Multiplexer for laser-driven intravascular lithotripsy device

Information

  • Patent Grant
  • 12274497
  • Patent Number
    12,274,497
  • Date Filed
    Thursday, December 10, 2020
    4 years ago
  • Date Issued
    Tuesday, April 15, 2025
    15 days ago
Abstract
A catheter system for treating a vascular lesion within or adjacent to a vessel wall within a body of a patient includes a single light source that generates light energy, a first light guide and a second light guide, and a multiplexer. The first light guide and the second light guide are each configured to selectively receive light energy from the light source. The multiplexer receives the light energy from the light source in the form of a source beam and selectively directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide.
Description
BACKGROUND

Vascular lesions within vessels in the body can be associated with an increased risk for major adverse events, such as myocardial infarction, embolism, deep vein thrombosis, stroke, and the like. Severe vascular lesions, such as severely calcified vascular lesions, can be difficult to treat and achieve patency for a physician in a clinical setting.


Vascular lesions may be treated using interventions such as drug therapy, balloon angioplasty, atherectomy, stent placement, vascular graft bypass, to name a few. Such interventions may not always be ideal or may require subsequent treatment to address the lesion.


Intravascular lithotripsy is one method that has been recently used with some success for breaking up vascular lesions within vessels in the body. Intravascular lithotripsy utilizes a combination of pressure waves and bubble dynamics that are generated intravascularly in a fluid-filled balloon catheter. In particular, during an intravascular lithotripsy treatment, a high energy source is used to generate plasma and ultimately pressure waves as well as a rapid bubble expansion within a fluid-filled balloon to crack calcification at a treatment site within the vasculature that includes one or more vascular lesions. The associated rapid bubble formation from the plasma initiation and resulting localized fluid velocity within the balloon transfers mechanical energy through the incompressible fluid to impart a fracture force on the intravascular calcium, which is opposed to the balloon wall. The rapid change in fluid momentum upon hitting the balloon wall is known as hydraulic shock, or water hammer.


There is an ongoing desire to enhance vessel patency and optimization of therapy delivery parameters within an intravascular lithotripsy catheter system.


SUMMARY

The present invention is directed toward a catheter system for placement within a blood vessel having a vessel wall. The catheter system can be used for treating a vascular lesion within or adjacent to the vessel wall within a body of a patient. The catheter system includes a single light source that generates light energy. In various embodiments, the catheter system includes a first light guide and a second light guide, and a multiplexer. The first light guide and the second light guide are each configured to selectively receive light energy from the light source. The multiplexer receives the light energy from the light source in the form of a source beam and selectively directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide.


In certain embodiments, the catheter system is configured such that the multiplexer receives the light energy from the light source and simultaneously directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide. Alternatively, in other embodiments, the catheter system is configured such that the multiplexer receives the light energy from the light source and sequentially directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide.


In some embodiments, the catheter system further includes a system controller including a processor that is configured to control operation of the light source to generate a single source beam in the form of pulses of light energy. Additionally, the system controller can be further configured to control operation of the multiplexer so that a first guide beam is directed to the first light guide and a second guide beam is directed to the second light guide.


In one embodiment, the light source includes a laser.


In certain embodiments, the catheter system further includes a catheter shaft and a balloon that is coupled to the catheter shaft, the balloon including a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior. In such embodiments, the first light guide and the second light guide are positioned at least partially within the balloon interior. For example, each of the first light guide and the second light guide can include a guide distal end that is positioned within the balloon interior.


In some embodiments, the balloon is selectively inflatable with the balloon fluid to expand to an inflated state, wherein when the balloon is in the inflated state the balloon wall is configured to be positioned substantially adjacent to the vascular lesion. Additionally, in certain such embodiments, the first light guide and the second light guide receive the light energy from the light source and guide the light energy from the light source into the balloon interior to generate plasma in the balloon fluid within the balloon interior, the plasma generation causing rapid bubble formation and imparting pressure waves upon the balloon wall adjacent to the vascular lesion.


In certain embodiments, the multiplexer includes an optical element that splits the source beam into a first guide beam and a second guide beam. In some such embodiments, the multiplexer further includes coupling optics that are configured to focus the first guide beam onto the first light guide and the second guide beam onto the second light guide. Additionally, in such embodiments, the first guide beam and the second guide beam can be incident on the coupling optics with an angle between them.


In some embodiments, the optical element is provided in the form of a beamsplitter that splits the source beam into the first guide beam and the second guide beam. In such embodiments, the first guide beam is directed from the beamsplitter toward the coupling optics; and the second guide beam is directed from the beamsplitter toward a redirector that is positioned to redirect the second guide beam toward the coupling optics. Additionally, the coupling optics are configured to focus the first guide beam onto the first light guide and to focus the second guide beam onto the second light guide.


In other embodiments, the optical element includes an input surface that is partially reflective, a rear surface, and an exit surface that is anti-reflective. In such embodiments, the source beam impinging on the input surface splits the source beam into the first guide beam that is directed toward the coupling optics, and the second guide beam that is transmitted through the input surface toward the rear surface, reflects off of the rear surface and is directed through the exit surface and toward the coupling optics. In one such embodiment, the optical element is an imperfect parallelogram.


In still other embodiments, the optical element includes a polarizing beamsplitter that receives the source beam and splits the source beam into the first guide beam having a first polarization and the second guide beam having a second polarization that is different than the first polarization. In such embodiments, the multiplexer can further include a plurality of redirectors that redirect each of the first guide beam and the second guide beam before each of the first guide beam and the second guide beam are directed again toward the polarizing beamsplitter. In one such embodiment, the plurality of redirectors includes four ring mirrors. In another such embodiment, the plurality of redirectors includes two corner cubes. In still another such embodiment, the plurality of redirectors includes a first reflective surface and a second reflective surface; and the beamsplitter, the first reflective surface and the second reflective surface can all be integrated into a single optical element.


Additionally, in various such embodiments, the plurality of redirectors are positioned and aligned relative to one another such that the first guide beam and the second guide beam are one of (i) colinear and overlapping, such that the guide beams can be recombined and directed toward one of the first light guide and the second light guide; (ii) parallel and non-overlapping, such that the first guide beam is directed toward the first light guides and the second guide beam is directed toward the second light guide; and (iii) propagating at a small angle relative to one another, such that the first guide beam can be focused with coupling optics toward the first light guide, and the second guide beam can be focused with the coupling optics toward the second light guide.


The present invention is further directed toward a method for treating a vascular lesion within or adjacent to a vessel wall within a body of a patient, the method comprising the steps of generating light energy with a single light source; receiving the light energy from the light source in the form of a source beam with a multiplexer; and directing the light energy from the light source with the multiplexer in the form of individual guide beams to each of a first light guide and a second light guide.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:



FIG. 1 is a schematic cross-sectional view of an embodiment of a catheter system in accordance with various embodiments herein, the catheter system including a plurality of light guides and a multiplexer;



FIG. 2 is a simplified schematic illustration of a portion of an embodiment of the catheter system including an embodiment of the multiplexer;



FIG. 3 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 4 is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 5 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 6 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system including yet another embodiment of the multiplexer;



FIG. 7 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 8 is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 9 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 10 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system including yet another embodiment of the multiplexer;



FIG. 11 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 12 is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 13 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 14 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system including yet another embodiment of the multiplexer;



FIG. 15A is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 15B is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 16A is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 16B is a simplified schematic illustration of a portion of yet another embodiment of the catheter system including yet another embodiment of the multiplexer;



FIG. 17A is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 17B is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 18A is a simplified schematic top view illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 18B is a simplified schematic perspective view illustration of a portion of the catheter system and the multiplexer illustrated in FIG. 18A;



FIG. 19A is a simplified schematic top view illustration of a portion of yet another embodiment of the catheter system including yet another embodiment of the multiplexer;



FIG. 19B is a simplified schematic perspective view illustration of a portion of the catheter system and the multiplexer illustrated in FIG. 19A;



FIG. 20 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer;



FIG. 21 is a simplified schematic illustration of a portion of still another embodiment of the catheter system including still another embodiment of the multiplexer;



FIG. 22 is a simplified schematic illustration of a portion of another embodiment of the catheter system including another embodiment of the multiplexer; and



FIG. 23 is a simplified schematic illustration of a portion of still yet another embodiment of the catheter system including still yet another embodiment of the multiplexer.





While embodiments of the present invention are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and are described in detail herein. It is understood, however, that the scope herein is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.


DESCRIPTION

Treatment of vascular lesions can reduce major adverse events or death in affected subjects. As referred to herein, a major adverse event is one that can occur anywhere within the body due to the presence of a vascular lesion. Major adverse events can include, but are not limited to, major adverse cardiac events, major adverse events in the peripheral or central vasculature, major adverse events in the brain, major adverse events in the musculature, or major adverse events in any of the internal organs.


For the treatment of vascular lesions, such as calcium deposits in arteries, it is generally beneficial to be able to treat multiple closely spaced areas with a single insertion and positioning of a catheter balloon. To allow this to occur within an optical excitation system, such as within a laser-driven intravascular lithotripsy device, it is usually desirable to have a number of output channels, e.g., optical fibers and targets, for the treatment process, which can be distributed within the balloon. Since a high-power laser source is often the largest and most expensive component in the system, having a dedicated laser source for each optical fiber is unlikely to be feasible for a number of reasons including packaging requirements, power consumption, thermal considerations, and economics. For such reasons, it can be advantageous to multiplex a single laser simultaneously and/or sequentially into a number of different optical fibers for treatment purposes. This allows the possibility for using all or a particular portion of the laser power from the single laser with each fiber.


Thus, the catheter systems and related methods are configured to provide a means to power multiple fiber optic channels in a laser-driven pressure wave-generating device that is designed to impart pressure onto and induce fractures in vascular lesions, such as calcified vascular lesions and/or fibrous vascular lesions, using a single light source. More particularly, the present invention includes a multiplexer that multiplexes a single light source, e.g., a single laser source, into one or more of multiple light guides, e.g., fiber optic channels, in a single-use device.


One of the problems of using optical fibers to transfer high-energy optical pulses is that there can be significant limitations on the amount of energy that can be carried by the optical fiber due to both physical damage concerns and nonlinear processes such as Stimulated Brillouin Scattering (SBS). For this reason, it may be advantageous to have the option of accessing multiple fibers, i.e. light guides, simultaneously in order to increase the amount of energy that can be delivered at one time without directing excessive energy through any single fiber. The present invention further allows a single, stable light source to be channeled sequentially through a plurality of light guides with a variable number.


In various embodiments, the catheter systems and related methods disclosed herein can include a catheter configured to advance to vascular lesions, such as calcified vascular lesions or a fibrous vascular lesions, located at a treatment site within or adjacent a blood vessel within a body of a patient. The catheter includes a catheter shaft, and an inflatable balloon that is coupled and/or secured to the catheter shaft. The balloon can include a balloon wall that defines a balloon interior. The balloon can be configured to receive a balloon fluid within the balloon interior to expand from a deflated state suitable for advancing the catheter through a patient's vasculature, to an inflated state suitable for anchoring the catheter in position relative to the treatment site.


The catheter systems also include the plurality of light guides disposed along the catheter shaft and within the balloon interior of the balloon. Each light guide can be configured for generating pressure waves within the balloon for disrupting the vascular lesions. In particular, the catheter systems utilize light energy from the light source to create a localized plasma in the balloon fluid within the balloon interior of the balloon at or near a guide distal end of the light guide disposed in the balloon located at the treatment site. As such, the light guide can sometimes be referred to as, or can be said to incorporate a “plasma generator” at or near the guide distal end of the light guide that is positioned within the balloon interior of the balloon located at the treatment site. The creation of the localized plasma can initiate a pressure wave and can initiate the rapid formation of one or more high energy bubbles that can rapidly expand to a maximum size and then dissipate through a cavitation event that can launch a pressure wave upon collapse. The rapid expansion of the plasma-induced bubbles can generate one or more pressure waves within the balloon fluid retained within the balloon interior of the balloon and thereby impart pressure waves onto and induce fractures in the vascular lesions at the treatment site within or adjacent to the blood vessel wall within the body of the patient. It is appreciated that the guide distal end of each of the plurality of light guides can be positioned in any suitable locations relative to a length of the balloon to more effectively and precisely impart pressure waves for purposes of disrupting the vascular lesions at the treatment site.


