gasoline/diesel service facilities provide for windshield cleaning stations. This requires drivers to access service facilities for a quick, frequently unnecessary and additional, stop to scrub their windshield to remove the hard-stuck debris. In addition, the driver may decide to pay for a car wash, which can grow particularly expensive over time.
The debris may be particularly adhered after extended driving with the debris on the windshield. While known commercially-available wiper assemblies may be efficient at removal of some rain and some light debris, these assemblies are significantly less efficient at removal of larger or more stubborn debris and ice. This problem is often substantially more acute for large trucks, since tractors, buses and recreational vehicles, which all frequently have more vertical windshields which more directly impact bugs and other airborne debris, and the height of their windshields makes manual washing and scraping more difficult for the vehicle operator.
Other mechanisms have been proposed to help with these problems, for example, providing for different blade textures, multiple automated blade assemblies, and other systems. However, known systems are complex, cumbersome, expensive to produce, and not widely available or acceptable to auto manufacturers. Known systems may, in various embodiments, require replacement of the entire blade assembly system. These systems may put burdens on manufacturers and consumers. Manufacturers may be required to implement additional complexity in their existing production line to manufacture these systems. For example, some known systems require motors, electronics, and mechanical components as part of the blade assembly, adding additional complexity and cost in an attempt to overcome the deficiencies of known wiper blade systems noted above. Replacement of these assemblies presents complexity and cost issues to consumers as well.
What is needed is a solution to the long-felt problems presented by known wiper blades that is quick and easy to install, cost-effective, works efficiently, and is manufacturing-friendly.
Accordingly, the disclosed multiple wiper blade system and assembly addresses these and other issues.
The disclosed system and assembly provides connectors, in various embodiments, which facilitate the quick installation of one or more additional wiper blade assemblies onto a vehicle's established wiper arm system. In addition, the disclosed system and method, in various embodiments, allows for the use of a scraper blade with a fluid conductivity feature. Therefore, the disclosed system and method will allow for two or more wiper blade assemblies to work in tandem to both scrape and wipe debris from a windshield. In addition, the disclosed system and method allows for the use of a scraper blade which is strategically positioned to uniformly distribute water or windshield wiper fluid along the entire working length of the wiper and scraper blade. The disclosed system and assembly advantageously provides mechanism and structure compatible with mechanisms known to consumers for the installation of single-blade wiper systems, but with the additional advantages imparted by multi-blade systems. In addition, manufacturing mechanisms may be used to produce the disclosed system and assembly which are compatible with conventional single-blade wiper systems.
In contrast to known multi-blade assemblies, the disclosed wiper blade system and assembly can use conventional manufacturing techniques for production. This system results in a cost-effective and consumer-friendly implementation with advantages over known blade assemblies and effectively address known disadvantages noted above.
Provided herein is a multiple windshield wiper assembly comprising: a first wiper assembly having a squeegee blade; a second wiper assembly having a scraper blade, the second wiper assembly being coupled to the first wiper assembly by a windshield wiper assembly connector; wherein the scraper blade comprises an attachment surface for engaging a wiper assembly, a scraper surface for engaging a windshield, a channel for conducting wiper fluid, a plurality of apertures for disbursement of the wiper fluid onto a windshield, and a water connection fitting for connection of the scraper blade to a vehicle water supply hose.
Also provide herein is a windshield wiper assembly connector for use in connecting one or more windshield wiper assemblies to a pin-type wiper arm, the connector comprising: two pairs of sidewalls, each sidewall defining an aperture sized to receive a pin of a pin-type wiper arm; a top surface engaging the two pairs of sidewalls and having a first and second receiving overhang; a moveable beam positioned relative to the apertures so that the beam engages the pin of the pin-type wiper arm when the pin is received in the holes to secure the connector to the pin-type wiper arm; a push-button release for disengaging the moveable beam to enable release of the clip from a pin-type wiper arm; a first receiving extension sized to receive a connection feature of a first wiper assembly and a second receiving extension sized to receive a connection feature of a second wiper assembly; wherein the first and second receiving extension feature a first and second internal surface for attachment of the first wiper assembly and second wiper assembly.
