MULTIPLEXED FLUORESCENCE IN SITU HYBRIDIZATION METHOD CAPABLE OF RAPID DETECTION OF BILLIONS OF TARGETS

Information

  • Patent Application
  • 20230159989
  • Publication Number
    20230159989
  • Date Filed
    November 22, 2022
    a year ago
  • Date Published
    May 25, 2023
    a year ago
Abstract
The present disclosure provides multiplexed methods, and constructs made to be used in said methods, for characterizing microbes from a biological sample to both rapidly identify the microbe and characterize drug susceptibility or resistance and perform microbial taxa identification and nucleic acid target detection at high multiplexity. The methods can also be used to predict future microbe drug susceptibility or resistance.
Description
SEQUENCE LISTING

This application includes and incorporates by reference in its entirety a Sequence Listing XML in the required .xml format. The Sequence Listing XML file that has been electronically filed contains the information of the nucleotide and/or amino acid sequences disclosed in the patent application using the symbols and format in accordance with the requirements of 37 C.F.R. §§ 1.832 through 1.834.


The Sequence Listing XML filed herewith serves as the electronic copy required by § 1.834(b)(1).


The Sequence Listing XML is identified as follows: “KANVAS_003_SEQ_LIST.xml” (1649 kilo bytes in size), which was created on Nov. 22, 2022.


TECHNICAL FIELD

This disclosure relates to methods for highly-multiplexed, rapid detection of nucleotides in samples, and constructs to be used in said methods.


BACKGROUND

Microbes, both individually and in communities (i.e. microbiomes), play a large role in human health and disease. Conventional methods to study biologically and clinically relevant aspects of these microbes, including antimicrobial resistance, suffer from long turnaround times and are limited in the number of taxa and genetic elements they can profile. As a result, researchers are left with an incomplete understanding of microbiota in their native biological contexts. In addition, clinicians are faced with diagnostic delays that are detrimental to patient care, which increases the risk of patient morbidity and mortality.


SUMMARY

Antimicrobial resistance is an emerging threat to global public health. Current tests available in clinical laboratories are time-consuming and limited in scope for antimicrobial resistance profile measurement. Timely and accurate information on pathogen identity and their associated antimicrobial susceptibility profile is critical in helping clinicians treat patients with shorter response time and higher precision. In addition, many other microbial phenotypes, such as persistence, tolerance, motility, hyphae formation, spore formation, and quorum sensing, can provide useful biological and clinical information, but are difficult to measure using standard sequencing techniques. The present disclosure provides methods for microbial identification and rapid antimicrobial susceptibility profile measurement or other microbial phenotype measurements. These methods combine a short period of culturing with known concentrations of antimicrobial drugs, or other alterations to the environment, with a highly multiplexed fluorescence readout to distinguish cellular taxonomic identity and susceptibility to different classes of antimicrobials or other relevant microbial phenotypes. This approach will enable a rapid and cost-effective test that can be deployed in clinical settings for fast diagnosis of infectious agents and proper selection of antimicrobial drugs for treatment.


The present disclosure provides methods that combine single-cell imaging, single-molecule imaging, microfluidic technologies, and phenotypic antimicrobial susceptibility testing to enable rapid identification of microbial species, current antimicrobial susceptibility profile, and future antimicrobial susceptibility profile, directly from patient samples. The present disclosure also provides methods that enable the detection of millions or billions of potential nucleic acid based targets in a single assay.


The present disclosure provides methods that can rapidly identify microbial species, genera, families, orders, classes, and phyla associated with a particular tissue or specimen. In further embodiments, the present disclosure provides methods to rapidly determine any antimicrobial drugs or compounds the identified microbial species is susceptible to or to which the microbial species may become susceptible in the future.


In some aspects, the present disclosure provides methods of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device; b) identifying the microbe; and c) detecting susceptibility to one or more antimicrobial agents.


In some aspects, the present disclosure provides methods of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device; b) identifying the microbe; and c) detecting future susceptibility to one or more antimicrobial agents.


In some embodiments, the sample is not subjected to culturing before the microbe is inoculated onto the device. In some embodiments, the microbe in the sample is cultured for one to 12 cell divisions before it is inoculated onto the device. In some embodiments, the microbe in the sample is cultured for one to numerous cell divisions before it is inoculated onto the device. The number of cell divisions depends on the species doubling time, which can be variable.


In some embodiments, the microbe is identified by in situ hybridization. In some embodiments, the microbe is identified by fluorescence in situ hybridization (FISH). In some embodiments, the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).


In some embodiments, the microbe is further characterized via live-cell imaging or growth dynamics calculation while in situ hybridization is performed.


In some embodiments, the microbe is identified by hybridization of a bar-coded probe a 16S ribosomal RNA sequence in the microbe, 5S ribosomal RNA sequence in the microbe, and/or 23S ribosomal RNA sequence in the microbe. In some embodiments, the in situ hybridization is multiplexed. In some embodiments, the susceptibility to one or more microbial agents is determined by measuring the minimum inhibitory concentration of the microbe when exposed to an antimicrobial agent. In some embodiments, the susceptibility to one or more microbial agents is determined by measuring microbial cell metabolism when the microbe is exposed to an antimicrobial agent. In some embodiments, microbial cell metabolism is measured by determining the concentration of dissolved carbon dioxide, oxygen consumption of microbes in the sample, expression of genes involved in cell division and/or growth, or expression of stress response genes. In some embodiments, microbial cell susceptibility is determined by a live/dead stain. In some embodiments, wherein microbial cell susceptibility is determined by cell number. In some embodiments, microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell. In some embodiments, microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell. In some embodiments, future microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell. In some embodiments, future microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell.


In some embodiments, wherein the one or more gene mutations associated with the development of antimicrobial resistance or susceptibility is selected from deletions, duplications, single nucleotide polymorphisms (SNPs), frame-shift mutations, inversions, insertions, and/or nucleotide substitutions. In some embodiments, the one or more antimicrobial genes is selected from: genes encoding multidrug resistance proteins (e.g. PDR1, PDR3, PDR7, PDR9), ABC transporters (e.g. SNQ2, STE6, PDR5, PDR10, PDR11, YOR1), membrane associated transporters (GAS1, D4405), soluble proteins (e.g. G3PD), RNA polymerase, rpoB, gyrA, gyrB, 16S RNA, 23S rRNA, NADPH nitroreductase, sul2, strAB, tetAR, aac3-iid, aph, sph, cmy-2, floR, tetB; aadA, aac3-VIa, and sul1. In some embodiments, the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using in situ hybridization. In some embodiments, the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using fluorescence in situ hybridization (FISH). In some embodiments, the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).


In some embodiments, the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs sequentially.


In some embodiments, the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs simultaneously.


In some embodiments, the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs in parallel.


In some embodiments, the biological sample is obtained from a patient. In some embodiments, the biological sample is obtained from a patient diagnosed with or believed to be suffering from an infection or disorder. In some embodiments, the disease or disorder is an infection. In some embodiments, the infection is a bacterial, viral, fungal, or parasitic infections. In some embodiments, the bacterial infection is selected from Mycobacterium, Streptococcus, Staphylococcus, Shigella, Campylobacter, Salmonella, Clostridium, Corynebacterium, Pseudomonas, Neisseria, Listeria, Vibrio, Bordetella, E. coli (including pathogenic E. coli), Pseudomonas aeruginosa, Enterobacter cloacae, Mycobacterium tuberculosis, Staphylococcus aureus, Helicobacter pylori, Legionella, Acinetobacter baumannii, Citrobacter freundii, Citrobacter koseri, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Staphylococcus saprophyticus, and Streptococcus agalactiae, or a combination thereof. In some embodiments, the viral infection is selected from Helicobacter pylori, infectious haematopoietic necrosis virus (IHNV), Parvovirus B19, Herpes Simplex Virus, Varicella-zoster virus, Cytomegalovirus, Epstein-Barr virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Measles virus, Mumps virus, Rubella virus, Human Immunodeficiency Virus (HIV), Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, Poliovirus, Norovirus, Zika Virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus, or a combination thereof. In some embodiments, the fungal infection is selected from Aspergillus, Candida, Pneumocystis, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma, or a combination thereof. In some embodiments, the parasitic infection is selected from Plasmodium (i.e. P. falciparum, P. malariae, P. ovale, P. knowlesi, and P. vivax), Trypanosoma, Toxoplasma, Giardia, and Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp. (whipworms), Enterobius spp. (pinworms), Ascaris spp. (roundworms), Ancylostoma spp. and Necator spp. (hookworms), Strongyloides spp. (threadworms), Dracunculus spp. (Guinea worms), Onchocerca spp. and Wuchereria spp. (filarial worms), Taenia spp., Echinococcus spp., and Diphyllobothrium spp. (human and animal cestodes), Fasciola spp. (liver flukes) and Schistosoma spp. (blood flukes), or a combination thereof.


In some embodiments, the biological sample is selected from bronchoalveolar lavage fluid (BAL), blood, serum, plasma, urine, cerebrospinal fluid, pleural fluid, synovial fluid, ocular fluid, peritoneal fluid, amniotic fluid, gastric fluid, lymph fluid, interstitial fluid, tissue homogenate, cell extracts, saliva, sputum, stool, physiological secretions, tears, mucus, sweat, milk, semen, seminal fluid, vaginal secretions, fluid from ulcers and other surface eruptions, blisters, and abscesses, and extracts of tissues including biopsies of normal, malignant, and suspect tissues or any other constituents of the body which may contain the microorganism of interest. In some embodiments, the biological sample is a human oral microbiome sample. In some embodiments, the biological sample is a whole organism.


In another aspect, a method for analyzing a sample can include:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In certain embodiments, the first emissive readout probe sequence can be the same length as the first landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be at least 2 nucleotides longer than the first landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be the same length as the second landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be at least 2 nucleotides longer than the second landing pad sequence.


In another aspect, a method for analyzing a sample can include:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample, adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In certain embodiments, the emissive readout probe sequence can be the same length as the first or second landing pad sequence.


In certain embodiments, the emissive readout probe sequence can be at least 2 nucleotides longer than the first or second landing pad sequence.


In another aspect, a construct can include:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be the same length as the first landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be at least 2 nucleotides longer than the first landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be the same length as the second landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be at least 2 nucleotides longer than the second landing pad sequence.


In another aspect, a library of constructs comprising a plurality of barcoded probes, wherein each barcoded probe comprises:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be the same length as the first landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be at least 2 nucleotides longer than the first landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be the same length as the second landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be at least 2 nucleotides longer than the second landing pad sequence.


In another aspect, a method for analyzing a bacterial sample can include:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • detecting the first emissive readout probe with a confocal microscope;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • detecting the second emissive readout probe with a confocal microscope;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In certain embodiments, the first emissive readout probe sequence can be the same length as the first landing pad sequence.


In certain embodiments, the first emissive readout probe sequence can be at least 2 nucleotides longer than the first landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be the same length as the second landing pad sequence.


In certain embodiments, the second emissive readout probe sequence can be at least 2 nucleotides longer than the second landing pad sequence.


In another aspect, a method for analyzing a bacterial sample can include:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the first set of emissive readout probes in the sample with a confocal microscope;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample,
    • adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the second set of emissive readout probes in the sample with a confocal microscope;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In certain embodiments, the emissive readout probe sequence can be the same length as the first or second landing pad sequence.


In certain embodiments, the emissive readout probe sequence can be at least 2 nucleotides longer than the first or second landing pad sequence.


Other aspects, embodiments, and features will be apparent from the following description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1B shows an exemplary method of rapid phenotypic profiling of antibiotic resistance followed by microbial identification using imaging. FIG. 1A shows an experimental set-up. FIG. 1B shows an example of a binary barcoding and spectral imaging approach for highly multiplexed labeling of microbes for taxonomic identification.



FIG. 2 shows an experimental work-flow for HiPR-FISH to identify a microbe in a sample and characterize a drug-resistance phenotype.



FIG. 3 shows E. coli detected in urine samples obtained from three different patients. HiPR-FISH was performed directly on three patient samples, each with over 100,000 CFU/mL of E. coli. The images were collected from the first emission channel after excitation of a 561 nm laser (in agreement with dye corresponding to the readout probe used, Alexa546).



FIG. 4 shows a HiPR-FISH panel identifying species including A. baumannii, C. freundii, S. saprophyticus, and a mixture of A. baumannii and C. freundii. Maximum merged emission images from different laser excitation wavelengths (first three columns). The fourth column is a false-colored, merged image of 405 nm (blue), 488 nm (green), and 561 nm (red). The fifth column is a close-up of the white boxes in column 4.



FIG. 5 shows the ability of HiPR-FISH to report drug susceptibility and minimum inhibitory concentration (MIC), and determine antimicrobial resistance or susceptibility. A comparison of the first and last time points, after several hours growth on a HiPR-FISH chip, for several concentrations of meropenem for carbapenem-resistant and carbapenem-susceptible K. pneumonia. The carbapenem-resistant K. pneumoniae grows beyond 2 μg/mL (* denotes MIC) in agreement with Clinical and Laboratory Standards Institute criteria.



FIG. 6 shows the ability of HiPR-FISH to detect fastidious and slow growing organisms in a synthetic mixture of fixed and digested Candida species. HiPR-FISH probes were designed to detect C. tropicalis (blue), C. glabrata (orange), and C. albicans (green) (colors not shown).



FIGS. 7A-7C shows gene expression measurements enable rapid detection of stress response in HiPR-FISH compatible manner. FIG. 7A shows a schematic of an ultrarapid gene expression measurement assay that can be performed in 2 hours with only 5 minutes of exposure to stress. The results of the 2 hour assay, with E. coli rRNA and heat-shock response gene clpB mRNA are shown in E. coli grown at 30° C. (FIG. 7B) and shocked at 46° C. (FIG. 7C) for 5 minutes. Scale bars=20 μm.



FIG. 8 shows a schematic of HiPR-Swap.



FIG. 9 shows probe stripping and signal recovery in HiPR-Swap. Fixed monomicrobial stock of E. coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, were hybridized with species-specific encoding probes and individual readout probes in a single step (left column of images). Exchange buffer, with exchange probes for each readout, was added and incubated overnight to remove the readout probes (middle column). Signals for each species were recovered by adding back readout probes without encoding probes (right column).



FIG. 10 shows speed of stripping readout probes in HiPR-Swap. HiPR-Swap samples of E. coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, from FIG. 9 were imaged after 5 days (column “After 5 days”). Exchange buffer, with exchange probes for each readout, was added and incubated for 1 hour to remove the readout probes (column “Strip—1 hr”).



FIG. 11 shows samples of E. coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, from FIG. 10 were imaged after stripping overnight (column “Strip—overnight”). Signals for each species were recovered by adding different readout probes of green color without encoding probes (column “Swap—R #-488”).



FIG. 12 shows probe stripping and swapping reaction in a single step. Top panel shows single step strip and swap reaction and bottom panel shows sequential strip and swap reaction. Fixed synthetic mixtures of E. coli and Pseudomonas aeruginosa (P. aeru; P. aeruginosa) were hybridized with species-specific encoding probes and Eubacterium probes (conjugated with Rhodamine Red-X fluorophore). First row of each panel shows the Eubacterium signal. In round 1, only E. coli is hybridized with its readout probes for both the single step and sequential step conditions (left column second row of each panel). In round 2 of the single step condition, exchange buffer containing exchange probes for E. coli and readout probes for P. aeruginosa was added and incubated for 2 hours (top panel middle column second row). In round 2 of the sequential step condition, exchange buffer containing exchange probes for E. coli was added and incubated for 2 hours (bottom panel middle column second row). In round 3 of the single step condition, exchange buffer containing readout probes for E. coli and exchange probes for P. aeruginosa was added and incubated for 2 hours (top panel last column second row). In round 3 of sequential step condition, exchange buffer containing readout probes for P. aeruginosa was added and incubated for 2 hours (bottom panel last column second row).



FIG. 13 shows real time measurement of single step strip and swap reaction of HiPR-Swap. Fixed synthetic mixtures of E. coli and Pseudomonas aeruginosa (P. aeru, P. aeruginosa) were hybridized with species-specific encoding probes. Before performing single step stripping and swapping reaction, only E. coli is hybridized with its readout probes (Image: “Before”). While keeping the sample under the microscope, exchange buffer containing exchange probes for E. coli and readout probes for P. aeruginosa was added and acquisition of images was started (Image: 0 min, 2 min, 4 min, 8 min, 12 min).



FIG. 14 shows an overview of Example 11. Fixed monomicrobial stocks of E. coli are plated in different wells and encoded with a unique set of 24 probes that have several readout bits (at least one on-bit per round). After encoding, the bacteria undergo: washing of encoding probes, probe exchange with the addition of readout and exchange probes, wash of readout and exchange probes, and imaging. Each round will yield a potentially non-unique 10 bit (sub-) barcode. The readouts exchanges were performed in four rounds, with the first and final round having identical readout probes used for a recovery check. After the final round a full barcode (30 bits) can be generated.



FIG. 15 shows a basic design and concept for HiPR-Swap, in situ. A unique set of 30 readout probes were designed that can be used with a standard 10-bit system described herein. To achieve this, each oligo sequence on the readout probe is unique, but each fluorophore is used three times. Readout probes with the same fluorophore must be used in different rounds to achieve accurate barcode interpretation. As an example of their use, a schematic of bacteria and the encoding scheme is shown. The bacteria is encoded with probes targeting the rRNA and with flanking landing pads (colored) that correspond to the reverse complement of the intended readout probe. In each round a set of 10 readout probes (and possibly 10 exchange probes) are added to determine a sub-barcode for the round. After each round, the readout probes are removed from the specimen and a new batch is added. After all rounds are complete, classification is performed to determine the round-barcode for each cell. The round barcodes are then concatenated to determine the full barcode.



FIGS. 16A-16B provide a summary of classification accuracy for Example 11. Barcode classification was performed for each cell in each round. Each well was encoded with a unique barcode (legend in bottom right). FIG. 16A: The accuracy was defined as the number of cells with round-barcodes exactly matching the encoding (Match=TRUE) divided by the number with any difference from encoding (Match=FALSE). For each well, in each round, over 2000 bacterial cells were classified. A single cell was misclassified in round 3 of well 1. FIG. 16B: A fourth round of exchange was performed to restore the original, round 1 barcode in each well and again performed classification. The accuracy of classification for round 1 and round 4 for each well is shown.



FIG. 17 illustrates that bacteria fluorescence matches expected barcode. In each well a mask for the most abundant barcode applied to the maximum spectral projection. Fluorescent bacteria only appear in channels corresponding to the “1” bit.



FIG. 18 shows a field of view in tissue for three different rounds of HiPR-Swap to detect microbial taxa at the phylum level. For each round, the colors corresponding to the phyla present in the round are shown. Large speckled blue (color not shown) objects at the bottom of each image are DAPI-stained nuclei in the host epithelium. Insets with bacteria are shown in white boxes. Outline phylum names indicate low abundance taxa.



FIG. 19 shows a field of view in tissue for three different rounds of HiPR-Swap to detect microbial taxa at the species level. For each round, individual species were encoded with a single bit. Large speckled blue objects at the top right of each image are DAPI-stained nuclei in the host epithelium. Color change between images indicates signal exchange from the HiPR-Swap assay.





DETAILED DESCRIPTION

It is to be appreciated that certain aspects, modes, embodiments, variations, and features of the present methods and compositions are described below in various levels of detail in order to provide a substantial understanding of the present disclosure.


Definitions

Where values are described as ranges, endpoints are included. Furthermore, it will be understood that such disclosure includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.


“5′-end” and “3′-end” refers to the directionality, e.g., the end-to-end orientation of a nucleotide polymer (e.g., DNA). The 5′-end of a polynucleotide is the end of the polynucleotide that has the fifth carbon.


The term “about,” as used herein, refers to +/−10% of a recited value.


“Complementary” refers to the topological compatibility or matching together of interacting surfaces of two nucleotides as understood by those of skill in the art. Thus, two sequences are “complementary” to one another if they are capable of hybridizing to one another to form a stable anti-parallel, double-stranded nucleic acid structure. A first nucleotide is complementary to a second nucleotide if the nucleotide sequence of the first nucleotide is substantially identical to the nucleotide sequence of the nucleotide binding partner of the second nucleotide, or if the first nucleotide can hybridize to the second nucleotide under stringent hybridization conditions. Thus, the nucleotide whose sequence is 5′-TATAC-3′ is complementary to a nucleotide whose sequence is 5′-GTATA-3′.


“Nucleotides,” “Nucleic acids,” “polynucleotide” or “oligonucleotide” refer to a polymeric-form of DNA and/or RNA (e.g., ribonucleotides, deoxyribonucleotides, or analogs thereof) of any length; e.g., a sequence of two or more ribonucleotides or deoxyribonucleotides. As used herein, the term “nucleotides” includes double- and single-stranded DNA, as well as double- and single-stranded RNA; it also includes modified and unmodified forms of a nucleotide (modifications to and of a nucleotide, for example, can include methylation, phosphorylation, and/or capping). In some embodiments, a nucleotide can be one of the following: a gene or gene fragment; genomic DNA; genomic DNA fragment; exon; intron; messenger RNA (mRNA); transfer RNA (tRNA); ribosomal RNA (rRNA); ribozyme; cDNA; recombinant nucleotide; branched nucleotide; plasmid; vector; isolated DNA of any sequence; isolated RNA of any sequence; any DNA described herein, any RNA described herein, primer or amplified copy of any of the foregoing.


In some embodiments, nucleotides can have any three-dimensional structure and may perform any function, known or unknown. The structure of nucleotides can also be referenced to by their 5′- or 3′-end or terminus, which indicates the directionality of the nucleotide sequence. Adjacent nucleotides in a single-strand of nucleotides are typically joined by a phosphodiester bond between their 3′ and 5′ carbons. However, different internucleotide linkages could also be used, such as linkages that include a methylene, phosphoramidate linkages, etc. This means that the respective 5′ and 3′ carbons can be exposed at either end of the nucleotide sequence, which may be called the 5′ and 3′ ends or termini. The 5′ and 3′ ends can also be called the phosphoryl (PO4) and hydroxyl (OH) ends, respectively, because of the chemical groups attached to those ends. The term “nucleotides” also refers to both double- and single-stranded molecules.


In some embodiments, nucleotides can include modified nucleotides, such as methylated nucleotides and nucleotide analogs (including nucleotides with non-natural bases, nucleotides with modified natural bases such as aza- or deaza-purines, etc.). If present, modifications to the nucleotide structure can be imparted before or after assembly of the nucleotide sequence.


In some embodiments, the sequence of nucleotides can be interrupted by non-nucleotide components. One or more ends of the nucleotides can be protected or otherwise modified to prevent that end from interacting in a particular way (e.g. forming a covalent bond) with other nucleotides.


In some embodiments, nucleotides can be composed of a specific sequence of four nucleotide bases: adenine (A); cytosine (C); guanine (G); and thymine (T). Uracil (U) can also be present, for example, as a natural replacement for thymine when the nucleotide is RNA. Uracil can also be used in DNA. Thus, the term “sequence” refers to the alphabetical representation of nucleotides or any nucleic acid molecule, including natural and non-natural bases.


When used in terms of length, for example 20 nt, “nt” refers to nucleotides.


As used herein a “taxon” refers to a group of one or more populations of an organism or organisms. In some embodiments, a “taxon” refers to a phylum, a class, an order, a family, a genus, a species, or a train. In some embodiments, the disclosure includes providing a list of taxa of microorganisms. In some embodiments, the list of taxa of microorganisms is selected from a list of phyla, a list of classes, a list of orders, a list of families, a list of genera, or a list of species, of microorganisms.


In analysis of a sample, a species can be a target of interest. For example, a species can include a taxonomic species.


In the event of any term having an inconsistent definition between this application and a referenced document, the term is to be interpreted as defined herein.


The development of antimicrobial resistance among infectious organisms is an emerging problem in patient treatment. Some microbial organisms have even become resistant to multiple classes of antimicrobials, leading to increasing incidences of potentially fatal infections that cannot be treated with available antimicrobials. In some cases, microbes possessing more than one antimicrobial gene may only begin expressing one or more of these genes after exposure to antimicrobials. Currently, microbiology laboratories in hospitals and clinics rely on culturing bacteria from patient samples before species identification or antimicrobial susceptibility testing, however culturing bacteria is time-consuming and labor-intensive. Furthermore, many microorganisms are not readily culturable.


In a typical clinical lab workflow, the culturing step involves plating patient samples on an agar substrate and waiting for individual bacterium to grow into macroscopic colonies, each containing 10 to 100 million cells. Depending on the species of bacteria, this process can take between 24 hours to several days, which leads to a significant time delay from sampling to diagnosis. In addition, culturing bacteria requires a technician to prepare the culture plates by hand and evaluate bacterial growth by eye. Both of these factors add unnecessary hands-on time for the technician, and further increase the amount of time required for diagnosis. In certain classes of diseases such as sepsis, a delayed diagnosis can mean life or death for the patient.


The key innovative step of this method is to implement parallel single-cell imaging for microbial identification and characterization, which identification of microbial genera and species, and assessment of growth under different antimicrobial conditions directly on individual microbial cells or small colonies of cells, without the need to wait for cells to grow and divide into colonies containing millions to billions of cells.


Cell division events or microbial morphology changes can be monitored via iterative imaging of the sample during culture, or at the conclusion of culturing and following fixation, to measure microbial growth and stress in a solution with a given concentration of antimicrobials. Because the observation of only a few cell division events is sufficient to assess susceptibility or resistance of the microbial species to an antimicrobial agent, this technique can provide definitive results in less time than a complete cell cycle. This process is orders of magnitude faster than current techniques. For example, in a population of 1000 asynchronously dividing cells, the mean waiting time for the next division event to occur is 1/1000 of the duration of the typical cell cycle. For example, if the bacteria is E. coli, with an average cell division time of 20 minutes, the next event occurs after roughly one second. The parallel observation of many (thousands and more) cells also enables the construction of division time distribution for accurate determination of growth rate over a time duration of one or few cell cycles. In some embodiments, the cells may be allowed to grow for a defined period of time. After the growth period, the samples can be fixed and observed on a microscope. In some cases, growth is measured by counting the number of micro colonies present in the sample. In other embodiments, the cells may be observed on a microscope while they are growing. In some embodiments, after acquiring the necessary growth and stress data, the sample can be fixed directly and parallel single-cell imaging performed to read out the species identity of the microorganism of interest. This may be followed up with single molecule imaging to measure the presence of genes that may indicate current or future susceptibility to antimicrobials. The micro-colony level or single-cell level observation will drastically cut down the time required to go from sample to diagnosis, requiring on average a few (e.g. one, two, or three) cell divisions to occur before the readout step, and will provide clinicians with actionable information earlier than any existing technology. Furthermore, the present methods provide clinicians with the antimicrobial susceptibility information needed to deploy targeted antimicrobials and enable precise treatments tailored for each individual case, thereby reducing the spread of multi-drug resistance among microbial populations. A live/dead stain (e.g. viability dye) can also be incorporated in unused spectral channels, to distinguish single, living microorganisms which did not divide over the course of the assay from those that are dead.


In addition to antimicrobial susceptibility, other microbial phenotype measurements can be combined with HiPR-FISH species identification and quantification. In some embodiments, the tolerance or persistence of microbial cells in the presence of environmental stress can be determined by measuring the gene expression levels for stress response genes (e.g. RpoS, RpoN, and/or RpoE, which encodes the sigma factor that regulates the response to conditions of stress). In some embodiments, motility or chemotaxis measurements can be combined with HiPR-FISH to identify cellular motility in a taxa-specific fashion. In some embodiments, the production of reactive oxygen species (ROS), which play important roles in promoting microbial tolerance to environmental stress, can be measured and linked to the species identity of each cell. In some embodiments, the expression of Type 3 Secretion System (T3 SS) genes, which are used by certain pathogens to infect host cells and evade host immune response, can be measured and linked to species identity. In some embodiments, the expression of Type IV Secretion System (T4SS), which is related to the prokaryotic conjugation machinery and is involved in transport of proteins and DNA across the cell membrane, can be measured and linked to species identity. In some embodiments, the expression of quorum sensing genes, which are important in modulating collective behavior of communities containing many microbial cells, can be measured and linked to species identity. In some embodiments, the expression of genes related to biofilm formation can be measured and linked to species identity. In some embodiments, microbial cells can be subjected to a phage to identify phage-susceptible microbial species.


Single Cell Imaging

In some embodiments, the present disclosure is directed to a method that achieves high phylogenetic resolution by taking advantage of the abundance of existing ribosomal subunit sequence information, such as the 16S ribosomal RNA sequence information, and a highly multiplexed binary encoding scheme. In some embodiments, each taxon from a list of taxa of microorganisms is probed with a custom designed taxon-specific targeting sequence, flanked by a subset of n unique encoding sequences. In some embodiments, each taxon is assigned a unique n-bit binary word, where 1 or 0 at the ith bit indicates the taxon-specific targeting sequence is flanked or not flanked by the ih encoding sequence. In some embodiments, a mixture of n decoding probes, each complementary to one of the n encoding sequences and conjugated to a unique label, is allowed to hybridize to their complementary encoding sequences. In some embodiments, the spectrum of labels for each cell is then detected using spectral imaging techniques. In some embodiments, the barcode identity for each cell can then be assigned using a support vector machine, using spectra of cells encoded with known barcodes or using computationally simulated spectra as training data.


In some embodiments, each taxon from a list of taxa of microorganisms is assigned a unique n-bit binary code selected from a plurality of unique n-bit binary codes, where n is an integer greater than 1.


A “binary code” refers to a representation of taxa using a string made up of a plurality of “0” and “1” from the binary number system. The binary code is made up of a pattern of n binary digits (n-bits), where n is an integer representing the number of labels used. The bigger the number n, the greater number of taxa can be represented using the binary code. For example, a binary code of eight bits (an 8-bit binary code, using 8 different labels) can represent up to 255 (28−1) possible taxa. (One is subtracted from the total possible number of codes because no taxon is assigned a code of all zeros “00000000.” A code of all zeros would mean no decoding sequence, and thus no label, is attached. In other words, there are no non-labeled taxa.) Similarly, a binary code of ten bits (a 10-bit binary code) can represent up to 1023 (210−1) possible taxa. In some embodiments a binary code may be translated into and represented by a decimal number. For example, the 10-bit binary code “0001100001” can also be represented as the decimal number “97.”


Each digit in a unique binary code represents whether a readout probe and the fluorophore corresponding to that readout probe are present for the selected species. In some embodiments, each digit in the binary code corresponds to a Readout probe (from Readout probe 1 (R1) through Readout probe n (Rn) in an n-bit coding scheme). In a specific embodiment, the n is 10 and the digits of an n-bit code correspond to R1 through R10. In some embodiments, the fluorophores that correspond to R1 through Rn are determined arbitrarily. For example, if n is 10, R1 can correspond to an Alexa 488 fluorophore, R2 can correspond to an Alexa 546 fluorophore, R3 can correspond to a 6-ROX (6-Carboxy-X-Rhodamine, or Rhodamine Red X) fluorophore, R4 can correspond to a Pacific Green fluorophore, R5 can correspond to a Pacific Blue fluorophore, R6 can correspond to an Alexa 610 fluorophore, R7 can correspond to an Alexa 647 fluorophore, R8 can correspond to a DyLight-510-LS fluorophore, R9 can correspond to an Alexa 405 fluorophore, and R10 can correspond to an Alexa532 fluorophore. Other n-bit and readout probes combinations are also contemplated herein. In some embodiments, other fluorophores including, but not limited to Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Flourescein FITC, Alexa 430, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Alexa fluor 568, Red 613, Texas Red, Alexa fluor 594, Alexa fluor 633, Alexa fluor 660, Alexa fluor 680, Cy5, Cy 5.5, Cy 7, and Allophycocyanin are used in the n-bit encoding system.


In some embodiments, the n-bit binary code is between a 2-bit binary code and 50-bit binary code, a 2-bit binary code and 40-bit binary code, or 2-bit binary code and 30-bit binary code. In some embodiments, the n-bit binary code is selected from the group consisting of 2-bit binary code, 3-bit binary code, 4-bit binary code, 5-bit binary code, 6-bit binary code, 7-bit binary code, 8-bit binary code, 9-bit binary code, 10-bit binary-code, 11-bit binary code, 12-bit binary code, 13-bit binary code, 14-bit binary code, 15-bit binary code, 16-bit binary code, 17-bit binary code, 18-bit binary code, 19-bit binary code, 20-bit binary code, 21-bit binary code, 22-bit binary code, 23-bit binary code, 24-bit binary code, 25-bit binary code, 26-bit binary code, 27-bit binary code, 28 bit binary code, 29-bit binary code, 30-bit binary code, 31-bit binary code, 32-bit binary code, 33-bit binary code, 34-bit binary code, 35-bit binary code, 36-bit binary code, 37-bit binary code, 38 bit binary code, 39-bit binary code, 40-bit binary code, 41-bit binary code, 42-bit binary code, 43-bit binary code, 44-bit binary code, 45-bit binary code, 46-bit binary code, 47-bit binary code, 48 bit binary code, 49-bit binary code, and 50-bit binary code.


Encoding Probes


In some embodiments, the gene for a ribosomal subunit is used as a marker for phylogenetic placement. In some embodiments, 16S rRNA gene is used as a marker for phylogenetic placement. In some embodiments, methods of the present disclosure comprise multiplexed in-situ hybridization of encoding probes targeting taxon-specific segments of multiple unique 16S rRNA genes present in a microorganism population. In some embodiments, the 5S and/or 23S rRNA are used independently or in conjunction with 16S rRNA as a marker for phylogenetic placement. In some embodiments, if non-bacterial microorganisms are targeted, other rRNA may be targeted.


In some embodiments, a set of ending probes comprises subsets of encoding probes, wherein each subset targets a specific taxon. In some embodiments, a subset of encoding probes contains one unique targeting sequence specific to a taxon; that is, the encoding probes within a subset share a common targeting sequence specific to a taxon. In some embodiments, a subset of encoding probes contains multiple unique targeting sequences, each unique targeting sequence being specific to the same taxon as other targeting sequences within the same subset.


Targeting Sequences


In some embodiments, each encoding probe comprises a targeting sequence which is substantially complementary to a taxon-specific 16S rRNA sequence. By “substantially complementary” it is meant that the nucleic add fragment is capable of hybridizing to at least one nucleic acid strand or duplex even if less than all nucleobases base pair with a counterpart nucleobase. In certain embodiments, a “substantially complementary” nucleic add contains at least one sequence in which about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 77%, 8%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, to about 100%, and any range therein, of the nucleobase sequence is capable of basepairing with at least one single or double stranded nucleic acid molecule during hybridization.


In some embodiments, the targeting sequence is designed to have a predicted melting temperature of between about 45° C. and about 65° C. or between about 55° C. and about 65° C. As used herein, the term “about” refers to an approximately ±10% variation from a given value. In some embodiments, the predicted melting temperature of the targeting sequence is 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C. or 65° C. In some embodiments, the targeting sequence has a GC content of about 55%, 60%, 65% or 70%.


In some embodiments, the taxon-specific targeting sequence in an encoding probe is designed as follows. At first, 16S sequences from a plurality of microorganisms are grouped by taxon and sequence similarity and a consensus sequence is generated for each taxon. In some embodiments, a targeting sequence specific for a consensus sequence is at least 10 nucleotides to at least 100 nucleotides long. In some embodiments, a targeting sequence specific for a consensus sequence is at least 15 nucleotides long, at least 16 nucleotides long, at least 17 nucleotides long, at least 18 nucleotides long, at least 19 nucleotides long, at least 20 nucleotides long, at least 21 nucleotides long, at least 22 nucleotides long, at least 23 nucleotides long, at least 24 nucleotides long, at least 25 nucleotides long, at least 26 nucleotides long, at least 27 nucleotides long, at least 28 nucleotides long, at least 29 nucleotides long, at least 30 nucleotides long, at least 35 nucleotides long, at least 40 nucleotides long, at least 45 nucleotides long, or at least 50 nucleotides long. In some embodiments, the candidate targeting sequence is aligned against a catalog of all full-length 16S rRNA sequences of a list of microorganisms. In a specific embodiment, the alignment is performed using Blastn (NCBI). In a specific embodiment, the alignment is performed using BWA. In a specific embodiment, the alignment is performed using bowtie. In a specific embodiment, the alignment is performed using bowtie2. In some embodiments, a maximum continuous homology (MCH) score, defined as the maximum number of continuous bases that are shared between the query and the target sequence, is calculated for each blast hit. In some embodiments, only candidate targeting sequences having blast hits to the consensus sequence above a threshold MCH score are considered significant and used for further analysis. In some embodiments, a blast on-target rate, defined as the ratio between the number of correct blast hits and the total number of significant blast hits, is calculated for each candidate targeting sequence having a significant BLAST hit. In some embodiments, any candidate targeting sequence with a blast on-target rate of less than 1 is excluded from the probe set to avoid ambiguity, and the remaining candidate targeting sequences are used as targeting sequences in encoding probe synthesis.


In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available 16S rRNA sequence data. In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available 23S rRNA sequence data. In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available 5S rRNA sequence data. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of 16S rRNA sequences. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of 23S rRNA sequences. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of 5S rRNA sequences. In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available 16S-5S rRNA sequence data. In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available 16S-5S-23S rRNA sequence data. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of 16S-5S rRNA sequences. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of 16S-5S-23S rRNA sequences. In a specific embodiment, high-quality, full-length 16S sequences are obtained by circular consensus sequencing (SMRT-CCS). In a specific embodiment, high-quality, full-length 16S sequences are obtained by Nanopore sequencing.


In some embodiments, SMRT-CCS of a 16S ribosomal sequence involves isolating ribosomal DNA from a microorganism. In a specific embodiment, DNA isolation is achieved using QIAamp DNA Mini Kit. In a specific embodiment, DNA isolation is achieved using DNeasy PowerSoil Pro Kit. In some embodiments, ribosomal DNA is amplified using universal primers. In some embodiments, the amplified ribosomal DNA is purified, and sequenced. In a specific embodiment, sequencing is performed on a PacBio Sequel instrument. In a specific embodiment, sequencing is performed on a PacBio Sequel IIe instrument. In a specific embodiment, sequencing is performed on a Nanopore MinION instrument. In a specific embodiment, sequencing is performed on a Nanopore GridION instrument. In a specific embodiment, sequencing is performed on a Nanopore PromethION instrument. In some embodiments, sequence data is processed to create a circular consensus sequence with a threshold of 99% accuracy. In a specific embodiment, the sequence data processing is achieved using rDnaTools. In some embodiments, the circular consensus sequences are used for probe design. In some embodiments, to increase the sequence design space, and to improve identification of closely related species, the workflow uses a full 16S-23S rRNA region. In some embodiments, to increase the sequence design space, and to improve identification of closely related species, the workflow uses a full 16S-5S-23S rRNA region.


In some embodiments, the targeting sequence of an encoding probe is designed using a database that is relevant for a system. In a specific embodiment, the system is the gut microbiome. In some embodiments, the targeting sequence of an encoding probe is designed using a database that is relevant for a disease or infection.


Spacers


In some embodiments, a targeting sequence in an encoding probe is concatenated on both ends with 3 nucleotide (3-nt) spacers. In some embodiments, the 3-nt spacers comprise a random string of three nucleotides. In some embodiments, the 3-nt spacers are sequences designed from the 16S rRNA molecule, 5S rRNA molecule, or 23S rRNA molecule (i.e., three nucleotides upstream and downstream of the selected 16S targeting sequence is used as the 3-nt spacers). In some embodiments the spaces are non-nucleotide chemical spacers. Non-nucleotide chemical spacers include, but are not limited to, hexanediol, hexa-ethyleneglycol, or triethylene glycol spacers.


Readout Sequences


In some embodiments, a targeting sequence is concatenated to at least one readout sequence depending on the unique n-bit binary code assigned to the taxon that the targeting sequence is specific for. Each readout sequence is substantially complementary to the sequence of a corresponding labeled readout probe.


In some embodiments, a readout sequence is at least 15 nucleotides long, at least 16 nucleotides long, at least 17 nucleotides long, at least 18 nucleotides long, at least 19 nucleotides long, at least 20 nucleotides long, at least 21 nucleotides long, at least 22 nucleotides long, at least 23 nucleotides long, at least 24 nucleotides long, at least 25 nucleotides long, at least 26 nucleotides long, at least 27 nucleotides long, at least 28 nucleotides long, at least 29 nucleotides long, or at least 30 nucleotides long. In some embodiments, candidate readout sequences are blasted against a nucleotide database to ensure that they are not substantially complementary to regions of 16S ribosomal sequences.


Forward and Reverse Primers


In some embodiments, a targeting sequence is concatenated to a set of sequences (forward primer and reverse primer sequences) that are substantially complementary to primers that can be used to amplify the encoding probe in a polymerase chain reaction (PCR). In some embodiments, the forward and reverse primers are designed to have predicted melting temperatures of between about 55° C. and about 65° C. As used herein, the term “about” refers to an approximately ±10% variation from a given value. In some embodiments, the predicted melting temperature of the forward and reverse primers are 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C. or 65° C. In some embodiments, the forward and reverse primers have a GC content of about 55%, 60%, 65% or 70%.


In some embodiments, the set of forward and reverse primers are designed such that the set of forward and reverse primers are not substantially complementary to the targeting sequence or readout sequences. In some embodiments, the set of forward and reverse primers are designed such that the set of forward and reverse primers are not substantially complementary to any sequences that are substantially complementary to the targeting sequence or readout sequences. In a specific embodiment, the set of forward primer and reverse primer sequences comprise the nucleotide sequence CGATGCGCCAATTCCGGTTC (SEQ ID NO: 1808) and the nucleotide sequence GTCTATTTTCTTATCCGACG (SEQ ID NO: 1809).


In some embodiments, the forward primer or the reverse primer is at least 15 nucleotides long, at least 16 nucleotides long, at least 17 nucleotides long, at least 18 nucleotides long, at least 19 nucleotides long, at least 20 nucleotides long, at least 21 nucleotides long, at least 22 nucleotides long, at least 23 nucleotides long, at least 24 nucleotides long, at least 25 nucleotides long, at least 26 nucleotides long, at least 27 nucleotides long, at least 28 nucleotides long, at least 29 nucleotides long, or at least 30 nucleotides long.


Decoding Probes


In some embodiments, the present disclosure utilizes a set of n number of decoding probes representing an n-bit coding scheme where n is an integer. In some embodiments, each probe in the set of decoding probes corresponds to a digit in the plurality of unique n-bit binary codes.


In some embodiments, each probe in the set of decoding probes is conjugated with a label that provides a detectable signal.


In some embodiments, each probe in a set of decoding probes is labeled different from other probes in the set, and each decoding probe is substantially complementary to a corresponding readout sequence selected from a set of n number of readout sequences.


In some embodiments, the detectable signal is a cyanine dye (e.g., Cy2, Cy3, Cy3B, Cy5, Cy5.5, Cy7, etc.), Alexa Fluor dye, Atto dye, photo switchable dye, photoactivatable dye, fluorescent dye, metal nanoparticle, semiconductor nanoparticle or “quantum dots”, fluorescent protein such as GFP (Green Fluorescent Protein), or photoactivatable fluorescent protein, such as PAGFP, PSCFP, PSCFP2, Dendra, Dendra2, EosFP, tdEos, mEos2, mEos3, PAmCherry, PAtagRFP, mMaple, mMaple2, and mMaple3.


In a specific embodiment, the detectable signal is a fluorophore. In some embodiments, the detectable signal is a fluorophore that emits light in infrared or near-infrared. In a specific embodiment, the fluorophore is selected from the group consisting of Alexa 405, Pacific Blue, Pacific Green, Alexa 488, Alexa 532, Alexa 546, Rhodamine Red X, Alexa 610, Alexa 647, and DyLight-510-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, Alexa 430, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Alexa fluor 568, Red 613, Texas Red, Alexa fluor 594, Alexa fluor 633, Alexa fluor 660, Alexa fluor 680, Cy5, Cy5.5, Cy7, Allophycocyanin, and ROX (carboxy-X-rhodamine). In some embodiments, the detectable signal is Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, ROX (carboxy-X-rhodamine), Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, ATTO 740.


In some embodiments, a readout probe is at least 10 nucleotides long, at least 11 nucleotides long, at least 12 nucleotides long, at least 13 nucleotides long, at least 14 nucleotides long, at least 15 nucleotides long, at least 16 nucleotides long, at least 17 nucleotides long, at least 18 nucleotides long, at least 19 nucleotides long, at least 20 nucleotides long, at least 21 nucleotides long, at least 22 nucleotides long, at least 23 nucleotides long, at least 24 nucleotides long, at least 25 nucleotides long, at least 26 nucleotides long, at least 27 nucleotides long, at least 28 nucleotides long, at least 29 nucleotides long, or at least 30 nucleotides long.


Imaging


In some embodiments, the labels used in the present methods are imaged using a microscope. In some embodiments, the microscope is a confocal microscope. In some embodiments, the microscope is a fluorescence microscope. In some embodiments, the microscope is a light-sheet microscope. In some embodiments, the microscope is a super-resolution microscope.


Barcode Decoding


In some embodiments, a support vector machine is trained on reference data to predict the barcode of single cells in the synthetic communities and environmental samples. In a specific embodiment, the support vector machine is Support Vector Regression (SVR) from Python package. As used herein, the term “support-vector machine” (SVM) refers to a supervised learning model with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall.


In some embodiments, the reference spectra are obtained through a brute force approach involving the measurement of the spectra of all possible barcodes using barcoded test E. coli cells. In some embodiments, the n-bit binary encoding is a 10-bit binary encoding and tire reference spectra are obtained through measuring 1023 reference spectra.


In some embodiments the reference spectra are obtained by simulation of all possible spectra. In some embodiments, the simulated spectral data can be used as reference examples for the support vector machine. In some embodiments, the spectra corresponding to individual n-bit binary codes are simulated by adding together the measured spectra of each individual fluorophore (e.g., the reference spectrum for 0000010011 is generated by adding the spectra of R1, R2, and R5; or the reference spectrum for 1010010100 is generated by adding the spectra of R3, R5, R8 and R10). In some embodiments, the spectra corresponding to individual n-bit binary codes are simulated by adding the measured spectra of each individual fluorophore weighted by the relative contribution to the emission signal of each fluorophore. In some embodiments, the relative contribution of each fluorophore is calculated using a Forster Resonant Energy Transfer (FRET) model.


In one aspect, the disclosure is directed to a computer-readable storage device storing computer readable instructions, which when executed by a processor causes the processor to assign each taxon in a list of taxa of microorganisms a unique n-bit binary code selected from a plurality of unique n-bit binary codes, and design decoding and encoding probes suitable for use in such n-bit binary coding scheme.


The phrase “computer-readable storage device” refers to a computer readable storage device or a computer readable signal medium. A computer-readable storage device, may be, for example, a magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing; however, the computer readable storage device is not limited to these examples except a computer readable storage device excludes computer readable signal medium Additional examples of the computer readable storage device can include: a portable computer diskette, a hard disk, a magnetic storage device, a portable compact disc read-only memory (CD-ROM), a random access memory' (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical storage device, or any appropriate combination of the foregoing; however, the computer readable storage device is also not limited to these examples.


Any tangible medium that can contain, or store, a program for use by or in connection with an instruction execution system, apparatus, or device could be a computer readable storage device.


A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, such as, but not limited to, in baseband or as part of a carrier wave. A propagated signal may take any of a plurality of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium (exclusive of computer readable storage device) that can communicate, propagate, or transport a program for use by or in connection with a system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical fiber cable, RF, etc., or any suitable combination of the foregoing. The term “memory” as used herein comprises program memory' and working memory. The program memory may have one or more programs or software modules. The working memory stores data or information used by the CPU in executing the functionality described herein.


The term “processor” may include a single core processor, a multi-core processor, multiple processors located in a single device, or multiple processors in wired or wireless communication with each other and distributed over a network of devices, the Internet, or the cloud. Accordingly, as used herein, functions, features or instructions performed or configured to be performed by a “processor”, may include the performance of the functions, features or instructions by a single core processor, may include performance of the functions, features or instructions collectively or collaboratively by multiple cores of a multi-core processor, or may include performance of the functions, features or instructions collectively or collaboratively by multiple processors, where each processor or core is not required to perform every function, feature or instruction individually. The processor may be a CPU (central processing unit). The processor may comprise other types of processors such as a GPU (graphical processing unit). In other aspects of the disclosure, instead of or in addition to a CPU executing instructions that are programmed in the program memory, the processor may be an ASIC (application-specific integrated circuit), analog circuit or other functional logic, such as a FPGA (field-programmable gate array), PAL (Phase Alternating Line) or PLA (programmable logic array).


The CPU is configured to execute programs (also described herein as modules or instructions) stored in a program memory to perform the functionality described herein. The memory may be, but not limited to, RAM (random access memory), ROM (read only memory) and persistent storage. The memory is any piece of hardware that is capable of storing information, such as, for example without limitation, data, programs, instructions, program code, and/or other suitable information, either on a temporary basis and/or a permanent basis.


In some embodiments, a computer-readable storage device comprises instructions for assigning each taxon in a list of taxa of microorganisms a unique n-bit binary code selected from a plurality of unique n-bit binary codes; designing a set of n number of decoding probes, wherein each decoding probe corresponds to a digit in the n-bit binary code, and where each decoding probe is substantially complementary to a readout sequence selected from a set of n number of readout sequences, and designing a set of encoding probes, where the set of encoding probes includes a plurality of subsets of encoding probes, wherein each encoding probe comprises a targeting sequence and one or more readout sequences, the encoding probes within each subset comprise a targeting sequence that is specific to a taxon in tire list of taxa of microorganisms and is different from a targeting sequence of the encoding probes of another subset, and the readout sequences in the encoding probes within a subset are selected from the set of n number of readout sequences based on the unique n-bit binary code assigned to the taxon which the targeting sequence of the subset is specific to.


In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 16S ribosomal sequence specific to a taxon. In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 5S ribosomal sequence specific to a taxon. In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 23S ribosomal sequence specific to a taxon. In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 16S-5S ribosomal sequence specific to a taxon. In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 16S-5S-23S ribosomal sequence specific to a taxon. In some embodiments, the computer-readable storage device comprises instructions for designing encoding probes of a subset, wherein the targeting sequence in the encoding probes of a subset is substantially complementary to a consensus 16S-23S ribosomal sequence specific to a taxon. In some embodiments, the targeting sequence is blasted against a nucleotide database to ensure that the target sequence is not substantially complementary to any sequence other than the consensus 16S ribosomal sequence to which the target sequence is specific.


In some embodiments, a set of encoding probes comprises subsets of encoding probes, wherein each subset targets a specific taxon. In some embodiments, a subset of encoding probes contains one unique targeting sequence specific to a taxon; that is, the encoding probes within a subset share a common targeting sequence specific to a taxon. In some embodiments, a subset of encoding probes contains multiple unique targeting sequences, each unique targeting sequence being specific to the same taxon as other targeting sequences within the same subset.


Microbial Cell Growth

In some embodiments, the microbial cell in the sample is identified and characterized directly from the sample. In some embodiments, the microbial cell in the sample is identified and characterized after culturing. In some embodiments, the microbial cell in the sample is cultured for numerous cell divisions. A skilled artisan would readily recognize that the number of cell divisions depends on the species doubling time, which varies from species to species. In some embodiments, the microbial cell in the sample is cultured for one to numerous cell divisions. In some embodiments, the microbial cell in the sample is cultured for less than one division cycle. In some embodiments, the microbial cell in the sample is cultured for very few cell division cycles. In some embodiments, the microbial cell in the sample is cultured for about 1 to about 12 cell division cycles. In some embodiments, the microbial cell in the sample is cultured for about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, or about 12 cell division cycles. In some embodiments, the microbial cell in the sample is cultured for about 1 minute to about 12 hours. In some embodiments, the microbial cell in the sample is cultured for about 1 minute, about 2 minutes, about 3 minutes, about 4 minutes, about 5 minutes, about 6 minutes, about 7 minutes, about 8 minutes, about 9 minutes, about 10 minutes, about 11 minutes, about 12 minutes, about 13 minutes, about 15 minutes, about 16 minutes, about 17 minutes, about 18 minutes, about 19 minutes, about 20 minutes, about 25 minutes, about 30 minutes, about 35 minutes, about 40 minutes, about 45 minutes, about 50 minutes, about 55 minutes, about 60 minutes, about 80 minutes, about 90 minutes, about 1 hour, about 1.5 hours, about 2 hours, about 2.5 hours, about 3 hours, about 3.5 hours, about 4 hours, about 4.5 hours, about 5 hours, about 5.5 hours, about 6 hours, about 6.5 hours, about 7 hours, about 7.5 hours, about 8 hours, about 8.5 hours, about 9 hours, about 9.5 hours, about 10 hours, about 10.5 hours, about 11 hours, about 11.5 hours, or about 12 hours.


Antimicrobial Susceptibility Testing

To enable rapid antimicrobial resistance profiling, the present methods combine fluorescence in situ hybridization to enable the first hybrid measurements of antimicrobial resistance (FIG. 1A) using both genotypic and phenotypic information. FIG. 1A shows a concept for rapid phenotypic profiling of antibiotic resistance followed by microbial identification using imaging. Microbes are cultured for a short amount of time (minutes) before fixation and imaging. Multimodal imaging using single-molecule FISH and metabolic labeling can provide phenotypic and genotypic information on cellular metabolism and antimicrobial resistance. This technique allows identification of microorganism species and assessment of microorganism growth and replication in the presence and absence of known concentrations of different antimicrobials in order to accurately determine antimicrobial susceptibility testing results in less time required than other methods known in the art.


One or more microbes in a specimen can be directly inoculated onto a device with patterned compartments. The testing can proceed with or without further culturing. In scenarios where the sample is not subjected to culturing, species identification FISH methods, such as HiPR-FISH, and single-molecule FISH to simultaneously image the species identity is combined with analysis regarding the presence or absence of one or more antimicrobial genes and metabolites, proteins, carbohydrates, and/or lipids in the same cells. This approach will enable a paired readout of microbial species identity and antimicrobial susceptibility. In situations where phenotypic readout of antimicrobial susceptibility is desired, the compartments will be filled with a culturing media containing an antimicrobial drug at a known concentration. An initial image will be taken to record the number of cells in each compartment of the device. The microbes are allowed to replicate for a defined period of time (minutes to a few hours). After the growth period, another image or measurement will be taken to record cellular state in each compartment of the device after the growth period and look for the presence of genes and metabolites, proteins, carbohydrates, and/or lipids that are known to confer antimicrobial resistance. The cellular state can potentially be read out in a few different ways. For example, cellular state can be measured simply by counting the number of cells in each compartment. Cell growth can also be measured by probing the metabolic product concentration in the solution such as dissolved CO2 or measuring the amount of heat dissipation using calorimetry techniques. Cellular state can also be inferred by measuring the abundance of expressed metabolic genes or stress response genes using single-molecule fluorescence in situ hybridization. Cellular state may also be measured using a simple live/dead stain. After cellular state measurement, the identity of the cells will subsequently be read out using multiplexed fluorescence in situ hybridization (e.g. HiPR-FISH) (FIG. 1B). Binary labeling approach for highly multiplexed labeling of microbes for taxonomic identification. Microbes from different taxa are labeled with unique combinations of fluorophores. The combined spectra are measured using a microscope in spectral imaging mode. Measured spectra are classified using a custom machine learning algorithm. This test can be repeated in several different culture media to make the analysis as comprehensive as possible. Altogether, the present methods enable rapid measurement of pathogen identity, their associated minimally inhibitory concentration for antimicrobials, and potential future susceptibility to antimicrobials.


In some aspects, the present disclosure provides methods determining the susceptibility (or resistance) of the microbial cells in the sample to one or more antimicrobial agents. In some aspects, the present disclosure provides methods of identifying microbial cells in a sample in parallel with determination of the microbial cells in the sample susceptibility to one or more antimicrobial agents. As used herein, a microbial cell is “susceptible” to an antimicrobial when it is inhibited by the usually achievable concentration of the antimicrobial agent when the dosage recommended to treat the site of infection is used. Further, as used herein, a microbial cell is “resistant” to an antimicrobial when it is not inhibited by the usually achievable concentration of an antimicrobial agent with normal dosage schedules and/or that has a minimum inhibitory concentration that falls in the range in which specific microbial resistance mechanisms are likely.


In some embodiments, the microbial cells in a sample are exposed to different concentrations to determine the minimum inhibitory concentration of the antimicrobial agent. In some embodiments, the minimum inhibitory concentration (MIC) of the antimicrobial agent for the microbial cell in the sample is greater than the MIC of a typical microbial cell of the same strain. In some embodiments, the minimum inhibitory concentration (MIC) of the antimicrobial agent for the microbial cell in the sample is lower than the MIC of a typical microbial cell of the same strain.


In some embodiments, the microbial cells in the sample are exposed to one or more antimicrobial agents in a concentration range of about 2-fold to about 500-fold of the MIC of a typical microbial cell of the same strain. In some embodiments, the microbial cells in the sample are exposed to one or more antimicrobial agents in a concentration range of about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 11-fold, about 12-fold, about 13-fold, about 14-fold, about 15-fold, about 16-fold, about 17-fold, about 18-fold, about 19-fold, about 20-fold, about 25-fold, about 30-fold, about 35-fold, about 40-fold, about 45-fold, about 50-fold, about 60-fold, about 70-fold, about 80-fold, about 90-fold, about 100-fold, about 150-fold, about 200-fold, about 250-fold, about 300-fold, about 350-fold, about 400-fold, about 450-fold, or about 500-fold of the MIC of a typical microbial cell of the same strain.


Any appropriate antimicrobial agent effective against a microbial cell disclosed herein may be used in the methods of the present disclosure. In some embodiments, the one or more antimicrobial agents include, but are not limited to rifamycins, rifampicin, aminoglycosides, fluoroquinolones, penicillins, carbapenems, cephalosporins antibiotic, penicillinase-resistant penicillins, aminopenicillins, β-lactams, tetracyclines, sulfonamides, phenicols, trimethoprim, macrolides, fosfomycin, erythromycin, azithromycin, clarithromycin, dirithromycin, troleandomycin, synthetic drugs quinolones, sulfonamides, trimethoprim, sulfamethoxazole, streptomycin, glycopeptides, glycylcyclines, ketolides, lipopeptides, monobactams, nitroimidazoles, oxazolidinones, polymixins, benzilpenicilline, aminoglycosides, amikacin, arbekacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, rhodostreptomycin, streptomycin, tobramycin, apramycin, amphotericin, nystatin, pimaricin, fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, echinocandins, polyenes, allylamines, naftifine, terbinafine, morpholines, amorolfine, 5-fluorocytosine, atovaquone/proguanil, malarone, chloroquine, doxycycline, mefloquine, primaquine, meropenem, and tafenoquine.


In some embodiments, survival, growth or development of the microbial cell in a sample is determined by counting the number of cells observed. In some embodiments, survival, growth or development of the microbial cell in a sample is determined by counting the number of cells observed relative to unperturbed wells. In some embodiments, survival, growth or development of the microbial cell in a sample is determined by measuring cell metabolism. In some embodiments, growth or development of the microbial cell in a sample is determined by measuring cell metabolism at varying concentrations of one or more antimicrobial agents. In some embodiments, metabolic measurements include, but are not limited to, concentration of dissolved carbon dioxide, heat dissipation, oxygen consumption, expressed genes involved in cell homeostasis, stress response, division, and/or growth, and/or cell membrane integrity, and/or cell wall integrity, and/or S-layer integrity (live/dead stain).


Inference of Potential Antimicrobial Resistance.