In some embodiments, the light source can be configured to provide sub-millisecond pulses of light energy to initiate the plasma formation in the balloon fluid within the balloon to cause rapid bubble formation and to impart pressure waves upon the balloon wall at the treatment site. Thus, the pressure waves can transfer mechanical energy through an incompressible balloon fluid to the treatment site to impart a fracture force on the vascular lesions. Without wishing to be bound by any particular theory, it is believed that the rapid change in balloon fluid momentum upon the balloon wall that is in contact with the intravascular lesion is transferred to the intravascular lesion to induce fractures to the lesion.


Importantly, as noted above, the catheter systems and related methods include the multiplexer that multiplexes a single light source into one or more of the light guides in a single-use device to enable the treatment of multiple closely spaced areas with a single insertion and positioning of a catheter balloon.


As used herein, the terms “intravascular lesion” and “vascular lesion” are used interchangeably unless otherwise noted. As such, the intravascular lesions and/or the vascular lesions are sometimes referred to herein simply as “lesions”.


Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same or similar nomenclature and/or reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.


In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It is appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application-related and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it is appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.


The catheter systems disclosed herein can include many different forms. Referring now to FIG. 1, a schematic cross-sectional view is shown of a catheter system 100 in accordance with various embodiments. The catheter system 100 is suitable for imparting pressure waves to induce fractures in one or more vascular lesions within or adjacent a vessel wall of a blood vessel within a body of a patient. In the embodiment illustrated in FIG. 1, the catheter system 100 can include one or more of a catheter 102, alight guide bundle 122 including one or more (and preferably a plurality of) light guides 122A, a source manifold 136, a fluid pump 138, a system console 123 including one or more of a light source 124, a power source 125, a system controller 126, a graphic user interface 127 (a “GUI”), and a multiplexer 128, and a handle assembly 129. Alternatively, the catheter system 100 can include more components or fewer components than those specifically illustrated and described in relation to FIG. 1.


The catheter 102 is configured to move to a treatment site 106 within or adjacent to a vessel wall 108A of a blood vessel 108 within a body 107 of a patient 109. The treatment site 106 can include one or more vascular lesions 106A such as calcified vascular lesions, for example. Additionally, or in the alternative, the treatment site 106 can include vascular lesions 106A such as fibrous vascular lesions.


The catheter 102 can include an inflatable balloon 104 (sometimes referred to herein simply as a “balloon”), a catheter shaft 110 and a guidewire 112. The balloon 104 can be coupled to the catheter shaft 110. The balloon 104 can include a balloon proximal end 104P and a balloon distal end 104D. The catheter shaft 110 can extend from a proximal portion 114 of the catheter system 100 to a distal portion 116 of the catheter system 100. The catheter shaft 110 can include a longitudinal axis 144. The catheter shaft 110 can also include a guidewire lumen 118 which is configured to move over the guidewire 112. As utilized herein, the guidewire lumen 118 defines a conduit through which the guidewire 112 extends. The catheter shaft 110 can further include an inflation lumen (not shown) and/or various other lumens for various other purposes. In some embodiments, the catheter 102 can have a distal end opening 120 and can accommodate and be tracked over the guidewire 112 as the catheter 102 is moved and positioned at or near the treatment site 106. In some embodiments, the balloon proximal end 104P can be coupled to the catheter shaft 110, and the balloon distal end 104D can be coupled to the guidewire lumen 118.


The balloon 104 includes a balloon wall 130 that defines a balloon interior 146. The balloon 104 can be selectively inflated with a balloon fluid 132 to expand from a deflated state suitable for advancing the catheter 102 through a patient's vasculature, to an inflated state (as shown in FIG. 1) suitable for anchoring the catheter 102 in position relative to the treatment site 106. Stated in another manner, when the balloon 104 is in the inflated state, the balloon wall 130 of the balloon 104 is configured to be positioned substantially adjacent to the treatment site 106, i.e. to the vascular lesion(s) 106A at the treatment site 106. It is appreciated that although FIG. 1 illustrates the balloon wall 130 of the balloon 104 being shown spaced apart from the treatment site 106 of the blood vessel 108 when in the inflated state, this is done merely for ease of illustration. It is recognized that the balloon wall 130 of the balloon 104 will typically be substantially directly adjacent to and/or abutting the treatment site 106 when the balloon 104 is in the inflated state.


The balloon 104 suitable for use in the catheter system 100 includes those that can be passed through the vasculature of a patient 109 when in the deflated state. In some embodiments, the balloon 104 is made from silicone. In other embodiments, the balloon 104 can be made from polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ material, nylon, or any other suitable material.


The balloon 104 can have any suitable diameter (in the inflated state). In various embodiments, the balloon 104 can have a diameter (in the inflated state) ranging from less than one millimeter (mm) up to 25 mm. In some embodiments, the balloon 104 can have a diameter (in the inflated state) ranging from at least 1.5 mm up to 14 mm. In some embodiments, the balloons 104 can have a diameter (in the inflated state) ranging from at least two mm up to five mm.


In some embodiments, the balloon 104 can have a length ranging from at least three mm to 300 mm. More particularly, in some embodiments, the balloon 104 can have a length ranging from at least eight mm to 200 mm. It is appreciated that a balloon 104 having a relatively longer length can be positioned adjacent to larger treatment sites 106, and, thus, may be usable for imparting pressure waves onto and inducing fractures in larger vascular lesions 106A or multiple vascular lesions 106A at precise locations within the treatment site 106. It is further appreciated that a longer balloon 104 can also be positioned adjacent to multiple treatment sites 106 at any one given time.


The balloon 104 can be inflated to inflation pressures of between approximately one atmosphere (atm) and 70 atm. In some embodiments, the balloon 104 can be inflated to inflation pressures of from at least 20 atm to 60 atm. In other embodiments, the balloon 104 can be inflated to inflation pressures of from at least six atm to 20 atm. In still other embodiments, the balloon 104 can be inflated to inflation pressures of from at least three atm to 20 atm. In yet other embodiments, the balloon 104 can be inflated to inflation pressures of from at least two atm to ten atm.


The balloon 104 can have various shapes, including, but not to be limited to, a conical shape, a square shape, a rectangular shape, a spherical shape, a conical/square shape, a conical/spherical shape, an extended spherical shape, an oval shape, a tapered shape, a bone shape, a stepped diameter shape, an offset shape, or a conical offset shape. In some embodiments, the balloon 104 can include a drug eluting coating or a drug eluting stent structure. The drug eluting coating or drug eluting stent can include one or more therapeutic agents including anti-inflammatory agents, anti-neoplastic agents, anti-angiogenic agents, and the like.


The balloon fluid 132 can be a liquid or a gas. Some examples of the balloon fluid 132 suitable for use can include, but are not limited to one or more of water, saline, contrast medium, fluorocarbons, perfluorocarbons, gases, such as carbon dioxide, or any other suitable balloon fluid 132. In some embodiments, the balloon fluid 132 can be used as a base inflation fluid. In some embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 50:50. In other embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 25:75. In still other embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 75:25. However, it is understood that any suitable ratio of saline to contrast medium can be used. The balloon fluid 132 can be tailored on the basis of composition, viscosity, and the like so that the rate of travel of the pressure waves are appropriately manipulated. In certain embodiments, the balloon fluid 132 suitable for use herein is biocompatible. A volume of balloon fluid 132 can be tailored by the chosen light source 124 and the type of balloon fluid 132 used.


In some embodiments, the contrast agents used in the contrast media can include, but are not to be limited to, iodine-based contrast agents, such as ionic or non-ionic iodine-based contrast agents. Some non-limiting examples of ionic iodine-based contrast agents include diatrizoate, metrizoate, iothalamate, and ioxaglate. Some non-limiting examples of non-ionic iodine-based contrast agents include iopamidol, iohexol, ioxilan, iopromide, iodixanol, and ioversol. In other embodiments, non-iodine based contrast agents can be used. Suitable non-iodine containing contrast agents can include gadolinium (III)-based contrast agents. Suitable fluorocarbon and perfluorocarbon agents can include, but are not to be limited to, agents such as perfluorocarbon dodecafluoropentane (DDFP, C5F12).


The balloon fluids 132 can include those that include absorptive agents that can selectively absorb light in the ultraviolet region (e.g., at least ten nanometers (nm) to 400 nm), the visible region (e.g., at least 400 nm to 780 nm), or the near-infrared region (e.g., at least 780 nm to 2.5 μm) of the electromagnetic spectrum. Suitable absorptive agents can include those with absorption maxima along the spectrum from at least ten nm to 2.5 μm. Alternatively, the balloon fluid 132 can include absorptive agents that can selectively absorb light in the mid-infrared region (e.g., at least 2.5 μm to 15 μm), or the far-infrared region (e.g., at least 15 μm to one mm) of the electromagnetic spectrum. In various embodiments, the absorptive agent can be those that have an absorption maximum matched with the emission maximum of the laser used in the catheter system 100. By way of non-limiting examples, various lasers described herein can include neodymium:yttrium-aluminum-garnet (Nd:YAG−emission maximum=1064 nm) lasers, holmium:YAG (Ho:YAG−emission maximum=2.1 μm) lasers, or erbium:YAG (Er:YAG−emission maximum=2.94 μm) lasers. In some embodiments, the absorptive agents can be water soluble. In other embodiments, the absorptive agents are not water soluble. In some embodiments, the absorptive agents used in the balloon fluids 132 can be tailored to match the peak emission of the light source 124. Various light sources 124 having emission wavelengths of at least ten nanometers to one millimeter are discussed elsewhere herein.


The catheter shaft 110 of the catheter 102 can be coupled to the one or more light guides 122A of the light guide bundle 122 that are in optical communication with the light source 124. The light guide(s) 122A can be disposed along the catheter shaft 110 and within the balloon 104. Each of the light guides 122A can have a guide distal end 122D that is at any suitable longitudinal position relative to a length of the balloon 104. In some embodiments, each light guide 122A can be an optical fiber and the light source 124 can be a laser. The light source 124 can be in optical communication with the light guides 122A at the proximal portion 114 of the catheter system 100. More particularly, as described in detail herein, the light source 124 can selectively, simultaneously, sequentially and/or alternatively be in optical communication with each of the light guides 122A in any desired combination, order and/or pattern due to the presence and operation of the multiplexer 128.


In some embodiments, the catheter shaft 110 can be coupled to multiple light guides 122A such as a first light guide, a second light guide, a third light guide, etc., which can be disposed at any suitable positions about the guidewire lumen 118 and/or the catheter shaft 110. For example, in certain non-exclusive embodiments, two light guides 122A can be spaced apart by approximately 180 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110; three light guides 122A can be spaced apart by approximately 120 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110; or four light guides 122A can be spaced apart by approximately 90 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110. Still alternatively, multiple light guides 122A need not be uniformly spaced apart from one another about the circumference of the guidewire lumen 118 and/or the catheter shaft 110. More particularly, the light guides 122A can be disposed either uniformly or non-uniformly about the guidewire lumen 118 and/or the catheter shaft 110 to achieve the desired effect in the desired locations.


The catheter system 100 and/or the light guide bundle 122 can include any number of light guides 122A in optical communication with the light source 124 at the proximal portion 114, and with the balloon fluid 132 within the balloon interior 146 of the balloon 104 at the distal portion 116. For example, in some embodiments, the catheter system 100 and/or the light guide bundle 122 can include from one light guide 122A to five light guides 122A. In other embodiments, the catheter system 100 and/or the light guide bundle 122 can include from five light guides 122A to fifteen light guides 122A. In yet other embodiments, the catheter system 100 and/or the light guide bundle 122 can include from ten light guides 122A to thirty light guides 122A. Alternatively, in still other embodiments, the catheter system 100 and/or the light guide bundle 122 can include greater than 30 light guides 122A.