In addition, disclosed herein is a windshield wiper assembly connector for use in connecting one or more windshield wiper assemblies to a hookslot-type wiper arm, the connector comprising: a first sidewall coupled to a first pin; a second sidewall coupled to a second pin; a top surface engaging the two sidewalls; a first receiving extension sized to receive a connection feature of a first wiper assembly and a second receiving extension sized to receive a connection feature of a second wiper assembly; wherein the first and second pin each have a groove; and wherein the first sidewall, second sidewall, and top surface define a hook-engaging channel.
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary to the understanding of the invention or render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
Referring now to the Figures, wherein like views are provided with like numerals, various embodiments of the multiple wiper blade system and assembly are disclosed.
The wiper assemblies shown in
The top of the windshield wiper assembly connector, according to various embodiments, may feature, in various embodiments, a push-button release 205, which may be connected to a push button beam 219, which may engage an end of the moveable beam 209. The moveable beam 209 may feature a fastening surface 211 for engaging the post arm 201. When pressed, the push-button release 205 may facilitate disengagement of the post arm 201 for removal of the arm or post. The connector or clip 200, in various embodiments, as previously noted, features sidewalls 207. These sidewalls 207 may be disposed inside of the wiper assembly 101, 103, 105, 107 upon installation, with a receiving overhang 223 engaging the wiper assembly. In various embodiments, an internal surface of the receiving extension 221 may be shaped as a snap-fit latch which engages the wiper assembly for secure fit.
A push-button release 205 can be seen featured on the top surface of the connector. The double connection assembly 200 clip or connector, in various embodiments, is sized to accept or connect two wiper assemblies (e.g. 101, 103, 105, 107). The push-button release 205 can be found disposed of on one side of the clip 200 in various embodiments, as the clip 200 can, in various embodiments, accept a first connector arm 201. The double connection assembly clip or connector 200 may be provided on a pin-type connector or post arm 201. As can be seen, the push-button release 205 may be provided on the pin-type or connector or post arm 201. An aperture 217 may be provided in the side wall 207 of the connector 200 on the same side as the pin-type or post-type connector wiper arm 201.
A clip or connector 200 such as that shown in
A butterfly assembly connector clip 300, according to various embodiments, may include a hook-engaging channel 317 disposed between two raised sides 323, 325 leading to a receiving extension 321 for acceptance of a hook of a wiper hook arm 301. The first pin 305 and second pin 307 may each include a rounded end 311 and groove 313 for acceptance of a first wiper blade assembly 101 and second wiper blade assembly 103. The butterfly assembly connector clip 300 may be attached to a wiper hook arm 301 (i.e. a hookslot-type wiper arm). The hook arm 301 may be engaged within the hook-engaging channel 317 for attachment of the clip to the vehicle by way of the wiper hook arm 301. The butterfly connection clip or connector 300 may therefore connect or facilitate the attachment of two wiper assemblies 101, 103 to a wiper hook arm 301. The rounded end 311 of the first pin 305 and the rounded end 311 of the second pin 307 may protrude from or into the first wiper assembly 101 and second wiper assembly 103, respectively. The groove 313 may be understood as engaged inside of the wiper blade assembly clip.
It should be understood the butterfly connection clip 300 has additional advantages. For example, the butterfly connection clip 300 may be used with any wiper assembly that accepts a connection pin. This means differently sized wiper assemblies may be matched together; the wiper assemblies need not be identical. Differing sizes or shapes may be used with the butterfly connection clip 300.