To enable prediction of antimicrobial resistance in the future, HiPR-FISH can be applied to not only measure the microbial identity via the rRNA sequences, but also measure the presence of antimicrobial genes, proteins, or metabolic products. To measure the presence of antimicrobial genes, panels of probes that are specific and only specific to a list of antimicrobial genes are designed. These probes are similarly encoded into binary barcodes by adding flanking sequences to the encoding sequences. These flanking sequences may be readout sequences or sequences for additional signal amplification. In the case where the flanking sequences are readout sequences, the specimen can be hybridized with readout probes and imaged on an imaging device. In the case where the flanking sequences are initiator sequences, the specimen is subjected to a round of signal amplification using amplifier probes. The amplifier probes may be conjugated with fluorophores. If the amplifier probes are already conjugated with fluorophores, the specimen can be imaged on an imaging device after amplification hybridization. If the amplifiers are not conjugated with fluorophores, the amplifier probes will contain a readout sequence. The amplified specimen is then hybridized with fluorescently labeled readout probes before being imaged on an imaging device. To measure the presence of antimicrobial proteins, antibodies conjugated with DNA readout sequences are engineered. The DNA barcoded antibodies will bind to proteins of interest, and the labeled specimen will be hybridized with fluorescently labeled readout probes before being imaged on an imaging device. To measure metabolic products such as sugars or lipids, DNA barcodes will be conjugated to molecules that bind specifically to the sugars or lipids of interest. The labeled specimen will then be hybridized with fluorescently labeled readout probes before being imaged on an imaging device. For measurement of proteins, sugars, and/or lipids, amplifier probes may also be used in a similar fashion as described for gene targets to increase signal and reduce the influence of noise. Examples of imaging devices include, but are not limited to, epifluorescent microscopes, confocal microscopes, multi-photon microscopes, and light-sheet microscopes.


Any number of genetic changes can affect the susceptibility of an organism to an antimicrobial agent or drug. For example, permeability changes in the bacterial cell wall can restrict antimicrobial access to target sites, changes in pumps can alter the efflux of the antimicrobial from the cell, proteins may enzymatically modify or degrade the antimicrobial agent, the cell may acquire an alternative metabolic pathway to that inhibited by the antimicrobial agent, the target of the antimicrobial agent may be modified, or the target enzyme may be overproduced.


In some embodiments, the present methods detect mutations that influence the development of antimicrobial resistance or susceptibility, such as nucleotide substitutions in the 23S rRNA gene that cause macrolide resistance, single nucleotide polymorphisms in ribosomal proteins such as L4 or L22, mutations within the rpsL gene, or frame shift mutation in ddl gene encoding a cytoplasm enzyme D-Ala-D-Ala ligase.


In some embodiments, the present methods can identify genetic changes in the microorganism compared to unmodified microorganisms of the same type. In some embodiments, the present methods identify deletions, duplications, single nucleotide polymorphisms (SNPs), frame-shift mutations, inversions, insertions, and/or substitutions associated with the development of susceptibility or resistance to a given antimicrobial agent. In some embodiments, the present methods identify mutations associated with increased drug resistance in genes including, but not limited to, genes encoding multidrug resistance proteins (e.g. PDR1, PDR3, PDR7, PDR9), ABC transporters (e.g. SNQ2, STE6, PDR5, PDR10, PDR11, YOR1), membrane associated transporters (GAS1, D4405), soluble proteins (e.g. G3PD), RNA polymerase, rpoB, gyrA, gyrB, 16S RNA, 23S rRNA, NADPH nitroreductase, sul2, strAB, tetAR, aac3-iid, aph, sph, cmy-2, floR, tetB, aadA, aac3-VIa, and sul1.


Microorganisms

In some aspects, the present disclosure provides methods for identifying and characterizing an infectious microorganism such as a virus, bacterium, parasite, or fungus. The infectious microorganism can be a microorganism that causes infections in a human or an animal such as a species of livestock, poultry, and fish.


In some embodiments, the list of phyla of microorganisms include phyla Actinobacteria, Aquiflcae, Armatimonadetes, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Chrysiogenetes, Cyanobacteria, Chrysiogenetes, Deferribacteres, Deinococcus-thermus, Dictyoglomi, Elusimicrobia, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Lentisphaerae, Nitrospirae, Planctomycetes, Proteobacteria, Spirochaetia, Synergistetes, Thermodesulfobacteria, Thermotogae, and Verrucomicrobia.


In some embodiments, the present disclosure provides methods for identifying and characterizing a virus including but not limited to, bacteriophage, RNA bacteriophage (e.g. MS2, AP205, PP7 and Qβ), Helicobacter pylori, infectious haematopoietic necrosis virus (IHNV), parvovirus, Herpes Simplex Virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Measles virus, Mumps virus, Rubella virus, Human Immunodeficiency Virus (HIV), Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, Poliovirus, Norovirus, Zika Virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus. In some embodiments, the methods identify and characterize a cell (e.g. human cell) infected with a virus of the disclosure.


In some embodiments, the present disclosure provides methods for identifying and characterizing a bacterium including but not limited to, Mycobacterium, Streptococcus, Staphylococcus, Shigella, Campylobacter, Salmonella, Clostridium, Corynebacterium, Pseudomonas, Neisseria, Listeria, Vibrio, Bordetella, E. coli (including pathogenic E. coli), Pseudomonas aeruginosa, Enterobacter cloacae, Mycobacterium tuberculosis, Staphylococcus aureus, Helicobacter pylori, and Legionella. In some embodiments, the present disclosure provides methods for identifying and characterizing a bacterium including, but not limited to, Acinetobacter baumannii, Citrobacter freundii, Citrobacter koseri, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Staphylococcus saprophyticus, Streptococcus agalactiae, or a combination thereof.


In some embodiments, the present disclosure provides methods for identifying and characterizing a parasite including but not limited to, Plasmodium (i.e. P. falciparum, P. malariae, P. ovale, P. knowlesi, and P. vivax), Trypanosoma, Toxoplasma, Giardia, and Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp. (whipworms), Enterobius spp. (pinworms), Ascaris spp. (roundworms), Ancylostoma spp. and Necator spp. (hookworms), Strongyloides spp. (threadworms), Dracunculus spp. (Guinea worms), Onchocerca spp. and Wuchereria spp. (filarial worms), Taenia spp., Echinococcus spp., and Diphyllobothrium spp. (human and animal cestodes), Fasciola spp. (liver flukes) and Schistosoma spp. (blood flukes).


In some embodiments, the present disclosure provides methods for identifying and characterizing a fungus including but not limited to, Aspergillus, Candida, Blastomyces, Coccidioides, Cryptococcus, Pneumocystis, Mucor, Rhizopus, Rhizomucor, Fusarium, Scedosporium, and Histoplasma.


Kits

Another aspect of the disclosure is directed to kits that allow practicing the methods of the present disclosure.


In some embodiments, the disclosure is directed to a kit which includes a list of taxa of microorganisms, wherein each taxon is assigned a unique n-bit binary code selected from a plurality of unique n-bit binary codes, wherein n is an integer greater than 1; a set of n number of decoding probes, wherein each decoding probe corresponds to a digit in the plurality of unique n-bit binary codes, is conjugated with a label that provides a detectable signal, wherein the labels on the decoding probes are different from each other, and is substantially complementary to a readout sequence selected from a set of n number of readout sequences; and instructions on how to design a set of encoding probes, wherein the set of encoding probes includes a plurality of subsets of encoding probes, wherein each encoding probe comprises a targeting sequence and one or more readout sequences, the encoding probes within each subset comprise a targeting sequence that is specific to a taxon in the list of taxa of microorganisms and is different from a targeting sequence of the encoding probes of another subset, and the readout sequences in the encoding probes within a subset are selected from the set of n number of readout sequences based on the unique n-bit binary code assigned to the taxon which the targeting sequence of the subset is specific to.


In some embodiments, the encoding probes within each subset comprise at least one targeting sequence that is specific to a taxon. In some embodiments, the encoding probes within each subset comprise at least two targeting sequences that are specific to the same taxon.


In some embodiments, the kit includes a device to practice the methods of the present disclosure. In some embodiments, the device is a multiwell platform. In some embodiments, the multiwell platform contains between 2 and 400 well, or 2 and 384 well, or 8 and 100 well. In some embodiments, the multiwell platform contains 2 wells, 3 wells, 4 wells, 5 wells, 6 wells, 7 wells, 8 wells, 9 wells, 10 wells, 12 wells, 24 wells, 25 wells, 30 wells, 48 wells, 50 wells, 75 wells, 96 wells, 100 wells, 150 wells, 200 wells, 250 wells, 300 wells, 350 wells, 384 wells, or 400 wells. In some embodiments, the wells contain drug-inoculated or drug-free agar, agarose, polyethylene glycol, or polyacrylamide. In some embodiments, the devices are a single or a double layer of silicon. In some embodiments, a plastic flow chamber is attached for HiPR-FISH processing and readout.


Biological Samples

The methods disclosed herein can be performed directly in a biological sample, without the need to isolate and culture microorganisms. In some embodiments, the biological sample is a biological fluid or a tissue sample. In some embodiments, the biological sample includes, but is not limited to, bronchoalveolar lavage fluid (BAL), blood, serum, plasma, urine, cerebrospinal fluid, pleural fluid, synovial fluid, ocular fluid, peritoneal fluid, amniotic fluid, gastric fluid, lymph fluid, interstitial fluid, tissue homogenate, cell extracts, saliva, sputum, stool, physiological secretions, tears, mucus, sweat, milk, semen, seminal fluid, vaginal secretions, fluid from ulcers and other surface eruptions, blisters, and abscesses, and extracts of tissues associated with medical implants, and extracts of tissues including biopsies of normal, malignant, and suspect tissues or any other constituents of the body which may contain the microorganism of interest. In some embodiments, the sample is a human oral microbiome sample. In some embodiments, the sample is a whole organism.


In some embodiments, the sample is obtained from a patient diagnosed with, or suspected to be suffering from an infection, disease, or disorder. In some embodiments, the patient has been diagnosed with, or is suspected to be suffering from a bacterial, viral, fungal, or parasitic infection. In some embodiments, the infection includes, but is not limited to, tetanus, diphtheria, pertussis, pneumonia, meningitis, campylobacteriosis, mumps, measles, rubella, polio, flu, hepatitis, chickenpox, malaria, toxoplasmosis, giardiasis, or leishmaniasis.


In some embodiments, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a bacterium selected from the group consisting of: Mycobacterium, Streptococcus, Staphylococcus, Shigella, Campylobacter, Salmonella, Clostridium, Corynebacterium, Pseudomonas, Neisseria, Listeria, Vibrio, Bordetella, Helicobacter pylori, and Legionella.


In some embodiments, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a virus selected from the group consisting of: bacteriophage, RNA bacteriophage (e.g. MS2, AP205, PP7 and Qβ), Infectious Haematopoietic Necrosis Virus, Parvovirus, Herpes Simplex Virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Measles virus, Mumps virus, Rubella virus, HIV, Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, and Poliovirus, Norovirus, Zika virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus.


In some embodiments, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a parasite selected from the group consisting of: Plasmodium, Trypanosoma, Toxoplasma, Giardia, Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp., Enterobius spp., Ascaris spp., Ancylostoma spp. and Necator spp., Strongyloides spp., Dracunculus spp., Onchocerca spp. and Wuchereria spp., Taenia spp., Echinococcus spp., and Diphyllobothrium spp., Fasciola spp., and Schistosoma spp.


HiPR-Swap

Another aspect of the disclosure is directed to a method of analyzing a sample by performing multiple imaging rounds exchanging emissive readout probes which are referred to herein as HiPR-Swap.


HiPR-Swap is motivated by a need to target hundreds of thousands of rRNA, mRNA, and other molecules in the microbiomes and the host tissue in order to describe host-microbiome interactions. For example, to image on average 100 unique mRNAs in roughly 1000 taxa in the gut microbiome, along with all mammalian host transcripts would require us to be able to uniquely barcode ˜150,000 targets.


Several FISH-based methods use multiple rounds of imaging to achieve high multiplexity in their assays. Multiple rounds can be performed by: (1) photobleaching fluorescent probes before applying a next round of fluorescent probes; (2) applying DNAse to the specimen to degrade fluorescent probes before applying a next round of fluorescent probes; (3) adding photocleavable or chemically-cleavable linker molecules to the fluorescent probes, and performing the cleavage to remove fluorescence signal before applying a next round of fluorescent probes; (4) stripping probes using washes with high (>50%) formamide concentrations and/or low salt (≤2×SSC) and/or high temperatures (≥37° C.). These methods, however, are undesirable for a multitude of reasons, for example, they can be time consuming and have potential for photodamage. They can also be detrimental to sample integrity, are cost-prohibitive at scale, and possibly chemically incompatible. In addition, some can remove encoding probes necessary to conduct FISH-based methods. To overcome these deficiencies, the present disclosure uses DNA exchange as a method to quickly, specifically, carefully replace HiPR-FISH readout probes without disturbing encoding and/or amplifier probes. This method is referred to as HiPR-Swap.


High Phylogenetic Resolution microbiome mapping by Fluorescence in situ Hybridization (HiPR-FISH), is a versatile technology that uses binary encoding, spectral imaging, and machine learning based decoding to create micron-scale maps of the locations and identities of hundreds of microbial species in complex communities. See, for example, Shi, H. et al. “Highly multiplexed spatial mapping of microbial communities.” Nature vol. 588, 7839 (2020): 676-681 and PCT Patent Publication WO 2019/173555, filed Mar. 7, 2019. The contents of the aforementioned disclosures are each incorporated herein by reference in their entireties.


In the HiPR-Swap method, readout and encoding probes are designed such that the “landing pad” (the region on the encoding probe to which the readout probe binds) is shorter than or equal to in length to the readout probe. The landing pad being shorter than the readout probe creates a single-stranded overhang of the readout probe, as it extends past the end of the landing pad. The bigger the difference in length, the faster the exchange happens but there is also the risk of having a less stable readout probe being on the landing pad. Accordingly, there is a balance that needs to be struck to achieve a complete hybridization/exchange. In some instances, when the readout probe is of the same length as the landing pad, using a high concentration of exchange probes can result in a complete swap.


After a readout probe is bound, an exchange probe can be added to the specimen. The exchange probe can be constructed to be of equal length and a perfect reverse complement to the readout probe. In some instances, the exchange probe may contain locked nucleic acids to increase the stability of the exchange-readout pair. When added, the exchange probe seeds a hybridization to the exposed area of the readout probe. Over a short period of time the exchange probe completely hybridizes to the readout probe, thereby removing it from the encoding probe where it can be washed away. Importantly, orthogonal readout and exchange probes can be added simultaneously to reduce assay time.


Accordingly, a method for analyzing a sample can include:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In some embodiments, more than one type of probe set (e.g., encoding probe, emissive readout probes, and exchange probes) may be introduced to a sample. For example, there may be from at least 2 to at least 1 billion distinguishable probe sets that are introduced to a sample. In some embodiments, at least 2, at least 5, at least 10, at least 25, at least 50, at least 75, at least 100, at least 300, at least 1,000, at least 3,000, at least 10,000, at least 30,000, at least 100,000, at least 500,000, or at least 1,000,000, at least 10,000,000, at least 50,000,000, at least 100,000,000, at least 500,000,000, or at least 1,000,000,000 distinguishable probe sets that are introduced to a sample. In some embodiments, the distinct probes are introduced simultaneously. In some embodiments, the distinct probes are introduced sequentially. In some embodiments, more than one type of probe set may be introduced to a sample over multiple rounds, with each round having multiple probe pools.


Encoding Probe Hybridization

In the methods described herein for analyzing a sample, the method can include contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe includes a targeting sequence, a first landing pad sequence, and a second landing pad sequence. This step may also be referred to as the “encoding probe hybridization” step. In here, at least one encoding probe is contacted with the sample to produce a first complex. The first complex can include the targeting sequence of the encoding probe hybridized to the nucleic acid target sequence.


In some embodiments, contacting the encoding probes with the sample is contacting the encoding probes with at least one nucleotide sequence of the sample. In some embodiments, contacting the encoding probes with the sample is hybridizing the encoding probe (e.g., via the targeting sequence present in the encoding probe) with a target sequence present in the sample.


In some embodiments, in order to contact encoding probes with the sample, the sample can be digested or lysed so as to allow the encoding probes (and other probes described herein) to contact with the target sequence.


In some embodiments, to contact the at least one encoding probe with the sample to produce a first complex, encoding buffer is added to the sample. In some embodiments, a pre-hybridization step can be performed prior to adding the encoding probe. In some embodiments, the encoding buffer can be added to the sample without the encoding probe. In some embodiments, the encoding buffer can be added to the sample about 30 minutes prior to adding the encoding probe.


In some embodiments, the encoding buffer can include a denaturing/deionizing agent, a salt buffer, a detergent, a polyanionic polymer, a blocking agent, acids, or combinations thereof. In some embodiments, the encoding buffer can include more than one type of agent, for example, the encoding buffer can include two or more polyanionic polymers and/or two or more blocking agents. In some embodiments, the encoding buffer can include a denaturing/deionizing agent, a salt buffer, a detergent, two polyanionic polymers, two blocking agents, and an acid.


In some embodiments, the encoding buffer can include a denaturing/deionizing agent. In some embodiments, the denaturing/deionizing agent can be formamide, ethylene carbonate, or urea. In some embodiments, the encoding buffer can include about 10% (v/v) to about 50% (v/v), about 15% (v/v) to about 45% (v/v), about 20% (v/v) to about 40% (v/v), about 25% (v/v) to about 35% (v/v), about 10% (v/v), 15% (v/v), 20% (v/v), 25% (v/v), or 30% (v/v) of a denaturing/deionizing agent (e.g., ethylene carbonate).


In some embodiments, the encoding buffer can include a salt buffer. In some embodiments, the salt buffer is saline sodium citrate (SSC), NaCl, or MgCl2. In some embodiments, the encoding buffer can include about 2× to about 20×, about 5× to about 10×, or about 5× of a salt buffer (e.g., saline sodium citrate (SSC)).


In some embodiments, the encoding buffer can include at least one polyanionic polymer. In some embodiments, the encoding buffer can include one polyanionic polymer. In some embodiments, the encoding buffer can include two polyanionic polymers. In some embodiments, the polyanionic polymer can be dextran sulfate, heparin, or polyglutamic acid. In some embodiments, the encoding buffer can include about 2.5% (v/v) to about 25% (v/v), about 5% (v/v) to about 15% (v/v), about 7.5% (v/v) to about 12.5% (v/v), about 5% (v/v), or about 10% (v/v) of a polyanionic polymer (e.g., dextran sulfate). In some embodiments, the encoding buffer can include about 20 μg/mL to about 80 μg/mL, about 30 μg/mL to about 70 μg/mL, about 40 μg/mL to about 60 μg/mL, or about 50 μg/mL of a polyanionic polymer (e.g., heparin).


In some embodiments, the encoding buffer can include a detergent. In some embodiments, the detergent can be Tween 20, Tween 80, sodium dodecyl sulfate (SDS), Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58. N-Dodecyl-beta-maltoside, Octyl-beta-glucoside, octylthioglucoside (OTG). In some embodiments, the encoding buffer can include about 0.01% (v/v) to about 1.0% (v/v), about 0.05% (v/v) to about 0.5% (v/v), or about 0.1% (v/v), or about 0.05% (v/v) of detergent (e.g., SDS).


In some embodiments, the encoding buffer can include an acid. In these embodiments, the acid lowers the pH of the buffer. In some embodiments, the acid can be citric acid. In some embodiments, the encoding buffer can include about 1 mM to about 30 mM, about 5 mM to about 15 mM, about 5 mM to about 10 mM, about 7 mM to about 10 mM, or about 9 mM of an acid (e.g., citric acid).


In some embodiments, the encoding buffer can include at least one blocking agent. In some embodiments, the encoding buffer can include one blocking agent. In some embodiments, the blocking agents can be Denhardt's solution, bovine serum albumin (BSA), salmon sperm DNA, Ficoll, polyvinyl pyrrolidone (PVP), E. coli tRNA, casein solution, or random hexamers. In some embodiments, the encoding buffer can include about 0.1× to about 10×, about 0.5× to about 5×, about 1× to about 2×, or about 1× of a blocking agent (e.g., Denhardt's solution).


In some embodiments, the encoding buffer can include ethylene carbonate, dextran sulfate, SSC, Denhardt's solution, and SDS. In some embodiments, the encoding buffer can include 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, and 0.01% SDS.


First Emissive Readout Probe Hybridization

Following the hybridization of the encoding probe with the target sequence to form a first complex, at least one first emissive readout probe is added to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence. In some embodiments, this step may be referred to as the “readout probe hybridization” step. In here, the emissive readout probes hybridize to their complementary sequences present in the first complex (e.g., first landing pad sequence).


In some embodiments, the encoding probe and the readout probe hybridization occur in the same step. In some embodiments, the readout probe hybridization is performed in the presence of the encoding buffer described above. In some embodiments, the encoding probe hybridization step, the readout probe hybridization step, and the readout step can occur sequentially or substantially in the same step.


In some embodiments, to hybridize the readout probes to the first complex, readout buffer is added to the sample. In some embodiments, to image the readout probes, a wash buffer is added to the sample.


In some embodiments, the wash buffer can include a salt buffer, a pH stabilizer, and a chelating agent.


In some embodiments, the readout probes are added so they achieve a final concentration of about 10 nM to about 20 μM, or about 10 nM to about 10 μM, or about 100 nM to about 1 μM, about 200 nM to about 500 nM, or about 200 nM, about 300 nM, about 400 nM, or about 500 nM for each readout probe. In some embodiments, the readout probes are added so they achieve a final concentration of about 400 nM.


In some embodiments, the wash buffer can include a salt buffer. In some embodiments, the salt buffer is saline sodium citrate (SSC), NaCl, or MgCl2. In some embodiments, the wash buffer can include about 2× to about 20×, about 5× to about 10×, or about 5× of a salt buffer (e.g., saline sodium citrate (SSC)). In some embodiments, the wash buffer can include about 50 mM to about 500 mM, or about 100 mM to about 300 mM, or about 150 mM to about 250 mM, or about 215 mM or salt buffer (e.g., NaCl).


In some embodiments, the wash buffer can include a pH stabilizer. In some embodiments, the pH stabilizer can be at least one of tris-HCl, citric acid, SSC, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), sucrose/EDTA/Tris-HCl (SET), potassium phosphate, tris(hydroxymethyl)methylamino]propanesulfonic acid (TAPS), NaOH, 3-(N-morpholino)propanesulfonic acid (MOPS), Tricine, Bicine, sodium pyrophosphate, piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES), SSPE. In some embodiments, the pH stabilizer can be tris-HCl. In some embodiments, the wash buffer can include about 5 mM to about 30 mM, about 10 mM to about 20 mM, about 10 mM, or about 20 mM of a pH stabilizer (e.g., tris-HCl).


In some embodiments, the wash buffer can include a chelating agent. In some embodiments, the chelating agent is at least one of EDTA, Ethylene glycol tetraacetic acid (EGTA), Salicylic acid, Triethanolamine (TEA), or Dimercaptopropanol. In some embodiments, the chelating agent is EDTA. In some embodiments, the wash buffer can include about 1 mM to about 10 mM, about 2 mM to about 5 mM, or about 5 mM of a chelating agent (e.g., EDTA).


In some embodiments, the wash buffer can include NaCl, tris-HCl, and EDTA. In some embodiments, the wash buffer can include 215 mM NaCl, 20 mM tris-HCl, and 5 mM EDTA.


Exchange Probe Hybridization

After acquiring one or more emission spectra from the first emissive readout probe, an exchange probe is added so it removes the first emissive readout probe from the complex so it allows for another emissive readout probe and imaging step to occur. In some embodiments, the addition of the exchange probe and addition of the second emissive readout probe occur in the same step. In some embodiments, the addition of the exchange probe and addition of the second emissive readout probe occur sequentially.


In some embodiments, the exchange probes are added so they achieve a final concentration of about 10 nM to about 20 or about 10 nM to about 10 or about 100 nM to about 1 about 200 nM to about 500 nM, or about 200 nM, about 300 nM, about 400 nM, or about 500 nM for each exchange probe. In some embodiments, the exchange probes are added so they achieve a final concentration of about 400 nM.


In some embodiments, to contact the exchange probe with the first emissive readout probe to produce a second complex, exchange buffer is added to the sample. In some embodiments, the exchange buffer can include a denaturing/deionizing agent, a salt buffer, a detergent, a polyanionic polymer, a blocking agent, acids, or combinations thereof. In some embodiments, the exchange buffer can include more than one type of agent, for example, the encoding buffer can include two or more polyanionic polymers and/or two or more blocking agents. In some embodiments, the exchange buffer can include a denaturing/deionizing agent, a salt buffer, a detergent, two polyanionic polymers, two blocking agents, and an acid.


In some embodiments, the exchange buffer can include a denaturing/deionizing agent. In some embodiments, the denaturing/deionizing agent can be formamide, ethylene carbonate, or urea. In some embodiments, the exchange buffer can include about 10% (v/v) to about 50% (v/v), about 15% (v/v) to about 45% (v/v), about 20% (v/v) to about 40% (v/v), about 25% (v/v) to about 35% (v/v), about 10% (v/v), 15% (v/v), 20% (v/v), 25% (v/v), or 30% (v/v) of a denaturing/deionizing agent (e.g., ethylene carbonate).


In some embodiments, the exchange buffer can include a salt buffer. In some embodiments, the salt buffer is saline sodium citrate (SSC), NaCl, or MgCl2. In some embodiments, the exchange buffer can include about 2× to about 20×, about 5× to about 10×, or about 5× of a salt buffer (e.g., saline sodium citrate (SSC)).


In some embodiments, the exchange buffer can include at least one polyanionic polymer. In some embodiments, the exchange buffer can include one polyanionic polymer. In some embodiments, the exchange buffer can include two polyanionic polymers. In some embodiments, the polyanionic polymer can be dextran sulfate, heparin, or polyglutamic acid. In some embodiments, the exchange buffer can include about 2.5% (v/v) to about 25% (v/v), about 5% (v/v) to about 15% (v/v), about 7.5% (v/v) to about 12.5% (v/v), about 5% (v/v), or about 10% (v/v) of a polyanionic polymer (e.g., dextran sulfate). In some embodiments, the exchange buffer can include about 20 μg/mL to about 80 μg/mL, about 30 μg/mL to about 70 μg/mL, about 40 μg/mL to about 60 μg/mL, or about 50 μg/mL of a polyanionic polymer (e.g., heparin).


In some embodiments, the exchange buffer can include a detergent. In some embodiments, the detergent can be Tween 20, Tween 80, sodium dodecyl sulfate (SDS), Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58. N-Dodecyl-beta-maltoside, Octyl-beta-glucoside, octylthioglucoside (OTG). In some embodiments, the exchange buffer can include about 0.01% (v/v) to about 1.0% (v/v), about 0.05% (v/v) to about 0.5% (v/v), or about 0.1% (v/v), or about 0.05% (v/v) of detergent (e.g., SDS).


In some embodiments, the exchange buffer can include an acid. In these embodiments, the acid lowers the pH of the buffer. In some embodiments, the acid can be citric acid. In some embodiments, the exchange buffer can include about 1 mM to about 30 mM, about 5 mM to about 15 mM, about 5 mM to about 10 mM, about 7 mM to about 10 mM, or about 9 mM of an acid (e.g., citric acid).


In some embodiments, the exchange buffer can include at least one blocking agent. In some embodiments, the exchange buffer can include one blocking agent. In some embodiments, the blocking agents can be Denhardt's solution, bovine serum albumin (BSA), salmon sperm DNA, Ficoll, polyvinyl pyrrolidone (PVP), E. coli tRNA, casein solution, or random hexamers. In some embodiments, the exchange buffer can include about 0.1× to about 10×, about 0.5× to about 5×, about 1× to about 2×, or about 1× of a blocking agent (e.g., Denhardt's solution).


In some embodiments, the exchange buffer can include ethylene carbonate, dextran sulfate, SSC, Denhardt's solution, and SDS. In some embodiments, the exchange buffer can include 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, and 0.01% SDS.


Second Emissive Readout Probe Hybridization

Following the hybridization of the exchange probe to the first emissive readout probe, a second emissive readout probe is added. In some embodiments, this step may be referred to as the “second readout probe hybridization” step. In here, the second emissive readout probe hybridizes to its complementary sequences present in the first complex (e.g., second landing pad sequence).


In some embodiments, the second emissive readout probe hybridization is performed in the presence of the encoding buffer described above. In some embodiments, to image the second readout probes, a wash buffer is added to the sample. In some embodiments, the wash buffer is the wash buffer described above.


In some embodiments, the second emissive readout probes are added so they achieve a final concentration of about 10 nM to about 10 or about 100 nM to about 1 about 200 nM to about 500 nM, or about 200 nM, about 300 nM, about 400 nM, or about 500 nM for each readout probe. In some embodiments, the second emissive readout probes are added so they achieve a final concentration of about 400 nM.


In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed in the same step. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed sequentially. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, removing the second complex from the sample, and adding the second emissive readout probe are performed in the same step. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, removing the second complex from the sample, and adding the second emissive readout probe are performed sequentially.


In some embodiments, hybridizing the exchange probe to the first or second emissive readout probe results in de-hybridization of the first or second emissive readout probe from the first or second landing pad sequence. In some embodiments, the step is achieved from about 30 seconds to about 1 hour. In some embodiments, the step is achieved within 30 seconds, 1 minute, 5 minutes, 10 minutes, 12 minutes, 15 minutes, 30 minutes, 45 minutes, or 1 hour. In some embodiments, the step is achieved within 1 hour. In some embodiments, the step is achieved overnight.


In another aspect, a method for analyzing a sample can include:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample,
    • adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


Sample


In some embodiments, the sample is at least one of a cell, a cell suspension, a tissue biopsy, a tissue specimen, urine, stool, blood, serum, plasma, bone biopsies, bone marrow, respiratory specimens, sputum, induced sputum, tracheal aspirates, bronchoalveolar lavage fluid, sweat, saliva, tears, ocular fluid, cerebral spinal fluid, pericardial fluid, pleural fluid, peritoneal fluid, placenta, amnion, pus, nasal swabs, nasopharyngeal swabs, oropharyngeal swabs, ocular swabs, skin swabs, wound swabs, mucosal swabs, buccal swabs, vaginal swabs, vulvar swabs, nails, nail scrapings, hair follicles, corneal scrapings, gavage fluids, gargle fluids, abscess fluids, wastewater, or plant biopsies.


In some embodiments, the sample is a cell. In some embodiments, the cell is a bacterial cell. In some embodiments, the cell is a eukaryotic cell. In some embodiments the eukaryotic cell is a unicellular organism including protozoa, chromista, algae, or fungi. In some embodiments the eukaryotic cell is part of a multicellular organism from chromista, plantae, fungi, or animalia. In some embodiments the sample is a tissue composed of cells. In some embodiments the cell contains foreign DNA/RNA from viruses, plasmids, and bacteria.


In some embodiments, the sample can include a plurality of cells. In some embodiments, each cell in the plurality of cells can include a specific targeting sequence, which may or may not be the same from the other targeting sequences.


In some embodiments, the sample is a human oral microbiome sample. In some embodiments, the sample is a whole organism.


In some embodiments, the sample is obtained from a patient diagnosed with, or suspected to be suffering from an infection, disease, or disorder. In some embodiments, the patient has been diagnosed with, or is suspected to be suffering from a bacterial, viral, fungal, or parasitic infection. In some embodiments, the infection includes, but is not limited to, Acute Flaccid Myelitis, Anaplasmosis, Anthrax, Babesiosis, Botulism, Brucellosis, Campylobacteriosis, Carbapenem-resistant Infection (CRE/CRPA), Chancroid, Chickenpox, Chikungunya Virus Infection (Chikungunya), Chlamydia, Ciguatera (Harmful Algae Blooms (HABs)), Clostridium Difficile Infection, Clostridium Perfringens (Epsilon Toxin), Coccidioidomycosis fungal infection (Valley fever), COVID-19 (Coronavirus Disease 2019), Creutzfeldt-Jacob Disease, transmissible spongiform encephalopathy (CJD), Cryptosporidiosis (Crypto), Cyclosporiasis, Dengue, 1, 2, 3, 4 (Dengue Fever), Diphtheria, E. coli infection, Shiga toxin-producing (STEC), Eastern Equine Encephalitis (EEE), Ebola Hemorrhagic Fever (Ebola), Ehrlichiosis, Encephalitis, Arboviral or parainfectious, Enterovirus Infection, D68 (EV-D68), Enterovirus Infection, Non-Polio (Non-Polio Enterovirus), Giardiasis (Giardia), Glanders, Gonococcal Infection (Gonorrhea), Granuloma inguinale, Haemophilus Influenza disease, Type B (Hib or H-flu), Hantavirus Pulmonary Syndrome (HPS), Hemolytic Uremic Syndrome (HUS), Hepatitis (A, B, C, D, and/or E), Herpes Herpes Zoster, zoster VZV (Shingles), Histoplasmosis infection (Histoplasmosis), Human Immunodeficiency Virus/AIDS (HIV/AIDS), Human Papillomavirus (HPV), Influenza (Flu), Lead Poisoning, Legionellosis (Legionnaires Disease), Leishmaniasis, Leprosy (Hansens Disease), Leptospirosis, Listeriosis (Listeria), Lyme Disease, Lymphogranuloma venereum infection (LGV), Malaria, Measles, Melioidosis, Meningitis, Viral (Meningitis, viral), Meningococcal Disease, Bacterial (Meningitis, bacterial), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Mononucleosis, Multisystem Inflammatory Syndrome in Children (MIS-C), Mumps, Norovirus, Paralytic Shellfish Poisoning (Paralytic Shellfish Poisoning, Ciguatera), Pediculosis (Lice, Head and Body Lice), Pelvic Inflammatory Disease (PID), Pertussis (Whooping Cough), Plague; Bubonic, Septicemic, Pneumonic (Plague), Pneumococcal Disease (Pneumonia), Poliomyelitis (Polio), Powassan, Psittacosis (Parrot Fever), Phthiriasis (Crabs; Pubic Lice Infestation), Pustular Rash diseases (Small pox, monkeypox, cowpox), Q-Fever, Rabies, Ricin Poisoning, Rickettsiosis (Rocky Mountain Spotted Fever), Rubella, Salmonellosis gastroenteritis (Salmonella), Scabies Infestation (Scabies), Scombroid, Septic Shock (Sepsis), Severe Acute Respiratory Syndrome (SARS), Shigellosis gastroenteritis (Shigella), Smallpox, Staphylococcal Infection, Methicillin-resistant (MRSA), Staphylococcal Food Poisoning, Enterotoxin-B Poisoning (Staph Food Poisoning), Staphylococcal Infection, Vancomycin Intermediate (VISA), Staphylococcal Infection, Vancomycin Resistant (VRSA), Streptococcal Disease, Group A (invasive) (Strep A (invasive)), Streptococcal Disease, Group B (Strep-B), Streptococcal Toxic-Shock Syndrome, STSS, Toxic Shock (STSS, TSS), Syphilis, primary, secondary, early latent, late latent, congenital, Tetanus, Toxoplasmosis, Trichomoniasis (Trichomonas infection), Trichinosis Infection (Trichinosis), Tuberculosis (Latent) (LTBI), Tuberculosis (TB), Tularemia (Rabbit fever), Typhus, Typhoid Fever, Group D, Vaginosis, bacterial (Yeast Infection), Vaping-Associated Lung Injury (e-Cigarette Associated Lung Injury), Varicella (Chickenpox), Vibrio cholerae (Cholera), Vibriosis (Vibrio), Viral Hemorrhagic Fever (Ebola, Lassa, Marburg), West Nile Virus, Yellow Fever, Yersenia (Yersinia), or Zika Virus Infection (Zika).


In some embodiments, when the sample is obtained from a patient, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a bacterium selected from the group consisting of: Acinetobacter, Actinomyces, Aerococcus, Bacteroides, Bartonella, Brucella, Bordetella, Burkholderia, Campylobacter, Chlamydia, Citrobacter, Clostridium, Corynebacterium, Edwardsiella, Elizabethkingia, Enterobacter, Enterococcus, Escherichia, Fusobacterium, Haemophilus, Helicobacter, Klebsiella, Legionella, Leptospira, Listeria, Morganella, Mycobacterium, Mycoplasma, Neisseria, Pantoea, Prevotella, Proteus, Providencia, Pseudomonas, Raoultella, Salmonella, Serratia, Shigella, Staphylococcus, Stenotrophomonas, Streptococcus, Ureaplasma, and Vibrio.


In some embodiments, when the sample is obtained from a patient, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a virus selected from the group consisting of: bacteriophage, RNA bacteriophage (e.g., MS2, AP205, PP7 and Qβ), Infectious Haematopoietic Necrosis Virus, Parvovirus, Herpes Simplex Virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Measles virus, Mumps virus, Rubella virus, HIV, Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, and Poliovirus, Norovirus, Zika virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus.


In some embodiments, when the sample is obtained from a patient, the patient has been diagnosed with, or is suspected to be suffering from an infection caused by a parasite selected from the group consisting of: Plasmodium, Trypanosoma, Toxoplasma, Giardia, Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp., Enterobius spp., Ascaris spp., Ancylostoma spp. and Necator spp., Strongyloides spp., Dracunculus spp., Onchocerca spp. and Wuchereria spp., Taenia spp., Echinococcus spp., and Diphyllobothrium spp., Fasciola spp., and Schistosoma spp.


Encoding Probes


Encoding probes are probes that bind directly to a target or targeting sequence and contain either 1 or 2 branches extending away from the hybridization site. The branches can either correspond to the readout sequences or first or second landing pad sequences. Encoding probes, for example, are designed to target bacterial ribosomal RNA (rRNA) and messenger RNA (mRNA) targets.


For example, rRNA-probes can contain (5′ to 3′):


a. Primer sequences to enrich probe pool.


b. A first landing pad sequence.


c. rRNA target complementary sequence.


d. A second landing pad sequence (different than b).


e. Primer sequences to enrich probe pool.


mRNA-probes contain (5′ to 3′):


a. Primer sequences to enrich probe pool.


b. A first landing pad sequence.


c. mRNA target complementary sequence.


d. A second landing pad sequence (different than b).


e. Primer sequences to enrich probe pool.


In some embodiments, each encoding probe can include a targeting sequence, a first landing pad sequence and a second landing pad sequence.


Primer Sequences


In some embodiments, the primer sequence can include about 10 to about 30, about 15 to about 25, about 18 to about 23, about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides long.


Targeting Sequence


In some embodiments, the targeting sequence targets at least one of messenger RNA (mRNA), micro RNA (miRNA), long non coding RNA (lncRNA), ribosomal RNA (rRNA), small interfering RNA (siRNA), transfer RNA (tRNA), Crispr RNA (crRNA), trans-activating cirspr RNA (tracrRNA), mitochondria RNA, Intronic RNA, viral mRNA, viral genomic RNA, environmental RNA, double-stranded RNA (dsRNA), small nuclear RNA (snRNA), small nucleolar (snoRNA), piwi-interacting RNA (piRNA), genomic DNA, synthetic DNA, DNA, plasmid DNA, a plasmid, viral DNA, retroviral DNA, environmental DNA, extracellular DNA, a protein, a small molecule, or an antigenic target. In some embodiments, the target is mRNA. In some embodiments, the target is rRNA. In some embodiments, the target is mRNA and rRNA.


In some embodiments, the targeting sequence of the encoding probe is substantially complementary to a specific target sequence. By “substantially complementary” it is meant that the nucleic acid fragment is capable of hybridizing to at least one nucleic acid strand or duplex even if less than all nucleobases do not base pair with a counterpart nucleobase. In some embodiments, a “substantially complementary” nucleic add contains at least one sequence in which about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 77%, 8%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, to about 100%, and any range therein, of the nucleobase sequence is capable of basepairing with at least one single or double stranded nucleic acid molecule during hybridization.


In some embodiments, the targeting sequence is designed to have a predicted melting temperature of between about 55° C. and about 65° C. In some embodiments, the predicted melting temperature of the targeting sequence is 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C. or 65° C. In some embodiments, the targeting sequence can have a GC content of about 55%, 60%, 65% or 70%.


In some embodiments, the targeting sequence can include about 10 to about 35, about 15 to about 30, about 18 to about 30, about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long.


In some embodiments, the targeting sequence of an encoding probe is designed using publicly-available sequence data. In some embodiments, the targeting sequence of an encoding probe design is designed using custom catalogues of the target/sample. In some embodiments, the targeting sequence of an encoding probe is designed using a database that is relevant for a system. In a specific embodiment, the system is the gut microbiome. In some embodiments, the targeting sequence of an encoding probe is designed using a database that is relevant for a disease or infection.


Landing Pad Sequences


In some embodiments, the encoding probe can include a first landing pad sequence on the 5′ end and a second landing pad sequence on the 3′ end. In some embodiments, the first and second landing pad sequences have the same sequence.


In some embodiments, each landing pad sequence is about 10 to about 50, about 15 to about 50, about 15 to about 40, about 10 to about 30, about 15 to about 25, about 18 to about 23, about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides long. In some embodiments, each landing pad sequence is substantially complementary to the first and/or second emissive readout sequences.


The encoding probes, and other probes described herein, may be introduced into the sample (e.g., cell) using any suitable method. In some cases, the sample may be sufficiently permeabilized such that the probes may be introduced into the sample by flowing a fluid containing the probes around the sample (e.g., cells). In some cases, the samples (e.g., cells) may be sufficiently permeabilized as part of a fixation process. In some embodiments, samples (e.g., cells) may be permeabilized by exposure to certain chemicals such as ethanol, methanol, Triton, or the like. In some embodiments, techniques such as electroporation or microinjection may be used to introduce the probes into a sample (e.g., cell).


Emissive Readout Probes


Emissive readouts probes are oligonucleotides bound with one of ten fluorescent dyes at the 5′- and/or 3′-end. In some embodiments, each emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence.


In some embodiments, each emissive readout probe sequence is of the same length as the first or second landing pad sequence. In some embodiments, the emissive readout probe sequence is 0 nucleotides longer than the corresponding landing pad sequence.


In some embodiments, each emissive readout probe sequence is from at least 1 to at least 35 nucleotides longer than the corresponding landing pad sequence. In some embodiments, each emissive readout probe sequence is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, or 35 nucleotides longer than the corresponding landing pad sequence. In some embodiments, each emissive readout probe sequence is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides longer than the corresponding landing pad sequence. In some embodiments, each emissive readout probe sequence is at least 5 nucleotides longer than the corresponding landing pad sequence.


Readout probes can be designed as follows:


a. Are coupled to 1, 2, or more fluorescent dyes.


b. Are orthogonal to all biological sequences.


c. Are orthogonal to each other/each other's complementary sequences.


In some embodiments, the readout sequence is about 10 to about 50, about 15 to about 50, about 15 to about 45, about 15 to about 35, about 15 to about 30, about 18 to about 24, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long.


In some embodiments, the emissive readout probe can include a label on the 5′ or 3′ end. In some embodiments, the emissive readout probe can include a label on the 5′ end and a label on the 3′ end. In some embodiments, the labels are the same. In some embodiments, the labels are different.


In some embodiments, the label is a fluorescent entity (fluorophore) or phosphorescent entity. In some embodiments, the label is a cyanine dye (e.g., Cy2, Cy3, Cy3B, Cy5, Cy5.5, Cy7, etc.), Alexa Fluor dye, Atto dye, photo switchable dye, photoactivatable dye, fluorescent dye, metal nanoparticle, semiconductor nanoparticle or “quantum dots”, fluorescent protein such as GFP (Green Fluorescent Protein), or photoactivatable fluorescent protein, such as PAGFP, PSCFP, PSCFP2, Dendra, Dendra2, EosFP, tdEos, mEos2, mEos3, PAmCherry, PAtagRFP, mMaple, mMaple2, and mMaple3.


In some embodiments, the label is Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, ROX (carboxy-X-rhodamine), Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, ATTO 740.


In some embodiments, the label is imaged using widefield microscopy, point scanning confocal microscopy, spinning disk confocal microscopy, lattice lightsheet microscopy, or light field microscopy.


In some embodiments, the detection strategy used is channel, spectral, channel and fluorescence lifetime, or spectral and fluorescence lifetime.


In some embodiments, the labels used in the present methods are imaged using a microscope. In some embodiments, the microscope is a confocal microscope. In some embodiments, the microscope is a fluorescence microscope. In some embodiments, the microscope is a light-sheet microscope. In some embodiments, the microscope is a super-resolution microscope.


In some embodiments, the sample is on an analyzing platform, wherein the analyzing platform is a microscope slide, at least one chamber, at least one microfluidic device, at least one well, at least one plate, or at least one filter membrane.


Exchange Probes


Exchange probes are each about 10-50 or 15-50 nucleotide-long oligonucleotides. In some embodiments, each exchange probe comprises a 100% complementary sequence to a respective emissive readout probe sequence.


In some embodiments, the exchange sequence is about 10 to about 50, about 15 to about 50, about 15 to about 45, about 15 to about 35, about 15 to about 30, about 18 to about 24, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long.


In some embodiments, the encoding probes contain locked nucleic acids to stabilize the exchange reaction.


In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed in the same step. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed sequentially. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, removing the second complex from the sample, and adding the second emissive readout probe are performed in the same step. In some embodiments, adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, removing the second complex from the sample, and adding the second emissive readout probe are performed sequentially.


In some embodiments, hybridizing the exchange probe to the first or second emissive readout probe results in de-hybridization of the first or second emissive readout probe from the first or second landing pad sequence. In some embodiments, the step is achieved from about 30 seconds to about 1 hour. In some embodiments, the step is achieved within 30 seconds, 1 minute, 5 minutes, 10 minutes, 12 minutes, 15 minutes, 30 minutes, 45 minutes, or 1 hour. In some embodiments, the step is achieved within 1 hour. In some embodiments, the step is achieved overnight.


In another aspect, a method for analyzing a bacterial sample can include:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • detecting the first emissive readout probe with a confocal microscope;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • detecting the second emissive readout probe with a confocal microscope;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


In another aspect, a method for analyzing a bacterial sample, comprising:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the first set of emissive readout probes in the sample with a confocal microscope;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample,
    • adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the second set of emissive readout probes in the sample with a confocal microscope;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


Constructs and Libraries


In another aspect, a construct can include:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


In another aspect, a library of constructs comprising a plurality of barcoded probes, wherein each barcoded probe can include:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


In some embodiments, the region of interest on a nucleotide is at least one of messenger RNA (mRNA), microRNA (miRNA), long non coding RNA (lncRNA), ribosomal RNA (rRNA), small interfering RNA (siRNA), transfer RNA (tRNA), Crispr RNA (crRNA), trans-activating CRISPR RNA (tracrRNA), mitochondrial RNA, intronic RNA, viral mRNA, viral genomic RNA, environmental RNA, double-stranded RNA (dsRNA), small nuclear RNA (snRNA), small nucleolar (snoRNA), PIWI-interacting RNA (piRNA), genomic DNA, synthetic DNA, DNA, plasmid DNA, a plasmid, viral DNA, retroviral DNA, environmental DNA, extracellular DNA, a protein, a small molecule, or an antigen.


In some embodiments, the region of interest on a nucleotide is mRNA.


In some embodiments, the region of interest on a nucleotide is rRNA.


In some embodiments, the region of interest on a nucleotide is mRNA and rRNA.


In some embodiments, the first and second landing pad sequences have the same sequence. In some embodiments, the first and second landing pad sequences have different sequences.


In some embodiments, the first and second landing pad sequences each are about 10 to about 50, about 10 to about 40, about 10 to about 30, about 15 to about 25, about 18 to about 23, about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides long. In some embodiments, the first and second landing pad sequences each are substantially complementary to the first and/or second emissive readout sequences.


In some embodiments, the first and second emissive readout probes are each about 10 to about 50, about 10 to about 40, about 10 to about 30, about 15 to about 25, about 18 to about 23, about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides long bound with one of ten fluorescent dyes at the 5′- and/or 3′-end. In some embodiments, the first and second emissive readout probes each comprise a label and a sequence complementary to the first or second landing pad sequence.


In some embodiments, the first and second emissive readout probes are each of the same length as the corresponding landing pad sequence. In some embodiments, the first and second emissive readout probes are each 0 nucleotides longer than the corresponding landing pad sequence. In some embodiments, the first and second emissive readout probes are each at least 2 to 50 nucleotides longer than the corresponding landing pad sequence. In some embodiments, the first and second emissive readout probes are each at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides longer than the corresponding landing pad sequence. In some embodiments, the first and second emissive readout probes are each at least 1, 2, 3, 4, or 5 nucleotides longer than the corresponding landing pad sequence. In some embodiments, the first and second emissive readout probes are each at least 5 nucleotides longer than the corresponding landing pad sequence.


In some embodiments, the readout sequence of the first and second emissive readout probes are each about 15 to about 50, about 15 to about 45, about 15 to about 35, about 15 to about 30, about 18 to about 24, about 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long.


In some embodiments, the emissive readout probe can include a label on the 5′ or 3′ end. In some embodiments, the emissive readout probe can include a label on the 5′ end and a label on the 3′ end. In some embodiments, the emissive readout probe can contain internal labels which may be the same or different. In some embodiments, the labels are the same. In some embodiments, the labels are different.


In some embodiments, the label is a fluorescent entity (fluorophore) or phosphorescent entity. In some embodiments, the label is a cyanine dye (e.g., Cy2, Cy3, Cy3B, Cy5, Cy5.5, Cy7, etc.), Alexa Fluor dye, Atto dye, photo switchable dye, photoactivatable dye, fluorescent dye, metal nanoparticle, semiconductor nanoparticle or “quantum dots”, fluorescent protein such as GFP (Green Fluorescent Protein), or photoactivatable fluorescent protein, such as PAGFP, PSCFP, PSCFP2, Dendra, Dendra2, EosFP, tdEos, mEos2, mEos3, PAmCherry, PAtagRFP, mMaple, mMaple2, and mMaple3.


In some embodiments, the label is Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, ATTO 740.


EMBODIMENTS

Embodiments of the present subject matter disclosed herein may be beneficial alone or in combination with one or more other embodiments. Without limiting the foregoing description, certain non-limiting embodiments of the disclosure, numbered I-1 to 11-37 are provided below. As will be apparent to those of skill in the art upon reading this disclosure, each of the individually numbered embodiments may be used or combined with any of the preceding or following individually numbered embodiments. This is intended to provide support for all such combinations of embodiments and is not limited to combinations of embodiments explicitly provided below.


Embodiments of the Disclosure

Embodiment I-1: A method of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device; b) identifying the microbe; and c) detecting susceptibility to one or more antimicrobial agents.


Embodiment II-1: A method of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device; b) identifying the microbe; and c) detecting future susceptibility to one or more antimicrobial agents.


Embodiment II-2: The method of embodiments I-1 or II-1, wherein the sample is not subjected to culturing before the microbe is inoculated onto the device.


Embodiment II-3: The method of embodiments I-1 or II-1 to II-2, wherein the microbe in the sample is cultured for one to 12 cell divisions before it is inoculated onto the device.


Embodiment II-4: The method of embodiments I-1 or II-1 to II-3, wherein the microbe is identified by in situ hybridization.


Embodiment II-5: The method of embodiments I-1 or II-1 to II-4, wherein the microbe is identified by fluorescence in situ hybridization (FISH).


Embodiment II-6: The method of embodiments I-1 or II-1 to II-5, wherein the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).


Embodiment II-7: The method of embodiments I-1 or II-1 to II-6, wherein the microbe is further characterized via live-cell imaging or dynamic calculation while in situ hybridization is performed.


Embodiment II-8: The method of embodiments I-1 or II-1 to II-7, wherein the microbe is identified by hybridization of a bar-coded probe a 16S ribosomal RNA sequence in the microbe, 5S ribosomal RNA sequence in the microbe, and/or 23S ribosomal RNA sequence in the microbe.


Embodiment II-9: The method of embodiments I-1 or II-1 to II-8, wherein the in situ hybridization is multiplexed.


Embodiment II-10: The method of embodiments I-1 or II-1 to II-9, wherein the susceptibility to one or more microbial agents is determined by measuring the minimum inhibitory concentration of the microbe when exposed to an antimicrobial agent.


Embodiment II-11: The method of embodiments I-1 or II-1 to II-10, wherein the susceptibility to one or more microbial agents is determined by measuring microbial cell metabolism when the microbe is exposed to an antimicrobial agent.


Embodiment II-12: The method of embodiments I-1 or II-1 to II-11, wherein microbial cell metabolism is measured by determining the concentration of dissolved carbon dioxide, oxygen consumption of microbes in the sample, expression of genes involved in cell division and/or growth, or expression of stress response genes.


Embodiment II-13: The method of embodiments I-1 or II-1 to II-12, wherein microbial cell susceptibility is determined by a live/dead stain.


Embodiment II-14: The method of embodiments I-1 or II-1 to II-13, wherein microbial cell susceptibility is determined by cell number.


Embodiment II-15: The method of embodiments I-1 or II-1 to II-14, wherein microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell.


Embodiment II-16: The method of embodiments I-1 or II-1 to II-15, wherein microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell.


Embodiment II-17: The method of embodiments I-1 or II-1 to II-16, wherein future microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell.


Embodiment II-18: The method of embodiments I-1 or II-1 to II-17, wherein future microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell.


Embodiment II-19: The method of embodiments I-1 or II-1 to II-18, wherein the one or more gene mutations associated with the development of antimicrobial resistance or susceptibility is selected from deletions, duplications, single nucleotide polymorphisms (SNPs), frame-shift mutations, inversions, insertions, and/or nucleotide substitutions.


Embodiment II-20: The method of embodiments I-1 or II-1 to II-19, wherein the one or more antimicrobial genes is selected from: genes encoding multidrug resistance proteins (e.g. PDR1, PDR3, PDR7, PDR9), ABC transporters (e.g. SNQ2, STE6, PDR5, PDR10, PDR11, YOR1), membrane associated transporters (GAS1, D4405), soluble proteins (e.g. G3PD), RNA polymerase, rpoB, gyrA, gyrB, 16S RNA, 23S rRNA, NADPH nitroreductase, sul2, strAB, tetAR, aac3-iid, aph, sph, cmy-2, floR, tetB; aadA, aac3-VIa, and sul1.


Embodiment II-21: The method of embodiments I-1 or II-1 to II-20, wherein the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using in situ hybridization.


Embodiment II-22: The method of embodiments I-1 or II-1 to II-21, wherein the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using fluorescence in situ hybridization (FISH).


Embodiment II-23: The method of embodiments I-1 or II-1 to II-22, wherein the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).


Embodiment II-24: The method of embodiments I-1 or II-1 to II-23, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs sequentially.


Embodiment II-25: The method of embodiments I-1 or II-1 to II-24, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs simultaneously.


Embodiment II-26: The method of embodiments I-1 or II-1 to II-25, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs in parallel.


Embodiment II-27: The method of embodiments I-1 or II-1 to II-26, wherein the biological sample is obtained from a patient.


Embodiment II-28: The method of embodiments I-1 or II-1 to II-27, wherein the biological sample is obtained from a patient diagnosed with or believed to be suffering from an infection or disorder.


Embodiment II-29: The method of embodiments I-1 or II-1 to II-28, wherein the disease or disorder is an infection.


Embodiment II-30: The method of embodiments I-1 or II-1 to II-29, wherein the infection is a bacterial, viral, fungal, or parasitic infections.


Embodiment II-31: The method of embodiments I-1 or II-1 to II-30, wherein the bacterial infection is selected from Mycobacterium, Streptococcus, Staphylococcus, Shigella, Campylobacter, Salmonella, Clostridium, Corynebacterium, Pseudomonas, Neisseria, Listeria, Vibrio, Bordetella, E. coli (including pathogenic E. coli), Pseudomonas aeruginosa, Enterobacter cloacae, Mycobacterium tuberculosis, Staphylococcus aureus, Helicobacter pylori, Legionella, Acinetobacter baumannii, Citrobacter freundii, Citrobacter koseri, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Staphylococcus saprophyticus, and Streptococcus agalactiae, or a combination thereof.


Embodiment II-32: The method of embodiments I-1 or II-1 to II-30, wherein the viral infection is selected from Helicobacter pylori, infectious haematopoietic necrosis virus (IHNV), Parvovirus B19, Herpes Simplex Virus, Varicella-zoster virus, Cytomegalovirus, Epstein-Barr virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Measles virus, Mumps virus, Rubella virus, Human Immunodeficiency Virus (HIV), Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, Poliovirus, Norovirus, Zika Virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus, or a combination thereof.


Embodiment II-33: The method of embodiments I-1 or II-1 to II-30, wherein the fungal infection is selected from Aspergillus, Candida, Pneumocystis, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma, or a combination thereof.


Embodiment II-34: The method of embodiments I-1 or II-1 to II-30, wherein the parasitic infection is selected from Plasmodium (i.e. P. falciparum, P. malariae, P. ovale, P. knowlesi, and P. vivax), Trypanosoma, Toxoplasma, Giardia, and Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp. (whipworms), Enterobius spp. (pinworms), Ascaris spp. (roundworms), Ancylostoma spp. and Necator spp. (hookworms), Strongyloides spp. (threadworms), Dracunculus spp. (Guinea worms), Onchocerca spp. and Wuchereria spp. (filarial worms), Taenia spp., Echinococcus spp., and Diphyllobothrium spp. (human and animal cestodes), Fasciola spp. (liver flukes) and Schistosoma spp. (blood flukes), or a combination thereof.


Embodiment II-35: The method of embodiments I-1 or II-1 to II-34, wherein the biological sample is selected from bronchoalveolar lavage fluid (BAL), blood, serum, plasma, urine, cerebrospinal fluid, pleural fluid, synovial fluid, ocular fluid, peritoneal fluid, amniotic fluid, gastric fluid, lymph fluid, interstitial fluid, tissue homogenate, cell extracts, saliva, sputum, stool, physiological secretions, tears, mucus, sweat, milk, semen, seminal fluid, vaginal secretions, fluid from ulcers and other surface eruptions, blisters, and abscesses, and extracts of tissues including biopsies of normal, malignant, and suspect tissues or any other constituents of the body which may contain the microorganism of interest.


Embodiment II-36: The method of embodiments I-1 or II-1 to II-34, wherein the biological sample is a human oral microbiome sample.


Embodiment II-37: The method of embodiments I-1 or II-1 to II-34, wherein the biological sample is a whole organism.


Embodiment III-1: A method for analyzing a sample, comprising:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


Embodiment IV-1: A method for analyzing a sample, comprising:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the first emissive readout probe;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample,
    • adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • acquiring one or more emission spectra from the second emissive readout probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


Embodiment IV-2: The method of embodiments III-1 or IV-1, wherein the sample is at least one of a cell, a cell suspension, a tissue biopsy, a tissue specimen, urine, stool, blood, serum, plasma, bone biopsies, bone marrow, respiratory specimens, sputum, induced sputum, tracheal aspirates, bronchoalveolar lavage fluid, sweat, saliva, tears, ocular fluid, cerebral spinal fluid, pericardial fluid, pleural fluid, peritoneal fluid, placenta, amnion, pus, nasal swabs, nasopharyngeal swabs, oropharyngeal swabs, ocular swabs, skin swabs, wound swabs, mucosal swabs, buccal swabs, vaginal swabs, vulvar swabs, nails, nail scrapings, hair follicles, corneal scrapings, gavage fluids, gargle fluids, abscess fluids, wastewater, or plant biopsies.


Embodiment IV-3: The method of embodiment IV-2, wherein the sample is a cell.


Embodiment IV-4: The method of embodiment IV-3, wherein the cell is a bacterial or eukaryotic cell.


Embodiment IV-5: The method of embodiment IV-2, wherein the sample comprises a plurality of cells.


Embodiment IV-6: The method of embodiment IV-5, wherein each cell comprises a specific targeting sequence.


Embodiment IV-7: The method of Embodiments III-1 or IV-1, wherein the targeting sequence targets at least one of messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), ribosomal RNA (rRNA), small interfering RNA (siRNA), transfer RNA (tRNA), Crispr RNA (crRNA), trans-activating CRISPR RNA (tracrRNA), mitochondrial RNA, intronic RNA, viral mRNA, viral genomic RNA, environmental RNA, double-stranded RNA (dsRNA), small nuclear RNA (snRNA), small nucleolar (snoRNA), PIWI-interacting RNA (piRNA), genomic DNA, synthetic DNA, DNA, plasmid DNA, a plasmid, viral DNA, retroviral DNA, environmental DNA, extracellular DNA, a protein, a small molecule, or an antigenic target.