The light guides 122A can have any suitable design for purposes of generating plasma and/or pressure waves in the balloon fluid 132 within the balloon interior 146. In certain embodiments, the light guides 122A can include an optical fiber or flexible light pipe. The light guides 122A can be thin and flexible and can allow light signals to be sent with very little loss of strength. The light guides 122A can include a core surrounded by a cladding about its circumference. In some embodiments, the core can be a cylindrical core or a partially cylindrical core. The core and cladding of the light guides 122A can be formed from one or more materials, including but not limited to one or more types of glass, silica, or one or more polymers. The light guides 122A may also include a protective coating, such as a polymer. It is appreciated that the index of refraction of the core will be greater than the index of refraction of the cladding.


Each light guide 122A can guide light energy along its length from a guide proximal end 122P to the guide distal end 122D having at least one optical window (not shown) that is positioned within the balloon interior 146.


The light guides 122A can assume many configurations about and/or relative to the catheter shaft 110 of the catheter 102. In some embodiments, the light guides 122A can run parallel to the longitudinal axis 144 of the catheter shaft 110. In some embodiments, the light guides 122A can be physically coupled to the catheter shaft 110. In other embodiments, the light guides 122A can be disposed along a length of an outer diameter of the catheter shaft 110. In yet other embodiments, the light guides 122A can be disposed within one or more light guide lumens within the catheter shaft 110.


The light guides 122A can also be disposed at any suitable positions about the circumference of the guidewire lumen 118 and/or the catheter shaft 110, and the guide distal end 122D of each of the light guides 122A can be disposed at any suitable longitudinal position relative to the length of the balloon 104 and/or relative to the length of the guidewire lumen 118 to more effectively and precisely impart pressure waves for purposes of disrupting the vascular lesions 106A at the treatment site 106.


In certain embodiments, the light guides 122A can include one or more photoacoustic transducers 154, where each photoacoustic transducer 154 can be in optical communication with the light guide 122A within which it is disposed. In some embodiments, the photoacoustic transducers 154 can be in optical communication with the guide distal end 122D of the light guide 122A. Additionally, in such embodiments, the photoacoustic transducers 154 can have a shape that corresponds with and/or conforms to the guide distal end 122D of the light guide 122A.


The photoacoustic transducer 154 is configured to convert light energy into an acoustic wave at or near the guide distal end 122D of the light guide 122A. The direction of the acoustic wave can be tailored by changing an angle of the guide distal end 122D of the light guide 122A.


In certain embodiments, the photoacoustic transducers 154 disposed at the guide distal end 122D of the light guide 122A can assume the same shape as the guide distal end 122D of the light guide 122A. For example, in certain non-exclusive embodiments, the photoacoustic transducer 154 and/or the guide distal end 122D can have a conical shape, a convex shape, a concave shape, a bulbous shape, a square shape, a stepped shape, a half-circle shape, an ovoid shape, and the like. The light guide 122A can further include additional photoacoustic transducers 154 disposed along one or more side surfaces of the length of the light guide 122A.


In some embodiments, the light guides 122A can further include one or more diverting features or “diverters” (not shown in FIG. 1) within the light guide 122A that are configured to direct light to exit the light guide 122A toward a side surface which can be located at or near the guide distal end 122D of the light guide 122A, and toward the balloon wall 130. A diverting feature can include any feature of the system that diverts light energy from the light guide 122A away from its axial path toward a side surface of the light guide 122A. Additionally, the light guides 122A can each include one or more light windows disposed along the longitudinal or circumferential surfaces of each light guide 122A and in optical communication with a diverting feature. Stated in another manner, the diverting features can be configured to direct light energy in the light guide 122A toward a side surface that is at or near the guide distal end 122D, where the side surface is in optical communication with alight window. The light windows can include a portion of the light guide 122A that allows light energy to exit the light guide 122A from within the light guide 122A, such as a portion of the light guide 122A lacking a cladding material on or about the light guide 122A.


Examples of the diverting features suitable for use include a reflecting element, a refracting element, and a fiber diffuser. The diverting features suitable for focusing light energy away from the tip of the light guides 122A can include, but are not to be limited to, those having a convex surface, a gradient-index (GRIN) lens, and a mirror focus lens. Upon contact with the diverting feature, the light energy is diverted within the light guide 122A to one or more of a plasma generator 133 and the photoacoustic transducer 154 that is in optical communication with a side surface of the light guide 122A. As noted, the photoacoustic transducer 154 then converts light energy into an acoustic wave that extends away from the side surface of the light guide 122A.


The source manifold 136 can be positioned at or near the proximal portion 114 of the catheter system 100. The source manifold 136 can include one or more proximal end openings that can receive the one or more light guides 122A of the light guide bundle 122, the guidewire 112, and/or an inflation conduit 140 that is coupled in fluid communication with the fluid pump 138. The catheter system 100 can also include the fluid pump 138 that is configured to inflate the balloon 104 with the balloon fluid 132, i.e. via the inflation conduit 140, as needed.


As noted above, in the embodiment illustrated in FIG. 1, the system console 123 includes one or more of the light source 124, the power source 125, the system controller 126, the GUI 127, and the multiplexer 128. Alternatively, the system console 123 can include more components or fewer components than those specifically illustrated in FIG. 1. For example, in certain non-exclusive alternative embodiments, the system console 123 can be designed without the GUI 127. Still alternatively, one or more of the light source 124, the power source 125, the system controller 126, the GUI 127 and the multiplexer 128 can be provided within the catheter system 100 without the specific need for the system console 123.


As shown, the system console 123, and the components included therewith, is operatively coupled to the catheter 102, the light guide bundle 122, and the remainder of the catheter system 100. For example, in some embodiments, as illustrated in FIG. 1, the system console 123 can include a console connection aperture 148 (also sometimes referred to generally as a “socket”) by which the light guide bundle 122 is mechanically coupled to the system console 123. In such embodiments, the light guide bundle 122 can include a guide coupling housing 150 (also sometimes referred to generally as a “ferrule”) that houses a portion, e.g., the guide proximal end 122P, of each of the light guides 122A. The guide coupling housing 150 is configured to fit and be selectively retained within the console connection aperture 148 to provide the mechanical coupling between the light guide bundle 122 and the system console 123.


The light guide bundle 122 can also include a guide bundler 152 (or “shell”) that brings each of the individual light guides 122A closer together so that the light guides 122A and/or the light guide bundle 122 can be in a more compact form as it extends with the catheter 102 into the blood vessel 108 during use of the catheter system 100.


The light source 124 can be selectively and/or alternatively coupled in optical communication with each of the light guides 122A, i.e. to the guide proximal end 122P of each of the light guides 122A, in the light guide bundle 122. In particular, the light source 124 is configured to generate light energy in the form of a source beam 124A, such as a pulsed source beam, that can be selectively and/or alternatively directed to and received by each of the light guides 122A in the light guide bundle 122 in any desired combination, order, sequence and/or pattern. More specifically, as described in greater detail herein below, the source beam 124A from the light source 124 is directed through the multiplexer 128 such that individual guide beams 124B (or “multiplexed beams”) can be selectively and/or alternatively directed into and received by each of the light guides 122A in the light guide bundle 122. In particular, each pulse of the light source 124, i.e. each pulse of the source beam 124A, can be directed through the multiplexer 128 to generate one or more separate guide beams 124B (only one is shown in FIG. 1) that are selectively and/or alternatively directed to one or more of the light guides 122A in the light guide bundle 122.


The light source 124 can have any suitable design. In certain embodiments, the light source 124 can be configured to provide sub-millisecond pulses of light energy from the light source 124 that are focused onto a small spot in order to couple it into the guide proximal end 122P of the light guide 122A. Such pulses of light energy are then directed and/or guided along the light guides 122A to a location within the balloon interior 146 of the balloon 104, thereby inducing plasma formation in the balloon fluid 132 within the balloon interior 146 of the balloon 104, e.g., via the plasma generator 133 that can be located at the guide distal end 122D of the light guide 122A. In particular, the light emitted at the guide distal end 122D of the light guide 122A energizes the plasma generator 133 to form the plasma within the balloon fluid 132 within the balloon interior 146. The plasma formation causes rapid bubble formation, and imparts pressure waves upon the treatment site 106. An exemplary plasma-induced bubble 134 is illustrated in FIG. 1.


In various non-exclusive alternative embodiments, the sub-millisecond pulses of light energy from the light source 124 can be delivered to the treatment site 106 at a frequency of between approximately one hertz (Hz) and 5000 Hz, between approximately 30 Hz and 1000 Hz, between approximately ten Hz and 100 Hz, or between approximately one Hz and 30 Hz. Alternatively, the sub-millisecond pulses of light energy can be delivered to the treatment site 106 at a frequency that can be greater than 5000 Hz or less than one Hz, or any other suitable range of frequencies.


It is appreciated that although the light source 124 is typically utilized to provide pulses of light energy, the light source 124 can still be described as providing a single source beam 124A, i.e. a single pulsed source beam.


The light sources 124 suitable for use herein can include various types of light sources including lasers and lamps. Suitable lasers can include short pulse lasers on the sub-millisecond timescale. In some embodiments, the light source 124 can include lasers on the nanosecond (ns) timescale. The lasers can also include short pulse lasers on the picosecond (ps), femtosecond (fs), and microsecond (us) timescales. It is appreciated that there are many combinations of laser wavelengths, pulse widths and energy levels that can be employed to achieve plasma in the balloon fluid 132 of the catheter 102. In various non-exclusive alternative embodiments, the pulse widths can include those falling within a range including from at least ten ns to 3000 ns, at least 20 ns to 100 ns, or at least one ns to 500 ns. Alternatively, any other suitable pulse width range can be used.


Exemplary nanosecond lasers can include those within the UV to IR spectrum, spanning wavelengths of about ten nanometers (nm) to one millimeter (mm). In some embodiments, the light sources 124 suitable for use in the catheter system 100 can include those capable of producing light at wavelengths of from at least 750 nm to 2000 nm. In other embodiments, the light sources 124 can include those capable of producing light at wavelengths of from at least 700 nm to 3000 nm. In still other embodiments, the light sources 124 can include those capable of producing light at wavelengths of from at least 100 nm to ten micrometers (μm). Nanosecond lasers can include those having repetition rates of up to 200 kHz. In some embodiments, the laser can include a Q-switched thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In other embodiments, the laser can include a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser, holmium:yttrium-aluminum-garnet (Ho:YAG) laser, erbium:yttrium-aluminum-garnet (Er:YAG) laser, excimer laser, helium-neon laser, carbon dioxide laser, as well as doped, pulsed, fiber lasers.


The catheter system 100 can generate pressure waves having maximum pressures in the range of at least one megapascal (MPa) to 100 MPa. The maximum pressure generated by a particular catheter system 100 will depend on the light source 124, the absorbing material, the bubble expansion, the propagation medium, the balloon material, and other factors. In various non-exclusive alternative embodiments, the catheter system 100 can generate pressure waves having maximum pressures in the range of at least approximately two MPa to 50 MPa, at least approximately two MPa to 30 MPa, or at least approximately 15 MPa to 25 MPa.


The pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least approximately 0.1 millimeters (mm) to greater than approximately 25 mm extending radially from the energy guides 122A when the catheter 102 is placed at the treatment site 106. In various non-exclusive alternative embodiments, the pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least approximately ten mm to 20 mm, at least approximately one mm to ten mm, at least approximately 1.5 mm to four mm, or at least approximately 0.1 mm to ten mm extending radially from the energy guides 122A when the catheter 102 is placed at the treatment site 106. In other embodiments, the pressure waves can be imparted upon the treatment site 106 from another suitable distance that is different than the foregoing ranges. In some embodiments, the pressure waves can be imparted upon the treatment site 106 within a range of at least approximately two MPa to 30 MPa at a distance from at least approximately 0.1 mm to ten mm. In some embodiments, the pressure waves can be imparted upon the treatment site 106 from a range of at least approximately two MPa to 25 MPa at a distance from at least approximately 0.1 mm to ten mm. Still alternatively, other suitable pressure ranges and distances can be used.