The single connection assembly clip or connector 400 may include a pin 405 having a rounded end 411 and groove 413 and may be coupled to a side (for example a first or second side). A hook engaging channel may be provided between the first side 407 and second side 408, which may be raised, to define a receiving extension 421. In various embodiments, an internal surface 415 of the receiving extension 421 may be shaped as a snap-fit latch to engage a wiper assembly for a secure fit. The single connection assembly clip or connector 400 may be connected to a wiper hook arm 401. The hookslot wiper arm 401 may be provided within the hook engaging channel, and the pin having a rounded end and groove may be provided into a wiper assembly. The pin 405 may be used to engage a wiper assembly and a windshield wiper connection assembly such as a double connection assembly 200.
In
A double connection assembly 200 clip and butterfly connection clip may be used to connect a first, second, and third wiper blade assembly. A rounded end 311 of a pin 305 of the butterfly connection clip 300 may protrude into the first wiper blade assembly 101. The butterfly connection clip 300 may engage a standard clip provided within the first wiper blade assembly 101. A hookslot arm (wiper hook arm such as 301 or 401) may connect to the butterfly connection clip 300 for connection of the three wiper blade assemblies (101, 103, 105) to a vehicle. A double connection assembly 200 clip may engage a second wiper blade assembly 103, which may be attached to a third wiper assembly by way of the double connection assembly 200 clip. The push-button release 205 of the double connection assembly 200 clip may engage or disengage the double connection assembly 200 clip from a pin provided on the butterfly connection clip. The double connection assembly 200 clip may, in various embodiments, attach to the second 103 and third 105 wiper blade assemblies by way of the internal surface of the receiving extension or snap-fit latch. A windshield wiper fluid hose 509 may attach to the second wiper blade assembly 103, which connects to a wiper fluid mechanism provided in the vehicle by way of a valve or fitting 507.
A blade attachment portion 522, 510 may be provided on a standardized blade assembly to hold the scraper blade 503 in place on the standard wiper blade assembly 101 by way of the scraper blade 503 attachment surface 522, 510. The water connection valve or fitting 507 may lead into (or be in communication with) a channel 517 provided inside of the scraper blade 503. Several blade attachment arms may be provided on the standard wiper blade assembly. The blade attachment arms and blade attachment end of the standard wiper assembly may hold in place the scraper blade 503 by way of the attachment surface 522, 510. The attachment surface 510 or attachment portion 522 may further comprise sliding connection wings 520. The sliding connection wings 520 may allow for engagement of the standard wiper assembly arm. The sliding connection wings 520 may allow for easy attachment, in various embodiments, of the scraper blade to a standard wiper assembly.
Therefore, the scraper blade 503 may allow for the provision of a stiff scraping surface 512 on a standard wiper blade assembly. The stiff scraping surface 512 may allow for dislodging debris on the vehicle.
The scraper blade 503 may be formed of a number of materials; in particular the scraper blade 503 may in various embodiments be entirely formed of a stiff plastic. The scraper blade 503 may be formed by a plastic extrusion process, in various embodiments, which normally will have attachments for or flanges dimensionally similar to those of standard wiper blades to similarly engage the wiper arms. The scraper blade 503 may be optionally formed by a single extrusion process.
The scraper blade 503 may be connected to the standard windshield wiper fluid system of a vehicle. It should be understood that the vehicle wiper fluid connection system may be optionally provided in some standard implementations within the wiper attachment arm. The scraper blade 503 may allow for the attachment of the windshield wiper fluid hose 509 into the scraper blade 503 by way of the fluid valve or fitting 507. The fluid hose 509 may be attached to the valve 507 on one of multiple (e.g., two, three, or four) connected wiper blade assemblies 101, 103, 105, 107. A connected assembly having two wiper blade assemblies may include a connected scraper blade 503 and water connection valve or fitting 507. The water connection valve 507 can be attached to a first 101 or second wiper blade assembly 103. The first 101 and second wiper blade assemblies 103 may be attached by way of a butterfly connection clip 300. The windshield wiper fluid hose 509 may be accessible on an underside of a hookslot type wiper arm 301. The wiper fluid hose 509 may be attached to the water connection valve or fitting 507 provided on the scraper blade 503. The scraper blade 503 and standard squeegee blade may have differing heights. The elastomeric material and shape of the squeegee blade may allow for flexing of the squeegee blade tip during operation of the wiper. In contrast, the stiffer scraper blade 503 material may not bend height-wise (the scraper blade 503 may flex with the contour of the vehicle windshield along the length of the blade, however). Therefore the variance in height between scraper blade 503 and squeegee blade may allow for the scraper blade 503 (scraper blade 503 engaging surface) to efficiently scrape, and the squeegee blade to wipe the scraped debris.