Embodiment IV-8: The method of embodiment IV-7, wherein the target is mRNA.


Embodiment IV-9: The method of embodiment IV-7, wherein the target is rRNA.


Embodiment IV-10: The method of embodiment IV-7, wherein the target is mRNA and rRNA.


Embodiment IV-11: The method of Embodiments III-1 or IV-1, wherein the at least one encoding probe comprises the first landing pad sequence on the 5′ end, and the second landing pad sequence on the 3′ end.


Embodiment IV-12: The method of Embodiments III-1 or IV-1, wherein the at least one encoding probe comprises the first landing pad sequence on the 3′ end, and the second landing pad sequence on the 5′ end.


Embodiment IV-13: The method of embodiment IV-12, wherein the first landing pad sequence and the second landing pad sequences have different sequences.


Embodiment IV-14: The method of Embodiments III-1 or IV-1, wherein the at least one first or second emissive readout probe comprises a label on the 5′ or 3′ end.


Embodiment IV-15: The method of Embodiments III-1 or IV-1, wherein the label is Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, ATTO 740.


Embodiment IV-16: The method of Embodiments III-1 or IV-1, wherein the one or more emission spectra of the first and/or second emissive readout probe is acquired via widefield microscopy, point scanning confocal microscopy, spinning disk confocal microscopy, lattice lightsheet microscopy, or light field microscopy.


Embodiment IV-17: The method of embodiment IV-17, wherein the detection strategy used is channel, spectral, channel and fluorescence lifetime, or spectral and fluorescence lifetime.


Embodiment IV-18: The method of Embodiments III-1 or IV-1, wherein the sample is on an analyzing platform, wherein the analyzing platform is a microscope slide, at least one chamber, at least one microfluidic device, at least one well, at least one plate, or at least one filter membrane.


Embodiment IV-19: The method of Embodiments III-1 or IV-1, wherein adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed in the same step.


Embodiment IV-20: The method of Embodiments III-1 or IV-1, wherein hybridizing the exchange probe to the first or second emissive readout probe results in de-hybridization of the first or second emissive readout probe from the first or second landing pad sequence.


Embodiment IV-21: The method of embodiments IV-19 or IV-20, wherein the step is achieved within 1 hour.


Embodiment IV-22: The method of embodiments IV-19 or IV-20, wherein the step is achieved overnight.


Embodiment IV-23: The method of any one of embodiments III-1, or IV-1 to IV-22, wherein the emissive readout probe sequence is at least 5 nucleotides longer than the first or second landing pad sequences.


Embodiment V-1: A construct comprising:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


Embodiment VI-1: A library of constructs comprising a plurality of barcoded probes, wherein each barcoded probe comprises:

    • a targeting sequence that is a region of interest on a nucleotide;
    • a first landing pad sequence;
    • a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;
    • a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;
    • an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; and
    • a second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.


Embodiment VI-2: The construct of embodiments V-1 or VI-2, wherein the first emissive readout probe sequence is at least 5 nucleotides longer than the first landing pad sequence.


Embodiment VI-3: The construct of embodiments V-1 or VI-2, wherein the second emissive readout probe sequence is at least 5 nucleotides longer than the second landing pad sequence.


Embodiment VI-4: The construct of embodiments V-1 or VI-2, wherein the first landing pad sequence and the second landing pad sequences have different sequences.


Embodiment VI-5: The construct of embodiments V-1 or VI-2, wherein the first emissive readout probe comprises the first label on the 5′ or 3′ end.


Embodiment VI-6: The construct of embodiments V-1 or VI-2, wherein the second emissive readout probe comprises the second label on the 5′ or 3′ end.


Embodiment VI-7: The construct of embodiments V-1 or VI-2, wherein the first or second label is each Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, or ATTO 740.


Embodiment VII-1: A method for analyzing a bacterial sample, comprising:

    • contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;
    • adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;
    • detecting the first emissive readout probe with a confocal microscope;
    • adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,
    • hybridizing the exchange probe to the first emissive readout probe to form a second complex;
    • removing the second complex from the sample,
    • adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;
    • detecting the second emissive readout probe with a confocal microscope;
    • repeating the aforementioned steps for at least one different encoding probe;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


Embodiment VIII-1: A method for analyzing a bacterial sample, comprising:

    • generating a set of probes, wherein each probe comprises:
    • (i) a targeting sequence;
    • (ii) a first landing pad sequence; and
    • (iii) a second landing pad sequence;
    • contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;
    • adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the first set of emissive readout probes in the sample with a confocal microscope;
    • adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,
    • hybridizing the exchange probes to the first emissive readout probes to form a second complex;
    • removing the second complex from the sample,
    • adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:
    • (i) a label, and
    • (ii) a sequence complementary to the first or second landing pad sequence;
    • detecting the second set of emissive readout probes in the sample with a confocal microscope;
    • determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; and
    • decoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.


EXAMPLES
Abbreviations and Definitions
















Abbreviation
Definition









SSC
sodium chloride sodium citrate



SSCT
2x SSC + 0.1% Tween 20



SDS
Sodium dodecyl sulfate



EDTA
Ethylenediaminetetraacetic acid



Tris HCl
Tris Hydrochloride




(tris(hydroxymethyl)aminomethane




hydrochloride)



NaCl
Sodium chloride



PBS
Phosphate-buffered saline



RT
Room temperature










Example 1. Identification and Antimicrobial Susceptibility Characterization of Microbes

To enable parallel measurement of cellular state at different antibiotic concentrations, microbial cells are colocalized with a volume of antibiotic solution with a known concentration. This objective can potentially be achieved in several ways.


Solution 1: a buffer containing cells are applied to a plate with microfabricated wells (well size can be hundreds of microns to millimeters). Cells may be allowed to settle into individual wells by gravity or by centrifugation. After cell settlement, excess solutions are removed. Subsequently, a hydrated gel (agar, agarose, polyethylene glycol, or polyacrylamide, for example) loaded with an antimicrobial gradient can be applied over the top of the plate, allowing different wells to be exposed to different concentrations of antimicrobial compounds. Solution 2: a buffer containing cells are passed through a microfluidic device to convert the bulk solution into a solution of droplets, where each droplet may contain zero or more cells. The cell droplets are then merged with droplets of antimicrobial solutions using a second microfluidic device, allowing different cells to be exposed to antimicrobial solutions at different concentrations. The antimicrobial solution can be colored with food coloring, or other bacteria-compatible dyes, to allow them to be distinguished on an imaging device. Solution 3: a buffer containing cells are microencapsulated into semipermeable polymeric beads. The polymer beads containing microbial cells are then distributed into wells on a plate, where each well contains a known concentration of antimicrobial compounds.


Example 2. Identification of Microbes in Patient Sample

The methods of the disclosure were used to identify microbes and drug-resistance phenotype in patient urine samples. The experimental set up is shown in FIG. 2. A 75-well plate is created with 2-fold dilution series of ten different antibiotics, and the urine samples collected from the patients were deposited over each well. The plate was incubated for 2 hours, and fixed, and HiPR-FISH was performed. Samples were tested at time 0 and 2 hours of the incubation as shown in FIG. 5. After this process (about 4 hours total), spectral imaging was used to identify the microbial species in the patient sample. The detection panel used here detects and differentiates between the following bacteria:

    • Acinetobacter baumannii
    • Citrobacter freundii
    • Citrobacter koseri
    • Enterobacter cloacae
    • Enterococcus faecalis
    • Enterococcus faecium
    • Escherichia coli
    • Klebsiella oxytoca
    • Klebsiella pneumoniae
    • Proteus mirabilis
    • Proteus vulgaris
    • Pseudomonas aeruginosa
    • Serratia marcescens
    • Staphylococcus aureus
    • Staphylococcus saprophyticus
    • Streptococcus agalactiae


Example 2.1


FIG. 3 shows the identification of E. coli in three different patient samples using the following methodology.


Specimens were stored in a mixture of urine supernatant and glycerol and frozen at −80° C. until time of processing. Specimens were thawed and deposited onto the device and incubated at 37° C. for one hour. The specimen was biologically fixed by depositing 2% formaldehyde onto the specimen and incubated for thirty minutes at room temperature. The specimens were washed using 1×PBS multiple times at room temperature. An encoding buffer (2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) with probes designed for a panel of uropathogens (at roughly 200 nM per taxon) was deposited on cells and incubated for two hours at 37° C. A wash buffer (5 mM EDTA, 20 mM Tris HCl, 215 mM NaCl) was then deposited on specimens for fifteen minutes at 37° C. to remove unbound probes. A buffer containing readout probes (10 readout probes, each at 400 nM; buffer made up of 2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) was incubated for 30 minutes at room temperature. A second round of wash buffer was deposited on specimens for fifteen minutes at 37° C. to remove unbound probe. The specimens were then suspended in 2×SSC and a coverslip was placed directly over the specimens for imaging on a confocal microscope.


Example 2.2


FIG. 4 shows the identification of different species including A. baumannii, C. freundii, S. saprophyticus, and a mixture of A. baumannii and C. freundii using different excitation wavelengths, using the following methodology.


Suspensions of individual monocultures were fixed by adding an equal volume of 2% formaldehyde, mixing, and incubating for 90 minutes at room temperature. Fixed cultures were then washed with 1×PBS and resuspended in 50% ethanol. Single taxa suspensions or mixed suspensions containing multiple taxa, were deposited onto glass microscope slides until 50% ethanol had evaporated. Lysosyme (10 mg/mL) was deposited onto each dry specimen to permeabilize the outer membrane and incubated for 30 minutes at 37° C., the slides were then washed with 1×PBS. An encoding probe hybridization buffer (2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) with probes designed for a panel of uropathogens (at roughly 200 nM per taxon) was deposited on cells and incubated for two hours at 37° C. A wash buffer (5 mM EDTA, 20 mM Tris HCl, 215 mM NaCl) was then deposited on specimens for fifteen minutes at 37° C. to remove unbound probes. A buffer containing readout probes (10 readout probes, each at 400 nM; buffer made up of 2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) was incubated for one hour at room temperature. A second round of wash buffer was deposited on specimens for fifteen minutes at 37° C. to remove unbound probe. The specimens were mounted with Prolong Glass and a coverslip was placed directly over the specimens for imaging on confocal microscope.


Table 1 shows the sequences of the readout probes used various Examples disclosed herein. Table 2 shows the sequences of the encoding probes used in Examples 2.1 and 2.2.









TABLE 1







Readout Probes









SEQ




ID

Sequence


NO:
Probe Name
(in 5′ to 3′ order)












1
Readout Probe 1
/5Alex488N/TATCCTTCAATCCC




TCCACA





2
Readout Probe 2
/5Alex546N/ACACTACCACCATT




TCCTAT





3
Readout Probe 3
/56-ROXN/ACTCCACTACTACTCA




CTCT/3Rox_N/





4
Readout Probe 4
/5PacificGreenN/ACCCTCTA




ACTTCCATCACA





5
Readout Probe 5
/5PacificBlueN/ACCACAACCC




ATTCCTTTCA





6
Readout Probe 6
/5Atto610N/TTTACTCCCTACAC




CTCAA





7
Readout Probe 7
/5Alex647N/ACCCTTTACAAACA




CACCCT





8
Readout Probe 8
/5DyLight-510-LS/TCCTATTC




TCAACCTAACCT/3DyLight-510-




LS/





9
Readout Probe 9
/5Alex405N/TTCTCCCTCTATCA




ACTCTA





10
Readout Probe 10
/5Alex532N/ACCCTTACTACTAC




ATCATC/3Alexa532N/
















TABLE 2







Encoding Probes used in Examples 2.1 and 2.2









SEQ ID




NO:
Probe Name
Sequence (in 5′ to 3′ order)