The power source 125 is electrically coupled to and is configured to provide necessary power to each of the light source 124, the system controller 126, the GUI 127, the multiplexer 128, and the handle assembly 129. The power source 125 can have any suitable design for such purposes.


The system controller 126 is electrically coupled to and receives power from the power source 125. Additionally, the system controller 126 is coupled to and is configured to control operation of each of the light source 124, the GUI 127 and the multiplexer 128. The system controller 126 can include one or more processors or circuits for purposes of controlling the operation of at least the light source 124, the GUI 127 and the multiplexer 128. For example, the system controller 126 can control the light source 124 for generating pulses of light energy as desired and/or at any desired firing rate. Subsequently, the system controller 126 can then control the multiplexer 128 so that the light energy from the light source 124, i.e. the source beam 124A, can be effectively and accurately multiplexed so as to be selectively and/or alternatively directed to each of the light guides 122A in the form of individual guide beams 124B in a desired manner.


The system controller 126 can further be configured to control operation of other components of the catheter system 100 such as the positioning of the catheter 102 adjacent to the treatment site 106, the inflation of the balloon 104 with the balloon fluid 132, etc. Further, or in the alternative, the catheter system 100 can include one or more additional controllers that can be positioned in any suitable manner for purposes of controlling the various operations of the catheter system 100. For example, in certain embodiments, an additional controller and/or a portion of the system controller 126 can be positioned and/or incorporated within the handle assembly 129.


The GUI 127 is accessible by the user or operator of the catheter system 100. Additionally, the GUI 127 is electrically connected to the system controller 126. With such design, the GUI 127 can be used by the user or operator to ensure that the catheter system 100 is effectively utilized to impart pressure onto and induce fractures into the vascular lesions 106A at the treatment site 106. The GUI 127 can provide the user or operator with information that can be used before, during and after use of the catheter system 100. In one embodiment, the GUI 127 can provide static visual data and/or information to the user or operator. In addition, or in the alternative, the GUI 127 can provide dynamic visual data and/or information to the user or operator, such as video data or any other data that changes over time during use of the catheter system 100. In various embodiments, the GUI 127 can include one or more colors, different sizes, varying brightness, etc., that may act as alerts to the user or operator. Additionally, or in the alternative, the GUI 127 can provide audio data or information to the user or operator. The specifics of the GUI 127 can vary depending upon the design requirements of the catheter system 100, or the specific needs, specifications and/or desires of the user or operator.


As provided herein, the multiplexer 128 is configured to selectively and/or alternatively direct light energy from the light source 124 to each of the light guides 122A in the light guide bundle 122. More particularly, the multiplexer 128 is configured to receive light energy from a single light source 124, such as a single source beam 124A from a single laser source, and selectively and/or alternatively direct such light energy in the form of individual guide beams 124B to each of the light guides 122A in the light guide bundle 122 in any desired combination (i.e. simultaneously direct light energy through multiple light guides 122A), sequence, order and/or pattern. As such, the multiplexer 128 enables a single light source 124 to be channeled simultaneously and/or sequentially through a plurality of light guides 122A such that the catheter system 100 is able to impart pressure onto and induce fractures in vascular lesions at the treatment site 106 within or adjacent to the vessel wall 108A of the blood vessel 108 in a desired manner. Additionally, as shown, the catheter system 100 can include one or more optical elements 147 for purposes of directing the light energy in the form of the source beam 124A from the light source 124 to the multiplexer 128.


The multiplexer 128 can have any suitable design for purposes of selectively and/or alternatively directing the light energy from the light source 124 to each of the light guides 122A of the light guide bundle 122. Various non-exclusive alternative embodiments of the multiplexer 128 are described in detail herein below in relation to FIGS. 2-23.


As shown in FIG. 1, the handle assembly 129 can be positioned at or near the proximal portion 114 of the catheter system 100, and/or near the source manifold 136. In this embodiment, the handle assembly 129 is coupled to the balloon 104 and is positioned spaced apart from the balloon 104. Alternatively, the handle assembly 129 can be positioned at another suitable location.


The handle assembly 129 is handled and used by the user or operator to operate, position and control the catheter 102. The design and specific features of the handle assembly 129 can vary to suit the design requirements of the catheter system 100. In the embodiment illustrated in FIG. 1, the handle assembly 129 is separate from, but in electrical and/or fluid communication with one or more of the system controller 126, the light source 124, the fluid pump 138, the GUI 127, and the multiplexer 128. In some embodiments, the handle assembly 129 can integrate and/or include at least a portion of the system controller 126 within an interior of the handle assembly 129. For example, as shown, in certain such embodiments, the handle assembly 129 can include circuitry 155 that can form at least a portion of the system controller 126. In one embodiment, the circuitry 155 can include a printed circuit board having one or more integrated circuits, or any other suitable circuitry. In an alternative embodiment, the circuitry 155 can be omitted, or can be included within the system controller 126, which in various embodiments can be positioned outside of the handle assembly 129, e.g., within the system console 123. It is understood that the handle assembly 129 can include fewer or additional components than those specifically illustrated and described herein.



FIG. 2 is a simplified schematic illustration of a portion of an embodiment of the catheter system 200 including an embodiment of the multiplexer 228. In particular, FIG. 2 illustrates a light guide bundle 222 including a plurality of light guides 222A; and the multiplexer 228 that receives light energy in the form of a source beam 224A, a pulsed source beam 224A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 224B to at least two of the plurality of the light guides 222A. More specifically, the multiplexer 228 is configured to direct the light energy in the form of individual guide beams 224B onto a guide proximal end 222P of at least two of the plurality of light guides 222A. As such, as shown in FIG. 2, the multiplexer 228 is operatively and/or optically coupled in optical communication to the light guide bundle 222 and/or to the plurality of light guides 222A.


It is appreciated that the light guide bundle 222 can include any suitable number of light guides 222A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 222A relative to the multiplexer 228. For example, in the embodiment illustrated in FIG. 2, the light guide bundle 222 includes four light guides 222A that are aligned in a linear arrangement relative to one another. The light guide bundle 222 and/or the light guides 222A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 2.


The design of the multiplexer 228 can be varied depending on the requirements of the catheter system 200, the relative positioning of the light guides 222A, and/or to suit the desires of the user or operator of the catheter system 200. In the embodiment illustrated in FIG. 2, the multiplexer 228 includes one or more of a multi-faceted prism 256, and coupling optics 258. Alternatively, the multiplexer 228 can include more components or fewer components than those specifically illustrated in FIG. 2.


The multi-faceted prism 256 consists of a glass plate that is polished with multiple facets at a certain angle. The multi-faceted prism 256 can split the source beam 224A into a plurality of individual guide beams 224B that can each be coupled into one of the plurality of light guides 222A in the light guide bundle 222. More specifically, if the multi-faceted prism is positioned relative to the source beam 224A such that the source beam 224A is centered on a vertex 256V of the multi-faceted prism 256, then the multi-faceted prism 256 can equally split a parallel source beam 224A into the plurality of individual guide beams 224B. With such design, when the parallel source beam 224A passes through the multi-faceted prism 256, the multi-faceted prism 256 will split the source beam 224A into multiple guide beams 224B, of substantially equal energy, with different angles around the axis of the propagation direction. This allows light energy from a single light source 124 to be coupled into an array of parallel light guides 222A with guide proximal ends 222P located in the same plane.


It is appreciated that the source beam 224A will be split into two or more individual guide beams 224B depending on the number of facets included within the multi-faceted prism 256. For example, in the embodiment shown in FIG. 2, the multi-faceted prism 256 includes two facets so that the source beam 224A will be split into two individual guide beams 224B. In particular, in this embodiment, the source beam 224A is split in half into two “half-circle” guide beams 224B which cross at an angle defined by the refraction on the prism surfaces. Alternatively, the multi-faceted prism 256 can include more than two facets so that the source beam 224A will be split into more than two guide beams 224B.


Subsequently, the individual guide beams 224B are directed toward the coupling optics 258. The coupling optics 258 can have any suitable design for purposes of focusing the individual guide beams 224B to at least two of the light guides 222A. In one embodiment, the coupling optics 258 include a single focusing lens that is specifically configured to focus the individual guide beams 224B as desired. If two co-planar non-parallel guide beams 224B are incident on a single lens, the result at the focus of the coupling optics 258 in the form of the single lens, will be two focal spots with an offset related to the angle between the guide beams 224B and the focal length of the lens. More specifically, when the individual guide beams 224B pass through the single focusing lens of the coupling optics 258, the coupling optics 258 will focus the guide beams into multiple spots in a circle at the focal plane. Thus, the light will couple into multiple light guides 222A when the light guides 222A are aligned with the focal spots at the focal plane. Accordingly, it is appreciated that the angle and lens can be chosen to allow the two guide beams 224B to be effectively coupled into any pair of parallel light guides 222A. Alternatively, the coupling optics 258 can have another suitable design.


The advantage of this method is that the tolerances for partitioning the source beam 224A are primarily controlled by the optical fabrication of the multi-faceted prism 256 and the coupling optics 258. However, the main exception is the need to accurately position the multi-faceted prism 256 relative to the source beam 224A to ensure equal partitioning of the light energy of the source beam 224A.



FIG. 3 is a simplified schematic illustration of a portion of another embodiment of the catheter system 300 including another embodiment of the multiplexer 328. In particular, FIG. 3 illustrates a light guide bundle 322 including a plurality of light guides 322A; and the multiplexer 328 that receives light energy in the form of a source beam 324A, a pulsed source beam 324A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 324B onto a guide proximal end 322P of at least two of the plurality of the light guides 322A. As such, as shown in FIG. 3, the multiplexer 328 is operatively and/or optically coupled in optical communication to the light guide bundle 322 and/or to the plurality of light guides 322A.


It is appreciated that the light guide bundle 322 can include any suitable number of light guides 322A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 322A relative to the multiplexer 328. For example, in the embodiment illustrated in FIG. 3, the light guide bundle 322 includes eight light guides 322A that are aligned in a generally circular arrangement relative to one another. The light guide bundle 322 and/or the light guides 322A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 3.


In this embodiment, the multiplexer 328 is somewhat similar to the embodiment illustrated and described in relation to FIG. 2. In particular, the multiplexer 328 again includes a first multi-faceted prism 356A, and coupling optics 358. However, in this embodiment, the multiplexer 328 further includes a second multi-faceted prism 356B, which is positioned in the beam path between the first multi-faceted prism 356A and the coupling optics 358.


As with the previous embodiment, the first multi-faceted prism 356A can be a two-faceted prism that splits the source beam 324A into two equal individual beams when the source beam 324A is centered on a vertex 356V of the first multi-faceted prism 356A. Subsequently, the two individual beams are directed through the second multi-faceted prism 356B. In this embodiment, the second multi-faceted prism 356B is also a two-faceted prism such that the two individual beams from the first multi-faceted prism 356A are each split such that the source beam 324A has now been split twice so as to provide four individual guide beams 324B. In one embodiment, the second multi-faceted prism 356B can be rotated relative to the first multi-faceted prism 356A, such as by approximately ninety degrees, such that the four individual guide beams 324B, when focused by the coupling optics 358, are arranged in a generally square pattern relative to one another. With such design, the four individual guide beams 324B can be effectively directed onto the guide proximal end 322P of four of the eight light guides 322A that are included within the light guide bundle 322. Alternatively, it is appreciated that the second multi-faceted prism 356B can be rotated by a different amount relative to the first multi-faceted prism 356A, i.e. more than or less than approximately ninety degrees, in order to have the individual guide beams 324B directed toward a different opposing pair of light guides within the light guide bundle 322. Still alternatively, each of the first multi-faceted prism 356A and the second multi-faceted prism 356B can have more than two facets such that the source beam 324A can be split into more than four individual guide beams 324B.


As with the previous embodiment, the coupling optics 358 can have any suitable design for purposes of focusing the four individual guide beams 324B onto four of the light guides 322A. In one embodiment, the coupling optics 358 can again include a single focusing lens that is specifically configured to focus the individual guide beams 324B as desired. Alternatively, the coupling optics 358 can have another suitable design.