The multiple blade assembly system and scraper blade 503 disclosed has a number of advantages. The cleaning functionality of a prototype embodiment of the invention appears superior to that of known wiper blades. The scraper blade 503 disclosed may provide a more efficient use of wiper fluid, allowing for spray along the length of the wiper blade using the apertures. The apertures allow for direct distribution of the wiper fluid. In addition, the scraper blade 503 can dislodge material that is difficult for known elastomeric squeegee blades to remove. Testing shows the performance of an example embodiment of the multiple wiper blade assembly herein (including scraper blade 503 and an elastomeric squeegee blade), is superior to that of a known elastomeric squeegee blade assembly alone. For example, in comparison testing, the cleanliness using the disclosed assembly (scraper plus squeegee) provides a sharp reflection whereas the known assembly (squeegee only) leaves a substantial amount of debris.
The multiple wiper blade assembly system and scraper blade are believed to be easier to manufacture using known manufacturing mechanisms and materials. The windshield wiper assembly connectors (i.e. 200, 300, 400) may be formed of similar materials to standard clips (extruded plastic, for example) or standard wiper arm connection elements (e.g., the posts/pins of the butterfly connection clip 300 and/or single connection assembly 400 could be formed of metal). In particular, the disclosed multiple wiper blade assembly system provides enhancements to known mechanisms. The windshield wiper assembly connectors (200, 300, 400) and scraper blade 503 allow for inexpensive and easy removal of additional blade assemblies and alternate blade type.
In various embodiments, the scraper blade 503 may be used on one assembly while a standard squeegee blade is used on another assembly. The scraper blade 503 may dislodge the material, while the squeegee may then carry the dislodged material off of the windshield surface. In addition, the fluid distribution functionality may assist in providing lubrication for scraper blade 503 and squeegee blade behavior. In this way, a multi-blade system using the assembly including the scraper blade 503 as disclosed herein offers superior cleaning functionality.
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that references to relative positions (e.g., “top” and “bottom”) in this description are merely used to identify various elements as are oriented in the Figures. It should be recognized that the orientation of particular components may vary greatly depending on the application in which they are used.
For the purpose of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
It is also important to note that the construction and arrangement of the system, methods, and devices as shown in the various examples of embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements show as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied (e.g. by variations in the number of engagement slots or size of the engagement slots or type of engagement). The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various examples of embodiments without departing from the spirit or scope of the present inventions.
While this invention has been described in conjunction with the examples of embodiments outlined above, various alternatives, modifications, variations, improvements and/or substantial equivalents, whether known or that are or may be presently foreseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the examples of embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit or scope of the invention. Therefore, the invention is intended to embrace all known or earlier developed alternatives, modifications, variations, improvements and/or substantial equivalents.