11
Encoding Probe 1
TGTGGAGGGATTGAAGGATACACCTCCTTGCTAT




AGCCACCTTATGTGGAGGGATTGAAGGATA





12
Encoding Probe 2
TGTGGAGGGATTGAAGGATAGGCAACATCAGAG




AAGCAAGCAAGTGTGGAGGGATTGAAGGATA





13
Encoding Probe 3
TGTGGAGGGATTGAAGGATAAGCGACACAATGT




CTTCTCCCGTATGTGGAGGGATTGAAGGATA





14
Encoding Probe 4
TGTGGAGGGATTGAAGGATATCTCAATGTCTTCT




CCCCATCAGTCTGTGGAGGGATTGAAGGATA





15
Encoding Probe 5
TGTGGAGGGATTGAAGGATACATGGCACCTATTT




TCTATCTAGAGCGATGTGGAGGGATTGAAGGATA





16
Encoding Probe 6
TGTGGAGGGATTGAAGGATACTGGAAGACACAA




TGTCTTCTCAGGTGTGGAGGGATTGAAGGATA





17
Encoding Probe 7
TGTGGAGGGATTGAAGGATAGTCCAGCCTTAATG




AGTACCGCTATGTGGAGGGATTGAAGGATA





18
Encoding Probe 8
TGTGGAGGGATTGAAGGATAGGATCGATTAAAA




CGATTATAGGTGGATGTGTGGAGGGATTGAAGG




ATA





19
Encoding Probe 9
TGTGGAGGGATTGAAGGATAGGACGATTAAAAC




GATTATAGGTGGTTGTTGTGGAGGGATTGAAGGA




TA





20
Encoding Probe 10
TGTGGAGGGATTGAAGGATAATTGACAGCAAGA




CCGTCTTTGTGTGTGGAGGGATTGAAGGATA





21
Encoding Probe 11
TGTGGAGGGATTGAAGGATAGATATTGTCCAAAG




GACAATCCTGTTGTGGAGGGATTGAAGGATA





22
Encoding Probe 12
TGTGGAGGGATTGAAGGATATTCACAATGTCTTC




TCCCCATGTGTGTGGAGGGATTGAAGGATA





23
Encoding Probe 13
TGTGGAGGGATTGAAGGATAGGATCACCCATGTT




CTGACTCGGTTGTGGAGGGATTGAAGGATA





24
Encoding Probe 14
TGTGGAGGGATTGAAGGATAATCCTCACGTTTCA




AAGGCTCGATTGTGGAGGGATTGAAGGATA





25
Encoding Probe 15
TGTGGAGGGATTGAAGGATAAAGCGCTACCCTCA




GTTCATCCCGATGTGGAGGGATTGAAGGATA





26
Encoding Probe 16
TGTGGAGGGATTGAAGGATAAAGCCTGACCAAG




GGTAGATCTGGTGTGGAGGGATTGAAGGATA





27
Encoding Probe 17
TGTGGAGGGATTGAAGGATATTGCAACCTGACCA




AGGGTAGTAGTGTGGAGGGATTGAAGGATA





28
Encoding Probe 18
TGTGGAGGGATTGAAGGATAGATATCAGAGAAG




CAAGCTTCAGCTGTGGAGGGATTGAAGGATA





29
Encoding Probe 19
TGTGGAGGGATTGAAGGATAAGGTCAAGAGAGA




CAACATTTTCCTGTGTGGAGGGATTGAAGGATA





30
Encoding Probe 20
TGTGGAGGGATTGAAGGATACTATTCGTCTAATG




TCGTCCTTTCATTGTGGAGGGATTGAAGGATA





31
Encoding Probe 21
TGTGGAGGGATTGAAGGATATGACTAATGCAGC




GCGGATCCTAGTGTGGAGGGATTGAAGGATA





32
Encoding Probe 22
TGTGGAGGGATTGAAGGATATATTGACAGCAAG




ACCGTCTTAGTTGTGGAGGGATTGAAGGATA





33
Encoding Probe 23
TGTGGAGGGATTGAAGGATACAGCCGCTAACATC




AGAGAAGCTTCTGTGGAGGGATTGAAGGATA





34
Encoding Probe 24
TGTGGAGGGATTGAAGGATACAGCTCCACATGTC




ACCATGCAAGTGTGGAGGGATTGAAGGATA





35
Encoding Probe 25
TGTGGAGGGATTGAAGGATACAAAAAGCCAACA




CAGCTAGGCATTGTGGAGGGATTGAAGGATA





36
Encoding Probe 26
ATAGGAAATGGTGGTAGTGTGATCAACAACGCAT




AAGCGTCGCACGATAGGAAATGGTGGTAGTGT





37
Encoding Probe 27
ATAGGAAATGGTGGTAGTGTGGACCAACAACGC




ATAAGCGTCGCACGATAGGAAATGGTGGTAGTGT





38
Encoding Probe 28
ATAGGAAATGGTGGTAGTGTGGACCAACAACGC




ATAAGCGTCGGACATAGGAAATGGTGGTAGTGT





39
Encoding Probe 29
ATAGGAAATGGTGGTAGTGTAAGTCAGGAGACTT




TAAGTCTCACCCATAGGAAATGGTGGTAGTGT





40
Encoding Probe 30
ATAGGAAATGGTGGTAGTGTTTGGGATTACGGGT




CTACGTTTCTATAGGAAATGGTGGTAGTGT





41
Encoding Probe 31
ATAGGAAATGGTGGTAGTGTAGGCAGGAGACTTT




AAGTCTCAGCCTATAGGAAATGGTGGTAGTGT





42
Encoding Probe 32
ATAGGAAATGGTGGTAGTGTGGAAGGAGACTTT




AAGTCTCAGGCTCATAGGAAATGGTGGTAGTGT





43
Encoding Probe 33
ATAGGAAATGGTGGTAGTGTATGAACAACGCAT




AAGCGTCGCACGATAGGAAATGGTGGTAGTGT





44
Encoding Probe 34
ATAGGAAATGGTGGTAGTGTGGACCAACAACGC




ATAAGCGTCCGAATAGGAAATGGTGGTAGTGT





45
Encoding Probe 35
ATAGGAAATGGTGGTAGTGTGATCAACAACGCAT




AAGCGTCGGACATAGGAAATGGTGGTAGTGT





46
Encoding Probe 36
ATAGGAAATGGTGGTAGTGTAGGCAGGAGACTTT




AAGTCTCACCCATAGGAAATGGTGGTAGTGT





47
Encoding Probe 37
ATAGGAAATGGTGGTAGTGTGAAGGAGACTTTA




AGTCTCAGGCTCATAGGAAATGGTGGTAGTGT





48
Encoding Probe 38
ATAGGAAATGGTGGTAGTGTAAGGAGACTTTAA




GTCTCAGGGTCTATAGGAAATGGTGGTAGTGT





49
Encoding Probe 39
ATAGGAAATGGTGGTAGTGTTGTTCAGCGTTAAA




AGGTACCGCTAATAGGAAATGGTGGTAGTGT





50
Encoding Probe 40
ATAGGAAATGGTGGTAGTGTTGGACAACGCATA




AGCGTCGCACGATAGGAAATGGTGGTAGTGT





51
Encoding Probe 41
ATAGGAAATGGTGGTAGTGTGATCAACAACGCAT




AAGCGTCCGAATAGGAAATGGTGGTAGTGT





52
Encoding Probe 42
ATAGGAAATGGTGGTAGTGTATGAACAACGCAT




AAGCGTCGGACATAGGAAATGGTGGTAGTGT





53
Encoding Probe 43
ATAGGAAATGGTGGTAGTGTGGACCAACAACGC




ATAAGCGTGCGATAGGAAATGGTGGTAGTGT





54
Encoding Probe 44
ATAGGAAATGGTGGTAGTGTTGTTCAGCGTTAAA




AGGTACCCCTATAGGAAATGGTGGTAGTGT





55
Encoding Probe 45
ATAGGAAATGGTGGTAGTGTGTGCAGCGTTAAAA




GGTACCGCTAATAGGAAATGGTGGTAGTGT





56
Encoding Probe 46
AGAGTGAGTAGTAGTGGAGTGTGCTCAGTGTTAA




AGTGCACCCCTAGAGTGAGTAGTAGTGGAGT





57
Encoding Probe 47
AGAGTGAGTAGTAGTGGAGTCCGCTCTGCCAAGT




TCTGTGGTACAGAGTGAGTAGTAGTGGAGT





58
Encoding Probe 48
AGAGTGAGTAGTAGTGGAGTGAGTGTTAAAGTG




CACCGGATTACGAGAGTGAGTAGTAGTGGAGT





59
Encoding Probe 49
AGAGTGAGTAGTAGTGGAGTCATCAGCTAACGAT




AGTGTGACCTCAGAGTGAGTAGTAGTGGAGT





60
Encoding Probe 50
AGAGTGAGTAGTAGTGGAGTTCTTTCTCCGCGAG




GATAACCGGTAGAGTGAGTAGTAGTGGAGT





61
Encoding Probe 51
AGAGTGAGTAGTAGTGGAGTTTCCTTCTCCGCGA




GGATAACCCCTAGAGAGTGAGTAGTAGTGGAGT





62
Encoding Probe 52
AGAGTGAGTAGTAGTGGAGTGTCCCATGGGTAA




ACCACTTCTGGAGAGTGAGTAGTAGTGGAGT





63
Encoding Probe 53
AGAGTGAGTAGTAGTGGAGTAGTACGCCTCAGTG




TTAAAGTCGTAGAGTGAGTAGTAGTGGAGT





64
Encoding Probe 54
AGAGTGAGTAGTAGTGGAGTGTGCTCAGTGTTAA




AGTGCACGCCAGAGTGAGTAGTAGTGGAGT





65
Encoding Probe 55
AGAGTGAGTAGTAGTGGAGTCCGCAAGGCATCTC




TGCCAAGAAGAGAGTGAGTAGTAGTGGAGT





66
Encoding Probe 56
AGAGTGAGTAGTAGTGGAGTAGTGTTAAAGTGC




ACCGGATTACGAGAGTGAGTAGTAGTGGAGT





67
Encoding Probe 57
AGAGTGAGTAGTAGTGGAGTATAAGCTAACGAT




AGTGTGACCTCAGAGTGAGTAGTAGTGGAGT





68
Encoding Probe 58
AGAGTGAGTAGTAGTGGAGTCTCTCTCCGCGAGG




ATAACCCGTAAGAGTGAGTAGTAGTGGAGT





69
Encoding Probe 59
AGAGTGAGTAGTAGTGGAGTTCGCTCCGCGAGG




ATAACCCCTAGAGAGTGAGTAGTAGTGGAGT





70
Encoding Probe 60
AGAGTGAGTAGTAGTGGAGTAGTTCCATGGGTAA




ACCACTTGTGAGAGTGAGTAGTAGTGGAGT





71
Encoding Probe 61
AGAGTGAGTAGTAGTGGAGTGTACGCCTCAGTGT




TAAAGTGGTGAGAGTGAGTAGTAGTGGAGT





72
Encoding Probe 62
AGAGTGAGTAGTAGTGGAGTTGCTCAGTGTTAAA




GTGCACCCCTAGAGTGAGTAGTAGTGGAGT





73
Encoding Probe 63
AGAGTGAGTAGTAGTGGAGTGTACGCCTCAGTGT




TAAAGTGCTGGAGAGTGAGTAGTAGTGGAGT





74
Encoding Probe 64
AGAGTGAGTAGTAGTGGAGTGAGTGTTAAAGTG




CACCGGATAACAGAGTGAGTAGTAGTGGAGT





75
Encoding Probe 65
AGAGTGAGTAGTAGTGGAGTCGGAGTGTTAAAG




TGCACCGGATTTGGGAAGAGTGAGTAGTAGTGG




AGT





76
Encoding Probe 66
AGAGTGAGTAGTAGTGGAGTCATCAGCTAACGAT




AGTGTGAGCTAGAGTGAGTAGTAGTGGAGT





77
Encoding Probe 67
AGAGTGAGTAGTAGTGGAGTAGTACGCCTCAGTG




TTAAAGTGGTGAGAGTGAGTAGTAGTGGAGT





78
Encoding Probe 68
AGAGTGAGTAGTAGTGGAGTAGTTCCATGGGTAA




ACCACTTCTGGAGAGTGAGTAGTAGTGGAGT





79
Encoding Probe 69
AGAGTGAGTAGTAGTGGAGTCGATCCGCGAGGA




TAACCCCAAGTAGAGTGAGTAGTAGTGGAGT





80
Encoding Probe 70
AGAGTGAGTAGTAGTGGAGTTTCCTTCTCCGCGA




GGATAACAGGAGAGTGAGTAGTAGTGGAGT





81
Encoding Probe 71
TGTGATGGAAGTTAGAGGGTGAGGCTCAGTAGTT




TTGGATGCTCATGTGATGGAAGTTAGAGGGT





82
Encoding Probe 72
TGTGATGGAAGTTAGAGGGTAGACGCGTCACTTA




CGTGACACGGCTGTGATGGAAGTTAGAGGGT





83
Encoding Probe 73
TGTGATGGAAGTTAGAGGGTGTGGAGGTGCTGGT




AACTAAGCTGTGTGATGGAAGTTAGAGGGT





84
Encoding Probe 74
TGTGATGGAAGTTAGAGGGTCTAGTTTTATGGGA




TTAGCTCCAGGATGTGATGGAAGTTAGAGGGT





85
Encoding Probe 75
TGTGATGGAAGTTAGAGGGTGAGGAAAGTTCTCA




GCATGTCTTCTGTGATGGAAGTTAGAGGGT





86
Encoding Probe 76
TGTGATGGAAGTTAGAGGGTACACCCATGCTCGG




CACTTCTCCCTGTGATGGAAGTTAGAGGGT





87
Encoding Probe 77
TGTGATGGAAGTTAGAGGGTCGCGGTGTTTTTCA




CACCCATACATGTGATGGAAGTTAGAGGGT





88
Encoding Probe 78
TGTGATGGAAGTTAGAGGGTTGGCCAGAGTGATA




CATGAGGGCGTGTGATGGAAGTTAGAGGGT





89
Encoding Probe 79
TGTGATGGAAGTTAGAGGGTTGGCTATCTCCGAG




CTTGATTTCGTGTGATGGAAGTTAGAGGGT





90
Encoding Probe 80
TGTGATGGAAGTTAGAGGGTGGCACACAGGAAA




TTCCACCAAGGTGTGATGGAAGTTAGAGGGT





91
Encoding Probe 81
TGTGATGGAAGTTAGAGGGTAAGATCCAACTTGC




TGAACCAGGATGTGATGGAAGTTAGAGGGT





92
Encoding Probe 82
TGTGATGGAAGTTAGAGGGTTGCGTCACCTAACA




AGTAGGCAGGTGTGATGGAAGTTAGAGGGT





93
Encoding Probe 83
TGTGATGGAAGTTAGAGGGTCGTGTATTAACTTA




CTGCCCTTCGAGTGTGATGGAAGTTAGAGGGT





94
Encoding Probe 84
TGTGATGGAAGTTAGAGGGTACAAGACAAAGTTT




CTCGTGCAGGTGTGATGGAAGTTAGAGGGT





95
Encoding Probe 85
TGTGATGGAAGTTAGAGGGTAAACTTCAAAGATC




CTTTCGCCATTGTGATGGAAGTTAGAGGGT





96
Encoding Probe 86
TGTGATGGAAGTTAGAGGGTGCACGCTAAAATCA




ATGAAGCTATTTGTGATGGAAGTTAGAGGGT





97
Encoding Probe 87
TGTGATGGAAGTTAGAGGGTCGATCTGATAGCGT




GAGGTCCCTTTGTGATGGAAGTTAGAGGGT





98
Encoding Probe 88
TGTGATGGAAGTTAGAGGGTATAATTCAGTACAA




GATACCTAGGAATTGTGATGGAAGTTAGAGGGT





99
Encoding Probe 89
TGTGATGGAAGTTAGAGGGTAGGCGCTGAATCCA




GGAGCAACGATGTGATGGAAGTTAGAGGGT





100
Encoding Probe 90
TGTGATGGAAGTTAGAGGGTCAAAACGCTCTATG




ATCGTCAATATGTGATGGAAGTTAGAGGGT





101
Encoding Probe 91
TGTGATGGAAGTTAGAGGGTGCAGTGTTTTTCAC




ACCCATTGTGCATGTGATGGAAGTTAGAGGGT





102
Encoding Probe 92
TGTGATGGAAGTTAGAGGGTCTGCGATCGGTTTT




ATGGGATATCTGTGATGGAAGTTAGAGGGT





103
Encoding Probe 93
TGTGATGGAAGTTAGAGGGTGGATCGACGTGTCT




GTCTCGCTCATGTGATGGAAGTTAGAGGGT





104
Encoding Probe 94
TGTGATGGAAGTTAGAGGGTGGTGCAGTAACCA




GAAGTACACCTTGTGATGGAAGTTAGAGGGT





105
Encoding Probe 95
TGTGATGGAAGTTAGAGGGTAGTTCCAACTTGCT




GAACCACGATTGTGATGGAAGTTAGAGGGT





106
Encoding Probe 96
TGAAAGGAATGGGTTGTGGTAAAGAGATTAGCTT




AGCCTCGGCTTGAAAGGAATGGGTTGTGGT





107
Encoding Probe 97
TGAAAGGAATGGGTTGTGGTGTCCTCACGATCTG




CCTTCGAGCGTGAAAGGAATGGGTTGTGGT





108
Encoding Probe 98
TGAAAGGAATGGGTTGTGGTTTAACCTAAAGGTG




TACTCCAGTCTGAAAGGAATGGGTTGTGGT





109
Encoding Probe 99
TGAAAGGAATGGGTTGTGGTTCGTTGACTCCTCT




TCAGACTATGTGAAAGGAATGGGTTGTGGT





110
Encoding Probe 100
TGAAAGGAATGGGTTGTGGTTGAGGCTGATCGTA




TGATCAGGTGTGAAAGGAATGGGTTGTGGT





111
Encoding Probe 101
TGAAAGGAATGGGTTGTGGTTCTAGCTTAGCCTC




GCGACTTGCGTGAAAGGAATGGGTTGTGGT





112
Encoding Probe 102
TGAAAGGAATGGGTTGTGGTACTTTTCCAAGTCA




TTCGACTATGACTGAAAGGAATGGGTTGTGGT





113
Encoding Probe 103
TGAAAGGAATGGGTTGTGGTGATGGGTTTTTACC




CTCTTTGACACTTGAAAGGAATGGGTTGTGGT





114
Encoding Probe 104
TGAAAGGAATGGGTTGTGGTTGATCCAAGTCATT




CGACTATCACTTGAAAGGAATGGGTTGTGGT





115
Encoding Probe 105
TGAAAGGAATGGGTTGTGGTATGTCAAGGGATG




AACAGTTACAGATGAAAGGAATGGGTTGTGGT





116
Encoding Probe 106
TGAAAGGAATGGGTTGTGGTGCAAGGGATGAAC




AGTTACTCTGTATGAAAGGAATGGGTTGTGGT





117
Encoding Probe 107
TGAAAGGAATGGGTTGTGGTAGGCTAGGTGTCTT




CCACATTTGCATGAAAGGAATGGGTTGTGGT





118
Encoding Probe 108
TGAAAGGAATGGGTTGTGGTAGTCGACTATCTGA




AAGAACTACCTATTGAAAGGAATGGGTTGTGGT





119
Encoding Probe 109
TGAAAGGAATGGGTTGTGGTGTAGGTTTTGATTG




TTATACGGTATATCTGAAAGGAATGGGTTGTGGT





120
Encoding Probe 110
TGAAAGGAATGGGTTGTGGTATTTCCTATTAAAG




ATGTTGGGTAGGTGAAAGGAATGGGTTGTGGT





121
Encoding Probe 111
TGAAAGGAATGGGTTGTGGTCGTCTCCGGTGGAA




AAAGAAGGCATGAAAGGAATGGGTTGTGGT





122
Encoding Probe 112
TGAAAGGAATGGGTTGTGGTCAAGCATGGTTACA




GGTGTATGGATGAAAGGAATGGGTTGTGGT





123
Encoding Probe 113
TGAAAGGAATGGGTTGTGGTTATCCTAAAGGTGT




ACTCCACTCGTGAAAGGAATGGGTTGTGGT





124
Encoding Probe 114
TGAAAGGAATGGGTTGTGGTGGACACAGCTTGTC




CTTAAGATTTTGAAAGGAATGGGTTGTGGT





125
Encoding Probe 115
TGAAAGGAATGGGTTGTGGTTGTTCCGATCGTCT




GCATTCCAATTGAAAGGAATGGGTTGTGGT





126
Encoding Probe 116
TGAAAGGAATGGGTTGTGGTTCGGTCCTTAAGAA




AAGAAGCATAACTGAAAGGAATGGGTTGTGGT





127
Encoding Probe 117
TGAAAGGAATGGGTTGTGGTCGAGACAGACATTT




CCGATCGAGATGAAAGGAATGGGTTGTGGT





128
Encoding Probe 118
TGAAAGGAATGGGTTGTGGTGACGCTGATCGTAT




GATCAGCTGGTGAAAGGAATGGGTTGTGGT





129
Encoding Probe 119
TGAAAGGAATGGGTTGTGGTGCCCGGGCCGCTGT




TTTCTCAGATTGAAAGGAATGGGTTGTGGT





130
Encoding Probe 120
TGAAAGGAATGGGTTGTGGTCTTTCGGTACTATT




ATTTCCCTCAGGTGAAAGGAATGGGTTGTGGT





131
Encoding Probe 121
TTGGAGGTGTAGGGAGTAAACCCACGATTGTTGG




TAACCTGATCGTTGGAGGTGTAGGGAGTAAA





132
Encoding Probe 122
TTGGAGGTGTAGGGAGTAAATGGAGCATTAAGT




GACCGGATAACTTGGAGGTGTAGGGAGTAAA





133
Encoding Probe 123
TTGGAGGTGTAGGGAGTAAACTAGCCTAATCACT




CTGCCTAGTATTGGAGGTGTAGGGAGTAAA





134
Encoding Probe 124
TTGGAGGTGTAGGGAGTAAAGGTGCAGTTACCAC




CAGTACGGCTTTTGGAGGTGTAGGGAGTAAA





135
Encoding Probe 125
TTGGAGGTGTAGGGAGTAAAAGCGCTACAACGTT




TCACTTCACTTTGGAGGTGTAGGGAGTAAA





136
Encoding Probe 126
TTGGAGGTGTAGGGAGTAAAGACGTCCACATTTC




ATAGTCTCCCTGGTTGGAGGTGTAGGGAGTAAA





137
Encoding Probe 127
TTGGAGGTGTAGGGAGTAAAAAAGTCACTCAAG




GTGACAGGGTTCTTGGAGGTGTAGGGAGTAAA





138
Encoding Probe 128
TTGGAGGTGTAGGGAGTAAAGAACCACCTTAGTG




GTTCGTCTAGTTGGAGGTGTAGGGAGTAAA





139
Encoding Probe 129
TTGGAGGTGTAGGGAGTAAACAAGGGTACGATT




GTTGGTAAGGATTGGAGGTGTAGGGAGTAAA





140
Encoding Probe 130
TTGGAGGTGTAGGGAGTAAAAAGTTAGGTCACTC




AAGGTGACAGGGTTCTTGGAGGTGTAGGGAGTA




AA





141
Encoding Probe 131
TTGGAGGTGTAGGGAGTAAAGAAGGTCACTCAA




GGTGACAGGGAAGTGATTGGAGGTGTAGGGAGT




AAA





142
Encoding Probe 132
TTGGAGGTGTAGGGAGTAAAGAAAGTTCCCGCC




ATCACGCGGACTTGGAGGTGTAGGGAGTAAA





143
Encoding Probe 133
TTGGAGGTGTAGGGAGTAAAGTTGACTTCACTTA




CCGCCAGGCATTGGAGGTGTAGGGAGTAAA





144
Encoding Probe 134
TTGGAGGTGTAGGGAGTAAAGAGGCGCCTGAGT




ATTCTCTAGGATTGGAGGTGTAGGGAGTAAA





145
Encoding Probe 135
TTGGAGGTGTAGGGAGTAAATAACCTAATCACTC




TGCCTACAACGTTGGAGGTGTAGGGAGTAAA





146
Encoding Probe 136
TTGGAGGTGTAGGGAGTAAACCTTGCCTAATCAC




TCTGCCTTGTTTGGAGGTGTAGGGAGTAAA





147
Encoding Probe 137
TTGGAGGTGTAGGGAGTAAACCTTGCCTAATCAC




TCTGCCTACTACTTGGAGGTGTAGGGAGTAAA





148
Encoding Probe 138
TTGGAGGTGTAGGGAGTAAAGGAATCGCAGTTA




CCACCAGTACCCCTTGGAGGTGTAGGGAGTAAA





149
Encoding Probe 139
TTGGAGGTGTAGGGAGTAAACGAGGCTCCGTCCG




CAAGGGAGAATTGGAGGTGTAGGGAGTAAA





150
Encoding Probe 140
TTGGAGGTGTAGGGAGTAAACGTGGACTTCACTT




ACCGCCAGGCATTGGAGGTGTAGGGAGTAAA





151
Encoding Probe 141
TTGGAGGTGTAGGGAGTAAACCCACGATTGTTGG




TAACCTGTTCTTGGAGGTGTAGGGAGTAAA





152
Encoding Probe 142
TTGGAGGTGTAGGGAGTAAAGTGCAGCATTAAGT




GACCGGAAAATTGGAGGTGTAGGGAGTAAA





153
Encoding Probe 143
TTGGAGGTGTAGGGAGTAAATAACCTAATCACTC




TGCCTACTACTTGGAGGTGTAGGGAGTAAA





154
Encoding Probe 144
TTGGAGGTGTAGGGAGTAAAGTACAGTTACCACC




AGTACGGGTTATTGGAGGTGTAGGGAGTAAA





155
Encoding Probe 145
TTGGAGGTGTAGGGAGTAAATAGCGCTACAACGT




TTCACTTGACTTGGAGGTGTAGGGAGTAAA





156
Encoding Probe 146
AGGGTGTGTTTGTAAAGGGTCGTACGCAAAGCGA




AACGCTTACCAGGGTGTGTTTGTAAAGGGT





157
Encoding Probe 147
AGGGTGTGTTTGTAAAGGGTCCATTAACCTCACT




CCCTTCCAGGAGGGTGTGTTTGTAAAGGGT





158
Encoding Probe 148
AGGGTGTGTTTGTAAAGGGTCAGTCATGCTGTCG




TTACGCATAAAAGGGTGTGTTTGTAAAGGGT





159
Encoding Probe 149
AGGGTGTGTTTGTAAAGGGTGTACCGGCTGTAAC




GGTTCATTAGAGGGTGTGTTTGTAAAGGGT





160
Encoding Probe 150
AGGGTGTGTTTGTAAAGGGTAAGGACCCTTAAAG




GGTCAGGCTCAGGGTGTGTTTGTAAAGGGT





161
Encoding Probe 151
AGGGTGTGTTTGTAAAGGGTGAAGGACCCTTAAA




GGGTCAGCCTAGGGTGTGTTTGTAAAGGGT





162
Encoding Probe 152
AGGGTGTGTTTGTAAAGGGTGTGCAGCGTTAGTA




ACGTTCCCCTAGGGTGTGTTTGTAAAGGGT





163
Encoding Probe 153
AGGGTGTGTTTGTAAAGGGTTTCGCTTCACCTAC




CATCAGCCACAGGGTGTGTTTGTAAAGGGT





164
Encoding Probe 154
AGGGTGTGTTTGTAAAGGGTGTCTTAGTAACGTT




CCGGATTTTGGAGGGTGTGTTTGTAAAGGGT





165
Encoding Probe 155
AGGGTGTGTTTGTAAAGGGTGCAGTAACGTTCCG




GATTTACGACAGGGTGTGTTTGTAAAGGGT





166
Encoding Probe 156
AGGGTGTGTTTGTAAAGGGTGCGTTTGCGCACCA




CGCAAAGGCTAGGGTGTGTTTGTAAAGGGT





167
Encoding Probe 157
AGGGTGTGTTTGTAAAGGGTCAACCGTCCATCAT




GCTGTCGTATGAGGGTGTGTTTGTAAAGGGT





168
Encoding Probe 158
AGGGTGTGTTTGTAAAGGGTCGACGTTACGCATT




TTGCGCAGGTAGGGTGTGTTTGTAAAGGGT





169
Encoding Probe 159
AGGGTGTGTTTGTAAAGGGTAGTCCTCAGCGTTA




GTAACGTTCGCCAGGGTGTGTTTGTAAAGGGT





170
Encoding Probe 160
AGGGTGTGTTTGTAAAGGGTAACTTCCCGACCGA




ATCGCTGCGTAGGGTGTGTTTGTAAAGGGT





171
Encoding Probe 161
AGGGTGTGTTTGTAAAGGGTACTCTCCGTTAACC




GTCCATCTACAGGGTGTGTTTGTAAAGGGT





172
Encoding Probe 162
AGGGTGTGTTTGTAAAGGGTGGCAACCGTCCATC




ATGCTGTGCAAGGGTGTGTTTGTAAAGGGT





173
Encoding Probe 163
AGGGTGTGTTTGTAAAGGGTGGTCCAAAACGCTC




CACTGCCACTAGGGTGTGTTTGTAAAGGGT





174
Encoding Probe 164
AGGGTGTGTTTGTAAAGGGTGTATGCTGTCGTTA




CGCATTTTCGCAGGGTGTGTTTGTAAAGGGT





175
Encoding Probe 165
AGGGTGTGTTTGTAAAGGGTGCAACCGTCCATCA




TGCTGTCCAAAGGGTGTGTTTGTAAAGGGT





176
Encoding Probe 166
AGGGTGTGTTTGTAAAGGGTCGAACTGCCTGATT




TTTGACGAACAGGGTGTGTTTGTAAAGGGT





177
Encoding Probe 167
AGGGTGTGTTTGTAAAGGGTGCGCACGCAAAGC




GAAACGCTTTCCAAGGGTGTGTTTGTAAAGGGT





178
Encoding Probe 168
AGGGTGTGTTTGTAAAGGGTCATGTCAATGAATA




AGGTTATTAACCAGTAGGGTGTGTTTGTAAAGGG




T





179
Encoding Probe 169
AGGGTGTGTTTGTAAAGGGTCAGTCATGCTGTCG




TTACGCAAAAAGGGTGTGTTTGTAAAGGGT





180
Encoding Probe 170
AGGGTGTGTTTGTAAAGGGTTGTGCCGGCTGTAA




CGGTTCAATAAGGGTGTGTTTGTAAAGGGT





181
Encoding Probe 171
AGGTTAGGTTGAGAATAGGATGGGTCGCTTAAAG




CGACAGGATAAGGTTAGGTTGAGAATAGGA





182
Encoding Probe 172
AGGTTAGGTTGAGAATAGGAGAAGTCCGTAGAC




ATTATGCGCATAGGTTAGGTTGAGAATAGGA





183
Encoding Probe 173
AGGTTAGGTTGAGAATAGGATGCCCCCGACCCAG




TTTATGGCGGAGGTTAGGTTGAGAATAGGA





184
Encoding Probe 174
AGGTTAGGTTGAGAATAGGAGAAGGTCGCTTAA




AGCGACAGGCTTAGGTTAGGTTGAGAATAGGA





185
Encoding Probe 175
AGGTTAGGTTGAGAATAGGAAAGTTAGGTCGCTT




AAAGCGACTCCAGGTTAGGTTGAGAATAGGA





186
Encoding Probe 176
AGGTTAGGTTGAGAATAGGAGCTCAGTTTATGGG




CCTAGGTATCAGGTTAGGTTGAGAATAGGA





187
Encoding Probe 177
AGGTTAGGTTGAGAATAGGATCCGCTTAAAGCGA




CAGGGAACTGAGGTTAGGTTGAGAATAGGA





188
Encoding Probe 178
AGGTTAGGTTGAGAATAGGAAAGTTAGGTCGCTT




AAAGCGACAGGGTTCAGGTTAGGTTGAGAATAG




GA





189
Encoding Probe 179
AGGTTAGGTTGAGAATAGGAGGAAGGTCGCTTA




AAGCGACAGGGAACTGAGGTTAGGTTGAGAATA




GGA





190
Encoding Probe 180
AGGTTAGGTTGAGAATAGGAGGAAGGTCGCTTA




AAGCGACACCCAGGTTAGGTTGAGAATAGGA





191
Encoding Probe 181
AGGTTAGGTTGAGAATAGGAAAAGTTCCCACCAT




TACGTGCACCAGGTTAGGTTGAGAATAGGA





192
Encoding Probe 182
AGGTTAGGTTGAGAATAGGACAATTTAGGTCGCT




TAAAGCGACAGGCTTAGGTTAGGTTGAGAATAG




GA





193
Encoding Probe 183
AGGTTAGGTTGAGAATAGGACTGAGTTTATGGGC




CTAGGTTACTTAGGTTAGGTTGAGAATAGGA





194
Encoding Probe 184
AGGTTAGGTTGAGAATAGGAGGCCCAGTTTATGG




GCCTAGGAATAGGTTAGGTTGAGAATAGGA





195
Encoding Probe 185
AGGTTAGGTTGAGAATAGGAGAAGGTCGCTTAA




AGCGACAGCCTAGGTTAGGTTGAGAATAGGA





196
Encoding Probe 186
AGGTTAGGTTGAGAATAGGACCACTTAAAGCGA




CAGGGAAGTGAAGGTTAGGTTGAGAATAGGA





197
Encoding Probe 187
AGGTTAGGTTGAGAATAGGAACTTCCCACCATTA




CGTGCTGCGTAGGTTAGGTTGAGAATAGGA





198
Encoding Probe 188
AGGTTAGGTTGAGAATAGGAGAAGGTCGCTTAA




AGCGACAGGGAAGTGAAGGTTAGGTTGAGAATA




GGA





199
Encoding Probe 189
AGGTTAGGTTGAGAATAGGAAATTCGCTTAAAGC




GACAGGGTTCAGGTTAGGTTGAGAATAGGA





200
Encoding Probe 190
AGGTTAGGTTGAGAATAGGAAACTTCCCACCATT




ACGTGCTCCGAGGTTAGGTTGAGAATAGGA





201
Encoding Probe 191
AGGTTAGGTTGAGAATAGGAGGAACCCAGTTTAT




GGGCCTACCAAGGTTAGGTTGAGAATAGGA





202
Encoding Probe 192
AGGTTAGGTTGAGAATAGGAAAAGTCGCTTAAA




GCGACAGGGTTCAGGTTAGGTTGAGAATAGGA





203
Encoding Probe 193
AGGTTAGGTTGAGAATAGGACAGCGACCCAGTTT




ATGGGCCTAGCAAAGGTTAGGTTGAGAATAGGA





204
Encoding Probe 194
AGGTTAGGTTGAGAATAGGACTGAGTTTATGGGC




CTAGGTTTCTAGGTTAGGTTGAGAATAGGA





205
Encoding Probe 195
AGGTTAGGTTGAGAATAGGAGCTCAGTTTATGGG




CCTAGGTTACTTAGGTTAGGTTGAGAATAGGA





206
Encoding Probe 196
TAGAGTTGATAGAGGGAGAACGAATGAGTAAAT




CACTTCACCTAGTATAGAGTTGATAGAGGGAGAA





207
Encoding Probe 197
TAGAGTTGATAGAGGGAGAAGGATTCGCTTCATT




ACGCTATGTAAAGTAGAGTTGATAGAGGGAGAA





208
Encoding Probe 198
TAGAGTTGATAGAGGGAGAATGTTCAGCGTTAAA




AAGGTACCGCTATAGAGTTGATAGAGGGAGAA





209
Encoding Probe 199
TAGAGTTGATAGAGGGAGAACCAGCTTCATTACG




CTATGTATTGTGTAGAGTTGATAGAGGGAGAA





210
Encoding Probe 200
TAGAGTTGATAGAGGGAGAATGTTCAGCGTTAAA




AAGGTACCCCTTAGAGTTGATAGAGGGAGAA





211
Encoding Probe 201
TAGAGTTGATAGAGGGAGAAGCCCGCTTCATTAC




GCTATGTAAAGTAGAGTTGATAGAGGGAGAA





212
Encoding Probe 202
TAGAGTTGATAGAGGGAGAAGCGCCCGGGTAAC




GGGTCCACGAATTAGAGTTGATAGAGGGAGAA





213
Encoding Probe 203
TAGAGTTGATAGAGGGAGAAGTGCAGCGTTAAA




AAGGTACCGCTATAGAGTTGATAGAGGGAGAA





214
Encoding Probe 204
TAGAGTTGATAGAGGGAGAAGGATTCGCTTCATT




ACGCTATGATATAGAGTTGATAGAGGGAGAA





215
Encoding Probe 205
TAGAGTTGATAGAGGGAGAAGCGCCCGGGTAAC




GGGTCCACCAATAGAGTTGATAGAGGGAGAA





216
Encoding Probe 206
TAGAGTTGATAGAGGGAGAATGGAGCGTTAAAA




AGGTACCGCTATAGAGTTGATAGAGGGAGAA





217
Encoding Probe 207
TAGAGTTGATAGAGGGAGAAGGAGTTCGCTTCAT




TACGCTATGTAAAGTAGAGTTGATAGAGGGAGA




A





218
Encoding Probe 208
TAGAGTTGATAGAGGGAGAAGGCTCGCTTCATTA




CGCTATGTATAGTTAGAGTTGATAGAGGGAGAA





219
Encoding Probe 209
TAGAGTTGATAGAGGGAGAACGTCCGGGTAACG




GGTCCACGAATTAGAGTTGATAGAGGGAGAA





220
Encoding Probe 210
TAGAGTTGATAGAGGGAGAAAATTCAATGTATCG




CTACACTTTGTTAGAGTTGATAGAGGGAGAA





221
Encoding Probe 211
TAGAGTTGATAGAGGGAGAACGAATGAGTAAAT




CACTTCACCTTGTTAGAGTTGATAGAGGGAGAA





222
Encoding Probe 212
TAGAGTTGATAGAGGGAGAAGTGCAGCGTTAAA




AAGGTACCCCTTAGAGTTGATAGAGGGAGAA





223
Encoding Probe 213
TAGAGTTGATAGAGGGAGAAGGCTCGCTTCATTA




CGCTATGTTAATAGAGTTGATAGAGGGAGAA





224
Encoding Probe 214
TAGAGTTGATAGAGGGAGAAGAGGCATACCTCA




CGATACACGAATAGAGTTGATAGAGGGAGAA





225
Encoding Probe 215
TAGAGTTGATAGAGGGAGAAGGAGTTCGCTTCAT




TACGCTATGTTAATAGAGTTGATAGAGGGAGAA





226
Encoding Probe 216
TAGAGTTGATAGAGGGAGAAGGATTCGCTTCATT




ACGCTATGTATTGTGTAGAGTTGATAGAGGGAGA




A





227
Encoding Probe 217
TAGAGTTGATAGAGGGAGAAGGAGTTCGCTTCAT




TACGCTATCATTAGAGTTGATAGAGGGAGAA





228
Encoding Probe 218
TAGAGTTGATAGAGGGAGAAGCCCGCTTCATTAC




GCTATGTATTGTGTAGAGTTGATAGAGGGAGAA





229
Encoding Probe 219
TAGAGTTGATAGAGGGAGAAGGCTCGCTTCATTA




CGCTATGTATTGTGTAGAGTTGATAGAGGGAGAA





230
Encoding Probe 220
TAGAGTTGATAGAGGGAGAAGGCTCGCTTCATTA




CGCTATGTAAAGTAGAGTTGATAGAGGGAGAA





231
Encoding Probe 221
GATGATGTAGTAGTAAGGGTACCTCTTCGACTGG




TCTCAGCAGGGATGATGTAGTAGTAAGGGT





232
Encoding Probe 222
GATGATGTAGTAGTAAGGGTTGCAATCGATGAGG




TTATTAACCTGTAGATGATGTAGTAGTAAGGGT





233
Encoding Probe 223
GATGATGTAGTAGTAAGGGTCATCAGTCACACCC




GAAGGTGCTAGGGATGATGTAGTAGTAAGGGT





234
Encoding Probe 224
GATGATGTAGTAGTAAGGGTGCAATCGATGAGGT




TATTAACCTGTAGATGATGTAGTAGTAAGGGT





235
Encoding Probe 225
GATGATGTAGTAGTAAGGGTCATCAGTCACACCC




GAAGGTGCAGGGATGATGTAGTAGTAAGGGT





236
Encoding Probe 226
GATGATGTAGTAGTAAGGGTATGAGTCACACCCG




AAGGTGCTAGGGATGATGTAGTAGTAAGGGT





237
Encoding Probe 227
GATGATGTAGTAGTAAGGGTTCCCTTCACCTACA




CACCAGCGACGGATGATGTAGTAGTAAGGGT





238
Encoding Probe 228
GATGATGTAGTAGTAAGGGTTCCCTTCACCTACA




CACCAGCCACGATGATGTAGTAGTAAGGGT





239
Encoding Probe 229
GATGATGTAGTAGTAAGGGTTGACCGCAACCCCG




GTGAGGGCGGGATGATGTAGTAGTAAGGGT





240
Encoding Probe 230
GATGATGTAGTAGTAAGGGTAGAGACTGGTCTCA




GCTCCACGGCGATGATGTAGTAGTAAGGGT





241
Encoding Probe 231
GATGATGTAGTAGTAAGGGTATGAGTCACACCCG




AAGGTGCAGGGATGATGTAGTAGTAAGGGT





242
Encoding Probe 232
GATGATGTAGTAGTAAGGGTTGCGTCACACCCGA




AGGTGCTAGGGATGATGTAGTAGTAAGGGT





243
Encoding Probe 233
GATGATGTAGTAGTAAGGGTGTGCTCAGCCTTGA




TTATCCGCTAGATGATGTAGTAGTAAGGGT





244
Encoding Probe 234
GATGATGTAGTAGTAAGGGTCCACGTCAATCGAT




GAGGTTAAATGATGATGTAGTAGTAAGGGT





245
Encoding Probe 235
GATGATGTAGTAGTAAGGGTAATAACCTCATCGC




CTTCCTCAGGGATGATGTAGTAGTAAGGGT





246
Encoding Probe 236
GATGATGTAGTAGTAAGGGTCCCACGTCAATCGA




TGAGGTTTAAGATGATGTAGTAGTAAGGGT





247
Encoding Probe 237
GATGATGTAGTAGTAAGGGTCATCAGTCACACCC




GAAGGTGGAGGATGATGTAGTAGTAAGGGT





248
Encoding Probe 238
GATGATGTAGTAGTAAGGGTCCCTTCACCTACAC




ACCAGCGACGGATGATGTAGTAGTAAGGGT





249
Encoding Probe 239
ATAGGAAATGGTGGTAGTGTCTACCGACCGTGAT




TAGCTAAGGATGTGGAGGGATTGAAGGATA





250
Encoding Probe 240
ATAGGAAATGGTGGTAGTGTCAACTGGAGCTTAG




AGGATTTTGGATGTGGAGGGATTGAAGGATA





251
Encoding Probe 241
ATAGGAAATGGTGGTAGTGTCCCTTAAAGGCCCA




GGGAAGAGAGTGTGGAGGGATTGAAGGATA





252
Encoding Probe 242
ATAGGAAATGGTGGTAGTGTAAGCGCTTATCTTT




TCCGCACAATTGTGGAGGGATTGAAGGATA





253
Encoding Probe 243
ATAGGAAATGGTGGTAGTGTCCCTTCACCTACAT




GCCAGCGACGTGTGGAGGGATTGAAGGATA





254
Encoding Probe 244
ATAGGAAATGGTGGTAGTGTCTGTGTCCTCACCC




CAGATTAACCTGTGGAGGGATTGAAGGATA





255
Encoding Probe 245
ATAGGAAATGGTGGTAGTGTATGTTTAATGTTAC




CTGGAGCTATCTGTGGAGGGATTGAAGGATA





256
Encoding Probe 246
ATAGGAAATGGTGGTAGTGTTCCATCAACTACTT




CTGCACCGATCTGTGGAGGGATTGAAGGATA





257
Encoding Probe 247
ATAGGAAATGGTGGTAGTGTGCGCAGGGTTGATA




TGCAACCCCTTGTGGAGGGATTGAAGGATA





258
Encoding Probe 248
ATAGGAAATGGTGGTAGTGTGATCAACAACGCTA




AGCGTCGGACTGTGGAGGGATTGAAGGATA





259
Encoding Probe 249
ATAGGAAATGGTGGTAGTGTAGTTCCATCCGCGA




GGGACTTGTGTGTGGAGGGATTGAAGGATA





260
Encoding Probe 250
ATAGGAAATGGTGGTAGTGTTAATGAACGTATTA




AGCTCACCTGGTGTGGAGGGATTGAAGGATA





261
Encoding Probe 251
ATAGGAAATGGTGGTAGTGTGTCCATCAACTACT




TCTGCACCGATCTGTGGAGGGATTGAAGGATA





262
Encoding Probe 252
ATAGGAAATGGTGGTAGTGTATACCCTTTGCTGC




GCGACTTAGGTGTGGAGGGATTGAAGGATA





263
Encoding Probe 253
ATAGGAAATGGTGGTAGTGTCAGTACCTTGCAAC




TAATCGCGGTTGTGGAGGGATTGAAGGATA





264
Encoding Probe 254
ATAGGAAATGGTGGTAGTGTCAGTTGATGAACGT




ATTAAGCTCAGGTTGTGGAGGGATTGAAGGATA





265
Encoding Probe 255
ATAGGAAATGGTGGTAGTGTTATCAGACAGGATG




TCACGTGAGGTGTGGAGGGATTGAAGGATA





266
Encoding Probe 256
ATAGGAAATGGTGGTAGTGTGATCATCGAACTCA




CGACCTGTCGTTGTGGAGGGATTGAAGGATA





267
Encoding Probe 257
ATAGGAAATGGTGGTAGTGTTGTAGCCGATTCAG




GTTCTGGCGATGTGGAGGGATTGAAGGATA





268
Encoding Probe 258
ATAGGAAATGGTGGTAGTGTATAATTCATGACAT




GATAATGTGTGCTTGTGGAGGGATTGAAGGATA





269
Encoding Probe 259
ATAGGAAATGGTGGTAGTGTATAGGCAGTGTCCT




ACTCTCGGTATGTGGAGGGATTGAAGGATA





270
Encoding Probe 260
ATAGGAAATGGTGGTAGTGTAATGGGCCGAGTTA




GAACATCTTTTGTGGAGGGATTGAAGGATA





271
Encoding Probe 261
ATAGGAAATGGTGGTAGTGTAAAGCGCTTATCTT




TTCCGCAGAATGTGGAGGGATTGAAGGATA





272
Encoding Probe 262
ATAGGAAATGGTGGTAGTGTAAAGGGCCTTAAA




GGCCCAGGCTTTGTGGAGGGATTGAAGGATA





273
Encoding Probe 263
ATAGGAAATGGTGGTAGTGTTCCCCTTAAAGGCC




CAGGGAACTGTGTGGAGGGATTGAAGGATA





274
Encoding Probe 264
AGAGTGAGTAGTAGTGGAGTCCCCGATTCCTGTG




TAACTGAAGGAATGTGGAGGGATTGAAGGATA





275
Encoding Probe 265
AGAGTGAGTAGTAGTGGAGTGGACACGTATACA




AAGTATACATCCCGTTGTGGAGGGATTGAAGGAT




A





276
Encoding Probe 266
AGAGTGAGTAGTAGTGGAGTACGGCAAGTAAGG




AAAAGGGTACGTGTGGAGGGATTGAAGGATA





277
Encoding Probe 267
AGAGTGAGTAGTAGTGGAGTACGCACCTGTATCT




AGATTCCCGTTCTGTGGAGGGATTGAAGGATA





278
Encoding Probe 268
AGAGTGAGTAGTAGTGGAGTACCGTCTGGATTGT




TTTCCTCTACTTGTGGAGGGATTGAAGGATA





279
Encoding Probe 269
AGAGTGAGTAGTAGTGGAGTAGACGGATAGTAC




TCATAGGTATTGCCTGTGGAGGGATTGAAGGATA





280
Encoding Probe 270
AGAGTGAGTAGTAGTGGAGTGAAAGTTCCCATCC




GAAATGCTGCGTTGTGGAGGGATTGAAGGATA





281
Encoding Probe 271
AGAGTGAGTAGTAGTGGAGTCGAGCCACTAAAG




CCTCAAAGGAGGTGTGGAGGGATTGAAGGATA





282
Encoding Probe 272
AGAGTGAGTAGTAGTGGAGTGAGCGTCAGTATTA




GGCCAGATGGGACTGTGGAGGGATTGAAGGATA





283
Encoding Probe 273
AGAGTGAGTAGTAGTGGAGTTGGGAATTCTACCA




TCCTCTCCGTATGTGGAGGGATTGAAGGATA





284
Encoding Probe 274
AGAGTGAGTAGTAGTGGAGTGGTCTCTCCCATAC




TCTAGCTGTGTGTGGAGGGATTGAAGGATA





285
Encoding Probe 275
AGAGTGAGTAGTAGTGGAGTTCCGTTCACTCTTG




CTATGGTGCGTGTGGAGGGATTGAAGGATA





286
Encoding Probe 276
AGAGTGAGTAGTAGTGGAGTGGATATTCAGACA




AGGTTTCACGTCGGTGTGGAGGGATTGAAGGATA





287
Encoding Probe 277
AGAGTGAGTAGTAGTGGAGTAGAGTATTAACTA




AAGTAGCCTCCAGGTGTGGAGGGATTGAAGGAT




A





288
Encoding Probe 278
AGAGTGAGTAGTAGTGGAGTGTATCAGACAAGG




TTTCACGTCGGTGTGGAGGGATTGAAGGATA





289
Encoding Probe 279
AGAGTGAGTAGTAGTGGAGTTGATCATCATTATG




TGTGCCCAAATGTGGAGGGATTGAAGGATA





290
Encoding Probe 280
AGAGTGAGTAGTAGTGGAGTAGATAAAACACAC




ATAACTTAATGGGAACTGTGGAGGGATTGAAGG




ATA





291
Encoding Probe 281
AGAGTGAGTAGTAGTGGAGTGAAGCTCATCTATT




AGCGCAACCATGTGGAGGGATTGAAGGATA





292
Encoding Probe 282
AGAGTGAGTAGTAGTGGAGTATAATTCATGTTGC




AATACCTACGAATGTGGAGGGATTGAAGGATA





293
Encoding Probe 283
AGAGTGAGTAGTAGTGGAGTCAGCCGCTAGGTCC




GGTAGCAACGATGTGGAGGGATTGAAGGATA





294
Encoding Probe 284
AGAGTGAGTAGTAGTGGAGTGTCGGTTCACTCTT




GCTATGGAGCTGTGGAGGGATTGAAGGATA





295
Encoding Probe 285
AGAGTGAGTAGTAGTGGAGTAAAGATTAGCATC




ACATCGCTCACTGTGGAGGGATTGAAGGATA





296
Encoding Probe 286
AGAGTGAGTAGTAGTGGAGTTAAGACTCGATTTC




TCTACGGGAGTGTGGAGGGATTGAAGGATA





297
Encoding Probe 287
AGAGTGAGTAGTAGTGGAGTGGCCTCTTTGCAGT




TAGGCTAGGATTGTGGAGGGATTGAAGGATA





298
Encoding Probe 288
AGAGTGAGTAGTAGTGGAGTTCTTCAGCATAGAG




TACCCCGCTATGTGGAGGGATTGAAGGATA





299
Encoding Probe 289
AGAGTGAGTAGTAGTGGAGTAGGTCGTCTGGTTT




AGTTAGCGATATAGGAAATGGTGGTAGTGT





300
Encoding Probe 290
AGAGTGAGTAGTAGTGGAGTGGAATCACTATATA




CTCTAGTACAGGTTAATAGGAAATGGTGGTAGTG




T





301
Encoding Probe 291
AGAGTGAGTAGTAGTGGAGTCCGCCCGTTATCAT




AGGCTCCATGATAGGAAATGGTGGTAGTGT





302
Encoding Probe 292
AGAGTGAGTAGTAGTGGAGTAGGACTGAGATTG




GCTTTAAGACTAATAGGAAATGGTGGTAGTGT





303
Encoding Probe 293
AGAGTGAGTAGTAGTGGAGTAAAGGTCTACAAC




ATGATACTATGCGCATAGGAAATGGTGGTAGTGT





304
Encoding Probe 294
AGAGTGAGTAGTAGTGGAGTAGGCCATGACACTT




TTGTGTCTAGATAGGAAATGGTGGTAGTGT





305
Encoding Probe 295
AGAGTGAGTAGTAGTGGAGTTACACTTTTGTGTC




ATCCACACGAATAGGAAATGGTGGTAGTGT





306
Encoding Probe 296
AGAGTGAGTAGTAGTGGAGTTGCCTCTTTGAATG




AATAGCTGCAAGATAGGAAATGGTGGTAGTGT





307
Encoding Probe 297
AGAGTGAGTAGTAGTGGAGTACGCGAAGAGAAA




GCCTATCTCATCATAGGAAATGGTGGTAGTGT





308
Encoding Probe 298
AGAGTGAGTAGTAGTGGAGTTTATCTGGTTTAGT




TAGCCTACACGATAGGAAATGGTGGTAGTGT





309
Encoding Probe 299
AGAGTGAGTAGTAGTGGAGTCCTTTATCTGAGAT




TGGTAATCCGCCTATAGGAAATGGTGGTAGTGT





310
Encoding Probe 300
AGAGTGAGTAGTAGTGGAGTGATTCCAAGAGAC




TTAACATCGACCGAATAGGAAATGGTGGTAGTGT





311
Encoding Probe 301
AGAGTGAGTAGTAGTGGAGTGGTAGTCATCCAA




GCACTTTTGTTATAGGAAATGGTGGTAGTGT





312
Encoding Probe 302
AGAGTGAGTAGTAGTGGAGTGGAAAGTCATCCA




AGCACTTTAGTATAGGAAATGGTGGTAGTGT





313
Encoding Probe 303
AGAGTGAGTAGTAGTGGAGTAAAAAAGCGTACA




ATGGTTAAGGGTATAGGAAATGGTGGTAGTGT





314
Encoding Probe 304
AGAGTGAGTAGTAGTGGAGTAAGGCGTTCTAGG




GCTTAACTAGAATAGGAAATGGTGGTAGTGT





315
Encoding Probe 305
AGAGTGAGTAGTAGTGGAGTTAACGGGCTCGAA




CTTGTTGTTCCATAGGAAATGGTGGTAGTGT





316
Encoding Probe 306
AGAGTGAGTAGTAGTGGAGTAATGTCACTTGGTA




GATTTTCCAGAGATAGGAAATGGTGGTAGTGT





317
Encoding Probe 307
AGAGTGAGTAGTAGTGGAGTGGTCCTACCAACGT




TCTTCTCATTATAGGAAATGGTGGTAGTGT





318
Encoding Probe 308
AGAGTGAGTAGTAGTGGAGTCTATGCTAAGGTTA




ATCTATCATTTTTTTATAGGAAATGGTGGTAGTGT





319
Encoding Probe 309
AGAGTGAGTAGTAGTGGAGTGGACCAGGTAATT




CTTCTATAATGATATTATAGGAAATGGTGGTAGT




GT





320
Encoding Probe 310
AGAGTGAGTAGTAGTGGAGTGTTCCGAAGTGTAA




ACACTTCCCAATAGGAAATGGTGGTAGTGT





321
Encoding Probe 311
AGAGTGAGTAGTAGTGGAGTGTTCATCAGTCTAG




TGTAAACACGTTATAGGAAATGGTGGTAGTGT





322
Encoding Probe 312
AGAGTGAGTAGTAGTGGAGTCTAGGATACTAGTC




ATTAACTAGTGCCAATAGGAAATGGTGGTAGTGT





323
Encoding Probe 313
AGAGTGAGTAGTAGTGGAGTCGTTCATCAGTCTA




GTGTAAACACGTTATAGGAAATGGTGGTAGTGT





324
Encoding Probe 314
TGTGATGGAAGTTAGAGGGTGTACTTGGACATGC




ACTTCCAATGCGTGTGGAGGGATTGAAGGATA





325
Encoding Probe 315
TGTGATGGAAGTTAGAGGGTAGTCTTATGCCATG




CGGCATATTGTGTGGAGGGATTGAAGGATA





326
Encoding Probe 316
TGTGATGGAAGTTAGAGGGTAGGCCACTACACCT




AATGGTGATCTGTGGAGGGATTGAAGGATA





327
Encoding Probe 317
TGTGATGGAAGTTAGAGGGTGATCCTAATGGTGT




AGTCCACTCGTGTGGAGGGATTGAAGGATA





328
Encoding Probe 318
TGTGATGGAAGTTAGAGGGTGATGTTCCGGTCTC




ATCGGCTGGATGTGGAGGGATTGAAGGATA





329
Encoding Probe 319
TGTGATGGAAGTTAGAGGGTGGACACTCTTATGC




CATGCGGCTATTGTGGAGGGATTGAAGGATA





330
Encoding Probe 320
TGTGATGGAAGTTAGAGGGTTCATTAATGCGTTT




GCTGCAGGTGTGTGGAGGGATTGAAGGATA





331
Encoding Probe 321
TGTGATGGAAGTTAGAGGGTCCCTTTCACCCTCT




TTAGCGGTTATGTGGAGGGATTGAAGGATA





332
Encoding Probe 322
TGTGATGGAAGTTAGAGGGTATGCTACATACTTA




TTCGCCCTTAATGTGGAGGGATTGAAGGATA





333
Encoding Probe 323
TGTGATGGAAGTTAGAGGGTGTGCATCACTCATT




AACGAGCAAATGTGGAGGGATTGAAGGATA





334
Encoding Probe 324
TGTGATGGAAGTTAGAGGGTCAAGGGACGTTCA




GTTACTAAACATGTGGAGGGATTGAAGGATA





335
Encoding Probe 325
TGTGATGGAAGTTAGAGGGTTCCACGTTCAGTTA




CTAACGTGGATGTGGAGGGATTGAAGGATA





336
Encoding Probe 326
TGTGATGGAAGTTAGAGGGTTAGCCTAGGTGTTG




TCAGCATAAGTGTGGAGGGATTGAAGGATA





337
Encoding Probe 327
TGTGATGGAAGTTAGAGGGTTAGTCAACTATACT




AACAGACTACCTATTGTGGAGGGATTGAAGGATA





338
Encoding Probe 328
TGTGATGGAAGTTAGAGGGTTCCACGTTCAGTTA




CTAACGTCGAATGTGGAGGGATTGAAGGATA





339
Encoding Probe 329
TGTGATGGAAGTTAGAGGGTGGTCGGCATAAACT




GTTATGCCCATGTGGAGGGATTGAAGGATA





340
Encoding Probe 330
TGTGATGGAAGTTAGAGGGTCGAGTATTCACTGA




AAAGTAATATCCATATGTGGAGGGATTGAAGGAT




A





341
Encoding Probe 331
TGTGATGGAAGTTAGAGGGTGAGCTTTCCAATTG




AGTGCAACGTTGTGGAGGGATTGAAGGATA





342
Encoding Probe 332
TGTGATGGAAGTTAGAGGGTCATGCATTTAACTC




TACTCAAGACTGTATGTGGAGGGATTGAAGGATA





343
Encoding Probe 333
TGTGATGGAAGTTAGAGGGTCTTTCGCTACTATT




ATTTCGCTAGGTGTGGAGGGATTGAAGGATA





344
Encoding Probe 334
TGTGATGGAAGTTAGAGGGTCCAGGGCAGTTGTT




TTCTCACATCTGTGGAGGGATTGAAGGATA





345
Encoding Probe 335
TGTGATGGAAGTTAGAGGGTGACGCTGACCGAA




GTCAGCACAGGTGTGGAGGGATTGAAGGATA





346
Encoding Probe 336
TGTGATGGAAGTTAGAGGGTGATACTAGCCTTCC




ACTTCCAAGGATGTGGAGGGATTGAAGGATA





347
Encoding Probe 337
TGTGATGGAAGTTAGAGGGTACCCTTCAATTCTG




AGCTTCGGGCTGTGGAGGGATTGAAGGATA





348
Encoding Probe 338
TGTGATGGAAGTTAGAGGGTCAGCTCCAACTATC




ACTAGCCTTGGTTGTGGAGGGATTGAAGGATA





349
Encoding Probe 339
TGTGATGGAAGTTAGAGGGTCCTCAGTTAATGAT




AGTGTGTCGATTGATAGGAAATGGTGGTAGTGT





350
Encoding Probe 340
TGTGATGGAAGTTAGAGGGTGGAGCCTTGGTTTT




CCGGATTACGATAGGAAATGGTGGTAGTGT





351
Encoding Probe 341
TGTGATGGAAGTTAGAGGGTGTGTCTCATCTCTG




AAAACTTCCCACATAGGAAATGGTGGTAGTGT





352
Encoding Probe 342
TGTGATGGAAGTTAGAGGGTGTCACCCCATTAAG




AGGCTCCGTGATAGGAAATGGTGGTAGTGT





353
Encoding Probe 343
TGTGATGGAAGTTAGAGGGTCCACGTCAATGAGC




AAAGGTAAATATAGGAAATGGTGGTAGTGT





354
Encoding Probe 344
TGTGATGGAAGTTAGAGGGTGTAAGCTCACAATA




TGTGCATAAAATAGGAAATGGTGGTAGTGT





355
Encoding Probe 345
TGTGATGGAAGTTAGAGGGTGATACACACACTGA




TTCAGGCAGAATAGGAAATGGTGGTAGTGT





356
Encoding Probe 346
TGTGATGGAAGTTAGAGGGTAGTCTTGGTTTTCC




GGATTTGGGAATAGGAAATGGTGGTAGTGT





357
Encoding Probe 347
TGTGATGGAAGTTAGAGGGTACCTCAGTTAATGA




TAGTGTGTCGTTTATAGGAAATGGTGGTAGTGT





358
Encoding Probe 348
TGTGATGGAAGTTAGAGGGTGAGCCTTGGTTTTC




CGGATTTCGGATAGGAAATGGTGGTAGTGT





359
Encoding Probe 349
TGTGATGGAAGTTAGAGGGTGTATCATCTCTGAA




AACTTCCGACCATAGGAAATGGTGGTAGTGT





360
Encoding Probe 350
TGTGATGGAAGTTAGAGGGTGTGCTCAGCCTTGG




TTTTCCGCTAATAGGAAATGGTGGTAGTGT





361
Encoding Probe 351
TGTGATGGAAGTTAGAGGGTTGCGTCACCCCATT




AAGAGGCAGGATAGGAAATGGTGGTAGTGT





362
Encoding Probe 352
TGTGATGGAAGTTAGAGGGTCATGTCAATGAGCA




AAGGTATTAAGAAATAGGAAATGGTGGTAGTGT





363
Encoding Probe 353
TGTGATGGAAGTTAGAGGGTGTAAGCTCACAATA




TGTGCATTAAAATAGGAAATGGTGGTAGTGT





364
Encoding Probe 354
TGTGATGGAAGTTAGAGGGTGAAACTAACACAC




ACACTGATTGTCATAGGAAATGGTGGTAGTGT





365
Encoding Probe 355
TGTGATGGAAGTTAGAGGGTCTAAGTTAATGATA




GTGTGTCGATTGATAGGAAATGGTGGTAGTGT





366
Encoding Probe 356
TGTGATGGAAGTTAGAGGGTGTGTCTCATCTCTG




AAAACTTCCGACCATAGGAAATGGTGGTAGTGT





367
Encoding Probe 357
TGTGATGGAAGTTAGAGGGTAGGAAGGCACATT




CTCATCTCACTATAGGAAATGGTGGTAGTGT





368
Encoding Probe 358
TGTGATGGAAGTTAGAGGGTCGTCACCCCATTAA




GAGGCTCGGTATAGGAAATGGTGGTAGTGT





369
Encoding Probe 359
TGTGATGGAAGTTAGAGGGTGCGTCACCCCATTA




AGAGGCTAGGATAGGAAATGGTGGTAGTGT





370
Encoding Probe 360
TGTGATGGAAGTTAGAGGGTCATGTCAATGAGCA




AAGGTATTATGAATAGGAAATGGTGGTAGTGT





371
Encoding Probe 361
TGTGATGGAAGTTAGAGGGTTAGGCTCACAATAT




GTGCATTAAAATAGGAAATGGTGGTAGTGT





372
Encoding Probe 362
TGTGATGGAAGTTAGAGGGTTGACACACACACTG




ATTCAGGGAGATAGGAAATGGTGGTAGTGT





373
Encoding Probe 363
TGTGATGGAAGTTAGAGGGTCCTCAGTTAATGAT




AGTGTGTCGTTTATAGGAAATGGTGGTAGTGT





374
Encoding Probe 364
TGTGATGGAAGTTAGAGGGTGTTGTGAACAAACT




TTCGACTACTCCAGAGTGAGTAGTAGTGGAGT





375
Encoding Probe 365
TGTGATGGAAGTTAGAGGGTGGACGCTTAAAAC




GAATAATGGTGGATGAGAGTGAGTAGTAGTGGA




GT





376
Encoding Probe 366
TGTGATGGAAGTTAGAGGGTGTACTTAAAACGAA




TAATGGTGGTAGTCAGAGTGAGTAGTAGTGGAGT





377
Encoding Probe 367
TGTGATGGAAGTTAGAGGGTGGTGTCCTTACGGA




CAATCCAGTCAGAGTGAGTAGTAGTGGAGT





378
Encoding Probe 368
TGTGATGGAAGTTAGAGGGTCAGACTCTTGCGGA




ACGTAAGAGGAGAGTGAGTAGTAGTGGAGT





379
Encoding Probe 369
TGTGATGGAAGTTAGAGGGTTTGCTCGAGGAAAC




AATTTCCAGAAGAGTGAGTAGTAGTGGAGT





380
Encoding Probe 370
TGTGATGGAAGTTAGAGGGTCGACTCCATAAATG




GTTACTCCACGCCAGAGTGAGTAGTAGTGGAGT





381
Encoding Probe 371
TGTGATGGAAGTTAGAGGGTTAACCTAACACTCA




ATCTCACTGCTTCCTAGAGTGAGTAGTAGTGGAG




T





382
Encoding Probe 372
TGTGATGGAAGTTAGAGGGTTTAGGTAACCCGAT




AAGGGCCGGAAGAGTGAGTAGTAGTGGAGT





383
Encoding Probe 373
TGTGATGGAAGTTAGAGGGTCTCAGCTCCTTATC




TGTTCGCTGCTAGAGTGAGTAGTAGTGGAGT





384
Encoding Probe 374
TGTGATGGAAGTTAGAGGGTCACCTCCTTGCCAT




TGTCACCAATAAGAGTGAGTAGTAGTGGAGT





385
Encoding Probe 375
TGTGATGGAAGTTAGAGGGTGCTCGAGGAAACA




ATTTCCTCAGGAGAGTGAGTAGTAGTGGAGT





386
Encoding Probe 376
TGTGATGGAAGTTAGAGGGTAATTACACGTTTGT




TCTTCCCATTAGAGTGAGTAGTAGTGGAGT





387
Encoding Probe 377
TGTGATGGAAGTTAGAGGGTGTGAAGAGTGAAC




AAACTTTCGTGAAGAGTGAGTAGTAGTGGAGT





388
Encoding Probe 378
TGTGATGGAAGTTAGAGGGTTACTCGTCTAGTCT




GTTCTTTTGTAAGAGAGAGTGAGTAGTAGTGGAG




T





389
Encoding Probe 379
TGTGATGGAAGTTAGAGGGTAGGCGCTAACGTCA




AAGGAGCTTCAGAGTGAGTAGTAGTGGAGT





390
Encoding Probe 380
TGTGATGGAAGTTAGAGGGTGATAGTGATAGCA




AAACCATCTTTCTGAAGAGTGAGTAGTAGTGGAG




T





391
Encoding Probe 381
TGTGATGGAAGTTAGAGGGTTCGGCTCCTTATCT




GTTCGCTCCTGAGAGTGAGTAGTAGTGGAGT





392
Encoding Probe 382
TGTGATGGAAGTTAGAGGGTCTCAGCTCCTTATC




TGTTCGCAGCAGAGTGAGTAGTAGTGGAGT





393
Encoding Probe 383
TGTGATGGAAGTTAGAGGGTCACCTCCTTGCCAT




TGTCACCTTAAGAGTGAGTAGTAGTGGAGT





394
Encoding Probe 384
TGTGATGGAAGTTAGAGGGTGGACACTCAATCTC




ACTGCTTCCTAGAGTGAGTAGTAGTGGAGT





395
Encoding Probe 385
TGTGATGGAAGTTAGAGGGTGCCACCACAATTCT




AGCTAGAGCGAAGAGTGAGTAGTAGTGGAGT





396
Encoding Probe 386
TGTGATGGAAGTTAGAGGGTCGGACACTCAATCT




CACTGCTACCAGAGTGAGTAGTAGTGGAGT





397
Encoding Probe 387
TGTGATGGAAGTTAGAGGGTATCCTCACGTATCT




CAGGCTCCATGAGAGTGAGTAGTAGTGGAGT





398
Encoding Probe 388
TGTGATGGAAGTTAGAGGGTAAGCAGCTGCACAT




ATCGCTAACGAGAGTGAGTAGTAGTGGAGT









Example 2.3


FIG. 5 shows the ability of the HiPR-FISH to differentiate drug-resistant from drug-susceptible microbes in a sample. The following methodology was employed. Carbapenem-resistant or -susceptible Pseudomonas aeruginosa were cultured in liquid tryptic soy broth for several passages. An 8-well device was constructed where each well was filled with 25 μL of tryptic soy agar at 42° C. with various concentrations of meropenem and allowed to dry to create a growth pad for bacteria. For both resistant and susceptible cultures, 1 μL of culture suspension was deposited at the center of each pad and the liquid was allowed to dry/absorb. A #1 coverslip was used to seal the bottom of the device. The device was placed on a custom built stage that enabled temperature regulation on a Nikon TiE widefield epifluorescence microscope. The custom stage contained a chamber that used two Peltier units to keep the bottom of the stage at 37° C. for incubation and the top at 42° C. to prevent condensation. A 40×phase contrast objective was used to continuously image a single field of view in each well of the device every 30 seconds for two hours. At the conclusion of the experiment, 2% formaldehyde was added to each well to fix colonies for down stream assays.


Example 3. Identification of Fungi


FIG. 6 shows the identification of different fungi species including C. tropicalis, C. glabrata, and C. albicans, using the following methodology.


Suspensions of individual monocultures were fixed by adding an equal volume of 2% formaldehyde, mixing, and incubating for 90 minutes at room temperature. Fixed cultures were then washed with 1×PBS and resuspended in 50% ethanol. Suspensions were deposited onto glass microscope slides until 50% ethanol had evaporated. Zymolysae (5 U per mL in a buffer with 1.2 M sorbitol and 0.1 M potassium phosphate buffer, pH 7.5) was deposited onto each dry specimen to permeabilize the outer membrane and incubated for 90 minutes at 30° C., the slides were then washed with 1×PBS. An encoding probe hybridization buffer (2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) with probes designed for the fungal species (at roughly 200 nM) was deposited on cells and incubated for two hours at 37° C. A wash buffer (5 mM EDTA, 20 mM Tris HCl, 215 mM NaCl) was then deposited on specimens for fifteen minutes at 37° C. to remove unbound probes. A buffer containing readout probes (10 readout probes, each at 400 nM; buffer made up of 2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) was incubated for one hour at room temperature. A second round of wash buffer was deposited on specimens for fifteen minutes at 37° C. to remove unbound probes. The specimens were mounted with Prolong Glass and a coverslip was placed directly over the specimens for imaging on a confocal microscope.


Table 3 shows the sequences of the encoding probes used in this example. The readout probes are shown in Table 1.









TABLE 3







Encoding probes used in Example 3









SEQ ID




NO:
Probe Name
Sequence





399
Encoding Probe 389
AGGGTGTGTTTGTAAAGGGTACTTCCCCGTGGTTG




AGTCAAAAAT





400
Encoding Probe 390
TGTGGAGGGATTGAAGGATAACTTCCCCGTGGTT




GAGTCAAAAAT





401
Encoding Probe 391
AGGGTGTGTTTGTAAAGGGTACCCCAGACTTGGC




CTTCCAATTGTAGG





402
Encoding Probe 392
TGTGGAGGGATTGAAGGATAACCCCAGACTTGGC




CTTCCAATTGTAGG





403
Encoding Probe 393
AGGGTGTGTTTGTAAAGGGTGAGTTCCAGAATGA




GGTTGCCAGG





404
Encoding Probe 394
TGTGGAGGGATTGAAGGATAGAGTTCCAGAATGA




GGTTGCCAGG





405
Encoding Probe 395
AGGGTGTGTTTGTAAAGGGTAGAGTTCCAGAATG




AGGTTGCCAGG





406
Encoding Probe 396
TGTGGAGGGATTGAAGGATAAGAGTTCCAGAATG




AGGTTGCCAGG





407
Encoding Probe 397
AGGGTGTGTTTGTAAAGGGTAGGGTTCGCCATAA




ATGGCTACCGTC





408
Encoding Probe 398
TGTGGAGGGATTGAAGGATAAGGGTTCGCCATAA




ATGGCTACCGTC





409
Encoding Probe 399
AGGGTGTGTTTGTAAAGGGTTGACATCGACTTGG




AGTCGATTCA





410
Encoding Probe 400
TGTGGAGGGATTGAAGGATATGACATCGACTTGG




AGTCGATTCA





411
Encoding Probe 401
AGGGTGTGTTTGTAAAGGGTCGTTGACTACTGGC




AGGATCAACCACTA





412
Encoding Probe 402
TGTGGAGGGATTGAAGGATACGTTGACTACTGGC




AGGATCAACCACTA





413
Encoding Probe 403
AGGGTGTGTTTGTAAAGGGTACTTCCCCGTGGTTG




AGTCAATAA





414
Encoding Probe 404
TGTGGAGGGATTGAAGGATAACTTCCCCGTGGTT




GAGTCAATAA





415
Encoding Probe 405
AGGGTGTGTTTGTAAAGGGTGGATTCGCCATAAA




TGGCTACCGTC





416
Encoding Probe 406
TGTGGAGGGATTGAAGGATAGGATTCGCCATAAA




TGGCTACCGTC





417
Encoding Probe 407
AGGGTGTGTTTGTAAAGGGTGTAACTTGGAGTCG




ATAGTCCCAGA





418
Encoding Probe 408
TGTGGAGGGATTGAAGGATAGTAACTTGGAGTCG




ATAGTCCCAGA





419
Encoding Probe 409
AGGGTGTGTTTGTAAAGGGTTCGATGACTACTGG




CAGGATCAACCACTA





420
Encoding Probe 410
TGTGGAGGGATTGAAGGATATCGATGACTACTGG




CAGGATCAACCACTA





421
Encoding Probe 411
AGGGTGTGTTTGTAAAGGGTAGTACCTCCCCTGA




ATCGGGATTCCC





422
Encoding Probe 412
TGTGGAGGGATTGAAGGATAAGTACCTCCCCTGA




ATCGGGATTCCC





423
Encoding Probe 413
AGAGTGAGTAGTAGTGGAGTAACTTGCTTTTCTTC




CTCTAATGACCTTC





424
Encoding Probe 414
TTGGAGGTGTAGGGAGTAAAAACTTGCTTTTCTTC




CTCTAATGACCTTC





425
Encoding Probe 415
AGAGTGAGTAGTAGTGGAGTACGTGCTTTTCTTCC




TCTAATGACCATCA





426
Encoding Probe 416
TTGGAGGTGTAGGGAGTAAAACGTGCTTTTCTTCC




TCTAATGACCATCA





427
Encoding Probe 417
AGAGTGAGTAGTAGTGGAGTCGAGCTTTTCTTCCT




CTAATGACCAACAA





428
Encoding Probe 418
TTGGAGGTGTAGGGAGTAAACGAGCTTTTCTTCCT




CTAATGACCAACAA





429
Encoding Probe 419
AGAGTGAGTAGTAGTGGAGTTGTCATGGCTAATC




TAGCGGGTTA





430
Encoding Probe 420
TTGGAGGTGTAGGGAGTAAATGTCATGGCTAATC




TAGCGGGTTA





431
Encoding Probe 421
AGAGTGAGTAGTAGTGGAGTCTGGCATGGCTAAT




CTAGCGGCTA





432
Encoding Probe 422
TTGGAGGTGTAGGGAGTAAACTGGCATGGCTAAT




CTAGCGGCTA





433
Encoding Probe 423
AGAGTGAGTAGTAGTGGAGTGGATTCGCCAAAAG




GCTAGCCAGTTC





434
Encoding Probe 424
TTGGAGGTGTAGGGAGTAAAGGATTCGCCAAAAG




GCTAGCCAGTTC





435
Encoding Probe 425
AGAGTGAGTAGTAGTGGAGTCTGGCATGGCTAAT




CTAGCGGGAATA





436
Encoding Probe 426
TTGGAGGTGTAGGGAGTAAACTGGCATGGCTAAT




CTAGCGGGAATA





437
Encoding Probe 427
AGAGTGAGTAGTAGTGGAGTACCCGCCAAAAGGC




TAGCCAGAACCT





438
Encoding Probe 428
TTGGAGGTGTAGGGAGTAAAACCCGCCAAAAGGC




TAGCCAGAACCT





439
Encoding Probe 429
AGAGTGAGTAGTAGTGGAGTTCTTGCATGGCTAA




TCTAGCGGGAGTT





440
Encoding Probe 430
TTGGAGGTGTAGGGAGTAAATCTTGCATGGCTAA




TCTAGCGGGAGTT





441
Encoding Probe 431
AGAGTGAGTAGTAGTGGAGTCTGGCATGGCTAAT




CTAGCGGGTTA





442
Encoding Probe 432
TTGGAGGTGTAGGGAGTAAACTGGCATGGCTAAT




CTAGCGGGTTA





443
Encoding Probe 433
AGAGTGAGTAGTAGTGGAGTTGTCATGGCTAATC




TAGCGGGAATA





444
Encoding Probe 434
TTGGAGGTGTAGGGAGTAAATGTCATGGCTAATC




TAGCGGGAATA





445
Encoding Probe 435
AGAGTGAGTAGTAGTGGAGTAGGGTTCGCCAAAA




GGCTAGCGTC





446
Encoding Probe 436
TTGGAGGTGTAGGGAGTAAAAGGGTTCGCCAAAA




GGCTAGCGTC





447
Encoding Probe 437
TGTGGAGGGATTGAAGGATATATTCTCTTCCAAG




AGGTCGAGATTTATT





448
Encoding Probe 438
TTGGAGGTGTAGGGAGTAAATATTCTCTTCCAAG




AGGTCGAGATTTATT





449
Encoding Probe 439
TGTGGAGGGATTGAAGGATAGAGATTACCGCGGG




CTGCTGGGTG





450
Encoding Probe 440
TTGGAGGTGTAGGGAGTAAAGAGATTACCGCGGG




CTGCTGGGTG





451
Encoding Probe 441
TGTGGAGGGATTGAAGGATAGTCTCTCCGCTCTG




AAGTGGAGTCCGG





452
Encoding Probe 442
TTGGAGGTGTAGGGAGTAAAGTCTCTCCGCTCTG




AAGTGGAGTCCGG





453
Encoding Probe 443
TGTGGAGGGATTGAAGGATAAAAGTACACGAAAA




AATCGGACCGGAGT





454
Encoding Probe 444
TTGGAGGTGTAGGGAGTAAAAAAGTACACGAAAA




AATCGGACCGGAGT





455
Encoding Probe 445
TGTGGAGGGATTGAAGGATAGTACAGTACACGAA




AAAATCGGACCGCGG





456
Encoding Probe 446
TTGGAGGTGTAGGGAGTAAAGTACAGTACACGAA




AAAATCGGACCGCGG





457
Encoding Probe 447
TGTGGAGGGATTGAAGGATAGTGCCTCCCTGTGT




CAGGATTCCC





458
Encoding Probe 448
TTGGAGGTGTAGGGAGTAAAGTGCCTCCCTGTGT




CAGGATTCCC





459
Encoding Probe 449
TGTGGAGGGATTGAAGGATAGTGCCTCCCTGTGT




CAGGATTGCCA





460
Encoding Probe 450
TTGGAGGTGTAGGGAGTAAAGTGCCTCCCTGTGT




CAGGATTGCCA





461
Encoding Probe 451
TGTGGAGGGATTGAAGGATACATGTGCCGAGTGG




GTCACTAATTT





462
Encoding Probe 452
TTGGAGGTGTAGGGAGTAAACATGTGCCGAGTGG




GTCACTAATTT





463
Encoding Probe 453
TGTGGAGGGATTGAAGGATACTCGGTCACTAAAA




AAACACCACCCGTAG





464
Encoding Probe 454
TTGGAGGTGTAGGGAGTAAACTCGGTCACTAAAA




AAACACCACCCGTAG





465
Encoding Probe 455
TGTGGAGGGATTGAAGGATAAGAGCCAAGGTTAG




ACTCGCTGCGA





466
Encoding Probe 456
TTGGAGGTGTAGGGAGTAAAAGAGCCAAGGTTAG




ACTCGCTGCGA





467
Encoding Probe 457
TGTGGAGGGATTGAAGGATACTGGCATGGCTTAA




TTTTTAGACAAAATG





468
Encoding Probe 458
TTGGAGGTGTAGGGAGTAAACTGGCATGGCTTAA




TTTTTAGACAAAATG





469
Encoding Probe 459
TGTGGAGGGATTGAAGGATATTAATCTCTTCCAA




GAGGTCGAGATTAAT





470
Encoding Probe 460
TTGGAGGTGTAGGGAGTAAATTAATCTCTTCCAA




GAGGTCGAGATTAAT









Example 4. HiPR-FAST One Pot


Escherichia coli (E. coli) cells were cultured at 30° C. for several passages prior to the start of the experiment. At experiment passage, cultured E. coli were grown in suspension at 30° C. ambient temperature for ninety minutes. Then, their vessel was sealed and placed in a water bath at 46° C. for five minutes. Immediately following the heat shock, the vessel was placed on ice for one minute before a volume of 2% formaldehyde (equal to the volume of the suspension) was added to the suspension and mixed for suspension. Fixing cells were incubated at room temperature for one hour. After one hour, fixed cells were washed with 1×PBS and resuspended in 50% ethanol. A small volume (0.75 μL) was deposited on a glass slide and allowed to dry. The deposition was then rehydrated with 10 mg/ml lysozyme and placed at 37° C. for 15 minutes to encourage permeabilization. Cells were then washed with 1×PBS for ten minutes at room temperature. A hybridization buffer (2×SSC, 10% dextran sulfate, 10% ethylene carbonate, 5×Denhardt's solution, 0.01% SDS) containing rRNA (1 μM per species) and mRNA (1 μM per gene) was added to cells and the slide was placed at 37° C. for one hour. Immediately following hybridization, cells were incubated in wash buffer (5 mM EDTA, 20 mM Tris HCl, 215 mM NaCl) for 15 minutes at 48° C. Finally, the wash buffer was removed and the cells were mounted with Prolong Glass under a #1 coverslip for imaging.



FIGS. 7A-7C shows gene expression measurement enable rapid detection of stress response in HiPR-FISH. Table 4 shows the sequences of the encoding probes used in this example. The readout probes are shown in Table 1.









TABLE 4







Encoding Probes used in Example 4










SEQ





ID
Tar-
Probe



NO:
get
Name
Sequence (in 5′ to 3′ order)





471
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTCCTCAGTTAAT




Probe 461
GATAGTGTGTCGATTG





472
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGGAGCCTTGG




Probe 462
TTTTCCGGATTACG





473
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTGTGTCTCATCT




Probe 463
CTGAAAACTTCCCAC





474
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGTCACCCCATT




Probe 464
AAGAGGCTCCGTG





475
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTCCACGTCAATG




Probe 465
AGCAAAGGTAAAT





476
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGTAAGCTCAC




Probe 466
AATATGTGCATAAA





477
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTGATACACACA




Probe 467
CTGATTCAGGCAGA





478
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTAGTCTTGGTTT




Probe 468
TCCGGATTTGGGA





479
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTACCTCAGTTAA




Probe 469
TGATAGTGTGTCGTTT





480
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGAGCCTTGGTT




Probe 470
TTCCGGATTTCGG





481
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTGTATCATCTCT




Probe 471
GAAAACTTCCGACC





482
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGTGCTCAGCCT




Probe 472
TGGTTTTCCGCTA





483
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTTGCGTCACCCC




Probe 473
ATTAAGAGGCAGG





484
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTCATGTCAATG




Probe 474
AGCAAAGGTATTAAGAA





485
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTGTAAGCTCAC




Probe 475
AATATGTGCATTAAA





486
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGAAACTAACA




Probe 476
CACACACTGATTGTC





487
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTCTAAGTTAATG




Probe 477
ATAGTGTGTCGATTG





488
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTGTGTCTCATCT




Probe 478
CTGAAAACTTCCGACC





489
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTAGGAAGGCAC




Probe 479
ATTCTCATCTCACT





490
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTCGTCACCCCAT




Probe 480
TAAGAGGCTCGGT





491
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTGCGTCACCCCA




Probe 481
TTAAGAGGCTAGG





492
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTCATGTCAATG




Probe 482
AGCAAAGGTATTATGA





493
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTTAGGCTCACA




Probe 483
ATATGTGCATTAAA





494
rRNA
Encoding
ATAGGAAATGGTGGTAGTGTTGACACACAC




Probe 484
ACTGATTCAGGGAG





495
rRNA
Encoding
AGGGTGTGTTTGTAAAGGGTCCTCAGTTAAT




Probe 485
GATAGTGTGTCGTTT





496
mRNA
Encoding
CGTCGGAGTGGGTTCAGTCTATCATCGCCAG




Probe 486
CGCCTTACAAAGCTCT





497
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCGGTTCGAGC




Probe 487
TGCGTTGCGGCTTCCA





498
mRNA
Encoding
GATGATGTAGTAGTAAGGGTAAGACCACGC




Probe 488
GCCAGTGCAGGTTTCA





499
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGCACGCTGCT




Probe 489
GCAACAATTGCCGGGT





500
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGTCTACGCGG




Probe 490
CGGCCTTTCAACCCTT





501
mRNA
Encoding
GATGATGTAGTAGTAAGGGTTTAACGCTGC




Probe 491
GCCAGACCTTCAACGA





502
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCAGAAGCGTC




Probe 492
GTGGCACCTACGCAGT





503
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCAGACCCACA




Probe 493
CGGCGAGCCTGTTCAA





504
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCGCACGACGC




Probe 494
ACCGCTTCGGTCAGAT





505
mRNA
Encoding
GATGATGTAGTAGTAAGGGTAAAATCCGGC




Probe 495
AGCTGACGGTCAGCAA





506
mRNA
Encoding
GATGATGTAGTAGTAAGGGTAAATCGCGCT




Probe 496
CGCTTTCCATCATGCG





507
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGAATACCCGC




Probe 497
GCCGACCATGGTATGT





508
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCTATGGGCAT




Probe 498
CGGCAAGAGCAAGCTG





509
mRNA
Encoding
GATGATGTAGTAGTAAGGGTACGTTTCAGG




Probe 499
ATGTCGGCCAGCGTGC





510
mRNA
Encoding
GATGATGTAGTAGTAAGGGTAGCATACGGA




Probe 500
CCATCGCCTCGTCGCT





511
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGCATGCAGCA




Probe 501
CCTGAATGGTACGGCG





512
mRNA
Encoding
GATGATGTAGTAGTAAGGGTTTATTGCACAT




Probe 502
GGTGGTGCAGCTCGT





513
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCTTTTGGTTGT




Probe 503
CGTGCCCGAGTGCAA





514
mRNA
Encoding
GATGATGTAGTAGTAAGGGTAACAGTAATG




Probe 504
TTGGCGGTGGTCGCCC





515
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGGTATCGGGC




Probe 505
GATTTGGATCCGCCAG





516
mRNA
Encoding
GATGATGTAGTAGTAAGGGTTCATTGCCTTG




Probe 506
TTCGGCTCGTTCGGT





517
mRNA
Encoding
GATGATGTAGTAGTAAGGGTTTGGCGCACC




Probe 507
AGATCCTGTGATGGCT





518
mRNA
Encoding
GATGATGTAGTAGTAAGGGTTACGCTTACCA




Probe 508
CACCGAGCACCAGCT





519
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCTACGTTCACG




Probe 509
CTTTCACCTCCACGC





520
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGTGCCGTTGG




Probe 510
GCCGAGGAACAGGAAT





521
mRNA
Encoding
GATGATGTAGTAGTAAGGGTCCGGCACCAA




Probe 511
CCAGACGAGACACCGA





522
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGACGACGGCG




Probe 512
ACGATCCGGTCTTCAT





523
mRNA
Encoding
GATGATGTAGTAGTAAGGGTATTCGCGATG




Probe 513
GTGCAGTTCTTGCTCC





524
mRNA
Encoding
GATGATGTAGTAGTAAGGGTGACGAAACGA




Probe 514
CGTTCCAGCGCAGCAT









Example 5. HiPR Swap

DNA exchange was used as a method to quickly, specifically, carefully replace the HiPR-FISH readout probes without disturbing encoding and/or amplifier probes. This method is referred to as HiPR-Swap.


In the HiPR-Swap method, readout and encoding probes are designed such that the “landing pad” (the region on the encoding probe to which the readout probe binds) is complementary to the readout probe. In some instances, the landing pad sequence is shorter than the readout probe. This would create a single-stranded overhang of the readout probe, as it extends past the end of the landing pad (see FIG. 8, line (2)).


After a readout probe is bound, an exchange probe can be added to the specimen. The exchange probe is constructed to be of equal length and a perfect reverse complement to the readout probe. When added, the exchange probe seeds a hybridization to the exposed area of the readout probe (see FIG. 8, line 3a). Over a short period of time the exchange probe completely hybridizes to the readout probe, thereby removing it from the encoding probe where it can be washed away. Importantly, orthogonal (non-interacting at room temperature to 42° C.) readout and exchange probes can be added simultaneously to reduce assay time (see FIG. 8, lines 3b and 3c.)


In theory, there is no limit to the number of times the assay can be performed. The maximum number of probes needed is the number of fluorescent probes observable in a single round (for example, 10) multiplied by the number of rounds. For example, if 4 rounds are performed, this will require 40 unique probes each bound with one of 10 fluorescent dyes. This would allow the target multiplexity to be (2{circumflex over ( )}(10)−1){circumflex over ( )}4=1,095,222,947,841 targets.


Advantages


Thermodynamics models can be applied to understand the extent to which probe swapping is likely to succeed. For example, the Boltzmann factor can be naively implemented to illustrate the improved likelihood of the readout-exchange probe duplex over the readout-encoding probe duplex (false assumption that the system is at equilibrium).


The probability of being in a state is given by the distribution:







P

(

ε
n

)

=


1
Z




e


-

ε
n


/

k
B


T


.






Knowing this, one can find the Boltzmann factor as the ratio of probabilities (P(readout-exchange)/P(readout-encoding)).


The Boltzmann factor for various combinations of the readout probes was determined, where the overhang can be 1 to 5 nt from the 3′ or 5′ end (yellow or blue, respectively) and found that the likelihood of being in the readout-exchange state increases dramatically as the length of the overhang increases; the Boltzmann factor can exceed 10,000×.


HiPR-Swap, in combination with other technologies, will create a FISH-based assay with the highest multiplexity yet achieved. Its application to spectral barcoding and classification, to the study of microbiomes and bacteria, and its use to profile rRNA and mRNA (and potentially other analytes) make this method an improvement over the prior art.


Example 6. HiPR-Swap

An experiment was performed where three species of bacteria (Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) were encoded with 18-24 encoding probes, with 15-nt landing pads. Each species was encoded such that they were hybridized with a single, unique bit (or dye).


The experiment was performed to (1) show the addition of exchange probes removes readout probes (and thereby fluorescence signal) and (2) following the exchange, new readout probes can be re-hybridized to the specimens without the addition of new encoding probes.


The procedure was as follows: Cells were adhered to a coverslip via evaporation. Each species of bacteria was separated from the others using a gasket. The cells were then digested with lysozyme at 37° C. for 30 minutes and washed with 1×PBS at room temperature for 15 minutes. The encoding probe hybridization and readout probe hybridization were performed in a single step. The hybridization buffer was prepared separately for each species (10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 400 nM of the readout probe, 2 uM per taxa of the encoding probes). The hybridization buffer was then added to the cells at 37° C. for 2 hours. The wash buffer (215 mM NaCl, 20 mM Tris-HCl (pH 8.0), and 5 mM EDTA) was then added to the cells at 30° C. for 15 minutes. The cells were imaged in the wash buffer. The cells were removed from the scope. The exchange buffer was then added to the cells at 37° C. and left overnight. The exchange buffer was prepared separately for each species (10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, and 2 uM of the exchange probe). The wash buffer was added to the cells at 30° C. for 15 minutes. The cells were imaged in the wash buffer. The readout buffer (prepared separately for each species: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, and 400 nM of the readout probe) was added to the cells and incubated at 37° C. for 2 hours. The wash buffer was added to the cells at 30° C. for 15 minutes. The cells were imaged in the wash buffer. The cells were removed from the scope and stored at 4° C.


As evidenced by FIG. 9, the results of the experiment showed that each species was properly encoded after the first round (“HiPR-FISH”). Further, each species had their fluorescence signal, and thus readout probes, removed with exchange probes (“Strip”), and the original signal was fully recovered (with correct encoding), with addition of readout probes after the Strip (“Swap”).


The encoding, readout, and exchange probes used in this example are shown in Table 5 below.









TABLE 5







Encoding, readout, and exchange probes used in Example 6.









SEQ ID NO:
Probe Name
Sequence












525
Encoding Probe 515
TGGAAGTTAGAGGGTCCTCAGTTAATGATAGT




GTGTCGATTG





526
Encoding Probe 516
TGGAAGTTAGAGGGTGGAGCCTTGGTTTTCCG




GATTACG





527
Encoding Probe 517
TGGAAGTTAGAGGGTGTGTCTCATCTCTGAAA




ACTTCCCAC





528
Encoding Probe 518
TGGAAGTTAGAGGGTGTCACCCCATTAAGAG




GCTCCGTG





529
Encoding Probe 519
TGGAAGTTAGAGGGTCCACGTCAATGAGCAA




AGGTAAAT





530
Encoding Probe 520
TGGAAGTTAGAGGGTGTAAGCTCACAATATGT




GCATAAA





531
Encoding Probe 521
TGGAAGTTAGAGGGTGATACACACACTGATTC




AGGCAGA





532
Encoding Probe 522
TGGAAGTTAGAGGGTAGTCTTGGTTTTCCGGA




TTTGGGA





533
Encoding Probe 523
TGGAAGTTAGAGGGTACCTCAGTTAATGATAG




TGTGTCGTTT





534
Encoding Probe 524
TGGAAGTTAGAGGGTGAGCCTTGGTTTTCCGG




ATTTCGG





535
Encoding Probe 525
TGGAAGTTAGAGGGTGTATCATCTCTGAAAAC




TTCCGACC





536
Encoding Probe 526
TGGAAGTTAGAGGGTGTGCTCAGCCTTGGTTT




TCCGCTA





537
Encoding Probe 527
TGGAAGTTAGAGGGTTGCGTCACCCCATTAAG




AGGCAGG





538
Encoding Probe 528
TGGAAGTTAGAGGGTCATGTCAATGAGCAAA




GGTATTAAGAA





539
Encoding Probe 529
TGGAAGTTAGAGGGTGTAAGCTCACAATATGT




GCATTAAA





540
Encoding Probe 530
TGGAAGTTAGAGGGTGAAACTAACACACACA




CTGATTGTC





541
Encoding Probe 531
TGGAAGTTAGAGGGTCTAAGTTAATGATAGTG




TGTCGATTG





542
Encoding Probe 532
TGGAAGTTAGAGGGTGTGTCTCATCTCTGAAA




ACTTCCGACC





543
Encoding Probe 533
TGGAAGTTAGAGGGTAGGAAGGCACATTCTC




ATCTCACT





544
Encoding Probe 534
TGGAAGTTAGAGGGTCGTCACCCCATTAAGA




GGCTCGGT





545
Encoding Probe 535
TGGAAGTTAGAGGGTGCGTCACCCCATTAAG




AGGCTAGG





546
Encoding Probe 536
TGGAAGTTAGAGGGTCATGTCAATGAGCAAA




GGTATTATGA





547
Encoding Probe 537
TGGAAGTTAGAGGGTTAGGCTCACAATATGTG




CATTAAA





548
Encoding Probe 538
TGGAAGTTAGAGGGTTGACACACACACTGATT




CAGGGAG





549
Encoding Probe 539
AGGTTGAGAATAGGAGAGGCTCAGTAGTTTT




GGATGCTCA





550
Encoding Probe 540
AGGTTGAGAATAGGAAGACGCGTCACTTACG




TGACACGGC





551
Encoding Probe 541
AGGTTGAGAATAGGAGTGGAGGTGCTGGTAA




CTAAGCTG





552
Encoding Probe 542
AGGTTGAGAATAGGACTAGTTTTATGGGATTA




GCTCCAGGA





553
Encoding Probe 543
AGGTTGAGAATAGGAGAGGAAAGTTCTCAGC




ATGTCTTC





554
Encoding Probe 544
AGGTTGAGAATAGGAACACCCATGCTCGGCA




CTTCTCCC





555
Encoding Probe 545
AGGTTGAGAATAGGACGCGGTGTTTTTCACAC




CCATACA





556
Encoding Probe 546
AGGTTGAGAATAGGATGGCCAGAGTGATACA




TGAGGGCG





557
Encoding Probe 547
AGGTTGAGAATAGGATGGCTATCTCCGAGCTT




GATTTCG





558
Encoding Probe 548
AGGTTGAGAATAGGAGGCACACAGGAAATTC




CACCAAGG





559
Encoding Probe 549
AGGTTGAGAATAGGAAAGATCCAACTTGCTG




AACCAGGA





560
Encoding Probe 550
AGGTTGAGAATAGGATGCGTCACCTAACAAG




TAGGCAGG





561
Encoding Probe 551
AGGTTGAGAATAGGACGTGTATTAACTTACTG




CCCTTCGAG





562
Encoding Probe 552
AGGTTGAGAATAGGAACAAGACAAAGTTTCT




CGTGCAGG





563
Encoding Probe 553
AGGTTGAGAATAGGAAAACTTCAAAGATCCT




TTCGCCAT





564
Encoding Probe 554
AGGTTGAGAATAGGAGCACGCTAAAATCAAT




GAAGCTATT





565
Encoding Probe 555
AGGTTGAGAATAGGACGATCTGATAGCGTGA




GGTCCCTT





566
Encoding Probe 556
AGGTTGAGAATAGGAATAATTCAGTACAAGA




TACCTAGGAAT





567
Encoding Probe 557
AGGTTGAGAATAGGAAGGCGCTGAATCCAGG




AGCAACGA





568
Encoding Probe 558
AGGTTGAGAATAGGACAAAACGCTCTATGAT




CGTCAATA





569
Encoding Probe 559
AGGTTGAGAATAGGAGCAGTGTTTTTCACACC




CATTGTGCA





570
Encoding Probe 560
AGGTTGAGAATAGGACTGCGATCGGTTTTATG




GGATATC





571
Encoding Probe 561
AGGTTGAGAATAGGAGGATCGACGTGTCTGT




CTCGCTCA





572
Encoding Probe 562
AGGTTGAGAATAGGAGGTGCAGTAACCAGAA




GTACACCT





573
Encoding Probe 563
GGTGTAGGGAGTAAAACCTCTTCGACTGGTCT




CAGCAGG





574
Encoding Probe 564
GGTGTAGGGAGTAAATGCAATCGATGAGGTT




ATTAACCTGTA





575
Encoding Probe 565
GGTGTAGGGAGTAAACATCAGTCACACCCGA




AGGTGCTAGG





576
Encoding Probe 566
GGTGTAGGGAGTAAAGCAATCGATGAGGTTA




TTAACCTGTA





577
Encoding Probe 567
GGTGTAGGGAGTAAACATCAGTCACACCCGA




AGGTGCAGG





578
Encoding Probe 568
GGTGTAGGGAGTAAAATGAGTCACACCCGAA




GGTGCTAGG





579
Encoding Probe 569
GGTGTAGGGAGTAAATCCCTTCACCTACACAC




CAGCGACG





580
Encoding Probe 570
GGTGTAGGGAGTAAATCCCTTCACCTACACAC




CAGCCAC





581
Encoding Probe 571
GGTGTAGGGAGTAAATGACCGCAACCCCGGT




GAGGGCGG





582
Encoding Probe 572
GGTGTAGGGAGTAAAAGAGACTGGTCTCAGC




TCCACGGC





583
Encoding Probe 573
GGTGTAGGGAGTAAAATGAGTCACACCCGAA




GGTGCAGG





584
Encoding Probe 574
GGTGTAGGGAGTAAATGCGTCACACCCGAAG




GTGCTAGG





585
Encoding Probe 575
GGTGTAGGGAGTAAAGTGCTCAGCCTTGATTA




TCCGCTA





586
Encoding Probe 576
GGTGTAGGGAGTAAACCACGTCAATCGATGA




GGTTAAAT





587
Encoding Probe 577
GGTGTAGGGAGTAAAAATAACCTCATCGCCTT




CCTCAGG





588
Encoding Probe 578
GGTGTAGGGAGTAAACCCACGTCAATCGATG




AGGTTTAA





589
Encoding Probe 579
GGTGTAGGGAGTAAACATCAGTCACACCCGA




AGGTGGAG





590
Encoding Probe 580
GGTGTAGGGAGTAAACCCTTCACCTACACACC




AGCGACG





4
Readout Probe 4
/5PacificGreenN/ACCCTCTAACTTCCATCACA





6
Readout Probe 6
/5Atto610N/TTTACTCCCTACACCTCCAA





8
Readout Probe 8
/5DyLight-510-LS/




TCCTATTCTCAACCTAACCT/3DyLight-510-LS/





591
Exchange Probe 1
TGTGATGGAAGTTAGAGGGT





592
Exchange Probe 2
TTGGAGGTGTAGGGAGTAAA





593
Exchange Probe 3
AGGTTAGGTTGAGAATAGGA









Example 7. Timescale Determination the Exchange Reaction in HiPR-Swap

The experiment was continued after 5 days in the same samples as described in Example 6. To determine the timescale of the exchange reaction, the reaction was performed for 1 hour.


The experiment was performed to show that the stripping of readout probes can be achieved within 1 hour, as opposed to a longer period of time, such as over 12 hours.


The procedure was as follows. The cells were removed from the 4° C. refrigerator after 5 days and imaged in the wash buffer. The cells were removed from the scope and the exchange buffer was added to the cells at 37° C. for 1 hour. The wash buffer was then added to the cells at 30° C. for 15 minutes and the cells were imaged in the wash buffer. The encoding, readout, and exchange probes used in this example are shown in Table 5.


As can be seen in FIG. 10, the experiment showed that the fluorescence signal from P. aeruginosa and K. pneumoniae did not degrade significantly after 5 days. The fluorescence signal from E. coli had degraded significantly due to rapid photobleaching and instability of the Atto-390 dye in the wash buffer (“After 5 days”). Each species had most of their readout probes removed within a span of 1 hour (“Strip—1 hr”). There is a small fluorescence signal left after 1 hour. Therefore, the whole exchange reaction can be completed within 1.5-2 hours or less.


Example 8. Recovery Of Signal With Different Readout Probes in HiPR-Swap

This experiment was performed to show the sequential repeatability of the HiPR-Swap method and continues from Example 7.


After stripping the readout probes for 1 hour, the stripping reaction was continued overnight to remove the remaining readout probes. Following this, each species was encoded with the readout probes that correspond to their respective readout pads but tagged with the same dye (Alexa-488).


The procedure was as follows. The exchange buffer was added to the cells at 37° C. and left overnight. The wash buffer was then added to the cells at 30° C. for 15 minutes and the cells were imaged in the wash buffer. The cells were removed from the scope. A readout buffer was prepared separately for each species containing one of the following probes: R4-488, R6-488, R8-488. The readout buffer was then added to the cells and incubated at 37° C. for 2 hours. The wash buffer was added to the cells at 30° C. for 15 minutes and the cells were imaged in the wash buffer.


As shown in FIG. 11, the experiment showed that the fluorescent signal was completely removed from each species (“Strip-overnight”) and the fluorescence signal was recovered with the encoded color (green, not shown) after adding the readout probes (“Swap—R #-488”).


Overall, these results demonstrate the full two cycles of HiPR-swap assay with robust removal and re-hybridization of the readout probes.


The R4-488, R6-488, R8-488 probes are shown in Table 6 below.









TABLE 6







488 Readout Probes.









SEQ ID




NO:
Probe Name
Sequence (in 5′ to 3′ order)





594
R4-488
/5Alex488N/ACCCTCTAACTTCCATCACA





595
R6-488
/5Alex488N/TTTACTCCCTACACCTCCAA





596
R8-488
/5Alex488N/TCCTATTCTCAACCTAACCT









Example 9. Single-Step Probe Exchange and New Readout Addition

As shown in Examples 6-7, the readout probes can be removed (stripped) and replaced (swapped) in two subsequent steps. As long as the second round of readout probes differs from the first set that is being removed with exchange probes, the strip and swap can be performed in a single step.


Single-step HiPR-Swap and two-step HiPR-Swap was performed on a single slide with neighboring wells. In both wells, a mixture of E. coli and P. aeruginosa cells was adhered to the surface.


Round 1: In the first round for both wells, the taxa encoding probes for both species (including EUB which will serve as a tool to segment cells for analysis) were added and readout probes only for E. coli. The encoding and readout hybridization reactions were performed in a single step. Both wells were imaged following the first round of encoding and readout.


Round 2: In round two of the single-step well, the readout probes from E. coli were stripped and swapped with the readout probes for P. aeruginosa. For the two-step well, only the readout probes were stripped from E. coli. Both wells were imaged following this hybridization step.


Round 3: In round three of the single-step well, the readout probes from P. aeruginosa were stripped and swapped with the readout probes for E. coli. For the two-step well, only the readout probes were stripped from P. aeruginosa. Both wells were imaged following this hybridization step.


The experiment was conducted as follows mixtures of cells were adhered to a coverslip via evaporation. The cells were digested with lysozyme at 37° C. for 30 minutes. The cells were washed with 1×PBS at room temperature for 15 minutes.


Round 1: The encoding probe hybridization and readout probe hybridization were performed in a single step. The hybridization buffer was prepared as follows for both the wells: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 2 uM per taxa of the encoding probes, 400 nM of the Eubacterium probe, and 400 nM of the readout probe for E. coli. The hybridization buffer was added to the cells at 37° C. for 2 hours. The wash buffer (215 mM NaCl, 20 mM Tris-HCl (pH 8.0); and 5 mM EDTA) was added to the cells at 30° C. for 15 minutes. All wells were filled in excess with 2×SSC. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSC. Then, the cells were removed from the scope. The cells were washed with wash buffer for 1 min at RT. The cells were stored overnight in the wash buffer at 4° C.


Round 2: The exchange buffers were prepared separately for each well. Well: Single Step: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 6 uM of the exchange probe for E. coli, and 400 nM of the readout probes for P. aeruginosa. Well: Two Step: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, and 6 uM of the exchange probe for E. coli.


The exchange buffers were added to the cells at 37° C. for 2 hours. The wash buffer was added to the cells at 30° C. for 15 minutes. All wells were filled in excess with 2×SSC. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSC. The cells were removed from the scope. The cells were washed with wash buffer for 1 min at RT.