FIG. 4 is a simplified schematic illustration of a portion of still another embodiment of the catheter system 400 including still another embodiment of the multiplexer 428. In particular, FIG. 4 illustrates a light guide bundle 422 including a plurality of light guides 422A; and the multiplexer 428 that receives light energy in the form of a source beam 424A, a pulsed source beam 424A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 424B onto a guide proximal end 422P of at least two of the plurality of the light guides 422A. As such, as shown in FIG. 4, the multiplexer 428 is operatively and/or optically coupled in optical communication to the light guide bundle 422 and/or to the plurality of light guides 422A.


It is appreciated that the light guide bundle 422 can include any suitable number of light guides 422A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 422A relative to the multiplexer 428. For example, in the embodiment illustrated in FIG. 4, the light guide bundle 422 again includes eight light guides 422A that are aligned in a generally circular arrangement relative to one another. The light guide bundle 422 and/or the light guides 422A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 4.


In this embodiment, the multiplexer 428 is somewhat similar to the embodiment illustrated and described in relation to FIG. 2. In particular, the multiplexer 428 again includes a multi-faceted prism 456, and coupling optics 458. However, in this embodiment, the multi-faceted prism 456 is a four-faceted prism. As such, when the source beam 424A is centered on a vertex 456V of the multi-faceted prism 456, the multi-faceted prism 456 can equally split a parallel source beam 424A into four individual guide beams 424B with different angles around the axis of propagation.


Subsequently, the four individual guide beams 424B are directed toward the coupling optics 458. As with the previous embodiments, the coupling optics 458 can again include a single focusing lens that is configured to focus the individual guide beams 424B to be arranged in a generally square pattern relative to one another. With such design, the four individual guide beams 424B can be effectively directed onto the guide proximal end 422P of four of the eight light guides 422A that are included within the light guide bundle 422.



FIG. 5 is a simplified schematic illustration of a portion of another embodiment of the catheter system 500 including another embodiment of the multiplexer 528. In particular, FIG. 5 illustrates a light guide bundle 522 including a plurality of light guides 522A; and the multiplexer 528 that receives light energy in the form of a source beam 524A, a pulsed source beam 524A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 524B onto a guide proximal end 522P of at least two of the plurality of the light guides 522A. As such, as shown in FIG. 5, the multiplexer 528 is operatively and/or optically coupled in optical communication to the light guide bundle 522 and/or to the plurality of light guides 522A.


It is appreciated that the light guide bundle 522 can include any suitable number of light guides 522A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 522A relative to the multiplexer 528. For example, in the embodiment illustrated in FIG. 5, the light guide bundle 522 again includes eight light guides 522A that are aligned in a generally circular arrangement relative to one another. The light guide bundle 522 and/or the light guides 522A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 5.


In this embodiment, the multiplexer 528 is again somewhat similar to the previous embodiments illustrated and described above. In particular, the multiplexer 528 again includes a multi-faceted prism 556, and coupling optics 558. However, in this embodiment, the multi-faceted prism 556 is an eight-faceted prism. As such, when the source beam 524A is centered on a vertex 556V of the multi-faceted prism 556, the multi-faceted prism 556 can equally split a parallel source beam 524A into eight individual guide beams 524B with different angles around the axis of propagation.


Subsequently, the eight individual guide beams 524B are directed toward the coupling optics 558. As with the previous embodiments, the coupling optics 558 can again include a single focusing lens that is configured to focus the individual guide beams 524B to be arranged in a generally circular pattern relative to one another. With such design, the eight individual guide beams 524B can be effectively directed onto the guide proximal end 522P of each of the eight light guides 522A that are included within the light guide bundle 522.


It is appreciated that with the increased number of facets in the multi-faceted prism 556, the difficulty in fabrication is also generally increased, with the required alignment tolerances being tightened relative to a multi-faceted prism with fewer facets.



FIG. 6 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system 600 including yet another embodiment of the multiplexer 628. In particular, FIG. 6 illustrates a light guide bundle 622 including a plurality of light guides 622A; and the multiplexer 628 that receives light energy in the form of a source beam 624A, a pulsed source beam 624A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 624B onto a guide proximal end 622P of two of the plurality of the light guides 622A.


It is appreciated that the light guide bundle 622 can include any suitable number of light guides 622A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 622A relative to the multiplexer 628. For example, in the embodiment illustrated in FIG. 6, the light guide bundle 622 includes four light guides 622A that are aligned in a linear arrangement relative to one another. The light guide bundle 622 and/or the light guides 622A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 6.


However, as shown in FIG. 6, the multiplexer 628 has a different design than in the previous embodiments. More specifically, as illustrated in this embodiment, the multiplexer 628 includes an optical element provided in the form of and/or functioning as a beamsplitter 660 (thus sometimes also referred to simply as an “optical element”), a redirector 662, and coupling optics 658. Alternatively, the multiplexer 628 can include more components or fewer components than those specifically illustrated in FIG. 6.


Initially, as shown, the source beam 624A is incident on the beamsplitter 660, which can take the form of a partially reflective mirror (e.g., 50% in order to provide guide beams 624B of equal intensity) or other suitable optical element, which splits the source beam 624A into a first guide beam 624B1 and a second guide beam 624B2. In particular, the first guide beam 624B1 is directed through the beamsplitter 660 and toward the coupling optics 658, while the second guide beam 624B2 is reflected off of the beamsplitter 660. As shown, the second guide beam 624B2 reflects off of the beamsplitter 660 and is redirected toward the redirector 662, which can be a mirror in one embodiment. The second guide beam 624B2 then is redirected by and/or reflects off of the redirector 662 and is also directed toward the coupling optics 658.


As with the previous embodiments, as shown, the coupling optics 658 can include a single focusing lens that is configured to focus each of the first guide beam 624B1 and the second guide beam 624B2 onto the guide proximal end 622P of different light guides 622A in the light guide bundle 622.


It is appreciated that if the two guide beams 624B1, 624B2 are propagating parallel to one another when introduced into the coupling optics 658, i.e. the focusing lens, then both guide beams 624B1, 624B2 will focus at the same point, with an angle between them that is determined by the initial separation between them and the focal length of the coupling optics 658. However, if the guide beams 624B1, 624B2 are incident on the coupling optics 658 with an angle between them (such that the guide beams 624B1, 624B2 are not precisely parallel to one another), the focal points of each of the guide beams 624B1, 624B2 will occur in the focal plane with a separation distance between them that is proportional to the initial angular difference. For example, in one non-exclusive alternative embodiment, with 3 mm diameter guide beams 624B1, 624B2, and with coupling optics 658 having a focal point of 100 mm and a diameter of 25.4 mm, if the initial angle between the guide beams 624B1, 624B2 is 0.14 degrees, then the separation between the guide beams 624B1, 624B2 at the focal plane will be 0.251 mm, which can correspond to two separate light guides 622A.


By controlling the initial angle between the guide beams 624B1, 624B2, the separation between the focal points can be controlled and adjusted to allow multiple light guides 622A to be addressed in any desired manner. More particularly, controlling the angle of the redirector 662 enables the multiplexer 628 to effectively access different light guides 622A with the second guide beam 624B2 as desired.



FIG. 7 is a simplified schematic illustration of a portion of another embodiment of the catheter system 700 including another embodiment of the multiplexer 728. In particular, FIG. 7 illustrates a light guide bundle 722 including a plurality of light guides 722A; and the multiplexer 728 that receives light energy in the form of a source beam 724A, a pulsed source beam 724A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 724B onto a guide proximal end 722P of two of the plurality of the light guides 722A.


It is appreciated that the light guide bundle 722 can include any suitable number of light guides 722A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 722A relative to the multiplexer 728. For example, in the embodiment illustrated in FIG. 7, the light guide bundle 722 includes four light guides 722A that are aligned in a linear arrangement relative to one another. The light guide bundle 722 and/or the light guides 722A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 7.


As illustrated in FIG. 7, the multiplexer 728 is somewhat similar in general design and function to the multiplexer 628 illustrated and described in relation to FIG. 6. However, in this embodiment, the multiplexer 728 includes only a uniquely configured single optical element 764 (instead of the beamsplitter 660 and the redirector 662 illustrated in FIG. 6), in addition to the coupling optics 758. As shown in FIG. 7, the optical element 764 is substantially parallelogram-shaped, and includes an input surface 764A, a rear surface 764B, and an exit surface 764C. In one representative embodiment, the optical element 764 includes a 50% reflective coating on the input surface 764A, a 100% reflective coating on the rear surface 764B, and an anti-reflective coating on the exit surface 764C. With such design, the source beam 724A impinging on the input surface 764A splits the source beam 724A into a first guide beam 724B1 that is redirected toward the coupling optics 758; and a second guide beam 724B2 that is transmitted through the input surface 764A, impinges on and is redirected by the rear surface 764B toward the exit surface 764C before being directed toward the coupling optics 758.


In this embodiment, the angle between the guide beams 724B1, 724B2 is controlled by forming the optical element 764 such that it is not a perfect parallelogram, (i.e. an imperfect parallelogram), but rather includes small imperfections or other slight modifications in either the rear surface 764B, the exit surface 764C, or both. In such embodiment, the overall system alignment can be simplified, and space requirements and part count can be reduced at the cost of additional complexities in the optical fabrication.


As noted, after the first guide beam 724B1 is reflected off of the input surface 764A, and after the second guide beam 724B2 exits the optical element 764 through the exit surface 764C, the guide beams 724B1, 724B2 are directed toward the coupling optics 758, which can be provided in the form of a single focusing lens, before each of the guide beams 724B1, 724B2 is focused onto the guide proximal end 722P of a different light guide 722A within the light guide bundle 722. Similar to the previous embodiment, by controlling the angle between the guide beams 724B1, 724B2 as they are directed toward the coupling optics 758, the separation between the focal points can be controlled and adjusted to allow multiple light guides 722A to be addressed in any desired manner.



FIG. 8 is a simplified schematic illustration of a portion of still another embodiment of the catheter system 800 including still another embodiment of the multiplexer 828. In particular, FIG. 8 illustrates an embodiment of the multiplexer 828 that receives a source beam 824A, a pulsed source beam 824A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 824A to generate two spaced apart, parallel, individual guide beams 824B that can be directed toward and focused substantially simultaneously onto two individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As shown in FIG. 8, the design of the multiplexer 828 is different than in the previous embodiments. More specifically, in this embodiment, the multiplexer 828 includes an etalon 866 that is positioned in the beam path of the source beam 824A. An etalon is a common optical element which is fabricated by making a piece of glass with two extremely flat and parallel surfaces. Stated in another manner, such an etalon 866 is configured to include a first etalon surface 866A and a parallel, spaced apart, second etalon surface 866B. As shown, the etalon 866 allows a single collimated source beam 824A to be split into two or more parallel guide beams 824B with a precise distance between the guide beams 824B.


As illustrated in FIG. 8, during use of the multiplexer 828, the source beam 824A is directed at the multiplexer 828, i.e. the etalon 866, at an incident angle, ⊖0. To generate two equal intensity guide beams 824B, a first region 866A1, e.g., a first half, of the first etalon surface 866A can be coated with a fifty percent (50%) reflector at an appropriate wavelength and angle, while a second region 866A2, e.g., a second half, of the first etalon surface 866A can have an anti-reflection (AR) coating. Additionally, the second etalon surface 866B can have a high-reflection coating. In such embodiment, during use of the multiplexer 828, the source beam 824A impinging on the first region 866A1 of the first etalon surface 866A produces a first guide beam 824B, which has been reflected by the first etalon surface 866A, and which has approximately fifty percent of the intensity of the original source beam 824A. The remaining fifty percent of the intensity of the original source beam 824A can then travel through the etalon 866 and be reflected off of the highly-reflective coating on the second etalon surface 866B. The remaining fifty percent of the intensity of the original source beam 824A is then transmitted through the second region 866A2 of the first etalon surface 866A to produce a second guide beam 824B that has approximately fifty percent of the intensity of the original source beam 824A.