The technical effects and technical problems in the specification are exemplary and are not limiting. It should be noted that the embodiments described in the specification may have other technical effects and can solve other technical problems.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/430,790, filed Dec. 6, 2016, entitled MULTIPLE WIPER BLADE SYSTEM AND ASSEMBLY, the entire contents of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1953703 | Dirienzo et al. | Apr 1934 | A |
2085608 | Rodrick et al. | Jun 1937 | A |
2203071 | Zaiger et al. | Jun 1940 | A |
2273817 | Chellew et al. | Feb 1942 | A |
2918689 | Pruett | Dec 1959 | A |
3138816 | Abodeely et al. | Jun 1964 | A |
3631561 | Aszkenas | Jan 1972 | A |
3638274 | Farver | Feb 1972 | A |
3667083 | Linker | Jun 1972 | A |
3757377 | Hayhurst | Sep 1973 | A |
3892006 | Yasumoto | Jul 1975 | A |
3906583 | Murphy | Sep 1975 | A |
3958295 | Green et al. | May 1976 | A |
4177538 | Blaiklock et al. | Dec 1979 | A |
4214343 | Dudek | Jul 1980 | A |
4339839 | Knights et al. | Jul 1982 | A |
4611364 | Grubner et al. | Sep 1986 | A |
4649593 | Gilliam, III et al. | Mar 1987 | A |
4719661 | Hanselmann et al. | Jan 1988 | A |
4745653 | Bliznak | May 1988 | A |
5065474 | Charng | Nov 1991 | A |
5084933 | Buechele | Feb 1992 | A |
5168595 | Naylor et al. | Dec 1992 | A |
5235720 | Kinder et al. | Aug 1993 | A |
5255407 | Yang et al. | Oct 1993 | A |
5289608 | Kim | Mar 1994 | A |
5301384 | Perry et al. | Apr 1994 | A |
5327615 | Green et al. | Jul 1994 | A |
5332328 | Yang et al. | Jul 1994 | A |
5392487 | Yang | Feb 1995 | A |
5406672 | Hipke et al. | Apr 1995 | A |
5442834 | Perry | Aug 1995 | A |
5611103 | Lee | Mar 1997 | A |
5618124 | Chen | Apr 1997 | A |
5778483 | Dawson et al. | Jul 1998 | A |
5802661 | Miller et al. | Sep 1998 | A |
5885023 | Powell et al. | Mar 1999 | A |
5996168 | Watkins et al. | Dec 1999 | A |
6279193 | Cheng | Aug 2001 | B1 |
6505378 | Squires et al. | Jan 2003 | B1 |
6640380 | Rosenstein et al. | Nov 2003 | B2 |
6665904 | Kerchaert et al. | Dec 2003 | B1 |
7111355 | Sorensen | Sep 2006 | B1 |
7341396 | Huang | Mar 2008 | B2 |
7707681 | Cabak et al. | May 2010 | B1 |
7735184 | Westbrook et al. | Jun 2010 | B2 |
8281454 | Jordan et al. | Oct 2012 | B1 |
8381348 | Egner-Walter et al. | Feb 2013 | B2 |
8715421 | Nelson | May 2014 | B2 |
8745814 | Nelson | Jun 2014 | B2 |
8898849 | Bouguerra et al. | Dec 2014 | B2 |
9003594 | Guidez | Apr 2015 | B2 |
9260085 | Bex et al. | Feb 2016 | B2 |
9505380 | Tolentino et al. | Nov 2016 | B2 |
20060000044 | De et al. | Jan 2006 | A1 |
20070094831 | Huguley et al. | May 2007 | A1 |
20070186366 | Ailey | Aug 2007 | A1 |
20080086830 | Kim | Apr 2008 | A1 |
20080276402 | Chaise et al. | Nov 2008 | A1 |
20110005020 | Koppen et al. | Jan 2011 | A1 |
20120096667 | Cooper et al. | Apr 2012 | A1 |
20120284948 | Guidez et al. | Nov 2012 | A1 |
20130180545 | Nelson | Jul 2013 | A1 |
20140259508 | Ranucci et al. | Sep 2014 | A1 |
20150203073 | Schaeuble | Jul 2015 | A1 |
20150217730 | Boland | Aug 2015 | A1 |
20160016540 | Wilgosz | Jan 2016 | A1 |
20160031419 | Nelson | Feb 2016 | A1 |
20160129890 | Thebault et al. | May 2016 | A1 |
20160144832 | Barret et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2437961 | Apr 1980 | FR |
2985700 | Jul 2013 | FR |
Number | Date | Country | |
---|---|---|---|
62430790 | Dec 2016 | US |