Round 3: The exchange buffers were prepared separately for each well. Well: Single Step: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 6 uM of the exchange probe for P. aeruginosa, and 400 nM of the readout probes for E. coli. Well: Two Step: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, and 400 nM of the readout probes probe for P. aeruginosa. The exchange buffers were added to the cells at 37° C. for 2 hours. The wash buffer was added to the cells at 30° C. for 15 minutes. All wells were filled in excess with 2×SSC. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSC. The encoding, readout, and exchange probes used in this example are shown in Table 5.


The single-step strip and swap reaction works equally well as the two-step reaction. This enables us to perform multiple rounds of HiPR-Swap (for example, at least 3 rounds for 30 bit barcode) in less than 12 hours.


As shown in FIG. 12, with single-step condition, successful demonstration of HiPR-Swap was shown up to 3 rounds.


In single step condition, E. coli in round 1 is dimmer than the E. coli in round 3. This is likely because of the inefficient binding of readout probes to the readout pads in the first round of encoding/readout, where single step encoding and readout was used to perform HiPR-FISH. An addition of pre-hybridization incubation step before encoding/readout step can improve the binding efficiency of readout probes in round 1.


Example 10. Realtime Measurement of HiPR-Swap Using Single-Step Strip and Swap Reaction

The single step strip and swap reaction was shown to work equally well as the two-step reaction. In this example, the single-step reaction was used to measure the stripping and swapping of the probes in real time.


Single-step HiPR-Swap was performed with a mixture of E. coli and P. aeruginosa cells.


Round 1: In the first round, the taxa encoding probes were added for both species and readout probes only for E. coli. The encoding and readout hybridization reactions were performed in a single step. The cells were imaged after this hybridization step.


Round 2: In the second round, the cells were placed under the microscope. the readout probes were stripped from E. coli and swapped with the readout probes for P. aeruginosa. Images were acquired while the stripping and swapping reaction was undergoing.


The following was performed in this example. Mixture of cells were adhered to a coverslip via evaporation. The cells were digested with lysozyme at 37° C. for 30 minutes and washed with 1×PBS at room temperature for 15 minutes. The pre-hybridization buffer (10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS) was added to the cells at 37° C. for 30 mins.


Round 1: The encoding probe hybridization and readout probe hybridization were performed in a single step. The hybridization buffer (both wells; 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 2 μM per taxa of the encoding probes, and 400 nM of the readout probe for E. coli) was added to the cells at 37° C. for 2 hours. The wash buffer (215 mM NaCl, 20 mM Tris-HCl (pH 8.0); and 5 mM EDTA) was added to the cells at 30° C. for 15 minutes. The cells were placed on the microscope and imaged under the wash buffer before acquiring the timelapse.


Round 2: The wash buffer was removed and the well was filled with the exchange buffer (10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 50 nM of the exchange probe for E. coli, and 25 nM of the readout probes for P. aeruginosa) under the microscope. The timelapse was started and images were acquired at a 15 seconds interval. The encoding, readout, and exchange probes used in this example are shown in Table 5.


As shown in FIG. 13, the real time stripping and swapping of the readout probes in the mixture of two species was demonstrated.


To capture the kinetics of this reaction, the reaction was purposefully slowed down dramatically by using a very low concentration of the exchange probes (50 nM) and the readout probes (25 nM). At higher concentrations, such as 2 uM for exchange probes and 400 nM for readout probes, in here the strip and swap reactions can be completed within a few minutes.


Notably, with the addition of the pre-hybridization step, the binding efficiency of the readout probes in the first round improved dramatically, as evident from the intensity of the “before” image in timelapse.


Example 11. E. coli Encoding with 30-Bit Barcode, and Measured in 3 Rounds

To show the full potential of using HiPR-Swap towards increasing the multiplexity of HiPR-FISH related assays, including HIPR-FAST and HIPR-cycle, the ability to identify over 1 billion taxa (or other targets; 1023{circumflex over ( )}3) in about 12 hours was shown. FIG. 14 shows a schematic for this example and FIG. 15 shows an overview of HiPR-Swap as in this example.


This example was performed with E. coli bacteria bound to the coverslips in three wells. The bacteria in each well was encoded with a unique 30-bit barcode (e.g. 0110001000-0100100111-1101001000). The 30-bit experiment was performed in three rounds using HIPR-Swap, with each round containing up to 10-bits. A fourth round was added for error correction by going back to the same readouts as round 1.


Round 1: In the first round, the taxa encoding probes for bacteria were added in each well and incubated overnight. The first set of readout probes were added in each well. The cells were imaged after this hybridization step.


Round 2: In the second round, the first set of exchange probes to strip readout probes of round 1 was added, and second set of readout probes in each well. The cells were imaged after this hybridization step.


Round 3: In the third round, the second set of exchange probes to strip readout probes of round 2 was added, and third set of readout probes in each well. The cells were imaged after this hybridization step.


Round 4: In the fourth round, the third set of exchange probes to strip readout probes of round 3 were added, and first set of readout probes in each well. This was done to go back to the same sets of readout probes as used in round 1. The cells were imaged after this hybridization step.


The single step HiPR-Swap protocol was utilized as follows: cells were adhered to a coverslip via evaporation. The cells were digested with lysozyme at 37° C. for 30 minutes. The cells were washed with 1×PBS at room temperature for 15 minutes.


Round 1: The encoding buffer was prepared separately for each well as follows: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 2 μM each of encoding probes combination (C #, where #=readout probe #) as described below—

    • Well 1: C11+C13+C16+C18
    • Well 2: C12+C15+C21
    • Well 3: C13+C17+C19


      A combination of encoding probes, C #, encompasses 24 encoding probes (as shown in Table 7 below) each concatenated to readout landing pads sequences corresponding to a specific readout probe number (#). For example, Combination 11 (C11) corresponds to 24 encoding probes each concatenated to landing pad sequence 11: TTAATATGGGTAGTTGGG (SEQ ID NO.: 1810). The landing pad sequence is partially complementary to the sequence of Readout Probe 11 (SEQ ID NO.: 597).


The encoding buffer was added to the cells at 37° C. and incubated overnight. The wash buffer was prepared as 215 mM NaCl, 20 mM Tris-HCl (pH 8.0), 5 mM EDTA. The wash buffer was added to the cells at 42° C. for 15 minutes. The readout buffer was prepared as follows 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, and 400 nM each of readout probe 11, 12, 13. The readout buffer was added to the cells at 37° C. for 1 hour. The wash buffer was added to the cells at 42° C. for 15 minutes. All wells were filled in excess with 2×SSCT. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSCT. The cells were removed from the scope. The cells were washed with 2×SSC for 1 min at RT.


Round 2: The exchange buffer for round 2 was prepared as follows 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 10 uM each of exchange probe 5, 8, and 10, 400 nM each of readout probe 14-17. The exchange buffer was added to the cells at 37° C. for 1 hour. The wash buffer was added to the cells at 42° C. for 15 minutes. All wells were filled in excess with 2×SSCT. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSCT. The cells were removed from the scope. The cells were washed with 2×SSC for 1 min at RT.


Round 3: The exchange buffer for round 3 was prepared as follows: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 10 uM each of exchange probe 14, 15, 17, 18, 400 nM each of readout probe 18-21. The exchange buffer was added to the cells at 37° C. for 1 hour. The wash buffer was added to the cells at 42° C. for 15 minutes. All wells were filled in excess with 2×SSCT. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSCT. The cells were removed from the scope. The cells were washed with 2×SSC for 1 min at RT.


Round 4: The exchange buffer for round 4 was prepared as follows: 10% ethylene carbonate, 10% dextran sulfate, 2×SSC, 5×Denhardt's solution, 0.01% SDS, 10 uM each of exchange probe 24, 25, 28, 30, 400 nM each of readout probe 11, 12, and 13. The exchange buffer was added to the cells at 37° C. for 1 hour. The wash buffer was added to the cells at 42° C. for 15 minutes. All wells were filled in excess with 2×SSCT. A glass coverslip was placed on top of the wells to minimize evaporation. The cells were imaged under 2×SSCT.



FIGS. 16A-16B shows a summary of classification accuracy for this example. As shown in FIG. 17, bacteria fluorescence matches the expected barcode. In each well a mask for the most abundant barcode applied to the maximum spectral projection. Fluorescent bacteria only appear in channels corresponding to the “1” bit.


Microscopy


As indicated above, in each round, imaging using confocal microscopy (Zeiss i880 confocal microscope) with emission collected was collected on a spectral detector between roughly the excitation wavelength and 693 nm in 8.9 nm bins. A Plan-Apochromat 63×/1.4 Oil DIC M27 was used and collected data as 2000×2000 pixel images (134.95 μm×134.95 μm). The laser settings for the example were as shown in Table 6 below.









TABLE 6







Laser settings





















Pixel








Laser

Pinhole
Laser
Dwell


Excitation

Size
Power
Time
Bit
Scanning
Scanning
Master
Digital
Digital


(nm)
Laser
(nm)
(%)
(μsec)
Depth
Direction
Repeats
Gain
Offset
Gain




















488
Argon
56.0
0.5
2.1
16-bit
Bidirectional
4
800
0
1


514
Argon
58.0
1.5
2.1
16-bit
Bidirectional
4
800
0
1


561
DPSS
60.0
0.125
2.1
16-bit
Bidirectional
4
800
0
1



561-10


633
HeNe633
64.0
1.5
2.1
16-bit
Bidirectional
4
800
0
1









The encoding, readout, and exchange probes used in this example are shown in table 7 below.









TABLE 7







Encoding, readout, and exchange probes used in Example 11









SEQ ID NO:
Probe Name
Sequence (in 5′ to 3′ order)












597
Readout Probe 11
/5Alex532/CCCAACTACCCATATTAACACACCC





598
Readout Probe 12
/56-ROXN/CCCTTCTCACTAAATTCCAACACCC





599
Readout Probe 13
/5Alex647N/CACCCTCATATCTATTACCCTCCCA





600
Readout Probe 14
/5Alex488N/TCCCTCCTTACTATTACACTCACCC





601
Readout Probe 15
/5Alex532/CATCCCTCCTTATTATCCTCATCCC





602
Readout Probe 16
/5Alex546N/CCCTTCTACTACTTCCATACATCCC





603
Readout Probe 17
/56-ROXN/CCCTTCTAATCCTATACACTCACCC





604
Readout Probe 18
/5Alex488N/CCCATCTCTCTAATTCTACTCCACC





605
Readout Probe 19
/5Alex532/TCCCTCCTCTTAATACATCCTCCTC





606
Readout Probe 20
/56-ROXN/CATCCCTACTTACTTATCCTCCACC





607
Readout Probe 21
/5Alex647N/CCCTTCTCCATAACTATACCCTTCC





608
Exchange Probe 5
GGGTGTGTTAATATGGGTAGTTGGG





609
Exchange Probe 8
GGGTGTTGGAATTTAGTGAGAAGGG





610
Exchange Probe 10
TGGGAGGGTAATAGATATGAGGGTG





611
Exchange Probe 14
GGGTGAGTGTAATAGTAAGGAGGGA





612
Exchange Probe 15
GGGATGAGGATAATAAGGAGGGATG





613
Exchange Probe 17
GGGATGTATGGAAGTAGTAGAAGGG





614
Exchange Probe 18
GGGTGAGTGTATAGGATTAGAAGGG





615
Exchange Probe 24
GGTGGAGTAGAATTAGAGAGATGGG





616
Exchange Probe 25
GAGGAGGATGTATTAAGAGGAGGGA





617
Exchange Probe 28
GGTGGAGGATAAGTAAGTAGGGATG





618
Exchange Probe 30
GGAAGGGTATAGTTATGGAGAAGGG





619
Encoding Probe 581
*CCTCAGTTAATGATAGTGTGTCGATTG





620
Encoding Probe 582
*GGAGCCTTGGTTTTCCGGATTACG





621
Encoding Probe 583
*GTGTCTCATCTCTGAAAACTTCCCAC





622
Encoding Probe 584
*GTCACCCCATTAAGAGGCTCCGTG





623
Encoding Probe 585
*CCACGTCAATGAGCAAAGGTAAAT





624
Encoding Probe 586
*GTAAGCTCACAATATGTGCATAAA





625
Encoding Probe 587
*GATACACACACTGATTCAGGCAGA





626
Encoding Probe 588
*AGTCTTGGTTTTCCGGATTTGGGA





627
Encoding Probe 589
*ACCTCAGTTAATGATAGTGTGTCGTTT





628
Encoding Probe 590
*GAGCCTTGGTTTTCCGGATTTCGG





629
Encoding Probe 591
*GTATCATCTCTGAAAACTTCCGACC





630
Encoding Probe 592
*GTGCTCAGCCTTGGTTTTCCGCTA





631
Encoding Probe 593
*TGCGTCACCCCATTAAGAGGCAGG





632
Encoding Probe 594
*CATGTCAATGAGCAAAGGTATTAAGAA





633
Encoding Probe 595
*GTAAGCTCACAATATGTGCATTAAA





634
Encoding Probe 596
*GAAACTAACACACACACTGATTGTC





635
Encoding Probe 597
*CTAAGTTAATGATAGTGTGTCGATTG





636
Encoding Probe 598
*GTGTCTCATCTCTGAAAACTTCCGACC





637
Encoding Probe 599
*AGGAAGGCACATTCTCATCTCACT





638
Encoding Probe 600
*CGTCACCCCATTAAGAGGCTCGGT





639
Encoding Probe 601
*GCGTCACCCCATTAAGAGGCTAGG





640
Encoding Probe 602
*CATGTCAATGAGCAAAGGTATTATGA





641
Encoding Probe 603
*TAGGCTCACAATATGTGCATTAAA





642
Encoding Probe 604
*TGACACACACACTGATTCAGGGAG





1810
Landing Pad 11
TTAATATGGGTAGTTGGG-





1811
Landing Pad 12
GGAATTTAGTGAGAAGGG-





1812
Landing Pad 13
GTAATAGATATGAGGGTG-





1813
Landing Pad 14
TGTAATAGTAAGGAGGGA-





1814
Landing Pad 15
GGATAATAAGGAGGGATG-





1815
Landing Pad 16
ATGGAAGTAGTAGAAGGG-





1816
Landing Pad 17
TGTATAGGATTAGAAGGG-





1817
Landing Pad 18
TAGAATTAGAGAGATGGG-





1818
Landing Pad 19
ATGTATTAAGAGGAGGGA-





1819
Landing Pad 20
GATAAGTAAGTAGGGATG-





1820
Landing Pad 21
TATAGTTATGGAGAAGGG-





The asterisk (*) represents the concatenated landing pad sequence for each combination (C#). For instance, in C11, each of the encoding probes 581-604 has the sequence of landing pad 11 appended to its 3′ end. For example, Encoding Probe 581 when present in C11, would have a sequence of TTAATATGGGTAGTTGGGCCTCAGTTAATGATAGTGTGTCGATTG (SEQ ID NO: 1821) corresponding to Landing Pad 11 + Encoding Probe 581 as shown in the table. For C12, each of the encoding probes 581-604 has the sequence of landing pad 12 appended to its 3′ end, and so on. The dash (-) on each landing pad sequence represents the point of attachment to the encoding probe.






Example 12. Phylum-Level Swap in Tissue Samples

To examine the ability to perform HiPR-Swap on a tissue specimen (colon of a healthy mouse) probes were designed to perform a simple taxon identification experiment, barcoding the six most abundant bacteria phyla with either one or two readout probes, such that each readout probe was only present in one of three imaging rounds. As shown in FIG. 18, we identified each phylum targeted (Bacteroidota, Verrucomicrobia, Actinobacteria, Firmicutes, Mycoplasmatota, and Proteobacteria). The two most abundant taxa were confirmed to be Firmicutes and Bacteroidota, as expected. Taxonomy of each segmented microbe was classified the across each round of imaging, finding that it was possible to accurately identify over 90% of fluorescently labeled bacteria in each image, and deriving similar abundance measurements for taxa labeled in different rounds (e.g. roughly 50% of bacteria identified as Bacteroidota in both rounds 1 and 3).


Phylum-level swap protocol: OCT (optimal cutting temperature)-embedded formalin-fixed tissue was sectioned at 10-micron thickness onto circular glass coverslips made for Bioptechs FCS2 flow cell. The tissue was covered with 2% formaldehyde for two hours at room temperature to fix the sample. The sample was washed by removing the buffer and replacing it with 1×PBS for 5 minutes (this was repeated two more times). The fixed tissue specimen was stored in 70% ethanol at 4° C. overnight. The following buffers were prepared:

    • Encoding buffer: Encoding probes (204 per taxa); 2×sodium chloride sodium citrate (SSC), 5×Denhardt's solution, 10% dextran sulfate, 10% ethylene carbonate, and 0.01% sodium dodecyl sulfate (SDS)
    • Round 1 readout buffer: 400 nM each of readout probes: 11+13+9; 2×sodium chloride sodium citrate (SSC), 5×Denhardt's solution, 10% dextran sulfate, 10% ethylene carbonate, and 0.01% sodium dodecyl sulfate (SDS)
    • Round 2 readout buffer: 10 uM each of exchange probe: 5+10, 400 nM each of readout probes 14+16+17, 2×sodium chloride sodium citrate (SSC), 5×Denhardt's solution, 10% dextran sulfate, 10% ethylene carbonate, and 0.01% sodium dodecyl sulfate (SDS)
    • Round 3 readout buffer: 10 uM each of exchange probe: 14+17+18, 400 nM each of readout probes: 19-21, 2×sodium chloride sodium citrate (SSC), 5×Denhardt's solution, 10% dextran sulfate, 10% ethylene carbonate, 0.01% sodium dodecyl sulfate (SDS)
    • Wash buffer: 215 mM NaCl, 20 mM Tris-HCl (pH 7.5), 5 mM EDTA


Place 10 mg/mL lysozyme to completely cover the specimen and incubate for 30 minutes at 37° C. in a humidified chamber. Wash the specimen with 1×PBS for 15 minutes at room temperature. Dry the specimen by submerging it in 100% ethanol and allowing it to air dry. Place the coverslip on the FCS2 flow cell (Bioptechs) and assemble. Place the flow cell assembly on the microscope stage (Zeiss i880 confocal). Connect the flow cell input port to the Aria Automated Perfusion System (Fluigent). Calibrate the Aria Automated Perfusion System using DI water. Load encoding, readout buffers, wash buffer, 1×PBS buffer, 5×SSC+DAPI buffer (40 ng/mL DAPI in 5×SSC), and 2×SSC buffer into Aria Automated Perfusion System at the desired reservoir locations. Execute the following sequence on the Aria:

    • a. Incubate the specimen with 1×PBS at room temperature for 15 minutes.
    • b. Incubate the specimen in the Encoding buffer at 37° C. for 2 hours.
    • c. Incubate the specimen in the Wash buffer at 42° C. for 15 minutes.
    • d. Incubate the specimen in the Round 1 readout buffer at 37° C. for 1 hour.
    • e. Incubate the specimen in the Wash buffer at 42° C. for 15 minutes.
    • f. Incubate the specimen in 5×SSC+DAPI at room temperature for 15 minutes.
    • g. Flush the specimen with 2×SSC for imaging.
    • h. Perform image acquisition, exciting the specimen with 633 nm, 561 nm, 514 nm, 488 nm, and 405 nm lines and collect spectra.
    • i. Incubate the specimen in the Round 2 readout buffer at 37° C. for 1 hour.
    • j. Repeat steps e-h.
    • k. Incubate the specimen in the Round 3 readout buffer at 37° C. for 1 hour.
    • l. Repeat steps e-h.


Table 8 shows the encoding, readout, and exchange probe sequences used in this example.









TABLE 8







Encoding, readout, and exchange probe sequences used in Example 12









SEQ ID




NO:
Probe Name
Sequence (in 5′ to 3′ order)












597
Readout Probe 11
/5Alex532/CCCAACTACCCATATTAACACACCC





9
Readout Probe 9
/5Alex405N/TTCTCCCTCTATCAACTCTA





599
Readout Probe 13
/5Alex647N/CACCCTCATATCTATTACCCTCCCA





600
Readout Probe 14
/5Alex488N/TCCCTCCTTACTATTACACTCACCC





602
Readout Probe 16
/5Alex546N/CCCTTCTACTACTTCCATACATCCC





603
Readout Probe 17
/56-ROXN/CCCTTCTAATCCTATACACTCACCC





605
Readout Probe 19
/5Alex532/TCCCTCCTCTTAATACATCCTCCTC





606
Readout Probe 20
/56-ROXN/CATCCCTACTTACTTATCCTCCACC





607
Readout Probe 21
/5Alex647N/CCCTTCTCCATAACTATACCCTTCC





608
Exchange Probe 5
GGGTGTGTTAATATGGGTAGTTGGG





610
Exchange Probe 10
TGGGAGGGTAATAGATATGAGGGTG





611
Exchange Probe 14
GGGTGAGTGTAATAGTAAGGAGGGA





613
Exchange Probe 17
GGGATGTATGGAAGTAGTAGAAGGG





614
Exchange Probe 18
GGGTGAGTGTATAGGATTAGAAGGG





616
Exchange Probe 25
GAGGAGGATGTATTAAGAGGAGGGA





617
Exchange Probe 28
GGTGGAGGATAAGTAAGTAGGGATG





618
Exchange Probe 30
GGAAGGGTATAGTTATGGAGAAGGG





643
Encoding Probe 605
TTAATATGGGTAGTTGGGTGGATGCCCCTCGACT




TGCATGACA





644
Encoding Probe 606
TTAATATGGGTAGTTGGGACAGGGACCTTCCTCT




CAGAAAGG





645
Encoding Probe 607
TTAATATGGGTAGTTGGGCGTGAGTTAGCCGAT




GCTTTTAGA





646
Encoding Probe 608
TTAATATGGGTAGTTGGGCATCTGCCTTCGCAAT




CGGAGAAG





647
Encoding Probe 609
TTAATATGGGTAGTTGGGTCCCCTCGCGTATCAT




CGAATATT





648
Encoding Probe 610
TTAATATGGGTAGTTGGGCCCTGCGCTCGTTATG




GCACTATT





649
Encoding Probe 611
TTAATATGGGTAGTTGGGTGTACTGATGCGCGAT




TACTAGGCT





650
Encoding Probe 612
TTAATATGGGTAGTTGGGTGGCGGCTTCCATGGC




TTGACCCC





651
Encoding Probe 613
TTAATATGGGTAGTTGGGTGCTTGCATGTGTTAA




GCCTGTGCG





652
Encoding Probe 614
TTAATATGGGTAGTTGGGCCCACCTTCCTCTCAG




AACCCGAT





653
Encoding Probe 615
GATAAGTAAGTAGGGATGGGATGCCCCTCGACT




TGCATGACA





654
Encoding Probe 616
GATAAGTAAGTAGGGATGACAGGGACCTTCCTC




TCAGAAAGG





655
Encoding Probe 617
GATAAGTAAGTAGGGATGCGTGAGTTAGCCGAT




GCTTTTAGA





656
Encoding Probe 618
GATAAGTAAGTAGGGATGCATCTGCCTTCGCAA




TCGGAGAAG





657
Encoding Probe 619
GATAAGTAAGTAGGGATGTCCCCTCGCGTATCA




TCGAATATT





658
Encoding Probe 620
GATAAGTAAGTAGGGATGCCCTGCGCTCGTTAT




GGCACTATT





659
Encoding Probe 621
GATAAGTAAGTAGGGATGGTACTGATGCGCGAT




TACTAGGCT





660
Encoding Probe 622
GATAAGTAAGTAGGGATGTGGCGGCTTCCATGG




CTTGACCCC





661
Encoding Probe 623
GATAAGTAAGTAGGGATGGCTTGCATGTGTTAA




GCCTGTGCG





662
Encoding Probe 624
GATAAGTAAGTAGGGATGCCCACCTTCCTCTCA




GAACCCGAT





663
Encoding Probe 625
ATGGAAGTAGTAGAAGGGTCCCAGGTTGGTCAC




GTGTTAGAG





664
Encoding Probe 626
ATGGAAGTAGTAGAAGGGTGGACCTACTACCTA




ATGGGCCCGC





665
Encoding Probe 627
ATGGAAGTAGTAGAAGGGTGAACTGCTGAAAGC




GGTTTACTTG





666
Encoding Probe 628
ATGGAAGTAGTAGAAGGGAAGGATATCTGCGCA




TTCCACGCG





667
Encoding Probe 629
ATGGAAGTAGTAGAAGGGTAATTTGAGTTTTAG




CCTTGCCCG





668
Encoding Probe 630
ATGGAAGTAGTAGAAGGGTGAATGCTGGCAACA




CGGGACTCC





669
Encoding Probe 631
ATGGAAGTAGTAGAAGGGCCGCGGGTGCAGAC




GACTCGGCAC





670
Encoding Probe 632
ATGGAAGTAGTAGAAGGGTGGAACCCTCCACAC




CTTCGACCGG





671
Encoding Probe 633
ATGGAAGTAGTAGAAGGGCCCAGGTTGGTCACG




TGTTACAGT





672
Encoding Probe 634
ATGGAAGTAGTAGAAGGGTGGACTACTACCTAA




TGGGCCGGCT





673
Encoding Probe 635
TAGAATTAGAGAGATGGGTCCCAGGTTGGTCAC




GTGTTAGAG





674
Encoding Probe 636
TAGAATTAGAGAGATGGGTGGACCTACTACCTA




ATGGGCCCGC





675
Encoding Probe 637
TAGAATTAGAGAGATGGGTGAACTGCTGAAAGC




GGTTTACTTG





676
Encoding Probe 638
TAGAATTAGAGAGATGGGAAGGATATCTGCGCA




TTCCACGCG





677
Encoding Probe 639
TAGAATTAGAGAGATGGGTAATTTGAGTTTTAG




CCTTGCCCG





678
Encoding Probe 640
TAGAATTAGAGAGATGGGTGAATGCTGGCAACA




CGGGACTCC





679
Encoding Probe 641
TAGAATTAGAGAGATGGGCCGCGGGTGCAGACG




ACTCGGCAC





680
Encoding Probe 642
TAGAATTAGAGAGATGGGTGGAACCCTCCACAC




CTTCGACCGG





681
Encoding Probe 643
TAGAATTAGAGAGATGGGCCCAGGTTGGTCACG




TGTTACAGT





682
Encoding Probe 644
TAGAATTAGAGAGATGGGTGGACTACTACCTAA




TGGGCCGGCT





683
Encoding Probe 645
GGAATTTAGTGAGAAGGGTTATTCGATACTATG




CGGTATTTTA





684
Encoding Probe 646
GGAATTTAGTGAGAAGGGCAACCCCATTGTGAA




TGATTCTGCT





685
Encoding Probe 647
GGAATTTAGTGAGAAGGGTGGACCATTACTCTA




GTCTCGCTCA





686
Encoding Probe 648
GGAATTTAGTGAGAAGGGCACCCTCTCGATATC




TACGCAAAA





687
Encoding Probe 649
GGAATTTAGTGAGAAGGGTGCGCCGAAGAGTCG




CATGCTTAGT





688
Encoding Probe 650
GGAATTTAGTGAGAAGGGTGGAGGCATAAGGGC




CATACTGTGG





689
Encoding Probe 651
GGAATTTAGTGAGAAGGGCGCTGGCTTCAGATA




CTTCGGCAC





690
Encoding Probe 652
GGAATTTAGTGAGAAGGGTGGTTACCAGTCTCA




CCTTAGGTGG





691
Encoding Probe 653
GGAATTTAGTGAGAAGGGTTATTCGATACTATG




CGGTATTATAG





692
Encoding Probe 654
GGAATTTAGTGAGAAGGGAAACCCATTGTGAAT




GATTCTCCTG





693
Encoding Probe 655
TGTAATAGTAAGGAGGGATTATTCGATACTATG




CGGTATTTTA





694
Encoding Probe 656
TGTAATAGTAAGGAGGGACAACCCCATTGTGAA




TGATTCTGCT





695
Encoding Probe 657
TGTAATAGTAAGGAGGGAGGACCATTACTCTAG




TCTCGCTCA





696
Encoding Probe 658
TGTAATAGTAAGGAGGGACACCCTCTCGATATC




TACGCAAAA





697
Encoding Probe 659
TGTAATAGTAAGGAGGGAGCGCCGAAGAGTCGC




ATGCTTAGT





698
Encoding Probe 660
TGTAATAGTAAGGAGGGAGGAGGCATAAGGGC




CATACTGTGG





699
Encoding Probe 661
TGTAATAGTAAGGAGGGACGCTGGCTTCAGATA




CTTCGGCAC





700
Encoding Probe 662
TGTAATAGTAAGGAGGGAGGTTACCAGTCTCAC




CTTAGGTGG





701
Encoding Probe 663
TGTAATAGTAAGGAGGGATTATTCGATACTATG




CGGTATTATAG





702
Encoding Probe 664
TGTAATAGTAAGGAGGGAAAACCCATTGTGAAT




GATTCTCCTG





703
Encoding Probe 665
GTAATAGATATGAGGGTGTAGCGCGTTACTCAC




CCGTCCCGG





704
Encoding Probe 666
GTAATAGATATGAGGGTGAACGAAGATTCCCTA




CTGCTGGGA





705
Encoding Probe 667
GTAATAGATATGAGGGTGGCGGCCACCTACGTA




TTACCGGCC





706
Encoding Probe 668
GTAATAGATATGAGGGTGAAGCGCTACACTAGG




AATTCCCGA





707
Encoding Probe 669
GTAATAGATATGAGGGTGGCGTGCTTCGAATTA




AACCACTAC





708
Encoding Probe 670
GTAATAGATATGAGGGTGAACGGACTTAACCCA




ACATCTGTG





709
Encoding Probe 671
GTAATAGATATGAGGGTGGGTCATTGTAGCACG




TGTGTACGG





710
Encoding Probe 672
GTAATAGATATGAGGGTGTGTCTCTCATGGTGTG




ACGGGACC





711
Encoding Probe 673
GTAATAGATATGAGGGTGACGACGCGTTACTCA




CCCGTCGCG





712
Encoding Probe 674
GTAATAGATATGAGGGTGCAACCCTCTCAGGTC




GGCTACCGT





713
Encoding Probe 675
ATGTATTAAGAGGAGGGATAGCGCGTTACTCAC




CCGTCCCGG





714
Encoding Probe 676
ATGTATTAAGAGGAGGGAAACGAAGATTCCCTA




CTGCTGGGA





715
Encoding Probe 677
ATGTATTAAGAGGAGGGAGCGGCCACCTACGTA




TTACCGGCC





716
Encoding Probe 678
ATGTATTAAGAGGAGGGAAAGCGCTACACTAGG




AATTCCCGA





717
Encoding Probe 679
ATGTATTAAGAGGAGGGAGCGTGCTTCGAATTA




AACCACTAC





718
Encoding Probe 680
ATGTATTAAGAGGAGGGAAACGGACTTAACCCA




ACATCTGTG





719
Encoding Probe 681
ATGTATTAAGAGGAGGGAGGTCATTGTAGCACG




TGTGTACGG





720
Encoding Probe 682
ATGTATTAAGAGGAGGGATGTCTCTCATGGTGT




GACGGGACC





721
Encoding Probe 683
ATGTATTAAGAGGAGGGAACGACGCGTTACTCA




CCCGTCGCG





722
Encoding Probe 684
ATGTATTAAGAGGAGGGACAACCCTCTCAGGTC




GGCTACCGT





723
Encoding Probe 685
GGTAATTGAGTAGAAGGGTGTCCCCTCCTTAAG




CAGATCTGAG





724
Encoding Probe 686
GGTAATTGAGTAGAAGGGTGTACGAATAACTTC




TTCGTTCAGCG





725
Encoding Probe 687
GGTAATTGAGTAGAAGGGTCTTACTATGCCATCT




ACGCAAGG





726
Encoding Probe 688
GGTAATTGAGTAGAAGGGTGACCTCTGTCATAC




TCTAGCTAAC





727
Encoding Probe 689
GGTAATTGAGTAGAAGGGTGTGCCTGTATGCAC




GCTATCCAGG





728
Encoding Probe 690
GGTAATTGAGTAGAAGGGCGAGGTCATATAGGG




CATGATGTAA





729
Encoding Probe 691
GGTAATTGAGTAGAAGGGTGCTCCATCTTCATG




AAGTCGACAA





730
Encoding Probe 692
GGTAATTGAGTAGAAGGGTGCTCCCTCTTTCGTT




AGGCCTGG





731
Encoding Probe 693
GGTAATTGAGTAGAAGGGCGACCTCGTCTTAAG




GGTAGGAAT





732
Encoding Probe 694
GGTAATTGAGTAGAAGGGTGTACGAATAACTTC




TTCGTTCTGC





733
Encoding Probe 695
TTGTAAAATAGGGAGGGAGTCCCCTCCTTAAGC




AGATCTGAG





734
Encoding Probe 696
TTGTAAAATAGGGAGGGAGTACGAATAACTTCT




TCGTTCAGCG





735
Encoding Probe 697
TTGTAAAATAGGGAGGGATCTTACTATGCCATCT




ACGCAAGG





736
Encoding Probe 698
TTGTAAAATAGGGAGGGATGACCTCTGTCATAC




TCTAGCTAAC





737
Encoding Probe 699
TTGTAAAATAGGGAGGGAGTGCCTGTATGCACG




CTATCCAGG





738
Encoding Probe 700
TTGTAAAATAGGGAGGGACGAGGTCATATAGGG




CATGATGTAA





739
Encoding Probe 701
TTGTAAAATAGGGAGGGAGCTCCATCTTCATGA




AGTCGACAA





740
Encoding Probe 702
TTGTAAAATAGGGAGGGATGCTCCCTCTTTCGTT




AGGCCTGG





741
Encoding Probe 703
TTGTAAAATAGGGAGGGACGACCTCGTCTTAAG




GGTAGGAAT





742
Encoding Probe 704
TTGTAAAATAGGGAGGGATGTACGAATAACTTC




TTCGTTCTGC





743
Encoding Probe 705
TGTATAGGATTAGAAGGGACACCCACGAGCGGA




CACGTTGGC





744
Encoding Probe 706
TGTATAGGATTAGAAGGGTGTGGGAATAGCTGG




ATCAGGCAAC





745
Encoding Probe 707
TGTATAGGATTAGAAGGGCAACCGGTGCTTATT




CTTAGAGATG





746
Encoding Probe 708
TGTATAGGATTAGAAGGGTGTGCCCTCTGACAC




ACTCTAGAGC





747
Encoding Probe 709
TGTATAGGATTAGAAGGGAATAGAGCTTCCTGA




CATGTCTTC





748
Encoding Probe 710
TGTATAGGATTAGAAGGGTGGATCGTAGCAACT




AGTGACATCC





749
Encoding Probe 711
TGTATAGGATTAGAAGGGTGACATCCGGACTAC




GATCGGTAAA





750
Encoding Probe 712
TGTATAGGATTAGAAGGGCCAGGCTAACGACTT




CTGGTATTG





751
Encoding Probe 713
TGTATAGGATTAGAAGGGAACCCCCACGAGCGG




ACACGTAGG





752
Encoding Probe 714
TGTATAGGATTAGAAGGGTGCGAATAGCTGGAT




CAGGCTTCGC





753
Encoding Probe 715
TATAGTTATGGAGAAGGGACACCCACGAGCGGA




CACGTTGGC





754
Encoding Probe 716
TATAGTTATGGAGAAGGGTGTGGGAATAGCTGG




ATCAGGCAAC





755
Encoding Probe 717
TATAGTTATGGAGAAGGGCAACCGGTGCTTATT




CTTAGAGATG





756
Encoding Probe 718
TATAGTTATGGAGAAGGGTGTGCCCTCTGACAC




ACTCTAGAGC





757
Encoding Probe 719
TATAGTTATGGAGAAGGGAATAGAGCTTCCTGA




CATGTCTTC





758
Encoding Probe 720
TATAGTTATGGAGAAGGGTGGATCGTAGCAACT




AGTGACATCC





759
Encoding Probe 721
TATAGTTATGGAGAAGGGTGACATCCGGACTAC




GATCGGTAAA





760
Encoding Probe 722
TATAGTTATGGAGAAGGGCCAGGCTAACGACTT




CTGGTATTG





761
Encoding Probe 723
TATAGTTATGGAGAAGGGAACCCCCACGAGCGG




ACACGTAGG





762
Encoding Probe 724
TATAGTTATGGAGAAGGGTGCGAATAGCTGGAT




CAGGCTTCGC









Example 13. Species-Level Swap in Tissue Samples

To extend the ability to perform HiPR-Swap at the phylum level on a tissue specimen (colon of a healthy mouse) to the species level probes to perform a simple taxon identification experiment were designed, barcoding the sixty-five most abundant species in healthy mouse stool (measured internally by PacBio 16S long-read sequencing). As shown in FIG. 19, we were able to identified several dozen species. Signal exchange correctly matched expectations for taxa present in the encoding panel.


Species-level swap protocol: OCT-embedded formalin-fixed tissue was sectioned at 10-micron thickness onto circular glass coverslips made for Bioptechs FCS2 flow cell. The tissue was covered with 2% formaldehyde for two hours at room temperature to fix the sample. The sample was washed by removing the buffer and replacing it with 1×PBS for 5 minutes (this was repeated two more times). The fixed tissue specimen was stored in 70% ethanol at 4° C. overnight. The following buffers were prepared:

    • Encoding buffer: Encoding probes (100 nM of each encoding probe in complex pool, 5 nM of blocking probes in the complex probe pool+EUB at 1 μM); 2× sodium chloride sodium citrate (SSC); 5×Denhardt's solution; 10% dextran sulfate; 10% ethylene carbonate; and 0.01% sodium dodecyl sulfate (SDS)
    • Round 1 readout buffer: 400 nM each of readout probes: 21, 11, 22, 12, 13, and 9; 2× sodium chloride sodium citrate (SSC); 5×Denhardt's solution; 10% dextran sulfate; 10% ethylene carbonate; and 0.01% sodium dodecyl sulfate (SDS)
    • Round 2 readout buffer: 10 μM each of exchange probe: 4-5, 7-8, and 10; 400 nM each of readout probes: 14, 24, 16, 17, and 23; 2× sodium chloride sodium citrate (SSC); 5×Denhardt's solution; 10% dextran sulfate; 10% ethylene carbonate; and 0.01% sodium dodecyl sulfate (SDS)
    • Round 3 readout buffer: 10 μM each of exchange probe: 14, 21, 17-18, and 20; 400 nM each of readout probes: 18, 19, 25, 20, and 21; 2× sodium chloride sodium citrate (SSC); 5×Denhardt's solution; 10% dextran sulfate; 10% ethylene carbonate; 0.01% sodium dodecyl sulfate (SDS)
    • Wash buffer: 215 mM NaCl; 20 mM Tris-HCl (pH 7.5); and 5 mM EDTA


Place 10 mg/mL lysozyme to completely cover the specimen and incubate for 30 minutes at 37° C. in a humidified chamber. Wash the specimen with 1×PBS for 15 minutes at room temperature. Dry the specimen by submerging it in 100% ethanol and allowing it to air dry. Place the coverslip on the FCS2 flow cell (Bioptechs) and assemble. Place the flow cell assembly on the microscope stage (Zeiss i880 confocal). Connect the flow cell input port to the Aria Automated Perfusion System (Fluigent). Calibrate the Aria Automated Perfusion System using DI water. Load encoding, readout buffers, wash buffer, 1×PBS buffer, 5×SSC+DAPI buffer (40 ng/mL DAPI in 5×SSC), and 2×SSC buffer into Aria Automated Perfusion System at the desired reservoir locations. Execute the following sequence on the Aria:

    • a. Incubate the specimen with 1×PBS at room temperature for 15 minutes.
    • b. Incubate the specimen in the Encoding buffer at 37° C. for 2 hours.
    • c. Incubate the specimen in the Wash buffer at 42° C. for 15 minutes.
    • d. Incubate the specimen in the Round 1 readout buffer at 37° C. for 1 hour.
    • e. Incubate the specimen in the Wash buffer at 42° C. for 15 minutes.
    • f. Incubate the specimen in 5×SSC+DAPI at room temperature for 15 minutes.
    • g. Flush the specimen with 2×SSC for imaging.
    • h. Perform image acquisition, exciting the specimen with 633 nm, 561 nm, 514 nm, 488 nm, and 405 nm lines and collect spectra.
    • i. Incubate the specimen in the Round 2 readout buffer at 37° C. for 1 hour.
    • j. Repeat steps e-h.
    • k. Incubate the specimen in the Round 3 readout buffer at 37° C. for 1 hour.
    • l. Repeat steps e-h.


Table 9 shows the encoding, readout, and exchange probe sequences used in this example.









TABLE 9







Encoding, readout, and exchange probe sequences used in Example 13









SEQ ID




NO:
Probe Name
Sequence (in 5′ to 3′ order)