Thus, by selectively coating the first etalon surface 866A and the second etalon surface 866B as described, the etalon 866 can be used to generate two parallel guide beams 824B with a separation, s, between them that is set by the incident angle, ⊖0, and a thickness, t, of the etalon 866. In practice, it is appreciated that it is necessary to ensure that the offset or separation, s, between the guide beams 824B is greater than the beam diameter so that the individual guide beams 824B do not overlap spatially. It is further appreciated that if it is desired to generate guide beams 824B of unequal intensity, i.e. with a ratio of beam intensity of other than 1:1, the reflectivity of the first half of the first etalon surface 866A can be altered as desired.


In such embodiments, the separation, s, between the guide beams 824B produced by the multiplexer 828 can be determined as follows:

i=sin−1(sin ⊖0/n);
Δ=2t sin ⊖i;
s=Δ cos ⊖0;
s=2t sin ⊖1 cos ⊖0, where


n=refractive index of the etalon


t=thickness of the etalon


Δ=[What does Δ represent in these equations?]


0=incident angle of the source beam onto the etalon


i=angle of beam within etalon


Additionally, or in the alternative, it is appreciated that the multiplexer 828 in the form of the etalon 866 as illustrated in FIG. 8 can also be used in conjunction with a linear scanning mirror (not shown) to address an array of targets, such as an array of light guides 122A, two at a time. If the light guides 122A are arranged in a one-dimensional array, then by orienting the etalon 866 in the correct plane, any pair of light guides 122A with the appropriate offset or separation could be accessed simultaneously by correctly positioning the linear mirror. Alternatively, the etalon 866 can be oriented to allow the linear mirror to address a parallel pair of linear arrays of light guides 122A.


It is further appreciated that the use of an etalon as the multiplexer can be modified from the embodiment shown in FIG. 8 to produce three or more individual guide beams by utilizing a more complicated pattern of coatings on the first etalon surface to allow multiple bounces for the light path within the etalon. More specifically, the etalon can be used to produce three or more individual guide beams by carefully partitioning the coating on the first etalon surface into successively more regions to allow the generation of additional bounces within the etalon. For example, FIG. 9 is a simplified schematic illustration of a portion of another embodiment of the catheter system 900 including another embodiment of the multiplexer 928. In particular, FIG. 9 illustrates an embodiment of the multiplexer 928 that receives a source beam 924A, a pulsed source beam 924A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 924A to generate three spaced apart, parallel, individual guide beams 924B that can be directed toward and focused substantially simultaneously onto three individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As shown in the embodiment illustrated in FIG. 9, the multiplexer 928 can again include an etalon 966 including a first etalon surface 966A and a spaced apart, parallel second etalon surface 966B. However, in this embodiment, the first etalon surface 966A can include a first region 966A1 that includes an approximately thirty-three percent (33%) reflective coating, a second region 966A2 that includes a fifty percent (50%) reflective coating, and a third region 966A3 that includes an anti-reflective coating. With such design, the portion of the source beam 924A that reflects off of the first region 966A1 can produce a first guide beam 924B that has approximately thirty-three percent of the intensity of the original source beam 924A. The remaining approximately sixty-seven percent of the intensity of the original source beam 924A can then travel through the etalon 966 and be reflected off of the highly-reflective coating on the second etalon surface 966B. The remaining approximately sixty-seven percent of the intensity of the original source beam 924A then impinges on the second region 966A2 of the first etalon surface 966A such that half travels through the second region 966A2 of the first etalon surface 966A to produce a second guide beam 924B that has approximately thirty-three percent of the intensity of the original source beam 924A, while the remaining approximately thirty-three percent of the intensity of the original source beam 924A is again directed toward the second etalon surface 966B. The remaining approximately thirty-three percent of the intensity of the original source beam 924A will be reflected again off of the second etalon surface 966B before being transmitted through the third region 966A3 of the first etalon surface 966A to produce a third guide beam 924B that has approximately thirty-three percent of the intensity of the original source beam 924A. Thus, the etalon 966 is able to generate three parallel, equal intensity guide beams 924B with a fixed separation distance between them.



FIG. 10 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system 1000 including yet another embodiment of the multiplexer 1028. In particular, FIG. 10 illustrates an embodiment of the multiplexer 1028 that receives a source beam 1024A, a pulsed source beam 1024A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 1024A to generate four spaced apart, parallel, individual guide beams 1024B that can be directed toward and focused substantially simultaneously onto four individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As illustrated in FIG. 10, the multiplexer 1028 provides an alternative method for producing multiple guide beams 1024B using etalons. More specifically, in the embodiment illustrated in FIG. 10, the multiplexer 1028 includes a first etalon 1066 having a first, first etalon surface 1066A and a spaced apart second, first etalon surface 1066B; a second etalon 1068 having a first, second etalon surface 1068A and a spaced apart second, second etalon surface 1068B; and a third etalon 1070 having a first, third etalon surface 1070A and a spaced apart second, third etalon surface 1070B, with the three etalons 1066, 1068, 1070 being stacked adjacent to one another with appropriate coatings between them.


Using multiple etalons 1066, 1068, 1070 bounded together that are partly covered with reflective coatings and partly covered with anti-reflection coatings, the source beam 1024A can be split into multiple guide beams 1024B. The intensity of the guide beams 1024B is dependent on the reflectance of the surfaces of each etalon 1066, 1068, 1070, and the intensity of the source beam 1024A. Additionally, the separation of the guide beams 1024B is dependent on the thickness of the etalons 1066, 1068, 1070, the incident angle of the source beam 1024A, and the reflective indexes of the etalons 1066, 1068, 1070.


In one non-exclusive embodiment, when it is desired that each of the guide beams 1024B has a substantially equal intensity, (i) a first region 1066A1 of the first, first etalon surface 1066A can have a twenty-five percent (25%) reflective coating, and a second region 1066A2 of the first, first etalon surface 1066A can have an anti-reflective coating; (ii) a first region 1068A1 of the first, second etalon surface 1068A (or of the second, first etalon surface 1066B) can have an approximately thirty-three percent (33%) reflective coating, and a second region 1068A2 of the first, second etalon surface 1068A (or of the second, first etalon surface 1066B) can have an anti-reflective coating; (iii) a first region 1070A1 of the first, third etalon surface 1070A (or of the second, second etalon surface 1068B) can have a fifty percent (50%) reflective coating, and a second region 1070A2 of first, third etalon surface 1070A (or of the second, second etalon surface 1068B) can have an anti-reflective coating; and (iv) the second, third etalon surface 1070B can have a highly reflective coating.


With such design, the portion of the source beam 1024A that reflects off of the first region 1066A1 of the first, first etalon surface 1066A can produce a first guide beam 1024B that has approximately twenty-five percent of the intensity of the original source beam 1024A. The remaining seventy-five percent of the intensity of the original source beam 1024A can then travel through the first etalon 1066, and the portion of the source beam 1024A that reflects off of the first region 1068A1 of the first, second etalon surface 1068A can then travel through the second region 1066A2 of the first, first etalon surface 1066 to produce a second guide beam 1024B that has approximately twenty-five percent of the intensity of the original source beam 1024A. The remaining fifty percent of the intensity of the original source beam 1024A can then travel through the second etalon 1068, and the portion of the source beam 1024A that reflects off of the first region 1070A1 of the first, third etalon surface 1070A can then travel through the second region 1068A2 of the first, second etalon surface 1068 and through the second region 1066A2 of the first, first etalon surface 1066 to produce a third guide beam 1024B that has approximately twenty-five percent of the intensity of the original source beam 1024A. The remaining twenty-five percent of the intensity of the original source beam 1024A can then travel through the third etalon 1070 and reflect off of the second, third etalon surface 1070B and then travel through the second region 1070A2 of the first, third etalon surface 1070, through the second region 1068A2 of the first, second etalon surface 1068, and through the second region 1066A2 of the first, first etalon surface 1066 to produce a fourth guide beam 1024B that has approximately twenty-five percent of the intensity of the original source beam 1024A. Thus, the etalons 1066, 1068, 1070 used in conjunction with one another are able to generate four parallel, equal intensity guide beams 1024B with a fixed separation distance between them.


In this embodiment, it is important to make sure that the separation distance between the guide beams 1024B is greater than the diameter of the guide beams 1024B.


Additionally, it is appreciated that this concept can be expanded to create any desired number of guide beams, as well as creating uneven beam separations and intensities by adding extra etalons and changing the beam angle, thickness of each etalon and the reflectivity of the surfaces.



FIG. 11 is a simplified schematic illustration of a portion of another embodiment of the catheter system 1100 including another embodiment of the multiplexer 1128. In particular, FIG. 11 illustrates a light guide bundle 1122 including a plurality of light guides 1122A; and the multiplexer 1128 that receives light energy in the form of a source beam 1124A, a pulsed source beam 1124A in various embodiments, from the light source 124 (illustrated in FIG. 1) and simultaneously and/or sequentially directs the light energy in the form of individual guide beams 1124B onto a guide proximal end 1122P of two of the plurality of the light guides 1122A.


It is appreciated that the light guide bundle 1122 can include any suitable number of light guides 1122A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 1122A relative to the multiplexer 1128. For example, in the embodiment illustrated in FIG. 11, the light guide bundle 1122 includes four light guides 1122A that are aligned in a linear arrangement relative to one another. The light guide bundle 1122 and/or the light guides 1122A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 11.


As illustrated in FIG. 11, the multiplexer 1128 is somewhat similar in general design and function to the multiplexer 828 illustrated and described in relation to FIG. 8. However, in this embodiment, the multiplexer 1128 includes a wedge-shaped etalon 1166 that is positioned in the beam path of the source beam 1124A. Additionally, the etalon 1166 can include a first etalon surface 1066A having a first region 1166A1 and a second region 1166A2, and a second etalon surface 1066B. In one non-exclusive embodiment, the first region 1166A1 of the first etalon surface 1166A can be coated with a fifty percent (50%) reflector at an appropriate wavelength and angle, while the second region 1166A2 of the first etalon surface 1166A can have an anti-reflection (AR) coating. Additionally, the second etalon surface 1166B can have a high-reflection coating. In such embodiment, during use of the multiplexer 1128, the source beam 1124A impinging on the first region 1166A1 of the first etalon surface 1166A produces a first guide beam 1124B, which has been reflected from the first region 1166A1 of the first etalon surface 1166A, and which has approximately fifty percent of the intensity of the original source beam 1124A. The remaining fifty percent of the intensity of the original source beam 1124A can then travel through the etalon 1166 and be reflected off of the highly-reflective coating on the second etalon surface 1166B. The remaining fifty percent of the intensity of the original source beam 1124A is then transmitted through the second region 1166A2 of the first etalon surface 1166A to produce a second guide beam 1124B that has approximately fifty percent of the intensity of the original source beam 1124A.


Thus, the multiplexer 1128 is able to split the source beam 1124A into two guide beams 1124B of equal intensity. However, in this embodiment, because the etalon 1166 is wedge-shaped, the two guide beams 1124B emerge with a relative angle between them. Subsequently, the two guide beams 1124B can be focused by coupling optics 1158, such as a single focusing lens in one embodiment, onto two spaced apart light guides 1122A with a distance between them that is set by the relative angle between the two guide beams 1124B before they are focused by the coupling optics 1158.



FIG. 12 is a simplified schematic illustration of a portion of still another embodiment of the catheter system 1200 including still another embodiment of the multiplexer 1228. In particular, FIG. 12 illustrates an embodiment of the multiplexer 1228 that receives a source beam 1224A, a pulsed source beam 1224A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 1224A to generate two individual guide beams 1224B that can be directed toward and focused substantially simultaneously onto one or more individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As shown in FIG. 12, the design of the multiplexer 1228 is different than in the previous embodiments. More specifically, in this embodiment, the multiplexer 1228 includes an optical element provided in the form of and/or functioning as a polarizing beamsplitter 1272 (thus sometimes also referred to simply as an “optical element”), and a plurality of redirectors 1274. In certain embodiments, the plurality of redirectors 1274 can be provided in the form of ring mirrors. In particular, in this embodiment, the multiplexer 1228 includes four redirectors 1274, i.e. a first redirector 1274A, a second redirector 1274B, a third redirector 1274C and a fourth redirector 1274D, that are positioned about the polarizing beamsplitter 1272. Alternatively, the multiplexer 1228 can have a different design and/or can include a different number of redirectors 1274.


