The present invention is directed to a circuit that senses a temperature of a circuit board in a ballast of a high-intensity discharge (HID) lamp.
A HID lamp has an arc discharge contained within an arc tube and may be, for example, a mercury vapor, metal halide, low and high-pressure sodium, or xenon arc lamp. A HID lamp requires a ballast to start and maintain operation. A ballast is a device that provides the proper starting and operating electrical conditions. An electronic ballast uses solid state electronic circuitry to provide these conditions. Such solid state circuitry is well known and is not the subject of the present invention. However, one part of this circuitry is relevant to the present invention; in particular, the microcontroller.
A microcontroller is a computer-on-a-chip that is used to control an electronic device, such as the ballast of a HID lamp. The microcontroller is a single integrated circuit with a central processing unit, storage, peripherals as appropriate for the particular application, and connection pins for communicating signals and/or data. The circuitry for the ballast, including the microcontroller, is typically mounted on a printed circuit board (PCB).
During operation of a HID lamp, the PCB of the ballast may reach a temperature that can be harmful to the ballast or degrade ballast performance. The temperature of the PCB is monitored so that responsive steps can be taken as needed. The ballast microcontroller can be used to monitor the PCB temperature, provided the microcontroller has enough analog to digital (A/D) input pins available to be dedicated to temperature measurement functions.
If there are not enough microcontroller pins for the dedicated temperature measurement function, a strictly analog temperature compensation circuit can provide this function without involving the microcontroller. However, the degree of control is limited to one mode of operation and the analog compensation circuit is usually more sensitive to unit-to-unit variability than a microcontroller-based technique. Alternatively, a microcontroller with more pins can be provided, but the cost for this additional capability is higher and the additional pins increase the size of the microcontroller so as to require more real estate on the PCB.
An object of the present invention is to provide a novel temperature sensing circuit for a ballast for a HID lamp that avoids the problems of the prior art.
A further object of the present invention is to provide a novel temperature sensing circuit for a ballast for a HID lamp that multiplexes the temperature measurement function with another function to reduce the number of microcontroller pins required for the temperature measurement function of the microcontroller.
A yet further object of the present invention is to provide a ballast that includes a circuit board with HID lamp ballast circuitry that includes a microcontroller having a first A/D input/output pin, a second A/D input/output pin and a multifunction pin, a temperature measurement circuit that includes a thermistor for sensing a temperature of the circuit board and that is connected to the second A/D pin, a timing circuit connected to the first A/D pin, and a switch connected to the multifunction pin, the temperature measurement circuit and the timing circuit, where the switch connects the temperature measurement circuit to the multifunction pin in a first position and disconnects the temperature measurement circuit from the multifunction pin in a second position, and where the temperature measurement circuit is activated when the switch is in the first position and the timing circuit is operated and the temperature measurement circuit is deactivated when the switch is in the second position.
These and other objects and advantages of the invention will be apparent to those of skill in the art of the present invention after consideration of the following drawings and description of preferred embodiments.
A HID lamp ballast of the present invention multiplexes the temperature measurement function with another function to reduce the number of microcontroller pins required for the temperature measurement function of the microcontroller. In a preferred embodiment and with reference to
Microcontroller U1 maybe any suitable microcontroller having at least one analog input and two digital outputs, such as a Microchip 16C716-E/SS 8-bit CMOS microcontroller.
With further reference now to
The temperature measurement function of the temperature measurement circuit is multiplexed with the functions of a further circuit, such as the timing circuit shown in
With reference again to
In operation, the circuit of
While embodiments of the present invention have been described in the foregoing specification and drawings, it is to be understood that the present invention is defined by the following claims when read in light of the specification and drawings.
Number | Name | Date | Kind |
---|---|---|---|
5612623 | Watanabe et al. | Mar 1997 | A |
6320450 | Lee et al. | Nov 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20060290209 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60690784 | Jun 2005 | US |