763
Readout Probe
/5Alex488N/CCCTTCTACTCAATTACCTCATCCC



21






597
Readout Probe
/5Alex532/CCCAACTACCCATATTAACACACCC



11






764
Readout Probe
/5Alex546N/CCCATCTCACTATCTTATCACCCAC



22






598
Readout Probe
/56-ROXN/CCCTTCTCACTAAATTCCAACACCC



12






9
Readout Probe
/5Alex405N/TTCTCCCTCTATCAACTCTA



9






599
Readout Probe
/5Alex647N/CACCCTCATATCTATTACCCTCCCA



13






600
Readout Probe
/5Alex488N/TCCCTCCTTACTATTACACTCACCC



14






602
Readout Probe
/5Alex546N/CCCTTCTACTACTTCCATACATCCC



16






603
Readout Probe
/56-ROXN/CCCTTCTAATCCTATACACTCACCC



17






765
Readout Probe
/5Alex647N/CCCACTCAACATATCATTCCACCAC



23






766
Readout Probe
/5Alex532/CCCAACTATACTCTATCCTCCATCC



24






604
Readout Probe
/5Alex488N/CCCATCTCTCTAATTCTACTCCACC



18






605
Readout Probe
/5Alex532/TCCCTCCTCTTAATACATCCTCCTC



19






767
Readout Probe
/5Alex546N/CCTCACCCTAATAATACTCCAACCC



25






606
Readout Probe
/56-ROXN/CATCCCTACTTACTTATCCTCCACC



20






607
Readout Probe
/5Alex647N/CCCTTCTCCATAACTATACCCTTCC



21






768
Exchange
GGGATGAGGTAATTGAGTAGAAGGG



Probe 4






608
Exchange
GGGTGTGTTAATATGGGTAGTTGGG



Probe 5






769
Exchange
GTGGGTGATAAGATAGTGAGATGGG



Probe 7






609
Exchange
GGGTGTTGGAATTTAGTGAGAAGGG



Probe 8






610
Exchange
TGGGAGGGTAATAGATATGAGGGTG



Probe 10






611
Exchange
GGGTGAGTGTAATAGTAAGGAGGGA



Probe 14






613
Exchange
GGGATGTATGGAAGTAGTAGAAGGG



Probe 17






614
Exchange
GGGTGAGTGTATAGGATTAGAAGGG



Probe 18






770
Exchange
GTGGTGGAATGATATGTTGAGTGGG



Probe 20






771
Exchange
GGATGGAGGATAGAGTATAGTTGGG



Probe 21






772
Encoding
GTAATAGATATGAGGGTGCGGAGCGTCAGTAGGGC



Probe 725
GCCGCATTGGGAGGGTAATAGATAT





773
Encoding
GTAATAGATATGAGGGTGCGCACGCGGTATTAGACG



Probe 726
GAATTTGAATGGGAGGGTAATAGATAT





774
Encoding
GTAATAGATATGAGGGTGGACCCCCCGCTGCCCCTC



Probe 727
GACAACTGGGAGGGTAATAGATAT





775
Encoding
GTAATAGATATGAGGGTGCGCACGCGGTATTAGACG



Probe 728
GAATTAGATGGGAGGGTAATAGATAT





776
Encoding
GTAATAGATATGAGGGTGAATCCGCCGACTAGCTAA



Probe 729
TGCCGGTGGGAGGGTAATAGATAT





777
Encoding
GTAATAGATATGAGGGTGCGTCTTGCTCCCCGGCAA



Probe 730
AAGTCCTGGGAGGGTAATAGATAT





778
Encoding
GTAATAGATATGAGGGTGGACCCCCCGCTGCCCCTC



Probe 731
GACTACGTGGGAGGGTAATAGATAT





779
Encoding
GTAATAGATATGAGGGTGATGCGCCGACTAGCTAAT



Probe 732
GCGGGCTGGGAGGGTAATAGATAT





780
Encoding
ATGTATTAAGAGGAGGGACGGAGCGTCAGTAGGGC



Probe 733
GCCGCATGAGGAGGATGTATTAAGA





781
Encoding
ATGTATTAAGAGGAGGGACGCACGCGGTATTAGACG



Probe 734
GAATTTGAAGAGGAGGATGTATTAAGA





782
Encoding
ATGTATTAAGAGGAGGGAGACCCCCCGCTGCCCCTC



Probe 735
GACAACGAGGAGGATGTATTAAGA





783
Encoding
ATGTATTAAGAGGAGGGACGCACGCGGTATTAGACG



Probe 736
GAATTAGAGAGGAGGATGTATTAAGA





784
Encoding
ATGTATTAAGAGGAGGGAAATCCGCCGACTAGCTAA



Probe 737
TGCCGGGAGGAGGATGTATTAAGA





785
Encoding
ATGTATTAAGAGGAGGGACGTCTTGCTCCCCGGCAA



Probe 738
AAGTCCGAGGAGGATGTATTAAGA





786
Encoding
ATGTATTAAGAGGAGGGAGACCCCCCGCTGCCCCTC



Probe 739
GACTACGGAGGAGGATGTATTAAGA





787
Encoding
ATGTATTAAGAGGAGGGAATGCGCCGACTAGCTAAT



Probe 740
GCGGGCGAGGAGGATGTATTAAGA





788
Encoding
TGTAATAGTAAGGAGGGAGGCGTTAAGCCCCGGCAT



Probe 741
TTCTGAGGGTGAGTGTAATAGTAA





789
Encoding
TGTAATAGTAAGGAGGGACCACCCAACACCTAGTAA



Probe 742
TCATGCAGGGTGAGTGTAATAGTAA





790
Encoding
TGTAATAGTAAGGAGGGACTTGAAAGTGACTTTGCT



Probe 743
CACAGCGGGTGAGTGTAATAGTAA





791
Encoding
TGTAATAGTAAGGAGGGAGCAGTAGCCCTGATCATA



Probe 744
AGGCCGTGGGTGAGTGTAATAGTAA





792
Encoding
TGTAATAGTAAGGAGGGACCTCATCGTATACCACCA



Probe 745
GAGTAAAGGGTGAGTGTAATAGTAA





793
Encoding
TGTAATAGTAAGGAGGGAAGATGCACTCTAGCTGCA



Probe 746
CAGAAAGGGTGAGTGTAATAGTAA





794
Encoding
TGTAATAGTAAGGAGGGAGAGCTGCACTCTAGCTGC



Probe 747
ACACAAGGGTGAGTGTAATAGTAA





795
Encoding
TGTAATAGTAAGGAGGGACCTCATCGTATACCACCA



Probe 748
GAGAAAGGGTGAGTGTAATAGTAA





796
Encoding
TATAGTTATGGAGAAGGGTGGCGTTAAGCCCCGGCA



Probe 749
TTTCTGAGGAAGGGTATAGTTATGG





797
Encoding
TATAGTTATGGAGAAGGGCCACCCAACACCTAGTAA



Probe 750
TCATGCAGGAAGGGTATAGTTATGG





798
Encoding
TATAGTTATGGAGAAGGGCTTGAAAGTGACTTTGCT



Probe 751
CACAGCGGAAGGGTATAGTTATGG





799
Encoding
TATAGTTATGGAGAAGGGTGCAGTAGCCCTGATCAT



Probe 752
AAGGCCGGGAAGGGTATAGTTATGG





800
Encoding
TATAGTTATGGAGAAGGGCCTCATCGTATACCACCA



Probe 753
GAGTAAAGGAAGGGTATAGTTATGG





801
Encoding
TATAGTTATGGAGAAGGGAGATGCACTCTAGCTGCA



Probe 754
CAGAAAGGAAGGGTATAGTTATGG





802
Encoding
TATAGTTATGGAGAAGGGTGAGCTGCACTCTAGCTG



Probe 755
CACACAAGGAAGGGTATAGTTATGG





803
Encoding
TATAGTTATGGAGAAGGGCCTCATCGTATACCACCA



Probe 756
GAGAAAGGAAGGGTATAGTTATGG





804
Encoding
TTAATATGGGTAGTTGGGTGGAGAAAGGCAGGTTCC



Probe 757
TCACCGCGGGTGTGTTAATATGGGT





805
Encoding
TTAATATGGGTAGTTGGGTTCGTACCGTCTTCTGCTC



Probe 758
TTAGGTGGGTGTGTTAATATGGGT





806
Encoding
TTAATATGGGTAGTTGGGTCCCCGTCTTCTGCTCTTC



Probe 759
CCGGAGGGTGTGTTAATATGGGT





807
Encoding
TTAATATGGGTAGTTGGGTGGAGAAAGGCAGGTTCC



Probe 760
TCACGGCAGGGTGTGTTAATATGGGT





808
Encoding
TTAATATGGGTAGTTGGGATTCACATAATCCACCGC



Probe 761
TTGACGTGGGTGTGTTAATATGGGT





809
Encoding
TTAATATGGGTAGTTGGGCCCTCAGTCCCCGCACAC



Probe 762
CTACATGGGTGTGTTAATATGGGT





810
Encoding
TTAATATGGGTAGTTGGGTCTAACAGTTTCAAATGC



Probe 763
AGTTGTGTGGGTGTGTTAATATGGGT





811
Encoding
TTAATATGGGTAGTTGGGTGGAGGATTTCACATCTG



Probe 764
ACTTGTAAGTGGGTGTGTTAATATGGGT





812
Encoding
AATGATATGTTGAGTGGGTGGAGAAAGGCAGGTTCC



Probe 765
TCACCGCGTGGTGGAATGATATGTT





813
Encoding
AATGATATGTTGAGTGGGTTCGTACCGTCTTCTGCTC



Probe 766
TTAGGGTGGTGGAATGATATGTT





814
Encoding
AATGATATGTTGAGTGGGTCCCCGTCTTCTGCTCTTC



Probe 767
CCGGAGTGGTGGAATGATATGTT





815
Encoding
AATGATATGTTGAGTGGGTGGAGAAAGGCAGGTTCC



Probe 768
TCACGGCAGTGGTGGAATGATATGTT





816
Encoding
AATGATATGTTGAGTGGGATTCACATAATCCACCGC



Probe 769
TTGACGGTGGTGGAATGATATGTT





817
Encoding
AATGATATGTTGAGTGGGCCCTCAGTCCCCGCACAC



Probe 770
CTACATGTGGTGGAATGATATGTT





818
Encoding
AATGATATGTTGAGTGGGTCTAACAGTTTCAAATGC



Probe 771
AGTTGTGGTGGTGGAATGATATGTT





819
Encoding
AATGATATGTTGAGTGGGTGGAGGATTTCACATCTG



Probe 772
ACTTGTAAGGTGGTGGAATGATATGTT





820
Encoding
TGTATAGGATTAGAAGGGTGAGAGAACCCCTAGACA



Probe 773
TCGTGCGTGGGTGAGTGTATAGGATT





821
Encoding
TGTATAGGATTAGAAGGGACGCAGCGTCAGTTGGGC



Probe 774
GCCGCATGGGTGAGTGTATAGGATT





822
Encoding
TGTATAGGATTAGAAGGGATGAACGCTTTCGCTGTG



Probe 775
CCAAGGTGGGTGAGTGTATAGGATT





823
Encoding
TGTATAGGATTAGAAGGGTGGCAGTCTCGACAGAGT



Probe 776
CCTCTCGTGGGTGAGTGTATAGGATT





824
Encoding
TGTATAGGATTAGAAGGGACGGTGTTAGGCCTGTCG



Probe 777
CTACGCGGGTGAGTGTATAGGATT





825
Encoding
TGTATAGGATTAGAAGGGCGTTGTTAGGCCTGTCGC



Probe 778
TAGGCAGGGTGAGTGTATAGGATT





826
Encoding
TGTATAGGATTAGAAGGGCGGCTAGCTAATGTCACG



Probe 779
CATCGGTGGGTGAGTGTATAGGATT





827
Encoding
TGTATAGGATTAGAAGGGATGCTCGCCCACTCAAGA



Probe 780
CCGAGTGGGTGAGTGTATAGGATT





828
Encoding
TAGAATTAGAGAGATGGGTGAGAGAACCCCTAGAC



Probe 781
ATCGTGCGGGTGGAGTAGAATTAGAG





829
Encoding
TAGAATTAGAGAGATGGGACGCAGCGTCAGTTGGGC



Probe 782
GCCGCATGGTGGAGTAGAATTAGAG





830
Encoding
TAGAATTAGAGAGATGGGATGAACGCTTTCGCTGTG



Probe 783
CCAAGGTGGTGGAGTAGAATTAGAG





831
Encoding
TAGAATTAGAGAGATGGGTGGCAGTCTCGACAGAGT



Probe 784
CCTCTCGGGTGGAGTAGAATTAGAG





832
Encoding
TAGAATTAGAGAGATGGGACGGTGTTAGGCCTGTCG



Probe 785
CTACGCGGTGGAGTAGAATTAGAG





833
Encoding
TAGAATTAGAGAGATGGGCGTTGTTAGGCCTGTCGC



Probe 786
TAGGCAGGTGGAGTAGAATTAGAG





834
Encoding
TAGAATTAGAGAGATGGGCGGCTAGCTAATGTCACG



Probe 787
CATCGGTGGTGGAGTAGAATTAGAG





835
Encoding
TAGAATTAGAGAGATGGGATGCTCGCCCACTCAAGA



Probe 788
CCGAGTGGTGGAGTAGAATTAGAG





836
Encoding
GGAATTTAGTGAGAAGGGACGTGAAACTATACCATC



Probe 789
GGGTTAAGGGTGTTGGAATTTAGTG





837
Encoding
GGAATTTAGTGAGAAGGGTAGGCGGTGAAACTATAC



Probe 790
CATGCCGGGTGTTGGAATTTAGTG





838
Encoding
GGAATTTAGTGAGAAGGGTGTAAAAATGGTATGCAT



Probe 791
ACCAAAGAAGGGTGTTGGAATTTAGTG





839
Encoding
GGAATTTAGTGAGAAGGGTTTGGTATGCATACCAAA



Probe 792
CTTTAAAGTGGGTGTTGGAATTTAGTG





840
Encoding
GGAATTTAGTGAGAAGGGTACGTGAAACTATACCAT



Probe 793
CGGGATAGGGTGTTGGAATTTAGTG





841
Encoding
GGAATTTAGTGAGAAGGGTGTATGGTATGCATACCA



Probe 794
AACTAATGGGTGTTGGAATTTAGTG





842
Encoding
GGAATTTAGTGAGAAGGGCGCGAAACTATACCATCG



Probe 795
GGTAAATGGGTGTTGGAATTTAGTG





843
Encoding
GGAATTTAGTGAGAAGGGCATTACAAAATGGTATGC



Probe 796
ATACCTTTGGGTGTTGGAATTTAGTG





844
Encoding
GGATAGAGTATAGTTGGGACGTGAAACTATACCATC



Probe 797
GGGTTAAGGATGGAGGATAGAGTAT





845
Encoding
GGATAGAGTATAGTTGGGTAGGCGGTGAAACTATAC



Probe 798
CATGCCGGATGGAGGATAGAGTAT





846
Encoding
GGATAGAGTATAGTTGGGTGTAAAAATGGTATGCAT



Probe 799
ACCAAAGAAGGATGGAGGATAGAGTAT





847
Encoding
GGATAGAGTATAGTTGGGTTTGGTATGCATACCAAA



Probe 800
CTTTAAAGGGATGGAGGATAGAGTAT





848
Encoding
GGATAGAGTATAGTTGGGTACGTGAAACTATACCAT



Probe 801
CGGGATAGGATGGAGGATAGAGTAT





849
Encoding
GGATAGAGTATAGTTGGGTGTATGGTATGCATACCA



Probe 802
AACTAATGGATGGAGGATAGAGTAT





850
Encoding
GGATAGAGTATAGTTGGGCGCGAAACTATACCATCG



Probe 803
GGTAAATGGATGGAGGATAGAGTAT





851
Encoding
GGATAGAGTATAGTTGGGCATTACAAAATGGTATGC



Probe 804
ATACCTTTGGATGGAGGATAGAGTAT





852
Encoding
GGTAATTGAGTAGAAGGGAATGGGTATTAGTACCAA



Probe 805
TTTCTCTCAGGGATGAGGTAATTGAGT





853
Encoding
GGTAATTGAGTAGAAGGGCGTCCTTCGCAGGGTAGC



Probe 806
TGCGGAGGGATGAGGTAATTGAGT





854
Encoding
GGTAATTGAGTAGAAGGGCGGGAAGGGAAACGCTC



Probe 807
TTTCTTCGGGATGAGGTAATTGAGT





855
Encoding
GGTAATTGAGTAGAAGGGTGCGACCGCAACTATTCT



Probe 808
CTAGAGGTGGGATGAGGTAATTGAGT





856
Encoding
GGTAATTGAGTAGAAGGGTGGAACATTTCACCTCTA



Probe 809
ACTTATCATTGTGGGATGAGGTAATTGAGT





857
Encoding
GGTAATTGAGTAGAAGGGCGGTCCTTATTCGTACGA



Probe 810
TACTTAGTGGGATGAGGTAATTGAGT





858
Encoding
GGTAATTGAGTAGAAGGGTGTCCCCCTATGTATCGT



Probe 811
CGCCAACGGGATGAGGTAATTGAGT





859
Encoding
GGTAATTGAGTAGAAGGGAATGGGTATTAGTACCAA



Probe 812
TTTCTCACACGGGATGAGGTAATTGAGT





860
Encoding
AGTATTATTAGGGTGAGGAATGGGTATTAGTACCAA



Probe 813
TTTCTCTCAGGGTTGGAGTATTATTAG





861
Encoding
AGTATTATTAGGGTGAGGCGTCCTTCGCAGGGTAGC



Probe 814
TGCGGAGGGTTGGAGTATTATTAG





862
Encoding
AGTATTATTAGGGTGAGGCGGGAAGGGAAACGCTCT



Probe 815
TTCTTCGGGTTGGAGTATTATTAG





863
Encoding
AGTATTATTAGGGTGAGGGCGACCGCAACTATTCTC



Probe 816
TAGAGGTGGGTTGGAGTATTATTAG





864
Encoding
AGTATTATTAGGGTGAGGTGGAACATTTCACCTCTA



Probe 817
ACTTATCATTGTGGGTTGGAGTATTATTAG





865
Encoding
AGTATTATTAGGGTGAGGCGGTCCTTATTCGTACGA



Probe 818
TACTTAGTGGGTTGGAGTATTATTAG





866
Encoding
AGTATTATTAGGGTGAGGGTCCCCCTATGTATCGTC



Probe 819
GCCAACGGGTTGGAGTATTATTAG





867
Encoding
AGTATTATTAGGGTGAGGAATGGGTATTAGTACCAA



Probe 820
TTTCTCACACGGGTTGGAGTATTATTAG





868
Encoding
GGAATTTAGTGAGAAGGGAGGCACTCGAATGCCAC



Probe 821
ATGATTACTGGGTGTTGGAATTTAGTG





869
Encoding
GGAATTTAGTGAGAAGGGTGACCTCAAGTTACACAG



Probe 822
TTTCCTCTGGGTGTTGGAATTTAGTG





870
Encoding
GGAATTTAGTGAGAAGGGAGGCACTCGAATGCCAC



Probe 823
ATGATAACGGGTGTTGGAATTTAGTG





871
Encoding
GGAATTTAGTGAGAAGGGTGGACCGCCACTCGAATG



Probe 824
CCACAACTGGGTGTTGGAATTTAGTG





872
Encoding
GGAATTTAGTGAGAAGGGTGAGCTGCACTCAAGTTA



Probe 825
CACACAAGGGTGTTGGAATTTAGTG





873
Encoding
GGAATTTAGTGAGAAGGGAGGCACTCGAATGCCAC



Probe 826
ATGAAAAGGGTGTTGGAATTTAGTG





874
Encoding
GGAATTTAGTGAGAAGGGTGGACCGCCACTCGAATG



Probe 827
CCACTACGGGTGTTGGAATTTAGTG





875
Encoding
GGAATTTAGTGAGAAGGGTGGCCGCCACTCGAATGC



Probe 828
CACAACTGGGTGTTGGAATTTAGTG





876
Encoding
AATGATATGTTGAGTGGGAGGCACTCGAATGCCACA



Probe 829
TGATTACTGTGGTGGAATGATATGTT





877
Encoding
AATGATATGTTGAGTGGGTGACCTCAAGTTACACAG



Probe 830
TTTCCTCTGTGGTGGAATGATATGTT





878
Encoding
AATGATATGTTGAGTGGGAGGCACTCGAATGCCACA



Probe 831
TGATAACGTGGTGGAATGATATGTT





879
Encoding
AATGATATGTTGAGTGGGTGGACCGCCACTCGAATG



Probe 832
CCACAACTGTGGTGGAATGATATGTT





880
Encoding
AATGATATGTTGAGTGGGTGAGCTGCACTCAAGTTA



Probe 833
CACACAAGTGGTGGAATGATATGTT





881
Encoding
AATGATATGTTGAGTGGGAGGCACTCGAATGCCACA



Probe 834
TGAAAAGTGGTGGAATGATATGTT





882
Encoding
AATGATATGTTGAGTGGGTGGACCGCCACTCGAATG



Probe 835
CCACTACGTGGTGGAATGATATGTT





883
Encoding
AATGATATGTTGAGTGGGTGGCCGCCACTCGAATGC



Probe 836
CACAACTGTGGTGGAATGATATGTT





884
Encoding
ATAAGATAGTGAGATGGGAGAGACACTCTAGCAAA



Probe 837
ACAGTAAGGTGGGTGATAAGATAGTG





885
Encoding
ATAAGATAGTGAGATGGGTGGAGTTTTTCACACACT



Probe 838
GCCTACGTGGGTGATAAGATAGTG





886
Encoding
ATAAGATAGTGAGATGGGCCGCGTTACCGGCCCGCC



Probe 839
AGGGCCTGTGGGTGATAAGATAGTG





887
Encoding
ATAAGATAGTGAGATGGGTAGAAAACTTCATCTTAA



Probe 840
TCGCTAGCGTGGGTGATAAGATAGTG





888
Encoding
ATAAGATAGTGAGATGGGTGAGACACTCTAGCAAA



Probe 841
ACAGTAAGGTGGGTGATAAGATAGTG





889
Encoding
ATAAGATAGTGAGATGGGAGGAAACTTCATCTTAAT



Probe 842
CGCTTGCAGTGGGTGATAAGATAGTG





890
Encoding
ATAAGATAGTGAGATGGGCGGGTTACCGGCCCGCCA



Probe 843
GGGCCTGTGGGTGATAAGATAGTG





891
Encoding
ATAAGATAGTGAGATGGGTGCCTTTTTCACACACTG



Probe 844
CCATCGCGTGGGTGATAAGATAGTG





892
Encoding
AATGATATGTTGAGTGGGAGAGACACTCTAGCAAAA



Probe 845
CAGTAAGGTGGTGGAATGATATGTT





893
Encoding
AATGATATGTTGAGTGGGTGGAGTTTTTCACACACT



Probe 846
GCCTACGTGGTGGAATGATATGTT





894
Encoding
AATGATATGTTGAGTGGGCCGCGTTACCGGCCCGCC



Probe 847
AGGGCCTGTGGTGGAATGATATGTT





895
Encoding
AATGATATGTTGAGTGGGTAGAAAACTTCATCTTAA



Probe 848
TCGCTAGCGTGGTGGAATGATATGTT





896
Encoding
AATGATATGTTGAGTGGGTGAGACACTCTAGCAAAA



Probe 849
CAGTAAGGTGGTGGAATGATATGTT





897
Encoding
AATGATATGTTGAGTGGGAGGAAACTTCATCTTAAT



Probe 850
CGCTTGCAGTGGTGGAATGATATGTT





898
Encoding
AATGATATGTTGAGTGGGCGGGTTACCGGCCCGCCA



Probe 851
GGGCCTGTGGTGGAATGATATGTT





899
Encoding
AATGATATGTTGAGTGGGTGCCTTTTTCACACACTGC



Probe 852
CATCGCGTGGTGGAATGATATGTT





900
Encoding
GGTAATTGAGTAGAAGGGAGTCGGTACCTGCAAACA



Probe 853
TCCACAGCAGGGATGAGGTAATTGAGT





901
Encoding
GGTAATTGAGTAGAAGGGTGGACCCGAAAGATAGG



Probe 854
CCATGGACGGGATGAGGTAATTGAGT





902
Encoding
GGTAATTGAGTAGAAGGGCGAGCCGCCGACTGTATA



Probe 855
TCGGGCGGGATGAGGTAATTGAGT





903
Encoding
GGTAATTGAGTAGAAGGGTGACGATGACTTTAAGGA



Probe 856
TTGGACGCTGGGATGAGGTAATTGAGT





904
Encoding
GGTAATTGAGTAGAAGGGATCCCAATCACCGGTTTC



Probe 857
ACCGATGGGATGAGGTAATTGAGT





905
Encoding
GGTAATTGAGTAGAAGGGAACCCACAAAATTTCACG



Probe 858
GCAGCGTGGGATGAGGTAATTGAGT





906
Encoding
GGTAATTGAGTAGAAGGGAATGATAAATCTTTGCTC



Probe 859
CGACAGTCGGGATGAGGTAATTGAGT





907
Encoding
GGTAATTGAGTAGAAGGGTGGCTCTGGATCTTTCCT



Probe 860
CTGGTTGGGATGAGGTAATTGAGT





908
Encoding
AATGATATGTTGAGTGGGAGTCGGTACCTGCAAACA



Probe 861
TCCACAGCAGTGGTGGAATGATATGTT





909
Encoding
AATGATATGTTGAGTGGGTGGACCCGAAAGATAGGC



Probe 862
CATGGACGTGGTGGAATGATATGTT





910
Encoding
AATGATATGTTGAGTGGGCGAGCCGCCGACTGTATA



Probe 863
TCGGGCGTGGTGGAATGATATGTT





911
Encoding
AATGATATGTTGAGTGGGTGACGATGACTTTAAGGA



Probe 864
TTGGACGCTGTGGTGGAATGATATGTT





912
Encoding
AATGATATGTTGAGTGGGATCCCAATCACCGGTTTC



Probe 865
ACCGATGTGGTGGAATGATATGTT





913
Encoding
AATGATATGTTGAGTGGGAACCCACAAAATTTCACG



Probe 866
GCAGCGGTGGTGGAATGATATGTT





914
Encoding
AATGATATGTTGAGTGGGAATGATAAATCTTTGCTC



Probe 867
CGACAGTCGTGGTGGAATGATATGTT





915
Encoding
AATGATATGTTGAGTGGGTGGCTCTGGATCTTTCCTC



Probe 868
TGGTTGTGGTGGAATGATATGTT





916
Encoding
GTAATAGATATGAGGGTGAGTTGGTACATACAAAAT



Probe 869
GGTATACAATGTGGGAGGGTAATAGATAT





917
Encoding
GTAATAGATATGAGGGTGATGAATGGTATACATACC



Probe 870
AAACTTTAAAGTGGGAGGGTAATAGATAT





918
Encoding
GTAATAGATATGAGGGTGTGTATGGTATACATACCA



Probe 871
AACTTTATAGGTGGGAGGGTAATAGATAT





919
Encoding
GTAATAGATATGAGGGTGGTAGGTACATACAAAATG



Probe 872
GTATACAATGTGGGAGGGTAATAGATAT





920
Encoding
GTAATAGATATGAGGGTGAGTTGGTACATACAAAAT



Probe 873
GGTATACTATTGGGAGGGTAATAGATAT





921
Encoding
GTAATAGATATGAGGGTGGTTTGGTATACATACCAA



Probe 874
ACTTTATTAGGTGGGAGGGTAATAGATAT





922
Encoding
GTAATAGATATGAGGGTGCCAACATACCAAACTTTA



Probe 875
TTCCCATAATTTGGGAGGGTAATAGATAT





923
Encoding
TGTATAGGATTAGAAGGGAGTTGGTACATACAAAAT



Probe 876
GGTATACAATGTGGGTGAGTGTATAGGATT





924
Encoding
TGTATAGGATTAGAAGGGATGAATGGTATACATACC



Probe 877
AAACTTTAAAGTGGGTGAGTGTATAGGATT





925
Encoding
TGTATAGGATTAGAAGGGTGTATGGTATACATACCA



Probe 878
AACTTTATAGGTGGGTGAGTGTATAGGATT





926
Encoding
TGTATAGGATTAGAAGGGTGTAGGTACATACAAAAT



Probe 879
GGTATACAATGTGGGTGAGTGTATAGGATT





927
Encoding
TGTATAGGATTAGAAGGGAGTTGGTACATACAAAAT



Probe 880
GGTATACTATGGGTGAGTGTATAGGATT





928
Encoding
TGTATAGGATTAGAAGGGTGTTTGGTATACATACCA



Probe 881
AACTTTATTAGGTGGGTGAGTGTATAGGATT





929
Encoding
TGTATAGGATTAGAAGGGCCAACATACCAAACTTTA



Probe 882
TTCCCATAATTGGGTGAGTGTATAGGATT





930
Encoding
ATAAGATAGTGAGATGGGTGCGTCTCCACTATTGCT



Probe 883
AGCGCTTGTGGGTGATAAGATAGTG





931
Encoding
ATAAGATAGTGAGATGGGTGGACTCAACTGTACTCA



Probe 884
AGGACGCGTCGTGGGTGATAAGATAGTG





932
Encoding
ATAAGATAGTGAGATGGGCAGTTGCAGTTTAGTGAG



Probe 885
CTGGGAGTGGGTGATAAGATAGTG





933
Encoding
ATAAGATAGTGAGATGGGTGGAATCCATCGAAGACT



Probe 886
AGGTCCCGTGGGTGATAAGATAGTG





934
Encoding
ATAAGATAGTGAGATGGGTGGATTCATAAAGTACAT



Probe 887
ACAAAAAGGGTGGTGGGTGATAAGATAGTG





935
Encoding
ATAAGATAGTGAGATGGGAGCATCTCCACTATTGCT



Probe 888
AGCGCTTGTGGGTGATAAGATAGTG





936
Encoding
ATAAGATAGTGAGATGGGTGGCACAGCGGTGATTGC



Probe 889
TCAGACGTGGGTGATAAGATAGTG





937
Encoding
ATAAGATAGTGAGATGGGACCATTGGCATCCACTTG



Probe 890
CGTCCAGTGGGTGATAAGATAGTG





938
Encoding
TGTATAGGATTAGAAGGGTGCGTCTCCACTATTGCT



Probe 891
AGCGCTTGGGTGAGTGTATAGGATT





939
Encoding
TGTATAGGATTAGAAGGGTGGACTCAACTGTACTCA



Probe 892
AGGACGCGTCGGGTGAGTGTATAGGATT





940
Encoding
TGTATAGGATTAGAAGGGCAGTTGCAGTTTAGTGAG



Probe 893
CTGGGAGGGTGAGTGTATAGGATT





941
Encoding
TGTATAGGATTAGAAGGGTGGAATCCATCGAAGACT



Probe 894
AGGTCCCGGGTGAGTGTATAGGATT





942
Encoding
TGTATAGGATTAGAAGGGTGGATTCATAAAGTACAT



Probe 895
ACAAAAAGGGTGTGGGTGAGTGTATAGGATT





943
Encoding
TGTATAGGATTAGAAGGGAGCATCTCCACTATTGCT



Probe 896
AGCGCTTGGGTGAGTGTATAGGATT





944
Encoding
TGTATAGGATTAGAAGGGTGGCACAGCGGTGATTGC



Probe 897
TCAGACGGGTGAGTGTATAGGATT





945
Encoding
TGTATAGGATTAGAAGGGACCATTGGCATCCACTTG



Probe 898
CGTCCAGGGTGAGTGTATAGGATT





946
Encoding
TTAATATGGGTAGTTGGGTGTGTCACTTGGACGAAT



Probe 899
CCTCGTAGTGGGTGTGTTAATATGGGT





947
Encoding
TTAATATGGGTAGTTGGGACGCCCAGCTGTATCATG



Probe 900
CGGTTAAGGGTGTGTTAATATGGGT





948
Encoding
TTAATATGGGTAGTTGGGCGCTTTGCCTCTCTTTGTT



Probe 901
GGAGCGGGTGTGTTAATATGGGT





949
Encoding
TTAATATGGGTAGTTGGGACGCCCAGCTGTATCATG



Probe 902
CGGTAAATGGGTGTGTTAATATGGGT





950
Encoding
TTAATATGGGTAGTTGGGAGTTGGACGAATCCTCGA



Probe 903
TCCTTAGGGTGTGTTAATATGGGT





951
Encoding
TTAATATGGGTAGTTGGGTGGACTTCACTTGGACGA



Probe 904
ATCCTGCTGGGTGTGTTAATATGGGT





952
Encoding
TTAATATGGGTAGTTGGGACGCCCAGCTGTATCATG



Probe 905
CGGATAGGGTGTGTTAATATGGGT





953
Encoding
TTAATATGGGTAGTTGGGTGCACTTTGCCTCTCTTTG



Probe 906
TTGGAGCGGGTGTGTTAATATGGGT





954
Encoding
TGTATAGGATTAGAAGGGTGTGTCACTTGGACGAAT



Probe 907
CCTCGTAGTGGGTGAGTGTATAGGATT





955
Encoding
TGTATAGGATTAGAAGGGACGCCCAGCTGTATCATG



Probe 908
CGGTTAAGGGTGAGTGTATAGGATT





956
Encoding
TGTATAGGATTAGAAGGGCGCTTTGCCTCTCTTTGTT



Probe 909
GGAGCGGGTGAGTGTATAGGATT





957
Encoding
TGTATAGGATTAGAAGGGACGCCCAGCTGTATCATG



Probe 910
CGGTAAATGGGTGAGTGTATAGGATT





958
Encoding
TGTATAGGATTAGAAGGGAGTTGGACGAATCCTCGA



Probe 911
TCCTTAGGGTGAGTGTATAGGATT





959
Encoding
TGTATAGGATTAGAAGGGTGGACTTCACTTGGACGA



Probe 912
ATCCTGCTGGGTGAGTGTATAGGATT





960
Encoding
TGTATAGGATTAGAAGGGACGCCCAGCTGTATCATG



Probe 913
CGGATAGGGTGAGTGTATAGGATT





961
Encoding
TGTATAGGATTAGAAGGGTGCACTTTGCCTCTCTTTG



Probe 914
TTGGAGCGGGTGAGTGTATAGGATT





962
Encoding
GGTAATTGAGTAGAAGGGTCGTGACTTTCTAAGTAA



Probe 915
TTACCGAGTGGGATGAGGTAATTGAGT





963
Encoding
GGTAATTGAGTAGAAGGGTGTTTCTGATGCAATTCT



Probe 916
CCGGAACGGGATGAGGTAATTGAGT





964
Encoding
GGTAATTGAGTAGAAGGGCTTGCTTTAAGAGATCCG



Probe 917
CTTCGGTGGGATGAGGTAATTGAGT





965
Encoding
GGTAATTGAGTAGAAGGGTCTTGCGTCTAGTGTTGT



Probe 918
TATCGCCGGGATGAGGTAATTGAGT





966
Encoding
GGTAATTGAGTAGAAGGGCTTATCTTTCAAACTCTA



Probe 919
GACATGGCAGGGATGAGGTAATTGAGT





967
Encoding
GGTAATTGAGTAGAAGGGTCTGCTGACTCCTATAAA



Probe 920
GGTTTAGTGGGATGAGGTAATTGAGT





968
Encoding
GGTAATTGAGTAGAAGGGTGGATCTCTTAGGTTTGC



Probe 921
ACTGCTAGGGATGAGGTAATTGAGT





969
Encoding
GGTAATTGAGTAGAAGGGTCCGAAACCTCCCAACAC



Probe 922
TTACGTGGGATGAGGTAATTGAGT





970
Encoding
TGTATAGGATTAGAAGGGTCGTGACTTTCTAAGTAA



Probe 923
TTACCGAGTGGGTGAGTGTATAGGATT





971
Encoding
TGTATAGGATTAGAAGGGTGTTTCTGATGCAATTCTC



Probe 924
CGGAACGGGTGAGTGTATAGGATT





972
Encoding
TGTATAGGATTAGAAGGGCTTGCTTTAAGAGATCCG



Probe 925
CTTCGGTGGGTGAGTGTATAGGATT





973
Encoding
TGTATAGGATTAGAAGGGTCTTGCGTCTAGTGTTGTT



Probe 926
ATCGCCGGGTGAGTGTATAGGATT





974
Encoding
TGTATAGGATTAGAAGGGCTTATCTTTCAAACTCTA



Probe 927
GACATGGCAGGGTGAGTGTATAGGATT





975
Encoding
TGTATAGGATTAGAAGGGTCTGCTGACTCCTATAAA



Probe 928
GGTTTAGTGGGTGAGTGTATAGGATT





976
Encoding
TGTATAGGATTAGAAGGGTGGATCTCTTAGGTTTGC



Probe 929
ACTGCTAGGGTGAGTGTATAGGATT





977
Encoding
TGTATAGGATTAGAAGGGTCCGAAACCTCCCAACAC



Probe 930
TTACGTGGGTGAGTGTATAGGATT





978
Encoding
GTAATAGATATGAGGGTGGCCACCCTTGGGTCCCCG



Probe 931
ACACCATCTGGGAGGGTAATAGATAT





979
Encoding
GTAATAGATATGAGGGTGCTCCCTTGGGTCCCCGAC



Probe 932
ACCATCTGGGAGGGTAATAGATAT





980
Encoding
GTAATAGATATGAGGGTGCCTCCCTTGGGTCCCCGA



Probe 933
CACGATTGGGAGGGTAATAGATAT





981
Encoding
GTAATAGATATGAGGGTGCCTCCCTTGGGTCCCCGA



Probe 934
CACCATCTGGGAGGGTAATAGATAT





982
Encoding
GTAATAGATATGAGGGTGGCCACCCTTGGGTCCCCG



Probe 935
ACACGATTGGGAGGGTAATAGATAT





983
Encoding
GTAATAGATATGAGGGTGAAAGGGTTTGCTTACCGT



Probe 936
CACGCCTGGGAGGGTAATAGATAT





984
Encoding
GTAATAGATATGAGGGTGGCCACCCTTGGGTCCCCG



Probe 937
ACAGGATGGGAGGGTAATAGATAT





985
Encoding
ATGGAAGTAGTAGAAGGGTGCCACCCTTGGGTCCCC



Probe 938
GACACCATCGGGATGTATGGAAGTAGT





986
Encoding
ATGGAAGTAGTAGAAGGGCTCCCTTGGGTCCCCGAC



Probe 939
ACCATCGGGATGTATGGAAGTAGT





987
Encoding
ATGGAAGTAGTAGAAGGGCCTCCCTTGGGTCCCCGA



Probe 940
CACGATGGGATGTATGGAAGTAGT





988
Encoding
ATGGAAGTAGTAGAAGGGCCTCCCTTGGGTCCCCGA



Probe 941
CACCATCGGGATGTATGGAAGTAGT





989
Encoding
ATGGAAGTAGTAGAAGGGTGCCACCCTTGGGTCCCC



Probe 942
GACACGATGGGATGTATGGAAGTAGT





990
Encoding
ATGGAAGTAGTAGAAGGGAAAGGGTTTGCTTACCGT



Probe 943
CACGCCGGGATGTATGGAAGTAGT





991
Encoding
ATGGAAGTAGTAGAAGGGTGCCACCCTTGGGTCCCC



Probe 944
GACAGGAGGGATGTATGGAAGTAGT





992
Encoding
GGAATTTAGTGAGAAGGGAGTTCAGACCTAAGCAAC



Probe 945
CGCGACGGGTGTTGGAATTTAGTG





993
Encoding
GGAATTTAGTGAGAAGGGATCGTGACTTTCTGGTTG



Probe 946
GATACGCAGGGTGTTGGAATTTAGTG





994
Encoding
GGAATTTAGTGAGAAGGGTCGCAGTTGCAGACCAGA



Probe 947
CAGGGCGGGTGTTGGAATTTAGTG





995
Encoding
GGAATTTAGTGAGAAGGGTGGACATAAAGGTTAGG



Probe 948
CCACCCTGTGGGTGTTGGAATTTAGTG





996
Encoding
GGAATTTAGTGAGAAGGGCTTGAACGCCTTATCTCT



Probe 949
AAGGAATGGGTGTTGGAATTTAGTG





997
Encoding
GGAATTTAGTGAGAAGGGTCAGGCCAGTGCGTACGA



Probe 950
CTTCGTGGGTGTTGGAATTTAGTG





998
Encoding
GGAATTTAGTGAGAAGGGTTATGGCAACTAGTAACA



Probe 951
AGGCAAGGGTGTTGGAATTTAGTG





999
Encoding
GGAATTTAGTGAGAAGGGTTCATCTTTCAAACAAAA



Probe 952
GCCATGACCGGGTGTTGGAATTTAGTG





1000
Encoding
ATGGAAGTAGTAGAAGGGAGTTCAGACCTAAGCAA



Probe 953
CCGCGACGGGATGTATGGAAGTAGT





1001
Encoding
ATGGAAGTAGTAGAAGGGATCGTGACTTTCTGGTTG



Probe 954
GATACGCAGGGATGTATGGAAGTAGT





1002
Encoding
ATGGAAGTAGTAGAAGGGTCGCAGTTGCAGACCAG



Probe 955
ACAGGGCGGGATGTATGGAAGTAGT





1003
Encoding
ATGGAAGTAGTAGAAGGGTGGACATAAAGGTTAGG



Probe 956
CCACCCTGTGGGATGTATGGAAGTAGT





1004
Encoding
ATGGAAGTAGTAGAAGGGCTTGAACGCCTTATCTCT



Probe 957
AAGGAATGGGATGTATGGAAGTAGT





1005
Encoding
ATGGAAGTAGTAGAAGGGTCAGGCCAGTGCGTACG



Probe 958
ACTTCGTGGGATGTATGGAAGTAGT





1006
Encoding
ATGGAAGTAGTAGAAGGGTTATGGCAACTAGTAACA



Probe 959
AGGCAAGGGATGTATGGAAGTAGT





1007
Encoding
ATGGAAGTAGTAGAAGGGTTCATCTTTCAAACAAAA



Probe 960
GCCATGACCGGGATGTATGGAAGTAGT





1008
Encoding
TTAATATGGGTAGTTGGGTAATTCCTTTCCCAGCAAG



Probe 961
CTCCAGGGTGTGTTAATATGGGT





1009
Encoding
TTAATATGGGTAGTTGGGTGAACCAGCAAGCTGGTC



Probe 962
CATTGTAGGGTGTGTTAATATGGGT





1010
Encoding
TTAATATGGGTAGTTGGGTGTTCTTGGTAAGGTTCTC



Probe 963
CGCCAAGGGTGTGTTAATATGGGT





1011
Encoding
TTAATATGGGTAGTTGGGTGCCCCATCCCATAGCGA



Probe 964
TAAAAGAGGGTGTGTTAATATGGGT





1012
Encoding
TTAATATGGGTAGTTGGGAAGATCTGACTTGCCCTG



Probe 965
CCAGGAGGGTGTGTTAATATGGGT





1013
Encoding
TTAATATGGGTAGTTGGGTGCTGGACTCCCCGGCTA



Probe 966
AGGGCGGTGGGTGTGTTAATATGGGT





1014
Encoding
TTAATATGGGTAGTTGGGTGGAGGATTATCTCCGGC



Probe 967
AGTCAGGTGGGTGTGTTAATATGGGT





1015
Encoding
TTAATATGGGTAGTTGGGTAGAACTGGGACGGTTTT



Probe 968
TTTCACGGGTGTGTTAATATGGGT





1016
Encoding
ATGGAAGTAGTAGAAGGGTAATTCCTTTCCCAGCAA



Probe 969
GCTCCAGGGATGTATGGAAGTAGT





1017
Encoding
ATGGAAGTAGTAGAAGGGTGAACCAGCAAGCTGGT



Probe 970
CCATTGTAGGGATGTATGGAAGTAGT





1018
Encoding
ATGGAAGTAGTAGAAGGGTGTTCTTGGTAAGGTTCT



Probe 971
CCGCCAAGGGATGTATGGAAGTAGT





1019
Encoding
ATGGAAGTAGTAGAAGGGTGCCCCATCCCATAGCGA



Probe 972
TAAAAGAGGGATGTATGGAAGTAGT





1020
Encoding
ATGGAAGTAGTAGAAGGGAAGATCTGACTTGCCCTG



Probe 973
CCAGGAGGGATGTATGGAAGTAGT





1021
Encoding
ATGGAAGTAGTAGAAGGGTGCTGGACTCCCCGGCTA



Probe 974
AGGGCGGTGGGATGTATGGAAGTAGT





1022
Encoding
ATGGAAGTAGTAGAAGGGTGGAGGATTATCTCCGGC



Probe 975
AGTCAGGTGGGATGTATGGAAGTAGT





1023
Encoding
ATGGAAGTAGTAGAAGGGTAGAACTGGGACGGTTTT



Probe 976
TTTCACGGGATGTATGGAAGTAGT





1024
Encoding
GGTAATTGAGTAGAAGGGAAACATCAGACTTAAAA



Probe 977
GACCGGGAGGGATGAGGTAATTGAGT





1025
Encoding
GGTAATTGAGTAGAAGGGTGACTCCAAAAGGTTACC



Probe 978
CCACGCCGGGATGAGGTAATTGAGT





1026
Encoding
GGTAATTGAGTAGAAGGGCCGTAAGAGATTTGCTAA



Probe 979
ACCTCGGCCGGGATGAGGTAATTGAGT





1027
Encoding
GGTAATTGAGTAGAAGGGTGTTACTCGGTGATAAAG



Probe 980
AAGTTAGCGGGATGAGGTAATTGAGT





1028
Encoding
GGTAATTGAGTAGAAGGGTGGACTCTAGGATTGTCA



Probe 981
AAAGATGTGTTGGGATGAGGTAATTGAGT





1029
Encoding
GGTAATTGAGTAGAAGGGTTGTCCAACACTTAGCAT



Probe 982
TCAAGCGGGATGAGGTAATTGAGT





1030
Encoding
GGTAATTGAGTAGAAGGGCGCCCCATCCAAAAGCG



Probe 983
GTAGGTAGGGATGAGGTAATTGAGT





1031
Encoding
GGTAATTGAGTAGAAGGGACCAGATACCGTCGAAA



Probe 984
CGTGAACAGAATGGGATGAGGTAATTGAGT





1032
Encoding
ATGGAAGTAGTAGAAGGGAAACATCAGACTTAAAA



Probe 985
GACCGGGAGGGATGTATGGAAGTAGT





1033
Encoding
ATGGAAGTAGTAGAAGGGTGACTCCAAAAGGTTACC



Probe 986
CCACGCCGGGATGTATGGAAGTAGT





1034
Encoding
ATGGAAGTAGTAGAAGGGCCGTAAGAGATTTGCTAA



Probe 987
ACCTCGGCCGGGATGTATGGAAGTAGT





1035
Encoding
ATGGAAGTAGTAGAAGGGTGTTACTCGGTGATAAAG



Probe 988
AAGTTAGCGGGATGTATGGAAGTAGT





1036
Encoding
ATGGAAGTAGTAGAAGGGTGGACTCTAGGATTGTCA



Probe 989
AAAGATGTGTTGGGATGTATGGAAGTAGT





1037
Encoding
ATGGAAGTAGTAGAAGGGTTGTCCAACACTTAGCAT



Probe 990
TCAAGCGGGATGTATGGAAGTAGT





1038
Encoding
ATGGAAGTAGTAGAAGGGCGCCCCATCCAAAAGCG



Probe 991
GTAGGTAGGGATGTATGGAAGTAGT





1039
Encoding
ATGGAAGTAGTAGAAGGGACCAGATACCGTCGAAA



Probe 992
CGTGAACAGAATGGGATGTATGGAAGTAGT





1040
Encoding
GTAATAGATATGAGGGTGGTGGTCTATATGTCCCGA



Probe 993
AGGTTCTGGGAGGGTAATAGATAT





1041
Encoding
GTAATAGATATGAGGGTGGATTTAATATTGGCAACC



Probe 994
GGAGTATGGGAGGGTAATAGATAT





1042
Encoding
GTAATAGATATGAGGGTGGCTTACCGTCATTCTTCAT



Probe 995
CCGAGTGGGAGGGTAATAGATAT





1043
Encoding
GTAATAGATATGAGGGTGGATTGTTATCCCGATGAC



Probe 996
AGACCGTGGGAGGGTAATAGATAT





1044
Encoding
GTAATAGATATGAGGGTGGACCAGTAACCTTTTTAC



Probe 997
CCCATACTGGGAGGGTAATAGATAT





1045
Encoding
GTAATAGATATGAGGGTGCAATACCCCCTTCGTCTA



Probe 998
GTAAGGTGGGAGGGTAATAGATAT





1046
Encoding
GTAATAGATATGAGGGTGGGTCATCGGTTTTACCTT



Probe 999
CGGGCCTGGGAGGGTAATAGATAT





1047
Encoding
GTAATAGATATGAGGGTGCGACCAGTTTTATGTGCA



Probe 1000
ATTCCCGCTGGGAGGGTAATAGATAT





1048
Encoding
GGATAGAGTATAGTTGGGTGTGGTCTATATGTCCCG



Probe 1001
AAGGTTCGGATGGAGGATAGAGTAT





1049
Encoding
GGATAGAGTATAGTTGGGTGATTTAATATTGGCAAC



Probe 1002
CGGAGTAGGATGGAGGATAGAGTAT





1050
Encoding
GGATAGAGTATAGTTGGGTGCTTACCGTCATTCTTCA



Probe 1003
TCCGAGGGATGGAGGATAGAGTAT





1051
Encoding
GGATAGAGTATAGTTGGGTGATTGTTATCCCGATGA



Probe 1004
CAGACCGGGATGGAGGATAGAGTAT





1052
Encoding
GGATAGAGTATAGTTGGGTGACCAGTAACCTTTTTA



Probe 1005
CCCCATACGGATGGAGGATAGAGTAT





1053
Encoding
GGATAGAGTATAGTTGGGCAATACCCCCTTCGTCTA



Probe 1006
GTAAGGTGGATGGAGGATAGAGTAT





1054
Encoding
GGATAGAGTATAGTTGGGTGGTCATCGGTTTTACCTT



Probe 1007
CGGGCCGGATGGAGGATAGAGTAT





1055
Encoding
GGATAGAGTATAGTTGGGCGACCAGTTTTATGTGCA



Probe 1008
ATTCCCGCGGATGGAGGATAGAGTAT





1056
Encoding
ATAAGATAGTGAGATGGGAGTCGCGACCCTTCCTCC



Probe 1009
CGATCCGTGGGTGATAAGATAGTG





1057
Encoding
ATAAGATAGTGAGATGGGTGACAGAAGTTTACGTAC



Probe 1010
CGAAAATGGTGGGTGATAAGATAGTG





1058
Encoding
ATAAGATAGTGAGATGGGTGTAGGCCAAGAGGAAT



Probe 1011
CATGCCCAGTGGGTGATAAGATAGTG





1059
Encoding
ATAAGATAGTGAGATGGGTGGTCGGCCAAGAGGAA



Probe 1012
TCATGCCCAGTGGGTGATAAGATAGTG





1060
Encoding
ATAAGATAGTGAGATGGGTGAGTCGCGACCCTTCCT



Probe 1013
CCCGTTCGTGGGTGATAAGATAGTG





1061
Encoding
ATAAGATAGTGAGATGGGACGATAGAAGTTTACGTA



Probe 1014
CCGAATATGTGGGTGATAAGATAGTG





1062
Encoding
ATAAGATAGTGAGATGGGAGCTGCCGGGCAGATGTC



Probe 1015
AAGCTGGTGGGTGATAAGATAGTG





1063
Encoding
ATAAGATAGTGAGATGGGTGAGCTGCCGGGCAGAT



Probe 1016
GTCAACCTGTGGGTGATAAGATAGTG





1064
Encoding
GGATAGAGTATAGTTGGGAGTCGCGACCCTTCCTCC



Probe 1017
CGATCCGGATGGAGGATAGAGTAT





1065
Encoding
GGATAGAGTATAGTTGGGTGACAGAAGTTTACGTAC



Probe 1018
CGAAAATGGGATGGAGGATAGAGTAT





1066
Encoding
GGATAGAGTATAGTTGGGTGTAGGCCAAGAGGAATC



Probe 1019
ATGCCCAGGATGGAGGATAGAGTAT





1067
Encoding
GGATAGAGTATAGTTGGGTGGTCGGCCAAGAGGAAT



Probe 1020
CATGCCCAGGATGGAGGATAGAGTAT





1068
Encoding
GGATAGAGTATAGTTGGGTGAGTCGCGACCCTTCCT



Probe 1021
CCCGTTCGGATGGAGGATAGAGTAT





1069
Encoding
GGATAGAGTATAGTTGGGACGATAGAAGTTTACGTA



Probe 1022
CCGAATATGGATGGAGGATAGAGTAT





1070
Encoding
GGATAGAGTATAGTTGGGAGCTGCCGGGCAGATGTC



Probe 1023
AAGCTGGGATGGAGGATAGAGTAT





1071
Encoding
GGATAGAGTATAGTTGGGTGAGCTGCCGGGCAGATG



Probe 1024
TCAACCTGGATGGAGGATAGAGTAT





1072
Encoding
GGTAATTGAGTAGAAGGGCGTGGAGGGTCCATACCC



Probe 1025
TCCCTGTGGGATGAGGTAATTGAGT





1073
Encoding
GGTAATTGAGTAGAAGGGCCGCGGAGGGTCCATACC



Probe 1026
CTCCGTGTGGGATGAGGTAATTGAGT





1074
Encoding
GGTAATTGAGTAGAAGGGTGCCCCGGAGGGTCCATA



Probe 1027
CCCTCGCTGGGATGAGGTAATTGAGT





1075
Encoding
GGTAATTGAGTAGAAGGGTGCCCCGGAGGGTCCATA



Probe 1028
CCCTCCCTGTGGGATGAGGTAATTGAGT





1076
Encoding
GGTAATTGAGTAGAAGGGCCGCGGAGGGTCCATACC



Probe 1029
CTCGCTGGGATGAGGTAATTGAGT





1077
Encoding
GGTAATTGAGTAGAAGGGCGTGGAGGGTCCATACCC



Probe 1030
TCCGTGTGGGATGAGGTAATTGAGT





1078
Encoding
GGTAATTGAGTAGAAGGGTGTGGAGGGTCCATACCC



Probe 1031
TCCGTGTGGGATGAGGTAATTGAGT





1079
Encoding
GGTAATTGAGTAGAAGGGCCGCGGAGGGTCCATACC



Probe 1032
CTCCGTGTGGGATGAGGTAATTGAGT





1080
Encoding
GGATAGAGTATAGTTGGGCGTGGAGGGTCCATACCC



Probe 1033
TCCCTGGGATGGAGGATAGAGTAT





1081
Encoding
GGATAGAGTATAGTTGGGCCGCGGAGGGTCCATACC



Probe 1034
CTCCGTGTGGATGGAGGATAGAGTAT





1082
Encoding
GGATAGAGTATAGTTGGGTGCCCCGGAGGGTCCATA



Probe 1035
CCCTCGCTGGATGGAGGATAGAGTAT





1083
Encoding
GGATAGAGTATAGTTGGGTGCCCCGGAGGGTCCATA



Probe 1036
CCCTCCCTGGGATGGAGGATAGAGTAT





1084
Encoding
GGATAGAGTATAGTTGGGCCGCGGAGGGTCCATACC



Probe 1037
CTCGCTGGATGGAGGATAGAGTAT





1085
Encoding
GGATAGAGTATAGTTGGGCGTGGAGGGTCCATACCC



Probe 1038
TCCGTGTGGATGGAGGATAGAGTAT





1086
Encoding
GGATAGAGTATAGTTGGGTGTGGAGGGTCCATACCC



Probe 1039
TCCGTGTGGATGGAGGATAGAGTAT





1087
Encoding
GGATAGAGTATAGTTGGGCCGCGGAGGGTCCATACC



Probe 1040
CTCCCTGGGATGGAGGATAGAGTAT





1088
Encoding
GTAATAGATATGAGGGTGGAGCGGCACTCTAGAAA



Probe 1041
AACAGAAATGGGAGGGTAATAGATAT





1089
Encoding
GTAATAGATATGAGGGTGAATTTTGGGATTTGCTAG



Probe 1042
GCAAGCTGGGAGGGTAATAGATAT





1090
Encoding
GTAATAGATATGAGGGTGGAGCGGCACTCTAGAAA



Probe 1043
AACACAATGGGAGGGTAATAGATAT





1091
Encoding
GTAATAGATATGAGGGTGAGTCCGAAGAGATCATCT



Probe 1044
TAAATGGAATGGGAGGGTAATAGATAT





1092
Encoding
GTAATAGATATGAGGGTGCAATTTTGGGATTTGCTA



Probe 1045
GGCTAGTGGGAGGGTAATAGATAT





1093
Encoding
GTAATAGATATGAGGGTGGAGCGGCACTCTAGAAA



Probe 1046
AACAGTAAGTGGGAGGGTAATAGATAT





1094
Encoding
GTAATAGATATGAGGGTGGCGAGTCATATAAGACTC



Probe 1047
AATCCGTTCTGGGAGGGTAATAGATAT





1095
Encoding
GTAATAGATATGAGGGTGCGAGTCATATAAGACTCA



Probe 1048
ATCCGTTCTGGGAGGGTAATAGATAT





1096
Encoding
TGTAATAGTAAGGAGGGAGAGCGGCACTCTAGAAA



Probe 1049
AACAGAAAGGGTGAGTGTAATAGTAA





1097
Encoding
TGTAATAGTAAGGAGGGAAATTTTGGGATTTGCTAG



Probe 1050
GCAAGCGGGTGAGTGTAATAGTAA





1098
Encoding
TGTAATAGTAAGGAGGGAGAGCGGCACTCTAGAAA



Probe 1051
AACACAAGGGTGAGTGTAATAGTAA





1099
Encoding
TGTAATAGTAAGGAGGGAAGTCCGAAGAGATCATCT



Probe 1052
TAAATGGAAGGGTGAGTGTAATAGTAA





1100
Encoding
TGTAATAGTAAGGAGGGACAATTTTGGGATTTGCTA



Probe 1053
GGCTAGTGGGTGAGTGTAATAGTAA





1101
Encoding
TGTAATAGTAAGGAGGGAGAGCGGCACTCTAGAAA



Probe 1054
AACAGTAAGTGGGTGAGTGTAATAGTAA





1102
Encoding
TGTAATAGTAAGGAGGGAGCGAGTCATATAAGACTC



Probe 1055
AATCCGTTCGGGTGAGTGTAATAGTAA





1103
Encoding
TGTAATAGTAAGGAGGGACGAGTCATATAAGACTCA



Probe 1056
ATCCGTTCGGGTGAGTGTAATAGTAA





1104
Encoding
GGAATTTAGTGAGAAGGGTGTCGCGGGCTCATCTTA



Probe 1057
TACTTGGTGGGTGTTGGAATTTAGTG





1105
Encoding
GGAATTTAGTGAGAAGGGTTTTCCTCAAAATCGCTT



Probe 1058
CGCAGCGGGTGTTGGAATTTAGTG





1106
Encoding
GGAATTTAGTGAGAAGGGATTCCCTGCCTTTCACTTC



Probe 1059
AGTGAGGGTGTTGGAATTTAGTG





1107
Encoding
GGAATTTAGTGAGAAGGGAACCCAGATTACTCCTTT



Probe 1060
GCCAGGTGGGTGTTGGAATTTAGTG





1108
Encoding
GGAATTTAGTGAGAAGGGCCAGGGAGATGTCAAGA



Probe 1061
CTTGCATGGGTGTTGGAATTTAGTG





1109
Encoding
GGAATTTAGTGAGAAGGGCGTTTCCAAAGCAGTTCA



Probe 1062
GGGCAAGGGTGTTGGAATTTAGTG





1110
Encoding
GGAATTTAGTGAGAAGGGTTTTTCCTCAAAATCGCT



Probe 1063
TCGGAGTGGGTGTTGGAATTTAGTG





1111
Encoding
GGAATTTAGTGAGAAGGGAGTCGCGGGCTCATCTTA



Probe 1064
TACTTGGTGGGTGTTGGAATTTAGTG





1112
Encoding
TGTAATAGTAAGGAGGGAGTCGCGGGCTCATCTTAT



Probe 1065
ACTTGGTGGGTGAGTGTAATAGTAA





1113
Encoding
TGTAATAGTAAGGAGGGATTTTCCTCAAAATCGCTT



Probe 1066
CGCAGCGGGTGAGTGTAATAGTAA





1114
Encoding
TGTAATAGTAAGGAGGGAATTCCCTGCCTTTCACTTC



Probe 1067
AGTGAGGGTGAGTGTAATAGTAA





1115
Encoding
TGTAATAGTAAGGAGGGAAACCCAGATTACTCCTTT



Probe 1068
GCCAGGTGGGTGAGTGTAATAGTAA





1116
Encoding
TGTAATAGTAAGGAGGGACCAGGGAGATGTCAAGA



Probe 1069
CTTGCATGGGTGAGTGTAATAGTAA





1117
Encoding
TGTAATAGTAAGGAGGGACGTTTCCAAAGCAGTTCA



Probe 1070
GGGCAAGGGTGAGTGTAATAGTAA





1118
Encoding
TGTAATAGTAAGGAGGGATTTTTCCTCAAAATCGCT



Probe 1071
TCGGAGTGGGTGAGTGTAATAGTAA





1119
Encoding
TGTAATAGTAAGGAGGGAAGTCGCGGGCTCATCTTA



Probe 1072
TACTTGGTGGGTGAGTGTAATAGTAA





1120
Encoding
ATAAGATAGTGAGATGGGTGTAGAAAACTTCCGTAC



Probe 1073
TAAGACAGGGTGGGTGATAAGATAGTG





1121
Encoding
ATAAGATAGTGAGATGGGTAAATGGAAATATCATGC



Probe 1074
GGTTAGGTGGGTGATAAGATAGTG





1122
Encoding
ATAAGATAGTGAGATGGGAACGGAAATATCATGCG



Probe 1075
GTATCAGGGTGGGTGATAAGATAGTG





1123
Encoding
ATAAGATAGTGAGATGGGTTGCCGTACTAAGACCCC



Probe 1076
GTTGCTGTGGGTGATAAGATAGTG





1124
Encoding
ATAAGATAGTGAGATGGGAAACTTCTGACTTGCATG



Probe 1077
GCCCGGGTGGGTGATAAGATAGTG





1125
Encoding
ATAAGATAGTGAGATGGGAGGAAACTTCCGTACTAA



Probe 1078
GACCGGCGTGGGTGATAAGATAGTG





1126
Encoding
ATAAGATAGTGAGATGGGTGGTCGAAAACTTCCGTA



Probe 1079
CTAAGTGGGTGGGTGATAAGATAGTG





1127
Encoding
ATAAGATAGTGAGATGGGATAGATGGAAATATCATG



Probe 1080
CGGATAGTGGGTGATAAGATAGTG





1128
Encoding
TGTAATAGTAAGGAGGGAGTAGAAAACTTCCGTACT



Probe 1081
AAGACAGGTGGGTGAGTGTAATAGTAA





1129
Encoding
TGTAATAGTAAGGAGGGATAAATGGAAATATCATGC



Probe 1082
GGTTAGTGGGTGAGTGTAATAGTAA





1130
Encoding
TGTAATAGTAAGGAGGGAAACGGAAATATCATGCG



Probe 1083
GTATCAGGTGGGTGAGTGTAATAGTAA





1131
Encoding
TGTAATAGTAAGGAGGGATTGCCGTACTAAGACCCC



Probe 1084
GTTGCTGGGTGAGTGTAATAGTAA





1132
Encoding
TGTAATAGTAAGGAGGGAAAACTTCTGACTTGCATG



Probe 1085
GCCCGGTGGGTGAGTGTAATAGTAA





1133
Encoding
TGTAATAGTAAGGAGGGAAGGAAACTTCCGTACTAA



Probe 1086
GACCGGCGGGTGAGTGTAATAGTAA





1134
Encoding
TGTAATAGTAAGGAGGGAGGTCGAAAACTTCCGTAC



Probe 1087
TAAGTGGTGGGTGAGTGTAATAGTAA





1135
Encoding
TGTAATAGTAAGGAGGGAATAGATGGAAATATCATG



Probe 1088
CGGATAGGGTGAGTGTAATAGTAA





1136
Encoding
TTAATATGGGTAGTTGGGTCGTGCGACTCAGCTGCA



Probe 1089
TTATCGCGGGTGTGTTAATATGGGT





1137
Encoding
TTAATATGGGTAGTTGGGCTCATGCGACTCAGCTGC



Probe 1090
ATTTACGGGTGTGTTAATATGGGT





1138
Encoding
TTAATATGGGTAGTTGGGTGGTCGACTCAGCTGCAT



Probe 1091
TATGCCCAGGGTGTGTTAATATGGGT





1139
Encoding
TTAATATGGGTAGTTGGGTGTAGACTCAGCTGCATT



Probe 1092
ATGCCCAGGGTGTGTTAATATGGGT





1140
Encoding
TTAATATGGGTAGTTGGGTGGTCGACTCAGCTGCAT



Probe 1093
TATGGCCGGGTGTGTTAATATGGGT





1141
Encoding
TTAATATGGGTAGTTGGGTCGTGCGACTCAGCTGCA



Probe 1094
TTAACGTGGGTGTGTTAATATGGGT





1142
Encoding
TTAATATGGGTAGTTGGGCGGGCGACTCAGCTGCAT



Probe 1095
TATCGCGGGTGTGTTAATATGGGT





1143
Encoding
TTAATATGGGTAGTTGGGCGGGCGACTCAGCTGCAT



Probe 1096
TATGGCCGGGTGTGTTAATATGGGT





1144
Encoding
TGTAATAGTAAGGAGGGATCGTGCGACTCAGCTGCA



Probe 1097
TTATCGCGGGTGAGTGTAATAGTAA





1145
Encoding
TGTAATAGTAAGGAGGGACTCATGCGACTCAGCTGC



Probe 1098
ATTTACGGGTGAGTGTAATAGTAA





1146
Encoding
TGTAATAGTAAGGAGGGAGGTCGACTCAGCTGCATT



Probe 1099
ATGCCCAGGGTGAGTGTAATAGTAA





1147
Encoding
TGTAATAGTAAGGAGGGAGTAGACTCAGCTGCATTA



Probe 1100
TGCCCAGGGTGAGTGTAATAGTAA





1148
Encoding
TGTAATAGTAAGGAGGGAGGTCGACTCAGCTGCATT



Probe 1101
ATGGCCGGGTGAGTGTAATAGTAA





1149
Encoding
TGTAATAGTAAGGAGGGATCGTGCGACTCAGCTGCA



Probe 1102
TTAACGTGGGTGAGTGTAATAGTAA





1150
Encoding
TGTAATAGTAAGGAGGGACGGGCGACTCAGCTGCAT



Probe 1103
TATCGCGGGTGAGTGTAATAGTAA





1151
Encoding
TGTAATAGTAAGGAGGGACGGGCGACTCAGCTGCAT



Probe 1104
TATGGCCGGGTGAGTGTAATAGTAA





1152
Encoding
GTAATAGATATGAGGGTGGTCCCATCCATATCCACA



Probe 1105
GCTCAGTGGGAGGGTAATAGATAT





1153
Encoding
GTAATAGATATGAGGGTGGACGCACTGAATTCTCTC



Probe 1106
CAAGTGTGGGAGGGTAATAGATAT





1154
Encoding
GTAATAGATATGAGGGTGAAATCTTACAACAGAGCT



Probe 1107
TTACGATGGCTGGGAGGGTAATAGATAT





1155
Encoding
GTAATAGATATGAGGGTGGCTGCTTTTACTTCAGAC



Probe 1108
TTATACAAGGCTGGGAGGGTAATAGATAT





1156
Encoding
GTAATAGATATGAGGGTGGTCAGCTGTGAAATGTAC



Probe 1109
TCCCAATGGGAGGGTAATAGATAT





1157
Encoding
GTAATAGATATGAGGGTGAGAAGGGCCTTTATTGCC



Probe 1110
ATGAGTTGGGAGGGTAATAGATAT





1158
Encoding
GTAATAGATATGAGGGTGAAAGTTCCGCTTACAATC



Probe 1111
TCTTCGATGGGAGGGTAATAGATAT





1159
Encoding
GTAATAGATATGAGGGTGCTGCTCACTCCCGTAGGT



Probe 1112
TGTGCGTGTGGGAGGGTAATAGATAT





1160
Encoding
TATAGTTATGGAGAAGGGTGTCCCATCCATATCCAC



Probe 1113
AGCTCAGGGAAGGGTATAGTTATGG





1161
Encoding
TATAGTTATGGAGAAGGGTGACGCACTGAATTCTCT



Probe 1114
CCAAGTGGGAAGGGTATAGTTATGG





1162
Encoding
TATAGTTATGGAGAAGGGAAATCTTACAACAGAGCT



Probe 1115
TTACGATGGCGGAAGGGTATAGTTATGG





1163
Encoding
TATAGTTATGGAGAAGGGTGCTGCTTTTACTTCAGA



Probe 1116
CTTATACAAGGCGGAAGGGTATAGTTATGG





1164
Encoding
TATAGTTATGGAGAAGGGTGTCAGCTGTGAAATGTA



Probe 1117
CTCCCAAGGAAGGGTATAGTTATGG





1165
Encoding
TATAGTTATGGAGAAGGGAGAAGGGCCTTTATTGCC



Probe 1118
ATGAGTGGAAGGGTATAGTTATGG





1166
Encoding
TATAGTTATGGAGAAGGGAAAGTTCCGCTTACAATC



Probe 1119
TCTTCGAGGAAGGGTATAGTTATGG





1167
Encoding
TATAGTTATGGAGAAGGGCTGCTCACTCCCGTAGGT



Probe 1120
TGTGCGTGGGAAGGGTATAGTTATGG





1168
Encoding
GGAATTTAGTGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1121
TTTCAAGTGGGTGTTGGAATTTAGTG





1169
Encoding
GGAATTTAGTGAGAAGGGTGAATCAGGTACTGTCAC



Probe 1122
TTTCAAGTGGGTGTTGGAATTTAGTG





1170
Encoding
GGAATTTAGTGAGAAGGGAATCAGGTACTGTCACTT



Probe 1123
TCTTAGGTGGGTGTTGGAATTTAGTG





1171
Encoding
GGAATTTAGTGAGAAGGGCCCTCTTAGTCAGGTACT



Probe 1124
GTCACAAAGGGTGTTGGAATTTAGTG





1172
Encoding
GGAATTTAGTGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1125
TTTCTAGGTGGGTGTTGGAATTTAGTG





1173
Encoding
GGAATTTAGTGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1126
TTTGAAGGGTGTTGGAATTTAGTG





1174
Encoding
GGAATTTAGTGAGAAGGGATCAGGTACTGTCACTTT



Probe 1127
CTTCGGAGGGTGTTGGAATTTAGTG





1175
Encoding
GGAATTTAGTGAGAAGGGTGAATCAGGTACTGTCAC



Probe 1128
TTTCTAGGTGGGTGTTGGAATTTAGTG





1176
Encoding
TATAGTTATGGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1129
TTTCAAGGGAAGGGTATAGTTATGG





1177
Encoding
TATAGTTATGGAGAAGGGTGAATCAGGTACTGTCAC



Probe 1130
TTTCAAGGGAAGGGTATAGTTATGG





1178
Encoding
TATAGTTATGGAGAAGGGAATCAGGTACTGTCACTT