As illustrated, the source beam 1224A is initially directed toward the polarizing beamsplitter 1272 where the source beam 1224A is split into a pair of guide beams 1224B, i.e. a first guide beam 1224B1 and a second guide beam 1224B2, each with a different polarization. Subsequently, the first guide beam 1224B1 with a first polarization is redirected from the polarizing beamsplitter 1272 to the first redirector 1274A, then the second redirector 1274B, then the third redirector 1274C, and then the fourth redirector 1274D, before being directed back toward the polarizing beamsplitter 1272. At the same time, the second guide beam 1224B2 with a second polarization is redirected from the polarizing beamsplitter 1272 to the fourth redirector 1274D, then the third redirector 1274C, then the second redirector 1274B, and then the first redirector 1274A, before being directed back toward the polarizing beamsplitter 1272.


In alternative embodiments, by altering the alignment and/or the positioning of the redirectors 1274A-1274D, the guide beams 1224B1, 1224B2 can be aligned to be one of (i) colinear and overlapping, such that the guide beams 1224B1, 1224B2 can be recombined and directed toward a single light guide 122A; (ii) parallel and non-overlapping, such that the guide beams 1224B1, 1224B2 can be directed to two spaced apart, individual light guides 122A; and (iii) propagating at a small angle relative to one another, such that the guide beams 1224B1, 1224B2 can be focused with coupling optics such as a focusing lens, onto two spaced apart, individual light guides 122A.


Thus, it is appreciated that the polarizing beamsplitter 1272 can be used to generate two guide beams 1224B1, 1224B2 from the original source beam 1224A to access two spaced apart light guides 122A. Additionally, by proper choice of the input polarization (perhaps set by a half-wave plate), the ratio of intensities between the two guide beams 1224B1, 1224B2 can be controlled. Also, in certain implementations, due to the polarized nature of the light involved, the guide beams 1224B1, 1224B2 can be split and recombined without significant power loss.



FIG. 13 is a simplified schematic illustration of a portion of another embodiment of the catheter system 1300 including another embodiment of the multiplexer 1328. In particular, FIG. 13 illustrates an embodiment of the multiplexer 1328 that receives a source beam 1324A, a pulsed source beam 1324A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 1324A to generate two individual guide beams 1324B that can be directed toward and focused substantially simultaneously onto one or more individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As shown in FIG. 13, the design of the multiplexer 1328 is somewhat similar to the embodiment illustrated and described in relation to FIG. 12. More specifically, in this embodiment, the multiplexer 1328 includes an optical element provided in the form of and/or functioning as a polarizing beamsplitter 1372 (thus sometimes also referred to simply as an “optical element”), and a plurality of redirectors 1376. However, in this embodiment, the multiplexer 1328 includes two redirectors 1376, i.e. a first redirector 1376A, and a second redirector 1376B, in the form of corner cubes that are positioned about the polarizing beamsplitter 1272.


As illustrated, the source beam 1324A is initially directed toward the polarizing beamsplitter 1372 where the source beam 1324A is split into a pair of guide beams 1324B, i.e. a first guide beam 1324B1 and a second guide beam 1324B2, each with a different polarization. Subsequently, the first guide beam 1324B1 with a first polarization is redirected from the polarizing beamsplitter 1372 to the first redirector 1376A, and then the second redirector 1374B, before being directed back toward the polarizing beamsplitter 1372. At the same time, the second guide beam 1324B2 with a second polarization is redirected from the polarizing beamsplitter 1372 to the second redirector 1376B, and then the first redirector 1376A, before being directed back toward the polarizing beamsplitter 1372.


As with the embodiments illustrated in FIG. 12, by altering the alignment and/or the positioning of the redirectors 1376A, 1376B, the guide beams 1324B1, 1324B2 can be aligned to be one of (i) colinear and overlapping, such that the guide beams 1324B1, 1324B2 can be recombined and directed toward a single light guide 122A; (ii) parallel and non-overlapping, such that the guide beams 1324B1, 1324B2 can be directed to two spaced apart, individual light guides 122A; and (iii) propagating at a small angle relative to one another, such that the guide beams 1324B1, 1324B2 can be focused with coupling optics such as a focusing lens, onto two spaced apart, individual light guides 122A.


With such design, where pairs of mirrors have been replaced by corner cubes, the overall fabrication and alignment of the multiplexer 1328 can be simplified, while still allowing for the three alternative scenarios noted above. Additionally, it is further appreciated that the redirectors 1376A, 1376B, i.e. the corner cubes, can be rotated by approximately ninety degrees so that the guide beam loop is in a different plane that the source beam 1324A. This may improve packaging or may improve the performance of the reflective coatings on the redirectors 1376A, 13376B.



FIG. 14 is a simplified schematic illustration of a portion of yet another embodiment of the catheter system 1400 including yet another embodiment of the multiplexer 1428. In particular, FIG. 14 illustrates an embodiment of the multiplexer 1428 that receives a source beam 1424A, a pulsed source beam 1424A in various embodiments, from the light source 124 (illustrated in FIG. 1) and splits the source beam 1424A to generate two individual guide beams 1424B that can be directed toward and focused substantially simultaneously onto one or more individual light guides 122A (illustrated in FIG. 1) of the light guide bundle 122 (illustrated in FIG. 1).


As shown in FIG. 14, the design of the multiplexer 1428 is somewhat similar to the embodiments illustrated and described in relation to FIGS. 12 and 13. However, in this embodiment, the polarizing beamsplitter and the redirectors have been replaced by a single optical element 1478, in the form of a polarizing beamsplitter, reflective cube.


As illustrated, the source beam 1424A is initially directed toward the polarizing beamsplitter portion 1478A of the optical element 1478 where the source beam 1424A is split into a pair of guide beams 1424B, i.e. a first guide beam 1424B1 and a second guide beam 1424B2, each with a different polarization. Subsequently, the first guide beam 1424B1 with a first polarization is redirected from the polarizing beamsplitter portion 1478A of the optical element 1478 to a first reflective surface 1478B of the optical element 1478, before being directed back toward the polarizing beamsplitter portion 1478A of the optical element 1478. At the same time, the second guide beam 1424B2 with a second polarization is redirected from (or transmitted through) the polarizing beamsplitter portion 1478A of the optical element 1478 to a second reflective surface 1478C of the optical element 1478, before being directed back toward the polarizing beamsplitter portion 1478A of the optical element 1478.


As with the embodiments illustrated in FIGS. 12 and 13, by altering the alignment and/or the positioning of the reflective surfaces 1478B, 1478C of the optical element 1478, the guide beams 1424B1, 1424B2 can be aligned to be one of (i) colinear and overlapping, such that the guide beams 1424B1, 1424B2 can be recombined and directed toward a single light guide 122A; (ii) parallel and non-overlapping, such that the guide beams 1424B1, 1424B2 can be directed to two spaced apart, individual light guides 122A; and (iii) propagating at a small angle relative to one another, such that the guide beams 1424B1, 1424B2 can be focused with coupling optics such as a focusing lens, onto two spaced apart, individual light guides 122A.


It is appreciated that with this embodiment, the overall alignment of the multiplexer 1428 can be simplified since all of the tolerances and relative beam positions on exit are controlled by the fabrication of the optical element 1478.


It is further appreciated that an additional requirement for the utility of catheter systems is the need to selectively and specifically access one or more of multiple light guides to allow for the controlled application of therapeutic optical radiation to the correct area(s) at the treatment site inside the catheter system. In principal, this can be done by either moving the guide beam(s) in order to specifically access the desired light guide(s) or moving the light guides themselves. The embodiments illustrated at least in FIGS. 15A-17B provide alternative methods for accomplishing such a task.



FIG. 15A is a simplified schematic illustration of a portion of another embodiment of the catheter system 1500A including another embodiment of the multiplexer 1528A. In particular, FIG. 15A illustrates a light guide bundle 1522 including a plurality of light guides 1522A; and the multiplexer 1528A that receives light energy in the form of a source beam 1524A, a pulsed source beam 1524A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1524B onto a guide proximal end 1522P of one or more of the plurality of the light guides 1522A. In some such embodiments, the multiplexer 1528A is configured to sequentially direct the light energy in the form of individual guide beams 1524B onto the guide proximal end 1522P of one or more of the plurality of the light guides 1522A.


It is appreciated that the light guide bundle 1522 can include any suitable number of light guides 1522A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 1522A relative to the multiplexer 1528A. For example, in the embodiment illustrated in FIG. 15A, the light guide bundle 1522 includes eight light guides 1522A that are aligned in a linear arrangement relative to one another. The light guide bundle 1522 and/or the light guides 1522A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 15A.


In the embodiment illustrated in FIG. 15A, the multiplexer 1528A is specifically configured to selectively and sequentially couple the guide beam(s) 1524B to one or more of the light guides 1522A. More specifically, as shown, the multiplexer 1528A includes a redirector 1580 and coupling optics 1558. In one embodiment, as illustrated, the redirector 1580 is provided in the form of a galvanometer, such as a galvanometer mirror scanner, that includes a mirror (or other reflective surface) that is rotated about an axis 1580A using a mover 1582. The mover 1582 is utilized to rotate the mirror of the redirector 1580 in order to steer the guide beam 1524B into the coupling optics 1558 at a desired incident angle, so that the guide beam 1524B can be selectively focused by the coupling optics 1558 onto any of the light guides 1522A within the light guide bundle 1522. In particular, as the redirector 1580 is rotated, the redirector 1580 steers the guide beam 1524B into the coupling optics 1558 at different angles. This results in scanning of the guide beam 1524B in a linear manner, translating the focal point into different light guides 1522A mounted within a fixed light guide bundle 1522. Thus, by changing the angle of the redirector 1580, the guide beam 1524B can be selectively steered onto the guide proximal end 1522P of any of the light guides 1522A in the light guide bundle 1522.


In comparison to a comparable system that instead moves the light guide bundle 1522 relative to a fixed guide beam 1524B, the advantage of this method is the speed and extreme precision and repeatability of the redirector 1580 compared to a stage that moves the light guide bundle 1522.



FIG. 15B is a simplified schematic illustration of a portion of still another embodiment of the catheter system 1500B including still another embodiment of the multiplexer 1528B. As shown, the catheter system 1500B and the multiplexer 1528B are substantially similar to the catheter system 1500A and the multiplexer 1528A illustrated and described in relation to FIG. 15A. For example, the catheter system 1500B again includes the light guide bundle 1522 including the plurality of light guides 1522A; and the multiplexer 1528B that receives light energy in the form of a source beam 1524A, a pulsed source beam 1524A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1524B onto a guide proximal end 1522P of one or more of the plurality of the light guides 1522A. Additionally, the multiplexer 1528B again includes the redirector 1580 that is moved about the axis 1580A by the mover 1582 to direct the guide beam(s) 1524B at a desired incident angle through the coupling optics 1558 in order to scan the guide beam(s) 1524B in a linear manner relative to the light guide bundle 1522.


However, in this embodiment, the multiplexer 1528B further includes a beam multiplier 1584 that can be used to split the guide beam 1524B and/or the source beam 1524A into a plurality of guide beams 1524B, e.g., a first guide beam 1524B1 and a second guide beam 1524B2 as shown in FIG. 15B. The beam multiplier 1584 can have any suitable design. For example, in certain embodiments, the beam multiplier 1584 can have a design such as illustrated and described herein above for the multiplexer in any of FIGS. 2-14.


With such design, the guide beams 1524B1, 1524B2 can be coupled onto multiple light guides 1522A simultaneously in any desired manner.



FIG. 16A is a simplified schematic illustration of a portion of another embodiment of the catheter system 1600A including another embodiment of the multiplexer 1628A. In particular, FIG. 16A illustrates a light guide bundle 1622 including a plurality of light guides 1622A; and the multiplexer 1628A that receives light energy in the form of a source beam 1624A, a pulsed source beam 1624A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1624B onto a guide proximal end 1622P of one or more of the plurality of the light guides 1622A. In some such embodiments, the multiplexer 1628A is configured to sequentially direct the light energy in the form of individual guide beams 1624B onto the guide proximal end 1622P of one or more of the plurality of the light guides 1622A.