Probe 1131
TCTTAGGTGGAAGGGTATAGTTATGG





1179
Encoding
TATAGTTATGGAGAAGGGCCCTCTTAGTCAGGTACT



Probe 1132
GTCACAAAGGAAGGGTATAGTTATGG





1180
Encoding
TATAGTTATGGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1133
TTTCTAGGTGGAAGGGTATAGTTATGG





1181
Encoding
TATAGTTATGGAGAAGGGAGAGTCAGGTACTGTCAC



Probe 1134
TTTGAAGGAAGGGTATAGTTATGG





1182
Encoding
TATAGTTATGGAGAAGGGATCAGGTACTGTCACTTT



Probe 1135
CTTCGGAGGAAGGGTATAGTTATGG





1183
Encoding
TATAGTTATGGAGAAGGGTGAATCAGGTACTGTCAC



Probe 1136
TTTCTAGGTGGAAGGGTATAGTTATGG





1184
Encoding
ATAAGATAGTGAGATGGGATCAGTTCGTTATGCAAT



Probe 1137
CCTGTCGTGGGTGATAAGATAGTG





1185
Encoding
ATAAGATAGTGAGATGGGCGAGGCACCGAGGATTC



Probe 1138
CTCCCGCTGTGGGTGATAAGATAGTG





1186
Encoding
ATAAGATAGTGAGATGGGTACGGCCCATCTTTTACC



Probe 1139
GAATATTAGTGGGTGATAAGATAGTG





1187
Encoding
ATAAGATAGTGAGATGGGCGACAATTATTTTCGCTC



Probe 1140
GACTTCGTGTGGGTGATAAGATAGTG





1188
Encoding
ATAAGATAGTGAGATGGGTGACACTGGGTTTTTGTG



Probe 1141
CTTTCGAGTGGGTGATAAGATAGTG





1189
Encoding
ATAAGATAGTGAGATGGGCTAGGGCCCATCTTTTAC



Probe 1142
CGAATATTAGTGGGTGATAAGATAGTG





1190
Encoding
ATAAGATAGTGAGATGGGCGAACTTTGTTTCCAGCC



Probe 1143
ATTCATGTGGGTGATAAGATAGTG





1191
Encoding
ATAAGATAGTGAGATGGGCGACAATTATTTTCGCTC



Probe 1144
GACTACGGTGGGTGATAAGATAGTG





1192
Encoding
TATAGTTATGGAGAAGGGATCAGTTCGTTATGCAAT



Probe 1145
CCTGTCGGAAGGGTATAGTTATGG





1193
Encoding
TATAGTTATGGAGAAGGGCGAGGCACCGAGGATTCC



Probe 1146
TCCCGCTGGAAGGGTATAGTTATGG





1194
Encoding
TATAGTTATGGAGAAGGGTACGGCCCATCTTTTACC



Probe 1147
GAATATTAGGAAGGGTATAGTTATGG





1195
Encoding
TATAGTTATGGAGAAGGGCGACAATTATTTTCGCTC



Probe 1148
GACTTCGTGGAAGGGTATAGTTATGG





1196
Encoding
TATAGTTATGGAGAAGGGTGACACTGGGTTTTTGTG



Probe 1149
CTTTCGAGGAAGGGTATAGTTATGG





1197
Encoding
TATAGTTATGGAGAAGGGCTAGGGCCCATCTTTTAC



Probe 1150
CGAATATTAGGAAGGGTATAGTTATGG





1198
Encoding
TATAGTTATGGAGAAGGGCGAACTTTGTTTCCAGCC



Probe 1151
ATTCATGGAAGGGTATAGTTATGG





1199
Encoding
TATAGTTATGGAGAAGGGCGACAATTATTTTCGCTC



Probe 1152
GACTACGGGAAGGGTATAGTTATGG





1200
Encoding
TTAATATGGGTAGTTGGGTGTGGGAATTCCGATCTC



Probe 1153
CCCTTGGTGGGTGTGTTAATATGGGT





1201
Encoding
TTAATATGGGTAGTTGGGTGTGGGAATTCCGATCTC



Probe 1154
CCCTAGGCGGGTGTGTTAATATGGGT





1202
Encoding
TTAATATGGGTAGTTGGGATGCGCCTACTACCTAAT



Probe 1155
GGGCGCGTGGGTGTGTTAATATGGGT





1203
Encoding
TTAATATGGGTAGTTGGGTGTGGGAATTCCGATCTC



Probe 1156
CCCATGTGGGTGTGTTAATATGGGT





1204
Encoding
TTAATATGGGTAGTTGGGATACGCCTACTACCTAAT



Probe 1157
GGGAGCGGGTGTGTTAATATGGGT





1205
Encoding
TTAATATGGGTAGTTGGGTGTGGGAATTCCGATCTC



Probe 1158
CCCTTGGTGGGTGTGTTAATATGGGT





1206
Encoding
TTAATATGGGTAGTTGGGTGGGCCTACTACCTAATG



Probe 1159
GGCCCGCGGGTGTGTTAATATGGGT





1207
Encoding
TTAATATGGGTAGTTGGGTGGGCCTACTACCTAATG



Probe 1160
GGCGCGTGGGTGTGTTAATATGGGT





1208
Encoding
TATAGTTATGGAGAAGGGTGTGGGAATTCCGATCTC



Probe 1161
CCCTTGGTGGAAGGGTATAGTTATGG





1209
Encoding
TATAGTTATGGAGAAGGGTGTGGGAATTCCGATCTC



Probe 1162
CCCTAGGCGGAAGGGTATAGTTATGG





1210
Encoding
TATAGTTATGGAGAAGGGATGCGCCTACTACCTAAT



Probe 1163
GGGCGCGGGAAGGGTATAGTTATGG





1211
Encoding
TATAGTTATGGAGAAGGGTGTGGGAATTCCGATCTC



Probe 1164
CCCATGGGAAGGGTATAGTTATGG





1212
Encoding
TATAGTTATGGAGAAGGGATACGCCTACTACCTAAT



Probe 1165
GGGAGCGGAAGGGTATAGTTATGG





1213
Encoding
TATAGTTATGGAGAAGGGTGTGGGAATTCCGATCTC



Probe 1166
CCCTTGGTGGAAGGGTATAGTTATGG





1214
Encoding
TATAGTTATGGAGAAGGGTGGGCCTACTACCTAATG



Probe 1167
GGCCCGCGGAAGGGTATAGTTATGG





1215
Encoding
TATAGTTATGGAGAAGGGTGGGCCTACTACCTAATG



Probe 1168
GGCGCGGGAAGGGTATAGTTATGG





1216
Encoding
GGTAATTGAGTAGAAGGGATACACCCTAATTACCAG



Probe 1169
TCCATGTGGGATGAGGTAATTGAGT





1217
Encoding
GGTAATTGAGTAGAAGGGTGTCGCGAGCTCATCTTT



Probe 1170
GGACCTAGGGATGAGGTAATTGAGT





1218
Encoding
GGTAATTGAGTAGAAGGGCAAGTCCCCGATTAAAGA



Probe 1171
TCTTATGTGGGATGAGGTAATTGAGT





1219
Encoding
GGTAATTGAGTAGAAGGGATTCCCCAGATTTCACTT



Probe 1172
CTGTGAGGGATGAGGTAATTGAGT





1220
Encoding
GGTAATTGAGTAGAAGGGCCTGGGTCAATACCTCCC



Probe 1173
ACAGGAGGGATGAGGTAATTGAGT





1221
Encoding
GGTAATTGAGTAGAAGGGTGGATGTATCAACTAACC



Probe 1174
GTAAGGCAAGGGATGAGGTAATTGAGT





1222
Encoding
GGTAATTGAGTAGAAGGGAAATTCCCTCTGTATGAC



Probe 1175
TGCGTAGGGATGAGGTAATTGAGT





1223
Encoding
GGTAATTGAGTAGAAGGGTGCCGTTATCCCCCATCC



Probe 1176
AAAGCGTGGGATGAGGTAATTGAGT





1224
Encoding
TATAGTTATGGAGAAGGGATACACCCTAATTACCAG



Probe 1177
TCCATGGGAAGGGTATAGTTATGG





1225
Encoding
TATAGTTATGGAGAAGGGTGTCGCGAGCTCATCTTT



Probe 1178
GGACCTAGGAAGGGTATAGTTATGG





1226
Encoding
TATAGTTATGGAGAAGGGCAAGTCCCCGATTAAAGA



Probe 1179
TCTTATGGGAAGGGTATAGTTATGG





1227
Encoding
TATAGTTATGGAGAAGGGATTCCCCAGATTTCACTT



Probe 1180
CTGTGAGGAAGGGTATAGTTATGG





1228
Encoding
TATAGTTATGGAGAAGGGCCTGGGTCAATACCTCCC



Probe 1181
ACAGGAGGAAGGGTATAGTTATGG





1229
Encoding
TATAGTTATGGAGAAGGGTGGATGTATCAACTAACC



Probe 1182
GTAAGGCAAGGAAGGGTATAGTTATGG





1230
Encoding
TATAGTTATGGAGAAGGGAAATTCCCTCTGTATGAC



Probe 1183
TGCGTAGGAAGGGTATAGTTATGG





1231
Encoding
TATAGTTATGGAGAAGGGTGCCGTTATCCCCCATCC



Probe 1184
AAAGCGTGGAAGGGTATAGTTATGG





1232
Encoding
GTAATAGATATGAGGGTGCGACTCTTTACAGTTGGC



Probe 1185
TCAGTCTGGGAGGGTAATAGATAT





1233
Encoding
GTAATAGATATGAGGGTGAAGATCACTGTGTTGCTT



Probe 1186
CCCAGATGGGAGGGTAATAGATAT





1234
Encoding
GTAATAGATATGAGGGTGTAGGCGATAAAATTAGTA



Probe 1187
TATGCGCATTGGGAGGGTAATAGATAT





1235
Encoding
GTAATAGATATGAGGGTGGAAAAAGTAAACTTTCGA



Probe 1188
TTAAGTTCCAATGGGAGGGTAATAGATAT





1236
Encoding
GTAATAGATATGAGGGTGACGCCTCTTTACAGTTGG



Probe 1189
CTCTGTTGGGAGGGTAATAGATAT





1237
Encoding
GTAATAGATATGAGGGTGGAACATCACTGTGTTGCT



Probe 1190
TCCGAGTGGGAGGGTAATAGATAT





1238
Encoding
GTAATAGATATGAGGGTGATATGCGATAAAATTAGT



Probe 1191
ATATGCGCATTGGGAGGGTAATAGATAT





1239
Encoding
GTAATAGATATGAGGGTGGTTGTAAACTTTCGATTA



Probe 1192
AGTTCGAAGTGGGAGGGTAATAGATAT





1240
Encoding
GATAAGTAAGTAGGGATGCGACTCTTTACAGTTGGC



Probe 1193
TCAGTCGGTGGAGGATAAGTAAGT





1241
Encoding
GATAAGTAAGTAGGGATGAAGATCACTGTGTTGCTT



Probe 1194
CCCAGAGGTGGAGGATAAGTAAGT





1242
Encoding
GATAAGTAAGTAGGGATGTAGGCGATAAAATTAGTA



Probe 1195
TATGCGCATGGTGGAGGATAAGTAAGT





1243
Encoding
GATAAGTAAGTAGGGATGGAAAAAGTAAACTTTCG



Probe 1196
ATTAAGTTCCAAGGTGGAGGATAAGTAAGT





1244
Encoding
GATAAGTAAGTAGGGATGACGCCTCTTTACAGTTGG



Probe 1197
CTCTGTGGTGGAGGATAAGTAAGT





1245
Encoding
GATAAGTAAGTAGGGATGGAACATCACTGTGTTGCT



Probe 1198
TCCGAGGGTGGAGGATAAGTAAGT





1246
Encoding
GATAAGTAAGTAGGGATGATATGCGATAAAATTAGT



Probe 1199
ATATGCGCATGGTGGAGGATAAGTAAGT





1247
Encoding
GATAAGTAAGTAGGGATGGTTGTAAACTTTCGATTA



Probe 1200
AGTTCGAAGGGTGGAGGATAAGTAAGT





1248
Encoding
GGAATTTAGTGAGAAGGGTCCGATGTCAAGGACTGG



Probe 1201
TAAGCAAGGGTGTTGGAATTTAGTG





1249
Encoding
GGAATTTAGTGAGAAGGGTGCCTCGCCTCACTCTGT



Probe 1202
TGGCTGGTGGGTGTTGGAATTTAGTG





1250
Encoding
GGAATTTAGTGAGAAGGGTGTCGGATGTCAAGGACT



Probe 1203
GGTATCCGGGTGTTGGAATTTAGTG





1251
Encoding
GGAATTTAGTGAGAAGGGCGGGCAGGCTTATGCGGT



Probe 1204
ATTTCGTGGGTGTTGGAATTTAGTG





1252
Encoding
GGAATTTAGTGAGAAGGGACGTCTTCCCTCCGGAGA



Probe 1205
GTTCCGAGCGGGTGTTGGAATTTAGTG





1253
Encoding
GGAATTTAGTGAGAAGGGAGACCTCCGGAGAGTTCC



Probe 1206
GTCCCGTGGGTGTTGGAATTTAGTG





1254
Encoding
GGAATTTAGTGAGAAGGGTGGAGTTATCGAGCCTGC



Probe 1207
CTTGCTGGGTGTTGGAATTTAGTG





1255
Encoding
GGAATTTAGTGAGAAGGGTGGACAGGCTTATGCGGT



Probe 1208
ATTACGTGGGTGTTGGAATTTAGTG





1256
Encoding
GATAAGTAAGTAGGGATGTCCGATGTCAAGGACTGG



Probe 1209
TAAGCAAGGTGGAGGATAAGTAAGT





1257
Encoding
GATAAGTAAGTAGGGATGGCCTCGCCTCACTCTGTT



Probe 1210
GGCTGGTGGTGGAGGATAAGTAAGT





1258
Encoding
GATAAGTAAGTAGGGATGGTCGGATGTCAAGGACTG



Probe 1211
GTATCCGGTGGAGGATAAGTAAGT





1259
Encoding
GATAAGTAAGTAGGGATGCGGGCAGGCTTATGCGGT



Probe 1212
ATTTCGGGTGGAGGATAAGTAAGT





1260
Encoding
GATAAGTAAGTAGGGATGACGTCTTCCCTCCGGAGA



Probe 1213
GTTCCGAGCGGTGGAGGATAAGTAAGT





1261
Encoding
GATAAGTAAGTAGGGATGAGACCTCCGGAGAGTTCC



Probe 1214
GTCCCGGGTGGAGGATAAGTAAGT





1262
Encoding
GATAAGTAAGTAGGGATGTGGAGTTATCGAGCCTGC



Probe 1215
CTTGCTGGTGGAGGATAAGTAAGT





1263
Encoding
GATAAGTAAGTAGGGATGGGACAGGCTTATGCGGTA



Probe 1216
TTACGTGGTGGAGGATAAGTAAGT





1264
Encoding
ATAAGATAGTGAGATGGGTGGCTCAGTTTTTACCCC



Probe 1217
TGTTGGGTGGGTGATAAGATAGTG





1265
Encoding
ATAAGATAGTGAGATGGGCTGCTCCCTCCTGGTTAG



Probe 1218
GTTCCCGTGGGTGATAAGATAGTG





1266
Encoding
ATAAGATAGTGAGATGGGTGACGTGGTCGCTTCTCT



Probe 1219
TTGAAAGTGGGTGATAAGATAGTG





1267
Encoding
ATAAGATAGTGAGATGGGTGTACCTCAGTTTTTACC



Probe 1220
CCTGATGGTGGGTGATAAGATAGTG





1268
Encoding
ATAAGATAGTGAGATGGGCTGCTCCCTCCTGGTTAG



Probe 1221
GTTGCCAGTGGGTGATAAGATAGTG





1269
Encoding
ATAAGATAGTGAGATGGGTGTGCCTCAGTTTTTACC



Probe 1222
CCTGATGGTGGGTGATAAGATAGTG





1270
Encoding
ATAAGATAGTGAGATGGGTGTACCTCAGTTTTTACC



Probe 1223
CCTCATGTGGGTGATAAGATAGTG





1271
Encoding
ATAAGATAGTGAGATGGGTGGACTGGTTAGGTTGGG



Probe 1224
TCACGCCGTGGGTGATAAGATAGTG





1272
Encoding
GATAAGTAAGTAGGGATGTGGCTCAGTTTTTACCCC



Probe 1225
TGTTGGTGGTGGAGGATAAGTAAGT





1273
Encoding
GATAAGTAAGTAGGGATGCTGCTCCCTCCTGGTTAG



Probe 1226
GTTCCCGGTGGAGGATAAGTAAGT





1274
Encoding
GATAAGTAAGTAGGGATGTGACGTGGTCGCTTCTCT



Probe 1227
TTGAAAGGTGGAGGATAAGTAAGT





1275
Encoding
GATAAGTAAGTAGGGATGTGTACCTCAGTTTTTACC



Probe 1228
CCTGATGGGTGGAGGATAAGTAAGT





1276
Encoding
GATAAGTAAGTAGGGATGCTGCTCCCTCCTGGTTAG



Probe 1229
GTTGCCAGGTGGAGGATAAGTAAGT





1277
Encoding
GATAAGTAAGTAGGGATGGTGCCTCAGTTTTTACCC



Probe 1230
CTGATGGGTGGAGGATAAGTAAGT





1278
Encoding
GATAAGTAAGTAGGGATGTGTACCTCAGTTTTTACC



Probe 1231
CCTCATGGTGGAGGATAAGTAAGT





1279
Encoding
GATAAGTAAGTAGGGATGGGACTGGTTAGGTTGGGT



Probe 1232
CACGCCGGTGGAGGATAAGTAAGT





1280
Encoding
TTAATATGGGTAGTTGGGTCTGTCGAAAACACGGTG



Probe 1233
AAGAGGTGGGTGTGTTAATATGGGT





1281
Encoding
TTAATATGGGTAGTTGGGCAGAGTCTGGATGATCAT



Probe 1234
CCTGAGTGGGTGTGTTAATATGGGT





1282
Encoding
TTAATATGGGTAGTTGGGTATTCTCGCTTATAAAAGC



Probe 1235
AGTAATGGGTGTGTTAATATGGGT





1283
Encoding
TTAATATGGGTAGTTGGGTCAAGCTAATAGTCTGAA



Probe 1236
TGGTTGTCGTGGGTGTGTTAATATGGGT





1284
Encoding
TTAATATGGGTAGTTGGGCAGTACCCAAAACTGCTA



Probe 1237
GTATCGTAGGGTGTGTTAATATGGGT





1285
Encoding
TTAATATGGGTAGTTGGGATGGACCAGGAAACGTAT



Probe 1238
TCAGGCGGGTGTGTTAATATGGGT





1286
Encoding
TTAATATGGGTAGTTGGGCCCGTCCTACCAGAAAAA



Probe 1239
TCCAAGACGGGTGTGTTAATATGGGT





1287
Encoding
TTAATATGGGTAGTTGGGTCTGTCGAAAACACGGTG



Probe 1240
AAGCGGAGGGTGTGTTAATATGGGT





1288
Encoding
GATAAGTAAGTAGGGATGTCTGTCGAAAACACGGTG



Probe 1241
AAGAGGTGGTGGAGGATAAGTAAGT





1289
Encoding
GATAAGTAAGTAGGGATGCAGAGTCTGGATGATCAT



Probe 1242
CCTGAGGGTGGAGGATAAGTAAGT





1290
Encoding
GATAAGTAAGTAGGGATGTATTCTCGCTTATAAAAG



Probe 1243
CAGTAATGGTGGAGGATAAGTAAGT





1291
Encoding
GATAAGTAAGTAGGGATGTCAAGCTAATAGTCTGAA



Probe 1244
TGGTTGTCGGGTGGAGGATAAGTAAGT





1292
Encoding
GATAAGTAAGTAGGGATGCAGTACCCAAAACTGCTA



Probe 1245
GTATCGTAGGTGGAGGATAAGTAAGT





1293
Encoding
GATAAGTAAGTAGGGATGATGGACCAGGAAACGTA



Probe 1246
TTCAGGCGGTGGAGGATAAGTAAGT





1294
Encoding
GATAAGTAAGTAGGGATGCCCGTCCTACCAGAAAAA



Probe 1247
TCCAAGACGGTGGAGGATAAGTAAGT





1295
Encoding
GATAAGTAAGTAGGGATGTCTGTCGAAAACACGGTG



Probe 1248
AAGCGGAGGTGGAGGATAAGTAAGT





1296
Encoding
GGTAATTGAGTAGAAGGGTGAGCGTCAGTACACCGT



Probe 1249
CCAGGTCGGGATGAGGTAATTGAGT





1297
Encoding
GGTAATTGAGTAGAAGGGACGATGCTGCCGGCAGG



Probe 1250
ATGTGTTGGGATGAGGTAATTGAGT





1298
Encoding
GGTAATTGAGTAGAAGGGTGTGCAGTCATCGGATCT



Probe 1251
GCCTAGCGGGATGAGGTAATTGAGT





1299
Encoding
GGTAATTGAGTAGAAGGGAGGTCCGAAAAAATTCC



Probe 1252
GCCCCGGAGGGATGAGGTAATTGAGT





1300
Encoding
GGTAATTGAGTAGAAGGGTGGACCGAAAAAATTCC



Probe 1253
GCCCCGGAGGGATGAGGTAATTGAGT





1301
Encoding
GGTAATTGAGTAGAAGGGTGGTCCGCACCGCATGCG



Probe 1254
CTTTGGCGGGATGAGGTAATTGAGT





1302
Encoding
GGTAATTGAGTAGAAGGGCGTGCATCCCTCTGTTAA



Probe 1255
CGCGTAGGGATGAGGTAATTGAGT





1303
Encoding
GGTAATTGAGTAGAAGGGTATGAAGTACTCCATCGC



Probe 1256
TCAGCGTGGGATGAGGTAATTGAGT





1304
Encoding
GATAAGTAAGTAGGGATGGAGCGTCAGTACACCGTC



Probe 1257
CAGGTCGGTGGAGGATAAGTAAGT





1305
Encoding
GATAAGTAAGTAGGGATGACGATGCTGCCGGCAGG



Probe 1258
ATGTGTTGGTGGAGGATAAGTAAGT





1306
Encoding
GATAAGTAAGTAGGGATGGTGCAGTCATCGGATCTG



Probe 1259
CCTAGCGGTGGAGGATAAGTAAGT





1307
Encoding
GATAAGTAAGTAGGGATGAGGTCCGAAAAAATTCC



Probe 1260
GCCCCGGAGGTGGAGGATAAGTAAGT





1308
Encoding
GATAAGTAAGTAGGGATGGGACCGAAAAAATTCCG



Probe 1261
CCCCGGAGGTGGAGGATAAGTAAGT





1309
Encoding
GATAAGTAAGTAGGGATGGGTCCGCACCGCATGCGC



Probe 1262
TTTGGCGGTGGAGGATAAGTAAGT





1310
Encoding
GATAAGTAAGTAGGGATGCGTGCATCCCTCTGTTAA



Probe 1263
CGCGTAGGTGGAGGATAAGTAAGT





1311
Encoding
GATAAGTAAGTAGGGATGTATGAAGTACTCCATCGC



Probe 1264
TCAGCGGGTGGAGGATAAGTAAGT





1312
Encoding
GTAATAGATATGAGGGTGGGTCGGCAGCGCAGGATT



Probe 1265
ATGGCCTGGGAGGGTAATAGATAT





1313
Encoding
GTAATAGATATGAGGGTGTACGCAGCGCAGGATTAT



Probe 1266
GCGCATTGGGAGGGTAATAGATAT





1314
Encoding
GTAATAGATATGAGGGTGACGCAGCGCAGGATTATG



Probe 1267
CGGATATGGGAGGGTAATAGATAT





1315
Encoding
GTAATAGATATGAGGGTGGGTCGGCAGCGCAGGATT



Probe 1268
ATGCCCATGGGAGGGTAATAGATAT





1316
Encoding
GTAATAGATATGAGGGTGGTAGGCAGCGCAGGATTA



Probe 1269
TGCGGATATGGGAGGGTAATAGATAT





1317
Encoding
GTAATAGATATGAGGGTGGTAGGCAGCGCAGGATTA



Probe 1270
TGCGCATTGGGAGGGTAATAGATAT





1318
Encoding
GTAATAGATATGAGGGTGGTAGGCAGCGCAGGATTA



Probe 1271
TGCCCATGGGAGGGTAATAGATAT





1319
Encoding
GTAATAGATATGAGGGTGTACGCAGCGCAGGATTAT



Probe 1272
GCGGATATGGGAGGGTAATAGATAT





1320
Encoding
AGTATTATTAGGGTGAGGTGGTCGGCAGCGCAGGAT



Probe 1273
TATGGCCGGGTTGGAGTATTATTAG





1321
Encoding
AGTATTATTAGGGTGAGGTACGCAGCGCAGGATTAT



Probe 1274
GCGCATGGGTTGGAGTATTATTAG





1322
Encoding
AGTATTATTAGGGTGAGGACGCAGCGCAGGATTATG



Probe 1275
CGGATAGGGTTGGAGTATTATTAG





1323
Encoding
AGTATTATTAGGGTGAGGTGGTCGGCAGCGCAGGAT



Probe 1276
TATGCCCAGGGTTGGAGTATTATTAG





1324
Encoding
AGTATTATTAGGGTGAGGGTAGGCAGCGCAGGATTA



Probe 1277
TGCGGATAGGGTTGGAGTATTATTAG





1325
Encoding
AGTATTATTAGGGTGAGGGTAGGCAGCGCAGGATTA



Probe 1278
TGCGCATGGGTTGGAGTATTATTAG





1326
Encoding
AGTATTATTAGGGTGAGGGTAGGCAGCGCAGGATTA



Probe 1279
TGCCCAGGGTTGGAGTATTATTAG





1327
Encoding
AGTATTATTAGGGTGAGGTACGCAGCGCAGGATTAT



Probe 1280
GCGGATAGGGTTGGAGTATTATTAG





1328
Encoding
GGAATTTAGTGAGAAGGGAGTACACCCAGTATCAAC



Probe 1281
TGCTTAGGGTGTTGGAATTTAGTG





1329
Encoding
GGAATTTAGTGAGAAGGGACCGGTTCAGACTCTCGT



Probe 1282
CCAAACGGGTGTTGGAATTTAGTG





1330
Encoding
GGAATTTAGTGAGAAGGGCAGCACATCATTCAGTTG



Probe 1283
CAAAAGTGGGTGTTGGAATTTAGTG





1331
Encoding
GGAATTTAGTGAGAAGGGTCTCTTTCGGGATTAGCA



Probe 1284
TCACCAGTGGGTGTTGGAATTTAGTG





1332
Encoding
GGAATTTAGTGAGAAGGGTGGGCGGAAGAACTATG



Probe 1285
CCATCCCCGGGTGTTGGAATTTAGTG





1333
Encoding
GGAATTTAGTGAGAAGGGTGGTCGGAAGAACTATGC



Probe 1286
CATCCCCGGGTGTTGGAATTTAGTG





1334
Encoding
GGAATTTAGTGAGAAGGGACTGAAGTTCTTTAATAG



Probe 1287
TTCTACCAACGTGGGTGTTGGAATTTAGTG





1335
Encoding
GGAATTTAGTGAGAAGGGTGGAGTTCTTTAATAGTT



Probe 1288
CTACCATGGCCGGGTGTTGGAATTTAGTG





1336
Encoding
AGTATTATTAGGGTGAGGAGTACACCCAGTATCAAC



Probe 1289
TGCTTAGGGTTGGAGTATTATTAG





1337
Encoding
AGTATTATTAGGGTGAGGACCGGTTCAGACTCTCGT



Probe 1290
CCAAACGGGTTGGAGTATTATTAG





1338
Encoding
AGTATTATTAGGGTGAGGCAGCACATCATTCAGTTG



Probe 1291
CAAAAGTGGGTTGGAGTATTATTAG





1339
Encoding
AGTATTATTAGGGTGAGGTCTCTTTCGGGATTAGCAT



Probe 1292
CACCAGTGGGTTGGAGTATTATTAG





1340
Encoding
AGTATTATTAGGGTGAGGTGGGCGGAAGAACTATGC



Probe 1293
CATCCCCGGGTTGGAGTATTATTAG





1341
Encoding
AGTATTATTAGGGTGAGGTGGTCGGAAGAACTATGC



Probe 1294
CATCCCCGGGTTGGAGTATTATTAG





1342
Encoding
AGTATTATTAGGGTGAGGACTGAAGTTCTTTAATAG



Probe 1295
TTCTACCAACGTGGGTTGGAGTATTATTAG





1343
Encoding
AGTATTATTAGGGTGAGGTGGAGTTCTTTAATAGTTC



Probe 1296
TACCATGGCCGGGTTGGAGTATTATTAG





1344
Encoding
ATAAGATAGTGAGATGGGATCGGAGCTTTCTTGCAG



Probe 1297
GGTAGGCGTGGGTGATAAGATAGTG





1345
Encoding
ATAAGATAGTGAGATGGGATCGGAGCTTTCTTGCAG



Probe 1298
GGTTGGGTGGGTGATAAGATAGTG





1346
Encoding
ATAAGATAGTGAGATGGGTCTTCACATTCAACTTAT



Probe 1299
CCTCCGCGGTGGGTGATAAGATAGTG





1347
Encoding
ATAAGATAGTGAGATGGGTGCAGTCCCATTAGAGTG



Probe 1300
CTCAACGTGGGTGATAAGATAGTG





1348
Encoding
ATAAGATAGTGAGATGGGAATCTATTGACTTCGGGT



Probe 1301
GTTTGGGTGGGTGATAAGATAGTG





1349
Encoding
ATAAGATAGTGAGATGGGTCGGAGCTTTCTTGCAGG



Probe 1302
GTAGGCGTGGGTGATAAGATAGTG





1350
Encoding
ATAAGATAGTGAGATGGGTGCAGTCCCATTAGAGTG



Probe 1303
CTCTACGGTGGGTGATAAGATAGTG





1351
Encoding
ATAAGATAGTGAGATGGGATCTTCACATTCAACTTA



Probe 1304
TCCTCCGCGGTGGGTGATAAGATAGTG





1352
Encoding
AGTATTATTAGGGTGAGGATCGGAGCTTTCTTGCAG



Probe 1305
GGTAGGCGGGTTGGAGTATTATTAG





1353
Encoding
AGTATTATTAGGGTGAGGATCGGAGCTTTCTTGCAG



Probe 1306
GGTTGGTGGGTTGGAGTATTATTAG





1354
Encoding
AGTATTATTAGGGTGAGGTCTTCACATTCAACTTATC



Probe 1307
CTCCGCGTGGGTTGGAGTATTATTAG





1355
Encoding
AGTATTATTAGGGTGAGGTGCAGTCCCATTAGAGTG



Probe 1308
CTCAACGGGTTGGAGTATTATTAG





1356
Encoding
AGTATTATTAGGGTGAGGAATCTATTGACTTCGGGT



Probe 1309
GTTTGGTGGGTTGGAGTATTATTAG





1357
Encoding
AGTATTATTAGGGTGAGGTCGGAGCTTTCTTGCAGG



Probe 1310
GTAGGCGGGTTGGAGTATTATTAG





1358
Encoding
AGTATTATTAGGGTGAGGTGCAGTCCCATTAGAGTG



Probe 1311
CTCTACGTGGGTTGGAGTATTATTAG





1359
Encoding
AGTATTATTAGGGTGAGGATCTTCACATTCAACTTAT



Probe 1312
CCTCCGCGTGGGTTGGAGTATTATTAG





1360
Encoding
TTAATATGGGTAGTTGGGTGAAGTACAAACAGGATG



Probe 1313
TCCCATCCGATGTGGGTGTGTTAATATGGGT





1361
Encoding
TTAATATGGGTAGTTGGGTAGTGGTACAAACAGGAT



Probe 1314
GTCCGTAGGGTGTGTTAATATGGGT





1362
Encoding
TTAATATGGGTAGTTGGGTAGTGGTACAAACAGGAT



Probe 1315
GTCGGTGGGTGTGTTAATATGGGT





1363
Encoding
TTAATATGGGTAGTTGGGAAATACAAACAGGATGTC



Probe 1316
CCATCCGATGTGGGTGTGTTAATATGGGT





1364
Encoding
TTAATATGGGTAGTTGGGAACACAAACAGGATGTCC



Probe 1317
CATCCGATGTGGGTGTGTTAATATGGGT





1365
Encoding
TTAATATGGGTAGTTGGGCTAATCTTTGGTACAAAC



Probe 1318
AGGAACAGGGTGTGTTAATATGGGT





1366
Encoding
TTAATATGGGTAGTTGGGTGAGGAGTTGCAGTTTTG



Probe 1319
AGTGGCTGGGTGTGTTAATATGGGT





1367
Encoding
TTAATATGGGTAGTTGGGTGAAGAGTTGCAGTTTTG



Probe 1320
AGTGGCTGGGTGTGTTAATATGGGT





1368
Encoding
AGTATTATTAGGGTGAGGGAAGTACAAACAGGATGT



Probe 1321
CCCATCCGATGTGGGTTGGAGTATTATTAG





1369
Encoding
AGTATTATTAGGGTGAGGTAGTGGTACAAACAGGAT



Probe 1322
GTCCGTAGGGTTGGAGTATTATTAG





1370
Encoding
AGTATTATTAGGGTGAGGTAGTGGTACAAACAGGAT



Probe 1323
GTCGGTGGGTTGGAGTATTATTAG





1371
Encoding
AGTATTATTAGGGTGAGGAAATACAAACAGGATGTC



Probe 1324
CCATCCGATGTGGGTTGGAGTATTATTAG





1372
Encoding
AGTATTATTAGGGTGAGGAACACAAACAGGATGTCC



Probe 1325
CATCCGATGTGGGTTGGAGTATTATTAG





1373
Encoding
AGTATTATTAGGGTGAGGCTAATCTTTGGTACAAAC



Probe 1326
AGGAACAGGGTTGGAGTATTATTAG





1374
Encoding
AGTATTATTAGGGTGAGGGAGGAGTTGCAGTTTTGA



Probe 1327
GTGGCTGGGTTGGAGTATTATTAG





1375
Encoding
AGTATTATTAGGGTGAGGTGAAGAGTTGCAGTTTTG



Probe 1328
AGTGGCTGGGTTGGAGTATTATTAG





1376
Encoding
GGAATTTAGTGAGAAGGGTGGAACTTCACTCAAGAA



Probe 1329
CAGCTCAGGGTGTTGGAATTTAGTG





1377
Encoding
GGAATTTAGTGAGAAGGGCGATCTCTAAGCTCTTCT



Probe 1330
TGGGATGTGTTGGGTGTTGGAATTTAGTG





1378
Encoding
GGAATTTAGTGAGAAGGGCAACTCTGCTTCGCAGCT



Probe 1331
TTGGAAGGGTGTTGGAATTTAGTG





1379
Encoding
GGAATTTAGTGAGAAGGGTTTGGTCAGCCCCCCCCA



Probe 1332
CACGATGGGTGTTGGAATTTAGTG





1380
Encoding
GGAATTTAGTGAGAAGGGAGCGGCGCCCTCCTAAAA



Probe 1333
GGTATCGGGTGTTGGAATTTAGTG





1381
Encoding
GGAATTTAGTGAGAAGGGAATGTCCCTTAAGACAGA



Probe 1334
GGTAATGGGTGTTGGAATTTAGTG





1382
Encoding
GGAATTTAGTGAGAAGGGCCGTTCTACCTCTCAGTA



Probe 1335
CGGGATGGGTGTTGGAATTTAGTG





1383
Encoding
GGAATTTAGTGAGAAGGGAGGCACTAACTTGAGAG



Probe 1336
AGCATCGTGGGTGTTGGAATTTAGTG





1384
Encoding
ATGTATTAAGAGGAGGGAGGAACTTCACTCAAGAAC



Probe 1337
AGCTCAGAGGAGGATGTATTAAGA





1385
Encoding
ATGTATTAAGAGGAGGGACGATCTCTAAGCTCTTCT



Probe 1338
TGGGATGTGTTGAGGAGGATGTATTAAGA





1386
Encoding
ATGTATTAAGAGGAGGGACAACTCTGCTTCGCAGCT



Probe 1339
TTGGAAGAGGAGGATGTATTAAGA





1387
Encoding
ATGTATTAAGAGGAGGGATTTGGTCAGCCCCCCCCA



Probe 1340
CACGATGAGGAGGATGTATTAAGA





1388
Encoding
ATGTATTAAGAGGAGGGAAGCGGCGCCCTCCTAAAA



Probe 1341
GGTATCGAGGAGGATGTATTAAGA





1389
Encoding
ATGTATTAAGAGGAGGGAAATGTCCCTTAAGACAGA



Probe 1342
GGTAATGAGGAGGATGTATTAAGA





1390
Encoding
ATGTATTAAGAGGAGGGACCGTTCTACCTCTCAGTA



Probe 1343
CGGGATGAGGAGGATGTATTAAGA





1391
Encoding
ATGTATTAAGAGGAGGGAAGGCACTAACTTGAGAG



Probe 1344
AGCATCGGAGGAGGATGTATTAAGA





1392
Encoding
ATAAGATAGTGAGATGGGTGCGCATTGCTGGGTAAG



Probe 1345
AGTAAGGTGGGTGATAAGATAGTG





1393
Encoding
ATAAGATAGTGAGATGGGTCACTAACTTAATATTGG



Probe 1346
CAACTAGTATAGTGGGTGATAAGATAGTG





1394
Encoding
ATAAGATAGTGAGATGGGTGAAACCGTATTAGCACA



Probe 1347
AATTTCAGAGTGGGTGATAAGATAGTG





1395
Encoding
ATAAGATAGTGAGATGGGCAGATACCGTATTAGCAC



Probe 1348
AAATTTGAGGTGGGTGATAAGATAGTG





1396
Encoding
ATAAGATAGTGAGATGGGTGCAGCTTCGGCGCAGAA



Probe 1349
GGAGAGCGTGGGTGATAAGATAGTG





1397
Encoding
ATAAGATAGTGAGATGGGAATTTCGGCGCAGAAGG



Probe 1350
AGTCCTAGTGGGTGATAAGATAGTG





1398
Encoding
ATAAGATAGTGAGATGGGTGCGCATTGCTGGGTAAG



Probe 1351
AGTTAGGGTGGGTGATAAGATAGTG





1399
Encoding
ATAAGATAGTGAGATGGGATCATTCCACTTTCCTCT



Probe 1352
ACTGGTGGTGGGTGATAAGATAGTG





1400
Encoding
ATGTATTAAGAGGAGGGATGCGCATTGCTGGGTAAG



Probe 1353
AGTAAGGAGGAGGATGTATTAAGA





1401
Encoding
ATGTATTAAGAGGAGGGATCACTAACTTAATATTGG



Probe 1354
CAACTAGTATAGAGGAGGATGTATTAAGA





1402
Encoding
ATGTATTAAGAGGAGGGAGAAACCGTATTAGCACA



Probe 1355
AATTTCAGAGAGGAGGATGTATTAAGA





1403
Encoding
ATGTATTAAGAGGAGGGACAGATACCGTATTAGCAC



Probe 1356
AAATTTGAGGAGGAGGATGTATTAAGA





1404
Encoding
ATGTATTAAGAGGAGGGAGCAGCTTCGGCGCAGAA



Probe 1357
GGAGAGCGAGGAGGATGTATTAAGA





1405
Encoding
ATGTATTAAGAGGAGGGAAATTTCGGCGCAGAAGG



Probe 1358
AGTCCTAGAGGAGGATGTATTAAGA





1406
Encoding
ATGTATTAAGAGGAGGGAGCGCATTGCTGGGTAAGA



Probe 1359
GTTAGGGAGGAGGATGTATTAAGA





1407
Encoding
ATGTATTAAGAGGAGGGAATCATTCCACTTTCCTCT



Probe 1360
ACTGGTGGAGGAGGATGTATTAAGA





1408
Encoding
TTAATATGGGTAGTTGGGATCTCAATTTCTTGACGTT



Probe 1361
ATCCGAGTGGGTGTGTTAATATGGGT





1409
Encoding
TTAATATGGGTAGTTGGGCAATTATGCGGTTCCTGG



Probe 1362
GTTGTCGTGGGTGTGTTAATATGGGT





1410
Encoding
TTAATATGGGTAGTTGGGCTTAACTCCGCTTTACACG



Probe 1363
GCCACAGGGTGTGTTAATATGGGT





1411
Encoding
TTAATATGGGTAGTTGGGTGTTAGCGCTCATCGTTTA



Probe 1364
CACGCGGGTGTGTTAATATGGGT





1412
Encoding
TTAATATGGGTAGTTGGGTGGCACTTCCTTCTTCCCT



Probe 1365
GCACTGGGTGTGTTAATATGGGT





1413
Encoding
TTAATATGGGTAGTTGGGTGGCAATTCCTTGCCGAC



Probe 1366
ACCATCGGGTGTGTTAATATGGGT





1414
Encoding
TTAATATGGGTAGTTGGGCAACTTCACTCTGTTTCAG



Probe 1367
CCTAAGGGTGTGTTAATATGGGT





1415
Encoding
TTAATATGGGTAGTTGGGAACGATAAATCTTTTCTCT



Probe 1368
CGCCACGTACGGGTGTGTTAATATGGGT





1416
Encoding
ATGTATTAAGAGGAGGGAATCTCAATTTCTTGACGT



Probe 1369
TATCCGAGGAGGAGGATGTATTAAGA





1417
Encoding
ATGTATTAAGAGGAGGGACAATTATGCGGTTCCTGG



Probe 1370
GTTGTCGGAGGAGGATGTATTAAGA





1418
Encoding
ATGTATTAAGAGGAGGGACTTAACTCCGCTTTACAC



Probe 1371
GGCCACAGAGGAGGATGTATTAAGA





1419
Encoding
ATGTATTAAGAGGAGGGATGTTAGCGCTCATCGTTT



Probe 1372
ACACGCGAGGAGGATGTATTAAGA





1420
Encoding
ATGTATTAAGAGGAGGGATGGCACTTCCTTCTTCCCT



Probe 1373
GCACTGAGGAGGATGTATTAAGA





1421
Encoding
ATGTATTAAGAGGAGGGATGGCAATTCCTTGCCGAC



Probe 1374
ACCATCGAGGAGGATGTATTAAGA





1422
Encoding
ATGTATTAAGAGGAGGGACAACTTCACTCTGTTTCA



Probe 1375
GCCTAAGAGGAGGATGTATTAAGA





1423
Encoding
ATGTATTAAGAGGAGGGAAACGATAAATCTTTTCTC



Probe 1376
TCGCCACGTACGAGGAGGATGTATTAAGA





1424
Encoding
GGTAATTGAGTAGAAGGGCGGTAAATCTTTTCACAC



Probe 1377
CATGCGTAGGGATGAGGTAATTGAGT





1425
Encoding
GGTAATTGAGTAGAAGGGTGCCCCGAAGGATTGTTT



Probe 1378
TACTACGGGATGAGGTAATTGAGT





1426
Encoding
GGTAATTGAGTAGAAGGGTGACCCGTAGGAAAAGA



Probe 1379
CACATTACACAGGGATGAGGTAATTGAGT





1427
Encoding
GGTAATTGAGTAGAAGGGCGGACAGCTCTGCTTCCC



Probe 1380
TTTCAAGGGATGAGGTAATTGAGT





1428
Encoding
GGTAATTGAGTAGAAGGGTGGAGAGTTATCCTCGGC



Probe 1381
TGTCGGAGGGATGAGGTAATTGAGT





1429
Encoding
GGTAATTGAGTAGAAGGGACGATAAATCTTTTCACA



Probe 1382
CCATGCGTAGGGATGAGGTAATTGAGT





1430
Encoding
GGTAATTGAGTAGAAGGGTGCCCCGAAGGATTGTTT



Probe 1383
TACAACGTGGGATGAGGTAATTGAGT





1431
Encoding
GGTAATTGAGTAGAAGGGACACGTAGGAAAAGACA



Probe 1384
CATTACACAGGGATGAGGTAATTGAGT





1432
Encoding
ATGTATTAAGAGGAGGGACGGTAAATCTTTTCACAC



Probe 1385
CATGCGTAGAGGAGGATGTATTAAGA





1433
Encoding
ATGTATTAAGAGGAGGGATGCCCCGAAGGATTGTTT



Probe 1386
TACTACGAGGAGGATGTATTAAGA





1434
Encoding
ATGTATTAAGAGGAGGGAGACCCGTAGGAAAAGAC



Probe 1387
ACATTACACAGAGGAGGATGTATTAAGA





1435
Encoding
ATGTATTAAGAGGAGGGACGGACAGCTCTGCTTCCC



Probe 1388
TTTCAAGAGGAGGATGTATTAAGA





1436
Encoding
ATGTATTAAGAGGAGGGAGGAGAGTTATCCTCGGCT



Probe 1389
GTCGGAGAGGAGGATGTATTAAGA





1437
Encoding
ATGTATTAAGAGGAGGGAACGATAAATCTTTTCACA



Probe 1390
CCATGCGTAGAGGAGGATGTATTAAGA





1438
Encoding
ATGTATTAAGAGGAGGGATGCCCCGAAGGATTGTTT



Probe 1391
TACAACGGAGGAGGATGTATTAAGA





1439
Encoding
ATGTATTAAGAGGAGGGAACACGTAGGAAAAGACA



Probe 1392
CATTACACAGAGGAGGATGTATTAAGA





1440
Encoding
GTAATAGATATGAGGGTGTTTCATGCGACTTAGTTG



Probe 1393
CATATATGGGAGGGTAATAGATAT





1441
Encoding
GTAATAGATATGAGGGTGTCGTGCGACTTAGTTGCA



Probe 1394
TTAACGTGGGAGGGTAATAGATAT





1442
Encoding
GTAATAGATATGAGGGTGGCGTTTTGCCTCTCTTTGT



Probe 1395
TGTGGTGGGAGGGTAATAGATAT





1443
Encoding
GTAATAGATATGAGGGTGTTCATGCGACTTAGTTGC



Probe 1396
ATTTACTGGGAGGGTAATAGATAT





1444
Encoding
GTAATAGATATGAGGGTGAGCGTTTTGCCTCTCTTTG



Probe 1397
TTGTGGTGGGAGGGTAATAGATAT





1445
Encoding
GTAATAGATATGAGGGTGAGCGTTTTGCCTCTCTTTG



Probe 1398
TTCTGTGGGAGGGTAATAGATAT





1446
Encoding
GTAATAGATATGAGGGTGGAGGGTTTTGCCTCTCTTT



Probe 1399
GTACTTGGGAGGGTAATAGATAT





1447
Encoding
GTAATAGATATGAGGGTGGTTCCATGCGACTTAGTT



Probe 1400
GCAAATTGGGAGGGTAATAGATAT





1448
Encoding
TAGAATTAGAGAGATGGGTTTCATGCGACTTAGTTG



Probe 1401
CATATAGGTGGAGTAGAATTAGAG





1449
Encoding
TAGAATTAGAGAGATGGGTCGTGCGACTTAGTTGCA



Probe 1402
TTAACGGGTGGAGTAGAATTAGAG





1450
Encoding
TAGAATTAGAGAGATGGGTGCGTTTTGCCTCTCTTTG



Probe 1403
TTGTGGTGGTGGAGTAGAATTAGAG





1451
Encoding
TAGAATTAGAGAGATGGGTTCATGCGACTTAGTTGC



Probe 1404
ATTTACGGTGGAGTAGAATTAGAG





1452
Encoding
TAGAATTAGAGAGATGGGAGCGTTTTGCCTCTCTTT



Probe 1405
GTTGTGGTGGTGGAGTAGAATTAGAG





1453
Encoding
TAGAATTAGAGAGATGGGAGCGTTTTGCCTCTCTTT



Probe 1406
GTTCTGGGTGGAGTAGAATTAGAG





1454
Encoding
TAGAATTAGAGAGATGGGTGAGGGTTTTGCCTCTCT



Probe 1407
TTGTACTGGTGGAGTAGAATTAGAG





1455
Encoding
TAGAATTAGAGAGATGGGTGTTCCATGCGACTTAGT



Probe 1408
TGCAAATGGTGGAGTAGAATTAGAG





1456
Encoding
GGAATTTAGTGAGAAGGGTGGTAGAATAGGAATCA



Probe 1409
CTAGGTTTCTAGTGGGTGTTGGAATTTAGTG





1457
Encoding
GGAATTTAGTGAGAAGGGCGGTAGAATAGGAATCA



Probe 1410
CTAGGTTTCTAGTGGGTGTTGGAATTTAGTG





1458
Encoding
GGAATTTAGTGAGAAGGGTGGCACTAGAATAGGAA



Probe 1411
TCACTAGGTAAGTGGGTGTTGGAATTTAGTG





1459
Encoding
GGAATTTAGTGAGAAGGGTGGCACTAGAATAGGAA



Probe 1412
TCACTAGGAAAGGGTGTTGGAATTTAGTG





1460
Encoding
GGAATTTAGTGAGAAGGGCAGCCACTAGAATAGGA



Probe 1413
ATCACTTCCGGGTGTTGGAATTTAGTG





1461
Encoding
GGAATTTAGTGAGAAGGGTGCAGCCACTAGAATAG



Probe 1414
GAATCAGATGGGTGTTGGAATTTAGTG





1462
Encoding
GGAATTTAGTGAGAAGGGTGCGCTAGAATAGGAATC



Probe 1415
ACTAGGTAAGTGGGTGTTGGAATTTAGTG





1463
Encoding
GGAATTTAGTGAGAAGGGTGGTAGAATAGGAATCA



Probe 1416
CTAGGTTTCAAGGTGGGTGTTGGAATTTAGTG





1464
Encoding
TAGAATTAGAGAGATGGGTGGTAGAATAGGAATCA



Probe 1417
CTAGGTTTCTAGGGTGGAGTAGAATTAGAG





1465
Encoding
TAGAATTAGAGAGATGGGCGGTAGAATAGGAATCA



Probe 1418
CTAGGTTTCTAGGGTGGAGTAGAATTAGAG





1466
Encoding
TAGAATTAGAGAGATGGGTGGCACTAGAATAGGAA



Probe 1419
TCACTAGGTAAGGGTGGAGTAGAATTAGAG





1467
Encoding
TAGAATTAGAGAGATGGGTGGCACTAGAATAGGAA



Probe 1420
TCACTAGGAAAGGTGGAGTAGAATTAGAG





1468
Encoding
TAGAATTAGAGAGATGGGCAGCCACTAGAATAGGA



Probe 1421
ATCACTTCCGGTGGAGTAGAATTAGAG





1469
Encoding
TAGAATTAGAGAGATGGGTGCAGCCACTAGAATAG



Probe 1422
GAATCAGATGGTGGAGTAGAATTAGAG





1470
Encoding
TAGAATTAGAGAGATGGGTGCGCTAGAATAGGAATC



Probe 1423
ACTAGGTAAGGGTGGAGTAGAATTAGAG





1471
Encoding
TAGAATTAGAGAGATGGGTGGTAGAATAGGAATCA



Probe 1424
CTAGGTTTCAAGGTGGTGGAGTAGAATTAGAG





1472
Encoding
ATAAGATAGTGAGATGGGAGGTAGGAAGGGCGACA



Probe 1425
TTACAGCGTGGGTGATAAGATAGTG





1473
Encoding
ATAAGATAGTGAGATGGGTCACCAAAGCAGTCCACA



Probe 1426
GGTTCTCGTGGGTGATAAGATAGTG





1474
Encoding
ATAAGATAGTGAGATGGGAGTCAAATCACTTCTCCT



Probe 1427
CCCCTTGTGGGTGATAAGATAGTG





1475
Encoding
ATAAGATAGTGAGATGGGCGACTCCGGTTAGGGTTG



Probe 1428
GGTGTGGTGGGTGATAAGATAGTG





1476
Encoding
ATAAGATAGTGAGATGGGCACCATCCTTGATGCTGG



Probe 1429
CTAGACGTGGGTGATAAGATAGTG





1477
Encoding
ATAAGATAGTGAGATGGGCAACAAAGCAGTCCACA



Probe 1430
GGTTCTCGTGGGTGATAAGATAGTG





1478
Encoding
ATAAGATAGTGAGATGGGAGGCGCTCAGTCAAATCA



Probe 1431
CTTGAGGTGGGTGATAAGATAGTG





1479
Encoding
ATAAGATAGTGAGATGGGCAGGTAGGAAGGGCGAC



Probe 1432
ATTAGAGGTGGGTGATAAGATAGTG





1480
Encoding
TAGAATTAGAGAGATGGGAGGTAGGAAGGGCGACA



Probe 1433
TTACAGCGGTGGAGTAGAATTAGAG





1481
Encoding
TAGAATTAGAGAGATGGGTCACCAAAGCAGTCCACA



Probe 1434
GGTTCTCGGTGGAGTAGAATTAGAG





1482
Encoding
TAGAATTAGAGAGATGGGAGTCAAATCACTTCTCCT



Probe 1435
CCCCTTGGTGGAGTAGAATTAGAG





1483
Encoding
TAGAATTAGAGAGATGGGCGACTCCGGTTAGGGTTG



Probe 1436
GGTGTGGGTGGAGTAGAATTAGAG





1484
Encoding
TAGAATTAGAGAGATGGGCACCATCCTTGATGCTGG



Probe 1437
CTAGACGGTGGAGTAGAATTAGAG





1485
Encoding
TAGAATTAGAGAGATGGGCAACAAAGCAGTCCACA



Probe 1438
GGTTCTCGGTGGAGTAGAATTAGAG





1486
Encoding
TAGAATTAGAGAGATGGGAGGCGCTCAGTCAAATCA



Probe 1439
CTTGAGGGTGGAGTAGAATTAGAG





1487
Encoding
TAGAATTAGAGAGATGGGCAGGTAGGAAGGGCGAC



Probe 1440
ATTAGAGGGTGGAGTAGAATTAGAG





1488
Encoding
TTAATATGGGTAGTTGGGCAGGCGACTTCGTGGTCT



Probe 1441
TATGGCCGGGTGTGTTAATATGGGT





1489
Encoding
TTAATATGGGTAGTTGGGTGCGGAGCTTTTACCCCA



Probe 1442
AAGTCTACGGGTGTGTTAATATGGGT





1490
Encoding
TTAATATGGGTAGTTGGGTGGCGGAGCTTTTACCCC



Probe 1443
AAAGTGTAGGGTGTGTTAATATGGGT





1491
Encoding
TTAATATGGGTAGTTGGGTGGAAGTCATGCGACTTC



Probe 1444
GTGGAGAGGGTGTGTTAATATGGGT





1492
Encoding
TTAATATGGGTAGTTGGGTGGAAAGTCATGCGACTT



Probe 1445
CGTGCAGTGGGTGTGTTAATATGGGT





1493
Encoding
TTAATATGGGTAGTTGGGTGCGGAGCTTTTACCCCA



Probe 1446
AAGTGTAGGGTGTGTTAATATGGGT





1494
Encoding
TTAATATGGGTAGTTGGGAGTCGACTTCGTGGTCTTA



Probe 1447
TGGCCGGGTGTGTTAATATGGGT





1495
Encoding
TTAATATGGGTAGTTGGGTGGCGGAGCTTTTACCCC



Probe 1448
AAAGAGTGGGTGTGTTAATATGGGT





1496
Encoding
TAGAATTAGAGAGATGGGCAGGCGACTTCGTGGTCT



Probe 1449
TATGGCCGGTGGAGTAGAATTAGAG





1497
Encoding
TAGAATTAGAGAGATGGGTGCGGAGCTTTTACCCCA



Probe 1450
AAGTCTACGGTGGAGTAGAATTAGAG





1498
Encoding
TAGAATTAGAGAGATGGGTGGCGGAGCTTTTACCCC



Probe 1451
AAAGTGTAGGTGGAGTAGAATTAGAG





1499
Encoding
TAGAATTAGAGAGATGGGTGGAAGTCATGCGACTTC



Probe 1452
GTGGAGAGGTGGAGTAGAATTAGAG





1500
Encoding
TAGAATTAGAGAGATGGGTGGAAAGTCATGCGACTT



Probe 1453
CGTGCAGGGTGGAGTAGAATTAGAG





1501
Encoding
TAGAATTAGAGAGATGGGTGCGGAGCTTTTACCCCA



Probe 1454
AAGTGTAGGTGGAGTAGAATTAGAG





1502
Encoding
TAGAATTAGAGAGATGGGAGTCGACTTCGTGGTCTT



Probe 1455
ATGGCCGGTGGAGTAGAATTAGAG





1503
Encoding
TAGAATTAGAGAGATGGGTGGCGGAGCTTTTACCCC



Probe 1456
AAAGAGTGGTGGAGTAGAATTAGAG





1504
Encoding
GGTAATTGAGTAGAAGGGACAGTTACAGTCTAGCAA



Probe 1457
CCCCGGTGGGATGAGGTAATTGAGT





1505
Encoding
GGTAATTGAGTAGAAGGGTGCACACTAGGAATTCCG



Probe 1458
GTTGAGGTGGGATGAGGTAATTGAGT





1506
Encoding
GGTAATTGAGTAGAAGGGCAAAGTAGTAGTTCCAAG



Probe 1459
GTTGTCGTGGGATGAGGTAATTGAGT





1507
Encoding
GGTAATTGAGTAGAAGGGACAGTTACAGTCTAGCAA



Probe 1460
CCCGGGAGGGATGAGGTAATTGAGT





1508
Encoding
GGTAATTGAGTAGAAGGGAACCCTTGGAGTTACGCT



Probe 1461
ACTTTGTGGGATGAGGTAATTGAGT





1509
Encoding
GGTAATTGAGTAGAAGGGCAGTTACAGTCTAGCAAC



Probe 1462
CCGGGAGGGATGAGGTAATTGAGT





1510
Encoding
GGTAATTGAGTAGAAGGGTGGTGTTGAGCCTTGGAG



Probe 1463
TTACCGAGGGATGAGGTAATTGAGT





1511
Encoding
GGTAATTGAGTAGAAGGGTGTTGTTTTAGTAGTAGT



Probe 1464
TCCAAGGAACGGGATGAGGTAATTGAGT





1512
Encoding
TAGAATTAGAGAGATGGGACAGTTACAGTCTAGCAA



Probe 1465
CCCCGGTGGTGGAGTAGAATTAGAG





1513
Encoding
TAGAATTAGAGAGATGGGTGCACACTAGGAATTCCG



Probe 1466
GTTGAGGTGGTGGAGTAGAATTAGAG





1514
Encoding
TAGAATTAGAGAGATGGGCAAAGTAGTAGTTCCAAG



Probe 1467
GTTGTCGGGTGGAGTAGAATTAGAG





1515
Encoding
TAGAATTAGAGAGATGGGACAGTTACAGTCTAGCAA



Probe 1468
CCCGGGAGGTGGAGTAGAATTAGAG





1516
Encoding
TAGAATTAGAGAGATGGGAACCCTTGGAGTTACGCT



Probe 1469
ACTTTGGGTGGAGTAGAATTAGAG





1517
Encoding
TAGAATTAGAGAGATGGGCAGTTACAGTCTAGCAAC



Probe 1470
CCGGGAGGTGGAGTAGAATTAGAG





1518
Encoding
TAGAATTAGAGAGATGGGTGGTGTTGAGCCTTGGAG



Probe 1471
TTACCGAGGTGGAGTAGAATTAGAG





1519
Encoding
TAGAATTAGAGAGATGGGTGTTGTTTTAGTAGTAGT



Probe 1472
TCCAAGGAACGGTGGAGTAGAATTAGAG





1520
Encoding
TGTATAGGATTAGAAGGGCGACTTGATAGGTACAGT



Probe 1473
CTTTTTTGAAGGGTGAGTGTATAGGATT





1521
Encoding
TGTATAGGATTAGAAGGGTGTGACTAGTTAATCAGG



Probe 1474
CGCATCCGGGTGAGTGTATAGGATT





1522
Encoding
TGTATAGGATTAGAAGGGTACCCGAAATACTATCTA



Probe 1475
CTTTCATACTAGGGTGAGTGTATAGGATT





1523
Encoding
TGTATAGGATTAGAAGGGAAGTTCTCTCTGTAATAG



Probe 1476
CCATTCATGGGTGAGTGTATAGGATT





1524
Encoding
TGTATAGGATTAGAAGGGTCGTCTTGATAGGTACAG



Probe 1477
TCTTTTTTGAAGGGTGAGTGTATAGGATT





1525
Encoding
TGTATAGGATTAGAAGGGCAAGCTTGACCTTGCGGT



Probe 1478
TTCCGAGGGTGAGTGTATAGGATT





1526
Encoding
TGTATAGGATTAGAAGGGCGCAGGCCATCTATTAGT



Probe 1479
GGAAACGGGTGAGTGTATAGGATT





1527
Encoding
TGTATAGGATTAGAAGGGCCGAAGGCCATCTATTAG



Probe 1480
TGGAAACGGGTGAGTGTATAGGATT





1528
Encoding
TATAGTTATGGAGAAGGGCGACTTGATAGGTACAGT



Probe 1481
CTTTTTTGAAGGAAGGGTATAGTTATGG





1529
Encoding
TATAGTTATGGAGAAGGGTGTGACTAGTTAATCAGG



Probe 1482
CGCATCCGGAAGGGTATAGTTATGG





1530
Encoding
TATAGTTATGGAGAAGGGTACCCGAAATACTATCTA



Probe 1483
CTTTCATACTAGGAAGGGTATAGTTATGG





1531
Encoding
TATAGTTATGGAGAAGGGAAGTTCTCTCTGTAATAG



Probe 1484
CCATTCATGGAAGGGTATAGTTATGG





1532
Encoding
TATAGTTATGGAGAAGGGTCGTCTTGATAGGTACAG



Probe 1485
TCTTTTTTGAAGGAAGGGTATAGTTATGG





1533
Encoding
TATAGTTATGGAGAAGGGCAAGCTTGACCTTGCGGT



Probe 1486
TTCCGAGGAAGGGTATAGTTATGG





1534
Encoding
TATAGTTATGGAGAAGGGCGCAGGCCATCTATTAGT



Probe 1487
GGAAACGGAAGGGTATAGTTATGG





1535
Encoding
TATAGTTATGGAGAAGGGCCGAAGGCCATCTATTAG



Probe 1488
TGGAAACGGAAGGGTATAGTTATGG





1536
Encoding
ATGGAAGTAGTAGAAGGGTAAACATCTGACTTGACA



Probe 1489
GACCCGGTGGGATGTATGGAAGTAGT





1537
Encoding
ATGGAAGTAGTAGAAGGGTGGACTCTACAAGACTCT



Probe 1490
AGCCTCGGTGGGATGTATGGAAGTAGT





1538
Encoding
ATGGAAGTAGTAGAAGGGATACCCTCTGTCAGGCAG



Probe 1491
ATCAGGTGGGATGTATGGAAGTAGT





1539
Encoding
ATGGAAGTAGTAGAAGGGTAGCCTCTGTCAGGCAGA



Probe 1492
TCCGGTGGGATGTATGGAAGTAGT





1540
Encoding
ATGGAAGTAGTAGAAGGGCCAATCTGACAGCGAGA



Probe 1493
GGCCGCTGGGATGTATGGAAGTAGT





1541
Encoding
ATGGAAGTAGTAGAAGGGTGCAATTGCTGAGGTTAT



Probe 1494
TAACCAGTGGGATGTATGGAAGTAGT





1542
Encoding
ATGGAAGTAGTAGAAGGGTCGCTCCTCAAGGGAAC



Probe 1495
AACCAGGTGGGATGTATGGAAGTAGT





1543
Encoding
ATGGAAGTAGTAGAAGGGTCCTCTCTGCCAAATTCC



Probe 1496
GTGCTAGGGATGTATGGAAGTAGT





1544
Encoding
TATAGTTATGGAGAAGGGTAAACATCTGACTTGACA



Probe 1497
GACCCGGTGGAAGGGTATAGTTATGG





1545
Encoding
TATAGTTATGGAGAAGGGTGGACTCTACAAGACTCT



Probe 1498
AGCCTCGGTGGAAGGGTATAGTTATGG





1546
Encoding
TATAGTTATGGAGAAGGGATACCCTCTGTCAGGCAG



Probe 1499
ATCAGGTGGAAGGGTATAGTTATGG





1547
Encoding
TATAGTTATGGAGAAGGGTAGCCTCTGTCAGGCAGA



Probe 1500
TCCGGTGGAAGGGTATAGTTATGG





1548
Encoding
TATAGTTATGGAGAAGGGCCAATCTGACAGCGAGAG



Probe 1501
GCCGCTGGAAGGGTATAGTTATGG





1549
Encoding
TATAGTTATGGAGAAGGGTGCAATTGCTGAGGTTAT



Probe 1502
TAACCAGTGGAAGGGTATAGTTATGG





1550
Encoding
TATAGTTATGGAGAAGGGTCGCTCCTCAAGGGAACA



Probe 1503
ACCAGGTGGAAGGGTATAGTTATGG





1551
Encoding
TATAGTTATGGAGAAGGGTCCTCTCTGCCAAATTCC



Probe 1504
GTGCTAGGAAGGGTATAGTTATGG





1552
Encoding
GGATAGAGTATAGTTGGGTTCCTGACGGCTTTACCC



Probe 1505
ATCATAGTGGATGGAGGATAGAGTAT





1553
Encoding
GGATAGAGTATAGTTGGGTCCTGACGGCTTTACCCA



Probe 1506
TCATAGTGGATGGAGGATAGAGTAT





1554
Encoding
GGATAGAGTATAGTTGGGAGGAAGGCCTGACGGCTT



Probe 1507
TACGGTGGATGGAGGATAGAGTAT





1555
Encoding
GGATAGAGTATAGTTGGGTTCCTGACGGCTTTACCC



Probe 1508
ATCAAAGGGATGGAGGATAGAGTAT





1556
Encoding
GGATAGAGTATAGTTGGGCCGGACGGCTTTACCCAT



Probe 1509
CATAGTGGATGGAGGATAGAGTAT





1557
Encoding
GGATAGAGTATAGTTGGGCAGGAAGGCCTGACGGCT



Probe 1510
TTAAGGTGGATGGAGGATAGAGTAT





1558
Encoding
GGATAGAGTATAGTTGGGTTCCTGACGGCTTTACCC



Probe 1511
ATCTAAGGATGGAGGATAGAGTAT





1559
Encoding
GGATAGAGTATAGTTGGGTCCTGACGGCTTTACCCA



Probe 1512
TCAAAGGGATGGAGGATAGAGTAT





1560
Encoding
TATAGTTATGGAGAAGGGTTCCTGACGGCTTTACCC



Probe 1513
ATCATAGTGGAAGGGTATAGTTATGG





1561
Encoding
TATAGTTATGGAGAAGGGTCCTGACGGCTTTACCCA



Probe 1514
TCATAGTGGAAGGGTATAGTTATGG





1562
Encoding
TATAGTTATGGAGAAGGGAGGAAGGCCTGACGGCTT



Probe 1515
TACGGTGGAAGGGTATAGTTATGG





1563
Encoding
TATAGTTATGGAGAAGGGTTCCTGACGGCTTTACCC



Probe 1516
ATCAAAGGGAAGGGTATAGTTATGG





1564
Encoding
TATAGTTATGGAGAAGGGCCGGACGGCTTTACCCAT



Probe 1517
CATAGTGGAAGGGTATAGTTATGG





1565
Encoding
TATAGTTATGGAGAAGGGCAGGAAGGCCTGACGGCT



Probe 1518
TTAAGGTGGAAGGGTATAGTTATGG





1566
Encoding
TATAGTTATGGAGAAGGGTTCCTGACGGCTTTACCC



Probe 1519
ATCTAAGGAAGGGTATAGTTATGG





1567
Encoding
TATAGTTATGGAGAAGGGTCCTGACGGCTTTACCCA



Probe 1520
TCAAAGGGAAGGGTATAGTTATGG





1568
Encoding
AATGATATGTTGAGTGGGAGCCCTGTCCACAGAGGT



Probe 1521
TTAGTTGTGGTGGAATGATATGTT





1569
Encoding
AATGATATGTTGAGTGGGAGGCACTGTTCGAGTGGA



Probe 1522
ACATCAGTGGTGGAATGATATGTT





1570
Encoding
AATGATATGTTGAGTGGGTCGATTTCTCCTTTGATAA



Probe 1523
CAGAATCTACGTGGTGGAATGATATGTT





1571
Encoding
AATGATATGTTGAGTGGGTGGTCTTCGTGTCTCCGA



Probe 1524
AGACTCGTGGTGGAATGATATGTT





1572
Encoding
AATGATATGTTGAGTGGGAGGCACGGAAGGGTTCAT



Probe 1525
CCCAGGGTGGTGGAATGATATGTT





1573
Encoding
AATGATATGTTGAGTGGGAGGCACTGTTCGAGTGGA



Probe 1526
ACAAGTAGGGTGGTGGAATGATATGTT





1574
Encoding
AATGATATGTTGAGTGGGTAACCGTAGTATGCTGAC



Probe 1527
CTAGCTGTGGTGGAATGATATGTT





1575
Encoding
AATGATATGTTGAGTGGGTTTCAGTTTCAAAAGCAG



Probe 1528
GTTTACGTGGTGGAATGATATGTT





1576
Encoding
GATAAGTAAGTAGGGATGAGCCCTGTCCACAGAGGT



Probe 1529
TTAGTTGGTGGAGGATAAGTAAGT





1577
Encoding
GATAAGTAAGTAGGGATGAGGCACTGTTCGAGTGGA



Probe 1530
ACATCAGGTGGAGGATAAGTAAGT





1578
Encoding
GATAAGTAAGTAGGGATGTCGATTTCTCCTTTGATA



Probe 1531
ACAGAATCTACGGTGGAGGATAAGTAAGT





1579
Encoding
GATAAGTAAGTAGGGATGTGGTCTTCGTGTCTCCGA



Probe 1532
AGACTCGGTGGAGGATAAGTAAGT





1580
Encoding
GATAAGTAAGTAGGGATGAGGCACGGAAGGGTTCA



Probe 1533
TCCCAGGTGGTGGAGGATAAGTAAGT





1581
Encoding
GATAAGTAAGTAGGGATGAGGCACTGTTCGAGTGGA



Probe 1534
ACAAGTAGGTGGTGGAGGATAAGTAAGT





1582
Encoding
GATAAGTAAGTAGGGATGTAACCGTAGTATGCTGAC



Probe 1535
CTAGCTGGTGGAGGATAAGTAAGT





1583
Encoding
GATAAGTAAGTAGGGATGTTTCAGTTTCAAAAGCAG



Probe 1536
GTTTACGGTGGAGGATAAGTAAGT





1584
Encoding
ATGGAAGTAGTAGAAGGGACGTGGTCCGTAGACATT



Probe 1537
ATGCCCAGGGATGTATGGAAGTAGT





1585
Encoding
ATGGAAGTAGTAGAAGGGTACTTCATCCGATAGTGC



Probe 1538
AAGCAGTGGGATGTATGGAAGTAGT





1586
Encoding
ATGGAAGTAGTAGAAGGGATGCCCTAAGGCCTTCTT



Probe 1539
CATAGTGTGGGATGTATGGAAGTAGT





1587
Encoding
ATGGAAGTAGTAGAAGGGAAACATCTGACTTAATTG



Probe 1540
ACCGGGAGGGATGTATGGAAGTAGT





1588
Encoding
ATGGAAGTAGTAGAAGGGTGCCCAAGACCACAACC



Probe 1541
TCTAAATCCTGTGGGATGTATGGAAGTAGT





1589
Encoding
ATGGAAGTAGTAGAAGGGTGAGCTATCTCTAAAGGA



Probe 1542
TTCGCTCCTGGGATGTATGGAAGTAGT





1590
Encoding
ATGGAAGTAGTAGAAGGGCGTTGTCTCAGCGTTCCC



Probe 1543
GAACCGTGGGATGTATGGAAGTAGT





1591
Encoding
ATGGAAGTAGTAGAAGGGTGCCTACGACAGACTTTA



Probe 1544
TGAGTTGGCGGGATGTATGGAAGTAGT





1592
Encoding
GATAAGTAAGTAGGGATGACGTGGTCCGTAGACATT



Probe 1545
ATGCCCAGGTGGAGGATAAGTAAGT





1593
Encoding
GATAAGTAAGTAGGGATGTACTTCATCCGATAGTGC



Probe 1546
AAGCAGGGTGGAGGATAAGTAAGT





1594
Encoding
GATAAGTAAGTAGGGATGATGCCCTAAGGCCTTCTT



Probe 1547
CATAGTGGGTGGAGGATAAGTAAGT





1595
Encoding
GATAAGTAAGTAGGGATGAAACATCTGACTTAATTG



Probe 1548
ACCGGGAGGTGGAGGATAAGTAAGT





1596
Encoding
GATAAGTAAGTAGGGATGGCCCAAGACCACAACCTC



Probe 1549
TAAATCCTGGGTGGAGGATAAGTAAGT





1597
Encoding
GATAAGTAAGTAGGGATGGAGCTATCTCTAAAGGAT



Probe 1550
TCGCTCCTGGTGGAGGATAAGTAAGT





1598
Encoding
GATAAGTAAGTAGGGATGCGTTGTCTCAGCGTTCCC



Probe 1551
GAACCGGGTGGAGGATAAGTAAGT





1599
Encoding
GATAAGTAAGTAGGGATGGCCTACGACAGACTTTAT



Probe 1552
GAGTTGGCGGTGGAGGATAAGTAAGT





1600
Encoding
GGATAGAGTATAGTTGGGTGGAAGGGAACAGGGCG



Probe 1553
TTGCCGGAGGATGGAGGATAGAGTAT





1601
Encoding
GGATAGAGTATAGTTGGGTGGAAAGGGAACAGGGC



Probe 1554
GTTGCAGGTGGATGGAGGATAGAGTAT





1602
Encoding
GGATAGAGTATAGTTGGGCGAGAAGGGAACAGGGC



Probe 1555
GTTGAGGTGGATGGAGGATAGAGTAT





1603
Encoding
GGATAGAGTATAGTTGGGTTCAACAGGGCGTTGCCC



Probe 1556
CTGGCAGGATGGAGGATAGAGTAT





1604
Encoding
GGATAGAGTATAGTTGGGTGCGCGAAGGGAACAGG



Probe 1557
GCGTTCGGTGGATGGAGGATAGAGTAT





1605
Encoding
GGATAGAGTATAGTTGGGCTTGAACAGGGCGTTGCC



Probe 1558
CCTCGCGGATGGAGGATAGAGTAT





1606
Encoding
GGATAGAGTATAGTTGGGTGCACGAAGGGAACAGG



Probe 1559
GCGTTGAGGTGGATGGAGGATAGAGTAT





1607
Encoding
GGATAGAGTATAGTTGGGCGGGAAGGGAACAGGGC



Probe 1560
GTTGCAGGTGGATGGAGGATAGAGTAT





1608
Encoding
GATAAGTAAGTAGGGATGGGAAGGGAACAGGGCGT



Probe 1561
TGCCGGAGGTGGAGGATAAGTAAGT





1609
Encoding
GATAAGTAAGTAGGGATGGGAAAGGGAACAGGGCG



Probe 1562
TTGCAGGTGGTGGAGGATAAGTAAGT





1610
Encoding
GATAAGTAAGTAGGGATGCGAGAAGGGAACAGGGC



Probe 1563
GTTGAGGTGGTGGAGGATAAGTAAGT





1611
Encoding
GATAAGTAAGTAGGGATGTTCAACAGGGCGTTGCCC



Probe 1564
CTGGCAGGTGGAGGATAAGTAAGT





1612
Encoding
GATAAGTAAGTAGGGATGGCGCGAAGGGAACAGGG



Probe 1565
CGTTCGGTGGTGGAGGATAAGTAAGT





1613
Encoding
GATAAGTAAGTAGGGATGCTTGAACAGGGCGTTGCC



Probe 1566
CCTCGCGGTGGAGGATAAGTAAGT





1614
Encoding
GATAAGTAAGTAGGGATGGCACGAAGGGAACAGGG



Probe 1567
CGTTGAGGTGGTGGAGGATAAGTAAGT





1615
Encoding
GATAAGTAAGTAGGGATGCGGGAAGGGAACAGGGC



Probe 1568
GTTGCAGGTGGTGGAGGATAAGTAAGT





1616
Encoding
TGTAATAGTAAGGAGGGAGAAGACCGTAATCTTCCC



Probe 1569
TTCACAGGGTGAGTGTAATAGTAA





1617
Encoding
TGTAATAGTAAGGAGGGATCTTTCCGACCGTAATCT



Probe 1570
TCCGAAGGGTGAGTGTAATAGTAA





1618
Encoding
TGTAATAGTAAGGAGGGATGATGCACAGATCTTCCG



Probe 1571
ACCCATGGGTGAGTGTAATAGTAA





1619
Encoding
TGTAATAGTAAGGAGGGAAGACGACCGTAATCTTCC



Probe 1572
CTTCACAGGGTGAGTGTAATAGTAA





1620
Encoding
TGTAATAGTAAGGAGGGAATTTTCCCTTCTGTACAC



Probe 1573
CCGTAGCGGGTGAGTGTAATAGTAA





1621
Encoding
TGTAATAGTAAGGAGGGAGTGATGCACAGATCTTCC



Probe 1574
GACCCATGGGTGAGTGTAATAGTAA





1622
Encoding
TGTAATAGTAAGGAGGGAGTCCTTCCGACCGTAATC



Probe 1575
TTCCGAAGGGTGAGTGTAATAGTAA





1623
Encoding
TGTAATAGTAAGGAGGGAATTTTCCCTTCTGTACAC



Probe 1576
CCGAAGTGGGTGAGTGTAATAGTAA





1624
Encoding
GATAAGTAAGTAGGGATGGAAGACCGTAATCTTCCC



Probe 1577
TTCACAGGTGGAGGATAAGTAAGT





1625
Encoding
GATAAGTAAGTAGGGATGTCTTTCCGACCGTAATCT



Probe 1578
TCCGAAGGTGGAGGATAAGTAAGT





1626
Encoding
GATAAGTAAGTAGGGATGTGATGCACAGATCTTCCG



Probe 1579
ACCCATGGTGGAGGATAAGTAAGT





1627
Encoding
GATAAGTAAGTAGGGATGAGACGACCGTAATCTTCC



Probe 1580
CTTCACAGGTGGAGGATAAGTAAGT





1628
Encoding
GATAAGTAAGTAGGGATGATTTTCCCTTCTGTACAC



Probe 1581
CCGTAGCGGTGGAGGATAAGTAAGT





1629
Encoding
GATAAGTAAGTAGGGATGGTGATGCACAGATCTTCC



Probe 1582
GACCCATGGTGGAGGATAAGTAAGT





1630
Encoding
GATAAGTAAGTAGGGATGGTCCTTCCGACCGTAATC



Probe 1583
TTCCGAAGGTGGAGGATAAGTAAGT





1631
Encoding
GATAAGTAAGTAGGGATGATTTTCCCTTCTGTACAC



Probe 1584
CCGAAGGGTGGAGGATAAGTAAGT





1632
Encoding
AATGATATGTTGAGTGGGCGTCTGTTTCCTGTTACCG



Probe 1585
TTGCTGTGGTGGAATGATATGTT





1633
Encoding
AATGATATGTTGAGTGGGCGGTCGTCAGCGAAACAG



Probe 1586
CAACGAGTGGTGGAATGATATGTT





1634
Encoding
AATGATATGTTGAGTGGGTGTCAAACAGCAAGCTGT



Probe 1587
TTCCACAGTGGTGGAATGATATGTT





1635
Encoding
AATGATATGTTGAGTGGGTTGCAAGCTGTTTCCTGTT



Probe 1588
ACGCAGTGGTGGAATGATATGTT





1636
Encoding
AATGATATGTTGAGTGGGAGTGAAACAGCAAGCTGT



Probe 1589
TTCGACGTGGTGGAATGATATGTT





1637
Encoding
AATGATATGTTGAGTGGGTGTAAGCTGTTTCCTGTTA



Probe 1590
CCCAAGTGGTGGAATGATATGTT





1638
Encoding
AATGATATGTTGAGTGGGCGTCTGTTTCCTGTTACCG



Probe 1591
TTCCTGGTGGTGGAATGATATGTT





1639
Encoding
AATGATATGTTGAGTGGGTGGTCGTCAGCGAAACAG



Probe 1592
CAAGGACGTGGTGGAATGATATGTT





1640
Encoding
AGTATTATTAGGGTGAGGCGTCTGTTTCCTGTTACCG



Probe 1593
TTGCTGGGTTGGAGTATTATTAG





1641
Encoding
AGTATTATTAGGGTGAGGCGGTCGTCAGCGAAACAG



Probe 1594
CAACGAGGGTTGGAGTATTATTAG





1642
Encoding
AGTATTATTAGGGTGAGGGTCAAACAGCAAGCTGTT



Probe 1595
TCCACAGGGTTGGAGTATTATTAG





1643
Encoding
AGTATTATTAGGGTGAGGTTGCAAGCTGTTTCCTGTT



Probe 1596
ACGCAGGGTTGGAGTATTATTAG





1644
Encoding
AGTATTATTAGGGTGAGGAGTGAAACAGCAAGCTGT



Probe 1597
TTCGACGGGTTGGAGTATTATTAG





1645
Encoding
AGTATTATTAGGGTGAGGTGTAAGCTGTTTCCTGTTA



Probe 1598
CCCAAGGGTTGGAGTATTATTAG





1646
Encoding
AGTATTATTAGGGTGAGGCGTCTGTTTCCTGTTACCG



Probe 1599
TTCCTGTGGGTTGGAGTATTATTAG





1647
Encoding
AGTATTATTAGGGTGAGGTGGTCGTCAGCGAAACAG



Probe 1600
CAAGGACGGGTTGGAGTATTATTAG





1648
Encoding
TGTATAGGATTAGAAGGGAGACATACTCTAGCTCGT



Probe 1601
CAGAAAGGGTGAGTGTATAGGATT





1649
Encoding
TGTATAGGATTAGAAGGGTTTGCAAAGTATTAATTT



Probe 1602
ACTGCCCTAGGTGGGTGAGTGTATAGGATT





1650
Encoding
TGTATAGGATTAGAAGGGTTTAGCAAAGTATTAATT



Probe 1603
TACTGCCCAAGTGGGTGAGTGTATAGGATT





1651
Encoding
TGTATAGGATTAGAAGGGATGTAGCTCGTCAGTTTT



Probe 1604
GAAACGTGGGTGAGTGTATAGGATT





1652
Encoding
TGTATAGGATTAGAAGGGTTTAGCAAAGTATTAATT



Probe 1605
TACTGCCGAAGGGTGAGTGTATAGGATT





1653
Encoding
TGTATAGGATTAGAAGGGATGTAGCTCGTCAGTTTT



Probe 1606
GAATCGTGGGTGAGTGTATAGGATT





1654
Encoding
TGTATAGGATTAGAAGGGTTTGCAAAGTATTAATTT



Probe 1607
ACTGCCCAAGTGGGTGAGTGTATAGGATT





1655
Encoding
TGTATAGGATTAGAAGGGTGAAGCTCGTCAGTTTTG



Probe 1608
AATCGTGGGTGAGTGTATAGGATT





1656
Encoding
AGTATTATTAGGGTGAGGAGACATACTCTAGCTCGT



Probe 1609
CAGAAAGGGTTGGAGTATTATTAG





1657
Encoding
AGTATTATTAGGGTGAGGTTTGCAAAGTATTAATTT



Probe 1610
ACTGCCCTAGGTGGGTTGGAGTATTATTAG





1658
Encoding
AGTATTATTAGGGTGAGGTTTAGCAAAGTATTAATT



Probe 1611
TACTGCCCAAGTGGGTTGGAGTATTATTAG





1659
Encoding
AGTATTATTAGGGTGAGGATGTAGCTCGTCAGTTTT



Probe 1612
GAAACGTGGGTTGGAGTATTATTAG





1660
Encoding
AGTATTATTAGGGTGAGGTTTAGCAAAGTATTAATT



Probe 1613
TACTGCCGAAGGGTTGGAGTATTATTAG





1661
Encoding
AGTATTATTAGGGTGAGGATGTAGCTCGTCAGTTTT



Probe 1614
GAATCGTGGGTTGGAGTATTATTAG





1662
Encoding
AGTATTATTAGGGTGAGGTTTGCAAAGTATTAATTT



Probe 1615
ACTGCCCAAGTGGGTTGGAGTATTATTAG





1663
Encoding
AGTATTATTAGGGTGAGGTGAAGCTCGTCAGTTTTG



Probe 1616
AATCGTGGGTTGGAGTATTATTAG





1664
Encoding
GGATAGAGTATAGTTGGGTGCAGCCAGTAAACTGGC



Probe 1617
AGAAAGGTGGATGGAGGATAGAGTAT





1665
Encoding
GGATAGAGTATAGTTGGGTGTGTAGACAACTGCCTC



Probe 1618
CCTTCGCGGATGGAGGATAGAGTAT





1666
Encoding
GGATAGAGTATAGTTGGGTGCCTGGCAACTGGACGT



Probe 1619
AGGCCAGGATGGAGGATAGAGTAT





1667
Encoding
GGATAGAGTATAGTTGGGAGATCCCGTTCGCTACCC



Probe 1620
ACGGAAGGATGGAGGATAGAGTAT





1668
Encoding
GGATAGAGTATAGTTGGGTCGGAGCATTGTTAAGAG



Probe 1621
GCCAGAGGATGGAGGATAGAGTAT





1669
Encoding
GGATAGAGTATAGTTGGGTGGCACTAACCTTTCCTA



Probe 1622
ATTTCCACGGCGGATGGAGGATAGAGTAT





1670
Encoding
GGATAGAGTATAGTTGGGTGTGGACTTAAGCGCCCA



Probe 1623
CCTAGCGGGATGGAGGATAGAGTAT





1671
Encoding
GGATAGAGTATAGTTGGGCCACGTCATACACAAAAC



Probe 1624
TATTCGCAAACGGATGGAGGATAGAGTAT





1672
Encoding
AGTATTATTAGGGTGAGGGCAGCCAGTAAACTGGCA



Probe 1625
GAAAGGTGGGTTGGAGTATTATTAG





1673
Encoding
AGTATTATTAGGGTGAGGGTGTAGACAACTGCCTCC



Probe 1626
CTTCGCGGGTTGGAGTATTATTAG





1674
Encoding
AGTATTATTAGGGTGAGGTGCCTGGCAACTGGACGT



Probe 1627
AGGCCAGGGTTGGAGTATTATTAG





1675
Encoding
AGTATTATTAGGGTGAGGAGATCCCGTTCGCTACCC



Probe 1628
ACGGAAGGGTTGGAGTATTATTAG





1676
Encoding
AGTATTATTAGGGTGAGGTCGGAGCATTGTTAAGAG



Probe 1629
GCCAGAGGGTTGGAGTATTATTAG





1677
Encoding
AGTATTATTAGGGTGAGGTGGCACTAACCTTTCCTA



Probe 1630
ATTTCCACGGCGGGTTGGAGTATTATTAG





1678
Encoding
AGTATTATTAGGGTGAGGGTGGACTTAAGCGCCCAC



Probe 1631
CTAGCGTGGGTTGGAGTATTATTAG





1679
Encoding
AGTATTATTAGGGTGAGGCCACGTCATACACAAAAC



Probe 1632
TATTCGCAAACGGGTTGGAGTATTATTAG





1680
Encoding
TGTAATAGTAAGGAGGGAAGTGGATTGCTCCTTTGA



Probe 1633
TTATCTTCGGGTGAGTGTAATAGTAA





1681
Encoding
TGTAATAGTAAGGAGGGAGAGCTACCGTCATCATCT



Probe 1634
TCAGTCGGGTGAGTGTAATAGTAA





1682
Encoding
TGTAATAGTAAGGAGGGAGAGCCTCGTTAGCGGGAT



Probe 1635
GTCTTCGGGTGAGTGTAATAGTAA





1683
Encoding
TGTAATAGTAAGGAGGGACTAACAAGAATCAATAG



Probe 1636
CAAGCATTGGGTGAGTGTAATAGTAA





1684
Encoding
TGTAATAGTAAGGAGGGAAGATACCGTCATCATCTT



Probe 1637
CACTCTGGGTGAGTGTAATAGTAA





1685
Encoding
TGTAATAGTAAGGAGGGAGCTTGGGACCATTTTTAG



Probe 1638
GGTAAAGGGTGAGTGTAATAGTAA





1686
Encoding
TGTAATAGTAAGGAGGGACTAACAAGAATCAATAG



Probe 1639
CAAGCTTTTGGGTGAGTGTAATAGTAA





1687
Encoding
TGTAATAGTAAGGAGGGAGTCGATTGCTCCTTTGAT



Probe 1640
TATCATCGTGGGTGAGTGTAATAGTAA





1688
Encoding
AGTATTATTAGGGTGAGGAGTGGATTGCTCCTTTGA



Probe 1641
TTATCTTCGGGTTGGAGTATTATTAG





1689
Encoding
AGTATTATTAGGGTGAGGGAGCTACCGTCATCATCT



Probe 1642
TCAGTCGGGTTGGAGTATTATTAG





1690
Encoding
AGTATTATTAGGGTGAGGGAGCCTCGTTAGCGGGAT



Probe 1643
GTCTTCGGGTTGGAGTATTATTAG





1691
Encoding
AGTATTATTAGGGTGAGGCTAACAAGAATCAATAGC



Probe 1644
AAGCATTGGGTTGGAGTATTATTAG





1692
Encoding
AGTATTATTAGGGTGAGGAGATACCGTCATCATCTT



Probe 1645
CACTCTGGGTTGGAGTATTATTAG





1693
Encoding
AGTATTATTAGGGTGAGGGCTTGGGACCATTTTTAG



Probe 1646
GGTAAAGGGTTGGAGTATTATTAG





1694
Encoding
AGTATTATTAGGGTGAGGCTAACAAGAATCAATAGC



Probe 1647
AAGCTTTTGGGTTGGAGTATTATTAG





1695
Encoding
AGTATTATTAGGGTGAGGGTCGATTGCTCCTTTGATT



Probe 1648
ATCATCGTGGGTTGGAGTATTATTAG





1696
Encoding
AATGATATGTTGAGTGGGCCGCTCCTATAGCATGAG



Probe 1649
GCCTACGGTGGTGGAATGATATGTT





1697
Encoding
AATGATATGTTGAGTGGGTGGATCGTAGCAACTAGA



Probe 1650
GACAAGCCAGTGGTGGAATGATATGTT





1698
Encoding
AATGATATGTTGAGTGGGTCGCTGTGTCCACTTTCTC



Probe 1651
TTTCCTCGTGGTGGAATGATATGTT





1699
Encoding
AATGATATGTTGAGTGGGAAACATCGGTCTTGCACA



Probe 1652
ACCCGGGTGGTGGAATGATATGTT





1700
Encoding
AATGATATGTTGAGTGGGTAGGCAAGCTAGATCATG



Probe 1653
CTGCGCAGTGGTGGAATGATATGTT





1701
Encoding
AATGATATGTTGAGTGGGTAGGCAAGCTAGATCATG



Probe 1654
CTGGGCGTGGTGGAATGATATGTT





1702
Encoding
AATGATATGTTGAGTGGGTAGCACCTAATATTAGTA



Probe 1655
AGTGCGTAAGTGGTGGAATGATATGTT





1703
Encoding
AATGATATGTTGAGTGGGCTGCGATGCATTTTCTGG



Probe 1656
GATATCGTGGTGGAATGATATGTT





1704
Encoding
ATGTATTAAGAGGAGGGACCGCTCCTATAGCATGAG



Probe 1657
GCCTACGGAGGAGGATGTATTAAGA





1705
Encoding
ATGTATTAAGAGGAGGGAGGATCGTAGCAACTAGA



Probe 1658
GACAAGCCAGAGGAGGATGTATTAAGA





1706
Encoding
ATGTATTAAGAGGAGGGATCGCTGTGTCCACTTTCT



Probe 1659
CTTTCCTCGAGGAGGATGTATTAAGA





1707
Encoding
ATGTATTAAGAGGAGGGAAAACATCGGTCTTGCACA



Probe 1660
ACCCGGGAGGAGGATGTATTAAGA





1708
Encoding
ATGTATTAAGAGGAGGGATAGGCAAGCTAGATCATG



Probe 1661
CTGCGCAGAGGAGGATGTATTAAGA





1709
Encoding
ATGTATTAAGAGGAGGGATAGGCAAGCTAGATCATG



Probe 1662
CTGGGCGAGGAGGATGTATTAAGA





1710
Encoding
ATGTATTAAGAGGAGGGATAGCACCTAATATTAGTA



Probe 1663
AGTGCGTAAGAGGAGGATGTATTAAGA





1711
Encoding
ATGTATTAAGAGGAGGGACTGCGATGCATTTTCTGG



Probe 1664
GATATCGAGGAGGATGTATTAAGA





1712
Encoding
TGTATAGGATTAGAAGGGTTTGCCTTTCAACTTTCTT



Probe 1665
CCATGGCCGGGTGAGTGTATAGGATT





1713
Encoding
TGTATAGGATTAGAAGGGTGGTCGGAAAATAGTGTT



Probe 1666
ATACGGATAGGGTGAGTGTATAGGATT





1714
Encoding
TGTATAGGATTAGAAGGGAGGGCGGAAAATAGTGTT



Probe 1667
ATACGCATGGGTGAGTGTATAGGATT





1715
Encoding
TGTATAGGATTAGAAGGGTGCTGGGAAGCTCTATCT



Probe 1668
CTAGACACGGGTGAGTGTATAGGATT





1716
Encoding
TGTATAGGATTAGAAGGGTGTATACTCTCATCCTTGT



Probe 1669
TCTTCAGAGGGTGAGTGTATAGGATT





1717
Encoding
TGTATAGGATTAGAAGGGAGGGCGGAAAATAGTGTT



Probe 1670
ATACGGATAGGGTGAGTGTATAGGATT





1718
Encoding
TGTATAGGATTAGAAGGGAAAGAGATTAGCTTAGCC



Probe 1671
TCGGCTGGGTGAGTGTATAGGATT





1719
Encoding
TGTATAGGATTAGAAGGGTAAACTCTCATCCTTGTTC



Probe 1672
TTCAGAGGGTGAGTGTATAGGATT





1720
Encoding
ATGTATTAAGAGGAGGGATTTGCCTTTCAACTTTCTT



Probe 1673
CCATGGCCGAGGAGGATGTATTAAGA





1721
Encoding
ATGTATTAAGAGGAGGGAGGTCGGAAAATAGTGTTA



Probe 1674
TACGGATAGAGGAGGATGTATTAAGA





1722
Encoding
ATGTATTAAGAGGAGGGAAGGGCGGAAAATAGTGT



Probe 1675
TATACGCATGAGGAGGATGTATTAAGA





1723
Encoding
ATGTATTAAGAGGAGGGAGCTGGGAAGCTCTATCTC



Probe 1676
TAGACACGAGGAGGATGTATTAAGA





1724
Encoding
ATGTATTAAGAGGAGGGAGTATACTCTCATCCTTGT



Probe 1677
TCTTCAGAGAGGAGGATGTATTAAGA





1725
Encoding
ATGTATTAAGAGGAGGGAAGGGCGGAAAATAGTGT



Probe 1678
TATACGGATAGAGGAGGATGTATTAAGA





1726
Encoding
ATGTATTAAGAGGAGGGAAAAGAGATTAGCTTAGCC



Probe 1679
TCGGCTGAGGAGGATGTATTAAGA





1727
Encoding
ATGTATTAAGAGGAGGGATAAACTCTCATCCTTGTT



Probe 1680
CTTCAGAGAGGAGGATGTATTAAGA





1728
Encoding
ATGGAAGTAGTAGAAGGGTGTAGCTCCCGGGTGCTT



Probe 1681
ATGCCCAGGGATGTATGGAAGTAGT





1729
Encoding
ATGGAAGTAGTAGAAGGGTGCGCTAAAGCAAACAC



Probe 1682
ACTTCCTAGGTGGGATGTATGGAAGTAGT





1730
Encoding
ATGGAAGTAGTAGAAGGGTGCGCTAAAGCAAACAC



Probe 1683
ACTTCCAAGTGGGATGTATGGAAGTAGT





1731
Encoding
ATGGAAGTAGTAGAAGGGACTCGTTATTTCTCGGAT



Probe 1684
TCGGAGTGGGATGTATGGAAGTAGT





1732
Encoding
ATGGAAGTAGTAGAAGGGCGGTAAAGCAAACACAC



Probe 1685
TTCCTAGGTGGGATGTATGGAAGTAGT





1733
Encoding
ATGGAAGTAGTAGAAGGGTCTTTATTTCTCGGATTC



Probe 1686
GCTGGCGGGATGTATGGAAGTAGT





1734
Encoding
ATGGAAGTAGTAGAAGGGTGCGGTGTTCCTCCTGAT



Probe 1687
CTCTTGCGGGATGTATGGAAGTAGT





1735
Encoding
ATGGAAGTAGTAGAAGGGCGTCGCTCCCGGGTGCTT



Probe 1688
ATGGCCGGGATGTATGGAAGTAGT





1736
Encoding
ATGTATTAAGAGGAGGGAGTAGCTCCCGGGTGCTTA



Probe 1689
TGCCCAGAGGAGGATGTATTAAGA





1737
Encoding
ATGTATTAAGAGGAGGGAGCGCTAAAGCAAACACA



Probe 1690
CTTCCTAGGGAGGAGGATGTATTAAGA





1738
Encoding
ATGTATTAAGAGGAGGGAGCGCTAAAGCAAACACA



Probe 1691
CTTCCAAGGAGGAGGATGTATTAAGA





1739
Encoding
ATGTATTAAGAGGAGGGAACTCGTTATTTCTCGGAT



Probe 1692
TCGGAGGAGGAGGATGTATTAAGA





1740
Encoding
ATGTATTAAGAGGAGGGACGGTAAAGCAAACACAC



Probe 1693
TTCCTAGGGAGGAGGATGTATTAAGA





1741
Encoding
ATGTATTAAGAGGAGGGATCTTTATTTCTCGGATTCG



Probe 1694
CTGGCGAGGAGGATGTATTAAGA





1742
Encoding
ATGTATTAAGAGGAGGGAGCGGTGTTCCTCCTGATC



Probe 1695
TCTTGCGAGGAGGATGTATTAAGA





1743
Encoding
ATGTATTAAGAGGAGGGACGTCGCTCCCGGGTGCTT



Probe 1696
ATGGCCGAGGAGGATGTATTAAGA





1744
Encoding
TGTAATAGTAAGGAGGGAGGCGCTCTCATTCTTAAT



Probe 1697
ATCTTCGTAGCGGGTGAGTGTAATAGTAA





1745
Encoding
TGTAATAGTAAGGAGGGATTCTATCTCTACGCCTGT



Probe 1698
CATGTCGGGTGAGTGTAATAGTAA





1746
Encoding
TGTAATAGTAAGGAGGGAGGTCTGCACCGAATAAAT



Probe 1699
CCTAAGTGGGTGAGTGTAATAGTAA





1747
Encoding
TGTAATAGTAAGGAGGGAGTACTTTCGTCCCTGTTG



Probe 1700
ATACTTGGGTGAGTGTAATAGTAA





1748
Encoding
TGTAATAGTAAGGAGGGAAGGATGCAATCCTCGGGT



Probe 1701
TAACGGTGGGTGAGTGTAATAGTAA





1749
Encoding
TGTAATAGTAAGGAGGGACAATGTGATTTGCTTAAC



Probe 1702
GTCCGGTGGGTGAGTGTAATAGTAA





1750
Encoding
TGTAATAGTAAGGAGGGAAGTGACTTCGGGTGCTTC



Probe 1703
CAAGAGTGGGTGAGTGTAATAGTAA





1751
Encoding
TGTAATAGTAAGGAGGGAGTAGGGATTCCTCCCCGA



Probe 1704
CACAATGGGTGAGTGTAATAGTAA





1752
Encoding
ATGTATTAAGAGGAGGGAGGCGCTCTCATTCTTAAT



Probe 1705
ATCTTCGTAGCGAGGAGGATGTATTAAGA





1753
Encoding
ATGTATTAAGAGGAGGGATTCTATCTCTACGCCTGT



Probe 1706
CATGTCGAGGAGGATGTATTAAGA





1754
Encoding
ATGTATTAAGAGGAGGGAGGTCTGCACCGAATAAAT



Probe 1707
CCTAAGGAGGAGGATGTATTAAGA





1755
Encoding
ATGTATTAAGAGGAGGGAGTACTTTCGTCCCTGTTG



Probe 1708
ATACTTGAGGAGGATGTATTAAGA





1756
Encoding
ATGTATTAAGAGGAGGGAAGGATGCAATCCTCGGGT



Probe 1709
TAACGGGAGGAGGATGTATTAAGA





1757
Encoding
ATGTATTAAGAGGAGGGACAATGTGATTTGCTTAAC



Probe 1710
GTCCGGGAGGAGGATGTATTAAGA





1758
Encoding
ATGTATTAAGAGGAGGGAAGTGACTTCGGGTGCTTC



Probe 1711
CAAGAGGAGGAGGATGTATTAAGA





1759
Encoding
ATGTATTAAGAGGAGGGAGTAGGGATTCCTCCCCGA



Probe 1712
CACAATGAGGAGGATGTATTAAGA





1760
Encoding
AATGATATGTTGAGTGGGTTTTTCTCTCCAATTTGTA



Probe 1713
ACGAAGAGTGGTGGAATGATATGTT





1761
Encoding
AATGATATGTTGAGTGGGTGATGCCTCTATATAGTT



Probe 1714
GGCTGTGGTGGTGGAATGATATGTT





1762
Encoding
AATGATATGTTGAGTGGGTTATCTCTCCAATTTGTAA



Probe 1715
CGAAGAGTGGTGGAATGATATGTT





1763
Encoding
AATGATATGTTGAGTGGGAGGCTAGTATCATGTGAT



Probe 1716
ACTTATGGGTAGTGGTGGAATGATATGTT





1764
Encoding
AATGATATGTTGAGTGGGTGAACCACTAGTATCATG



Probe 1717
TGATACTATAGTGGTGGAATGATATGTT





1765
Encoding
AATGATATGTTGAGTGGGAAACTCCATATCACTACT



Probe 1718
TAGCTTAGGGTGGTGGAATGATATGTT





1766
Encoding
AATGATATGTTGAGTGGGTGCTGCACAGATTACTTA



Probe 1719
ATATAACCTTGTGTGGTGGAATGATATGTT





1767
Encoding
AATGATATGTTGAGTGGGTGTAACCACCTGTATAGA



Probe 1720
CGTCGGCGTGGTGGAATGATATGTT





1768
Encoding
TAGAATTAGAGAGATGGGTTTTTCTCTCCAATTTGTA



Probe 1721
ACGAAGAGGTGGAGTAGAATTAGAG





1769
Encoding
TAGAATTAGAGAGATGGGTGATGCCTCTATATAGTT



Probe 1722
GGCTGTGGGTGGAGTAGAATTAGAG





1770
Encoding
TAGAATTAGAGAGATGGGTTATCTCTCCAATTTGTA



Probe 1723
ACGAAGAGGTGGAGTAGAATTAGAG





1771
Encoding
TAGAATTAGAGAGATGGGAGGCTAGTATCATGTGAT



Probe 1724
ACTTATGGGTAGGTGGAGTAGAATTAGAG





1772
Encoding
TAGAATTAGAGAGATGGGTGAACCACTAGTATCATG



Probe 1725
TGATACTATAGGTGGAGTAGAATTAGAG





1773
Encoding
TAGAATTAGAGAGATGGGAAACTCCATATCACTACT



Probe 1726
TAGCTTAGGTGGTGGAGTAGAATTAGAG





1774
Encoding
TAGAATTAGAGAGATGGGTGCTGCACAGATTACTTA



Probe 1727
ATATAACCTTGTGGTGGAGTAGAATTAGAG





1775
Encoding
TAGAATTAGAGAGATGGGTGTAACCACCTGTATAGA



Probe 1728
CGTCGGCGGTGGAGTAGAATTAGAG





1776
Encoding
ATGGAAGTAGTAGAAGGGTGCACCGGGAGCCTTTGG



Probe 1729
CACGGTGGGATGTATGGAAGTAGT





1777
Encoding
ATGGAAGTAGTAGAAGGGTGGCTCGGCTTTTCACCC



Probe 1730
CGAAGGTGGGATGTATGGAAGTAGT





1778
Encoding
ATGGAAGTAGTAGAAGGGAAACTTCCGACTTGTATT



Probe 1731
GCCCAGTGGGATGTATGGAAGTAGT





1779
Encoding
ATGGAAGTAGTAGAAGGGTGCGCTCAGTCAATTAAC



Probe 1732
ATTCCAAGGTGGGATGTATGGAAGTAGT





1780
Encoding
ATGGAAGTAGTAGAAGGGTGGCAACTTCCTCTTAAT



Probe 1733
TGCTTCCGAGGGATGTATGGAAGTAGT





1781
Encoding
ATGGAAGTAGTAGAAGGGAGCAGCTCCCTGCTTTCG



Probe 1734
CTTCCCGGGATGTATGGAAGTAGT





1782
Encoding
ATGGAAGTAGTAGAAGGGACGAGCTTTCTCTGTTTG



Probe 1735
CTAGACGGGATGTATGGAAGTAGT





1783
Encoding
ATGGAAGTAGTAGAAGGGACGCGTAGGGAACAGAA



Probe 1736
TGTTTGAGGGATGTATGGAAGTAGT





1784
Encoding
TAGAATTAGAGAGATGGGTGCACCGGGAGCCTTTGG



Probe 1737
CACGGTGGTGGAGTAGAATTAGAG





1785
Encoding
TAGAATTAGAGAGATGGGTGGCTCGGCTTTTCACCC



Probe 1738
CGAAGGTGGTGGAGTAGAATTAGAG





1786
Encoding
TAGAATTAGAGAGATGGGAAACTTCCGACTTGTATT



Probe 1739
GCCCAGGGTGGAGTAGAATTAGAG





1787
Encoding
TAGAATTAGAGAGATGGGTGCGCTCAGTCAATTAAC



Probe 1740
ATTCCAAGGTGGTGGAGTAGAATTAGAG





1788
Encoding
TAGAATTAGAGAGATGGGTGGCAACTTCCTCTTAAT



Probe 1741
TGCTTCCGAGGTGGAGTAGAATTAGAG





1789
Encoding
TAGAATTAGAGAGATGGGAGCAGCTCCCTGCTTTCG



Probe 1742
CTTCCCGGTGGAGTAGAATTAGAG





1790
Encoding
TAGAATTAGAGAGATGGGACGAGCTTTCTCTGTTTG



Probe 1743
CTAGACGGTGGAGTAGAATTAGAG





1791
Encoding
TAGAATTAGAGAGATGGGACGCGTAGGGAACAGAA



Probe 1744
TGTTTGAGGTGGAGTAGAATTAGAG





1792
Encoding
GGATAGAGTATAGTTGGGCGTCCCCTCTGTAAGCGG



Probe 1745
ATTAGAGGATGGAGGATAGAGTAT





1793
Encoding
GGATAGAGTATAGTTGGGCCACCGTCAAATTTCTCT



Probe 1746
TTCTAGAGGATGGAGGATAGAGTAT





1794
Encoding
GGATAGAGTATAGTTGGGTGTGCCTATCGGCAACAC



Probe 1747
TTAGATGGGATGGAGGATAGAGTAT





1795
Encoding
GGATAGAGTATAGTTGGGTGCGTGTCTCCATAACTT



Probe 1748
CGCACCCGGATGGAGGATAGAGTAT





1796
Encoding
GGATAGAGTATAGTTGGGAAGCCATTTTATCAATGG



Probe 1749
CAGTGATGGATGGAGGATAGAGTAT





1797
Encoding
GGATAGAGTATAGTTGGGTCTGCTCCCTCATTTCTGT



Probe 1750
TACCGGGATGGAGGATAGAGTAT





1798
Encoding
GGATAGAGTATAGTTGGGTGTCTAAAATGCTTTTTCC



Probe 1751
ATTGTGGAGGATGGAGGATAGAGTAT





1799
Encoding
GGATAGAGTATAGTTGGGTGAAGTTCATCAGTATCT



Probe 1752
TTTGCCCATGGGATGGAGGATAGAGTAT





1800
Encoding
TAGAATTAGAGAGATGGGCGTCCCCTCTGTAAGCGG



Probe 1753
ATTAGAGGTGGAGTAGAATTAGAG





1801
Encoding
TAGAATTAGAGAGATGGGCCACCGTCAAATTTCTCT



Probe 1754
TTCTAGAGGTGGAGTAGAATTAGAG





1802
Encoding
TAGAATTAGAGAGATGGGTGTGCCTATCGGCAACAC



Probe 1755
TTAGATGGGTGGAGTAGAATTAGAG





1803
Encoding
TAGAATTAGAGAGATGGGTGCGTGTCTCCATAACTT



Probe 1756
CGCACCCGGTGGAGTAGAATTAGAG





1804
Encoding
TAGAATTAGAGAGATGGGAAGCCATTTTATCAATGG



Probe 1757
CAGTGATGGTGGAGTAGAATTAGAG





1805
Encoding
TAGAATTAGAGAGATGGGTCTGCTCCCTCATTTCTGT



Probe 1758
TACCGGGTGGAGTAGAATTAGAG





1806
Encoding
TAGAATTAGAGAGATGGGTGTCTAAAATGCTTTTTC



Probe 1759
CATTGTGGAGGTGGAGTAGAATTAGAG





1807
Encoding
TAGAATTAGAGAGATGGGTGAAGTTCATCAGTATCT



Probe 1760
TTTGCCCATGGGTGGAGTAGAATTAGAG









Although the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. A method of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device;b) identifying the microbe; andc) detecting susceptibility to one or more antimicrobial agents.
  • 2. A method of characterizing a microbial cell from a biological sample, the method comprising a) directly inoculating the microbe onto a device;b) identifying the microbe; andc) detecting future susceptibility to one or more antimicrobial agents.
  • 3. The method of claim 1, wherein the sample is not subjected to culturing before the microbe is inoculated onto the device.
  • 4. The method of claim 1, wherein the microbe in the sample is cultured for one or more cell divisions before it is inoculated onto the device.
  • 5. The method of claim 1, wherein the microbe is identified by in situ hybridization.
  • 6. The method of claim 5, wherein the microbe is identified by fluorescence in situ hybridization (FISH).
  • 7. The method of claim 5, wherein the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).
  • 8. The method of claim 5, wherein the microbe is further characterized via live-cell imaging or dynamic calculation while in situ hybridization is performed.
  • 9. The method of claim 1, wherein the microbe is identified by hybridization of a bar-coded probe a 16S ribosomal RNA sequence in the microbe, 5S ribosomal RNA sequence in the microbe, and/or 23 S ribosomal RNA sequence in the microbe.
  • 10. The method of claim 6, wherein the in situ hybridization is multiplexed.
  • 11. The method of claim 1, wherein the susceptibility to one or more microbial agents is determined by measuring the minimum inhibitory concentration of the microbe when exposed to an antimicrobial agent.
  • 12. The method of claim 1, wherein the susceptibility to one or more microbial agents is determined by measuring microbial cell metabolism when the microbe is exposed to an antimicrobial agent.
  • 13. The method of claim 12, wherein microbial cell metabolism is measured by determining the concentration of dissolved carbon dioxide, oxygen consumption of microbes in the sample, expression of genes involved in cell division and/or growth, or expression of stress response genes.
  • 14. The method of claim 1, wherein microbial cell susceptibility is determined by a live/dead stain.
  • 15. The method of claim 1, wherein microbial cell susceptibility is determined by cell number.
  • 16. The method of claim 1, wherein microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell.
  • 17. The method of claim 1, wherein microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell.
  • 18. The method of claim 2, wherein future microbial cell susceptibility is determined by detecting the presence or absence of one or more antimicrobial genes in the microbial cell.
  • 19. The method of claim 2, wherein future microbial cell susceptibility is determined by detecting the presence or absence of one or more gene mutations associated with the development of antimicrobial resistance or susceptibility in the microbial cell.
  • 20. The method of claim 17, wherein the one or more gene mutations associated with the development of antimicrobial resistance or susceptibility is selected from deletions, duplications, single nucleotide polymorphisms (SNPs), frame-shift mutations, inversions, insertions, and/or nucleotide substitutions.
  • 21. The method of claim 16, wherein the one or more antimicrobial genes is selected from: genes encoding multidrug resistance proteins (e.g. PDR1, PDR3, PDR7, PDR9), ABC transporters (e.g. SNQ2, STE6, PDR5, PDR10, PDR11, YOR1), membrane associated transporters (GAS1, D4405), soluble proteins (e.g. G3PD), RNA polymerase, rpoB, gyrA, gyrB, 16S RNA, 23S rRNA, NADPH nitroreductase, sul2, strAB, tetAR, aac3-iid, aph, sph, cmy-2, floR, tetB; aadA, aac3-VIa, and sul1.
  • 22. The method of claim 16, wherein the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using in situ hybridization.
  • 23. The method of claim 22, wherein the presence or absence of one or more antimicrobial genes, or the gene mutation associated with the development of antimicrobial resistance or susceptibility in the microbial cell is detected using fluorescence in situ hybridization (FISH).
  • 24. The method of claim 23, wherein the fluorescence in situ hybridization is high-phylogenetic-resolution fluorescence in situ hybridization (HiPR-FISH).
  • 25. The method claim 1, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs sequentially.
  • 26. The method of claim 1, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs simultaneously.
  • 27. The method of claim 1, wherein the identification of the microbial cell and the detection of susceptibility or future susceptibility to one or more antimicrobial agents occurs in parallel.
  • 28. The method of claim 1, wherein the biological sample is obtained from a patient.
  • 29. The method of claim 1, wherein the biological sample is obtained from a patient diagnosed with or believed to be suffering from an infection or disorder.
  • 30. The method of claim 29, wherein the disease or disorder is an infection.
  • 31. The method of claim 30, wherein the infection is a bacterial, viral, fungal, or parasitic infections.
  • 32. The method of claim 31, wherein the bacterial infection is selected from Mycobacterium, Streptococcus, Staphylococcus, Shigella, Campylobacter, Salmonella, Clostridium, Corynebacterium, Pseudomonas, Neisseria, Listeria, Vibrio, Bordetella, E. coli (including pathogenic E. coli), Pseudomonas aeruginosa, Enterobacter cloacae, Mycobacterium tuberculosis, Staphylococcus aureus, Helicobacter pylori, Legionella, Acinetobacter baumannii, Citrobacter freundii, Citrobacter koseri, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Staphylococcus saprophyticus, and Streptococcus agalactiae, or a combination thereof.
  • 33. The method of claim 31, wherein the viral infection is selected from Helicobacter pylori, infectious haematopoietic necrosis virus (IHNV), Parvovirus B19, Herpes Simplex Virus, Varicella-zoster virus, Cytomegalovirus, Epstein-Barr virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Measles virus, Mumps virus, Rubella virus, Human Immunodeficiency Virus (HIV), Influenza virus, Rhinovirus, Rotavirus A, Rotavirus B, Rotavirus C, Respiratory Syncytial Virus (RSV), Varicella zoster, Poliovirus, Norovirus, Zika Virus, Dengue Virus, Rabies Virus, Newcastle Disease Virus, and White Spot Syndrome Virus, or a combination thereof.
  • 34. The method of claim 31, wherein the fungal infection is selected from Aspergillus, Candida, Pneumocystis, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma, or a combination thereof.
  • 35. The method of claim 31, wherein the parasitic infection is selected from Plasmodium (i.e. P. falciparum, P. malariae, P. ovale, P. knowlesi, and P. vivax), Trypanosoma, Toxoplasma, Giardia, and Leishmania, Cryptosporidium, helminthic parasites: Trichuris spp. (whipworms), Enterobius spp. (pinworms), Ascaris spp. (roundworms), Ancylostoma spp. and Necator spp. (hookworms), Strongyloides spp. (threadworms), Dracunculus spp. (Guinea worms), Onchocerca spp. and Wuchereria spp. (filarial worms), Taenia spp., Echinococcus spp., and Diphyllobothrium spp. (human and animal cestodes), Fasciola spp. (liver flukes) and Schistosoma spp. (blood flukes), or a combination thereof.
  • 36. The method of claim 1, wherein the biological sample is selected from bronchoalveolar lavage fluid (BAL), blood, serum, plasma, urine, cerebrospinal fluid, pleural fluid, synovial fluid, ocular fluid, peritoneal fluid, amniotic fluid, gastric fluid, lymph fluid, interstitial fluid, tissue homogenate, cell extracts, saliva, sputum, stool, physiological secretions, tears, mucus, sweat, milk, semen, seminal fluid, vaginal secretions, fluid from ulcers and other surface eruptions, blisters, and abscesses, and extracts of tissues including biopsies of normal, malignant, and suspect tissues or any other constituents of the body which may contain the microorganism of interest.
  • 37. The method of claim 1, wherein the biological sample is a human oral microbiome sample.
  • 38. The method of claim 1, wherein the biological sample is a whole organism.
  • 39. A method for analyzing a sample, comprising: contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;acquiring one or more emission spectra from the first emissive readout probe;adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,hybridizing the exchange probe to the first emissive readout probe to form a second complex;removing the second complex from the sample,adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;acquiring one or more emission spectra from the second emissive readout probe;repeating the aforementioned steps for at least one different encoding probe;determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; anddecoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.
  • 40. A method for analyzing a sample, comprising: generating a set of probes, wherein each probe comprises:(i) a targeting sequence;(ii) a first landing pad sequence; and(iii) a second landing pad sequence;contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:(i) a label, and(ii) a sequence complementary to the first or second landing pad sequence;acquiring one or more emission spectra from the first emissive readout probe;adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,hybridizing the exchange probes to the first emissive readout probes to form a second complex;removing the second complex from the sample,adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:(i) a label, and(ii) a sequence complementary to the first or second landing pad sequence;acquiring one or more emission spectra from the second emissive readout probe;determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a species of interest; anddecoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.
  • 41. The method of claim 39, wherein the sample is at least one of a cell, a cell suspension, a tissue biopsy, a tissue specimen, urine, stool, blood, serum, plasma, bone biopsies, bone marrow, respiratory specimens, sputum, induced sputum, tracheal aspirates, bronchoalveolar lavage fluid, sweat, saliva, tears, ocular fluid, cerebral spinal fluid, pericardial fluid, pleural fluid, peritoneal fluid, placenta, amnion, pus, nasal swabs, nasopharyngeal swabs, oropharyngeal swabs, ocular swabs, skin swabs, wound swabs, mucosal swabs, buccal swabs, vaginal swabs, vulvar swabs, nails, nail scrapings, hair follicles, corneal scrapings, gavage fluids, gargle fluids, abscess fluids, wastewater, or plant biopsies.
  • 42. The method of claim 41, wherein the sample is a cell.
  • 43. The method of claim 42, wherein the cell is a bacterial or eukaryotic cell.
  • 44. The method of claim 41, wherein the sample comprises a plurality of cells.
  • 45. The method of claim 44, wherein each cell comprises a specific targeting sequence.
  • 46. The method of claim 39, wherein the targeting sequence targets at least one of messenger RNA (mRNA), micro RNA (miRNA), long non-coding RNA (lncRNA), ribosomal RNA (rRNA), small interfering RNA (siRNA), transfer RNA (tRNA), Crispr RNA (crRNA), trans-activating crispr RNA (tracrRNA), mitochondria RNA, Intronic RNA, viral mRNA, viral genomic RNA, environmental RNA, double-stranded RNA (dsRNA), small nuclear RNA (snRNA), small nucleolar (snoRNA), piwi-interacting RNA (piRNA), genomic DNA, synthetic DNA, DNA, plasmid DNA, a plasmid, viral DNA, retroviral DNA, environmental DNA, extracellular DNA, a protein, a small molecule, or an antigenic target.
  • 47. The method of claim 46, wherein the target is mRNA.
  • 48. The method of claim 46, wherein the target is rRNA.
  • 49. The method of claim 46, wherein the target is mRNA and rRNA.
  • 50. The method of claim 39, wherein the at least one encoding probe comprises the first landing pad sequence on the 5′ end, and the second landing pad sequence on the 3′ end.
  • 51. The method of claim 39, wherein the at least one encoding probe comprises the first landing pad sequence on the 3′ end, and the second landing pad sequence on the 5′ end.
  • 52. The method of claim 50, wherein the first landing pad sequence and the second landing pad sequences have different sequences.
  • 53. The method of claim 39, wherein the at least one first or second emissive readout probe comprises a label on the 5′ or 3′ end.
  • 54. The method of claim 39, wherein the label is Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, ATTO 740.
  • 55. The method of claim 39, wherein the one or more emission spectra of the first and/or second emissive readout probe is acquired via widefield microscopy, point scanning confocal microscopy, spinning disk confocal microscopy, lattice lightsheet microscopy, or light field microscopy.
  • 56. The method of claim 55, wherein the detection strategy used is channel, spectral, channel and fluorescence lifetime, or spectral and fluorescence lifetime.
  • 57. The method of claim 39, wherein the sample is on an analyzing platform, wherein the analyzing platform is a microscope slide, at least one chamber, at least one microfluidic device, at least one well, at least one plate, or at least one filter membrane.
  • 58. The method of claim 39, wherein adding an exchange probe to the sample, hybridizing the exchange probe to the first emissive readout probe, and removing the second complex from the sample are performed in the same step.
  • 59. The method of claim 39, wherein hybridizing the exchange probe to the first or second emissive readout probe results in de-hybridization of the first or second emissive readout probe from the first or second landing pad sequence.
  • 60. The method of claim 58, wherein the step is achieved within 1 hour.
  • 61. The method of claim 58, wherein the step is achieved overnight.
  • 62. The method of claim 39, wherein the emissive readout probe sequence is at least 5 nucleotides longer than the first or second landing pad sequences.
  • 63. A construct comprising: a targeting sequence that is a region of interest on a nucleotide;a first landing pad sequence;a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; anda second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.
  • 64. A library of constructs comprising a plurality of barcoded probes, wherein each barcoded probe comprises: a targeting sequence that is a region of interest on a nucleotide;a first landing pad sequence;a second landing pad sequence, wherein the second landing pad sequence is different from the first landing pad sequence;a first emissive readout probe comprising a first label and a sequence complimentary to the first landing pad sequence;an exchange probe comprising a 100% complementary sequence to the first emissive readout probe sequences; anda second emissive readout probe comprising a second label and a sequence complimentary to the second landing pad sequence.
  • 65. The construct of claim 63, wherein the first emissive readout probe sequence is at least 5 nucleotides longer than the first landing pad sequence.
  • 66. The construct of claim 63, wherein the second emissive readout probe sequence is at least 5 nucleotides longer than the second landing pad sequence.
  • 67. The construct of claim 63, wherein the first landing pad sequence and the second landing pad sequences have different sequences.
  • 68. The construct of claim 63, wherein the first emissive readout probe comprises the first label on the 5′ or 3′ end.
  • 69. The construct of claim 63, wherein the second emissive readout probe comprises the second label on the 5′ or 3′ end.
  • 70. The construct of claim 63, wherein the first or second label is each Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 561, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 647-R-phycoerythrin, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 680-allophycocyanin, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Alexa Fluor Plus 405, Alexa Fluor Plus 488, Alexa Fluor Plus 555, Alexa Fluor Plus 594, Alexa Fluor Plus 647, Alexa Fluor Plus 680, Alexa Fluor Plus 750, Alexa Fluor Plus 800, Pacific Blue, Pacific Green, Rhodamine Red X, DyLight 485-LS, DyLight-510-LS, DyLight 515-LS, DyLight 521-LS, Hydroxycoumarin, methoxycoumarin, Cy2, FAM, Fluorescein FITC, R-phycoerythrin (PE), Tamara, Cy3.5 581, Rox, Red 613, Texas Red, Cy5, Cy5.5, Cy7, Allophycocyanin, ATTO 430LS, ATTO 490LS, ATTO 390, ATTO 425, Cyan 500 NHS-Ester, ATTO 465, ATTO 488, ATTO 495, ATTO Rho110, ATTO 514, ATTO 520, ATTO 532, ATTO Rho6G, ATTO 542, ATTO 550, ATTO 565, ATTO Rho3B, ATTO Rho11, ATTO Rho12, ATTO Thio12, ATTO Rho101, ATTO 590, ATTO 594, ATTO Rho13, ATTO 610, ATTO 620, ATTO Rho14, ATTO 633, ATTO 643, ATTO 647, ATTO 647N, ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680, ATTO 700, ATTO 725, or ATTO 740.
  • 71. A method for analyzing a bacterial sample, comprising: contacting at least one encoding probe with the sample to produce a first complex, wherein each encoding probe comprises a targeting sequence, a first landing pad sequence, and a second landing pad sequence;adding at least one first emissive readout probe to the first complex, wherein the first emissive readout probe comprises a label and a sequence complementary to the first landing pad sequence;detecting the first emissive readout probe with a confocal microscope;adding an exchange probe to the sample, wherein the exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequence,hybridizing the exchange probe to the first emissive readout probe to form a second complex;removing the second complex from the sample,adding at least one second emissive readout probe to the first complex, wherein the second emissive readout probe comprises a label and a sequence complementary to the second landing pad sequence;detecting the second emissive readout probe with a confocal microscope;repeating the aforementioned steps for at least one different encoding probe;determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; anddecoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.
  • 72. A method for analyzing a bacterial sample, comprising: generating a set of probes, wherein each probe comprises:(iv) a targeting sequence;(v) a first landing pad sequence; and(vi) a second landing pad sequence;contacting the set of probes with the sample to permit hybridization of the probes to nucleotides present in the sample to produce a complex;adding a first set of emissive readout probes to the complex, wherein each emissive readout probe comprises:(i) a label, and(ii) a sequence complementary to the first or second landing pad sequence;detecting the first set of emissive readout probes in the sample with a confocal microscope;adding a set of exchange probes to the sample, wherein each exchange probe comprises a 100% complementary sequence to the first emissive readout probe sequences,hybridizing the exchange probes to the first emissive readout probes to form a second complex;removing the second complex from the sample,adding a second set of emissive readout probes to the complex, wherein each emissive readout probe comprises:(i) a label, and(ii) a sequence complementary to the first or second landing pad sequence;detecting the second set of emissive readout probes in the sample with a confocal microscope;determining the spectra of “signal” (e.g., puncta, blobs) and assigning them to a bacterium; anddecoding the spectra into a single, targeted transcript through means of signal deconvolution, error correction, comparison to reference standards.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/282,947, filed on Nov. 24, 2021, and U.S. Provisional Application No. 63/339,291, filed on May 6, 2022. The entire contents of the aforementioned applications are incorporated herein by reference in their entireties.

Provisional Applications (2)
Number Date Country
63339291 May 2022 US
63282947 Nov 2021 US