It is appreciated that the light guide bundle 1622 can include any suitable number of light guides 1622A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 1622A relative to the multiplexer 1628A. For example, in the embodiment illustrated in FIG. 16A, the light guide bundle 1622 includes eight light guides 1622A that are aligned in a linear arrangement relative to one another. The light guide bundle 1622 and/or the light guides 1622A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 16A.


In the embodiment illustrated in FIG. 16A, the multiplexer 1628A is again specifically configured to selectively and sequentially couple the guide beam(s) 1624B to one or more of the light guides 1622A. More specifically, as shown, the multiplexer 1628A includes a redirector 1686 and coupling optics 1658. However, in this embodiment, the redirector 1686 has a different design than in the preceding embodiments. In particular, as shown, the redirector 1686 is provided in the form of a rotating multi-sided mirror that is rotated about an axis 1686A with a mover 1688. In some embodiments, the redirector 1686 can be an eight-sided rotating mirror. Alternatively, the redirector 1686 can have a different number of sides.


The mover 1688 is utilized to rotate the multi-sided mirror of the redirector 1686 so that the source beam 1624A reflects off of a side 1686S of the redirector 1686 to provide a guide beam 1624B that is steered into the coupling optics 1658 at a desired incident angle, so that the guide beam 1624B can be selectively focused by the coupling optics 1658 onto any of the light guides 1622A within the light guide bundle 1622. As the redirector 1686 is rotated continuously, the sides 1686S of the redirector 1686 steer the guide beam 1624B into the coupling optics 1658 at different angles. This results in scanning of the guide beam 1624B in a linear manner, translating the focal point into different light guides 1622A mounted within a fixed light guide bundle 1622. Thus, by changing the angle of the redirector 1686, the guide beam 1624B can be selectively steered onto the guide proximal end 1622P of any of the light guides 1622A in the light guide bundle 1622.


It is appreciated that with the design of the redirector 1686 illustrated in FIG. 16A, the redirector 1686 automatically resets itself as each of the sides 1686S of the redirector 1686 is moved into the beam path of the source beam 1624A. This allows the redirector 1686 to move at a constant rate (in contrast to repeated accelerations as required of the redirector 1580 described above). Additionally, a desired rate can be chosen in conjunction with the pulse repetition rate of the light source 124 such that the light source 124 only fires when the redirector 1686 is aligned to place the light energy from the guide beam 1624B onto the guide proximal end 1622P of the appropriate light guide 1622A. It is further appreciated that the speed of rotation of the redirector 1686 should be selected to be in synch with the distance between the light guides 1622A within the light guide bundle 1622.



FIG. 16B is a simplified schematic illustration of a portion of yet another embodiment of the catheter system 1600B including yet another embodiment of the multiplexer 1628B. As shown, the catheter system 1600B and the multiplexer 1628B are substantially similar to the catheter system 1600A and the multiplexer 1628A illustrated and described in relation to FIG. 16A. For example, the catheter system 1600B again includes the light guide bundle 1622 including the plurality of light guides 1622A; and the multiplexer 1628B that receives light energy in the form of a source beam 1624A, a pulsed source beam 1624A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1624B onto a guide proximal end 1622P of one or more of the plurality of the light guides 1622A. Additionally, the multiplexer 1628B again includes the redirector 1686 that is moved about the axis 1686A by the mover 1688 so that the sides 1686S of the redirector 1686 direct the guide beam(s) 1624B at a desired incident angle through the coupling optics 1658 in order to scan the guide beam(s) 1624B in a linear manner relative to the light guide bundle 1622.


However, in this embodiment, the multiplexer 1628B further includes a beam multiplier 1684 that can be used to split the guide beam 1624B and/or the source beam 1624A into a plurality of guide beams 1624B, e.g., a first guide beam 1624B1 and a second guide beam 1624B2 such as shown in FIG. 16B. The beam multiplier 1684 can have any suitable design. For example, in certain embodiments, the beam multiplier 1684 can have a design such as illustrated and described herein above for the multiplexer in any of FIGS. 2-14.


With such design, the guide beams 1624B1, 1624B2 can be coupled onto multiple light guides 1622A simultaneously in any desired manner.



FIG. 17A is a simplified schematic illustration of a portion of another embodiment of the catheter system 1700A including another embodiment of the multiplexer 1728A. In particular, FIG. 17A illustrates a light guide bundle 1722 including a plurality of light guides 1722A; and the multiplexer 1728A that receives light energy in the form of a source beam 1724A, a pulsed source beam 1724A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1724B onto a guide proximal end 1722P of one or more of the plurality of the light guides 1722A. In some such embodiments, the multiplexer 1728A is configured to sequentially direct the light energy in the form of individual guide beams 1724B onto the guide proximal end 1722P of one or more of the plurality of the light guides 1722A.


It is appreciated that the light guide bundle 1722 can include any suitable number of light guides 1722A, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides 1722A relative to the multiplexer 1728A. For example, in the embodiment illustrated in FIG. 17A, the light guide bundle 1722 includes eight light guides 1722A that are aligned in an arc-shaped arrangement relative to one another. The light guide bundle 1722 and/or the light guides 1722A are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 17A.


In the embodiment illustrated in FIG. 17A, the multiplexer 1728A includes coupling optics 1758 that focus the guide beam 1724B toward the light guides 1722A, while the light guide bundle 1722 is rotated about a bundle axis 1722X with a bundle mover 1790. During use of the catheter system 1700A, the bundle mover 1790 is configured to rotate the light guide bundle 1722 about the bundle axis 1722X so that the desired light guide 1722A is positioned in the beam path of the guide beam 1724B as the coupling optics 1758 focus the guide beam 1724B toward the light guide bundle 1722.


It is appreciated that in such embodiment, the light guide bundle 1722 needs to oscillate back and forth to select the desired light guide 1722A, since only rotating in one direction would ‘wind up’ the light guides and eventually break them. However, it is further appreciated that such advantage does provide advantages in compactness and speed of switching between the light guides 1722A is comparison to a linear array of light guides that is mounted on a moving stage.



FIG. 17B is a simplified schematic illustration of a portion of still another embodiment of the catheter system 1700B including still yet another embodiment of the multiplexer 1728B. As shown, the catheter system 1700B and the multiplexer 1728B are substantially similar to the catheter system 1700A and the multiplexer 1728A illustrated and described in relation to FIG. 17A. For example, the catheter system 1700B again includes the light guide bundle 1722 including the plurality of light guides 1722A; and the multiplexer 1728B that receives light energy in the form of a source beam 1724A, a pulsed source beam 1724A in various embodiments, from the light source 124 (illustrated in FIG. 1) and directs the light energy in the form of individual guide beams 1724B onto a guide proximal end 1722P of one or more of the plurality of the light guides 1722A. Additionally, the multiplexer 1728B again includes the coupling optics 1758 that focus the guide beam(s) onto the desired light guides 1722A as the light guide bundle 1722 is rotated about the bundle axis 1722X by the bundle mover 1790.


However, in this embodiment, the multiplexer 1728B further includes a beam multiplier 1784 that can be used to split the guide beam 1724B and/or the source beam 1724A into a plurality of guide beams 1724B, e.g., a first guide beam 1724B1 and a second guide beam 1724B2 such as is shown in FIG. 17B. The beam multiplier 1784 can have any suitable design. For example, in certain embodiments, the beam multiplier 1784 can have a design such as illustrated and described herein above for the multiplexer in any of FIGS. 2-14.


With such design, the guide beams 1724B1, 1724B2 can be coupled onto multiple light guides 1722A simultaneously in any desired manner.



FIG. 18A is a simplified schematic top view illustration of a portion of another embodiment of the catheter system 1800 including another embodiment of the multiplexer 1828. More particularly, FIG. 18A illustrates a light guide bundle 1822 including a plurality of light guides, such as a first light guide 1822A, a second light guide 1822B, a third light guide 1822C, a fourth light guide 1822D and a fifth light guide 1822E; a light source 1824; a system controller 1826; and another embodiment of the multiplexer 1828 that receives light energy in the form of a source beam 1824A, a pulsed source beam 1824A in various embodiments, from the light source 1824 and selectively and/or alternatively directs the light energy in the form of individual guide beams 1824B to each of the light guides 1822A-1822E. The light guide bundle 1822, the light guides 1822A-1822E, the light source 1824 and the system controller 1826 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 18A. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 18A for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the light guide bundle 1822 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 1828. For example, in the embodiment illustrated in FIG. 18A, the light guide bundle 1822 includes the first light guide 1822A, the second light guide 1822B, the third light guide 1822C, the fourth light guide 1822D and the fifth light guide 1822E that are aligned in a linear arrangement relative to one another. Alternatively, the light guide bundle 1822 can include greater than five or less than five light guides.


The multiplexer 1828 is again configured to receive light energy in the form of the source beam 1824A from the light source 1824 and selectively and/or alternatively direct the light energy in the form of individual guide beams 1824B to each of the light guides 1822A-1822E. As such, as shown in FIG. 18A, the multiplexer 1828 is operatively and/or optically coupled in optical communication to the light guide bundle 1822 and/or to the plurality of light guides 1822A-1822E.


As illustrated, a guide proximal end 1822P of each of the plurality of light guides 1822A-1822E is retained within a guide coupling housing 1850, i.e. within guide coupling slots 1857 that are formed into the guide coupling housing 1850. In various embodiments, the guide coupling housing 1850 is configured to be selectively coupled to the system console 123 (illustrated in FIG. 1) so that the guide coupling slots 1857, and thus the light guides 1822A-1822E, are maintained in a desired fixed position relative to the multiplexer 1828 during use of the catheter system 1800. In some embodiments, the guide coupling slots 1857 are provided in the form of V-grooves, such as in a V-groove ferrule block commonly used in multichannel fiber optics communication systems. Alternatively, the guide coupling slots 1857 can have another suitable design.


It is appreciated that the guide coupling housing 1850 can have any suitable number of guide coupling slots 1857, which can be positioned and/or oriented relative to one another in any suitable manner to best align the guide coupling slots 1857 and thus the light guides 1822A-1822E relative to the multiplexer 1828. In the embodiment illustrated in FIG. 18A, the guide coupling housing 1850 includes seven guide coupling slots 1857 that are spaced apart in a linear arrangement relative to one another, with precise interval spacing between adjacent guide coupling slots 1857. Thus, in such embodiment, the guide coupling housing 1850 is capable of retaining the guide proximal end 1822P of up to seven light guides (although only five light guides 1822A-1822E are specifically shown in FIG. 18A). Alternatively, the guide coupling housing 1850 can have greater than seven or less than seven guide coupling slots 1857, and/or the guide coupling slots 1857 can be arranged in a different manner relative to one another.


The design of the multiplexer 1828 can be varied depending on the requirements of the catheter system 1800, the relative positioning of the light guides 1822A-1822E, and/or to suit the desires of the user or operator of the catheter system 1800. In the embodiment illustrated in FIG. 18A, the multiplexer 1828 includes one or more of a multiplexer base 1859, a multiplexer stage 1861, a stage mover 1863 (illustrated in phantom), a redirector 1865, and coupling optics 1858. Alternatively, the multiplexer 1828 can include more components or fewer components than those specifically illustrated in FIG. 18A.


During use of the catheter system 1800, the multiplexer base 1859 is fixed in position relative to the light source 1824 and the light guides 1822A-1822E. Additionally, in this embodiment, the multiplexer stage 1861 is movably supported on the multiplexer base 1859. More particularly, the stage mover 1863 is configured to move the multiplexer stage 1861 relative to the multiplexer base 1859. As shown in FIG. 18A, the redirector 1865 and the coupling optics 1858 are mounted on and/or retained by the multiplexer stage 1861. Thus, movement of the multiplexer stage 1861 relative to the multiplexer base 1859 results in corresponding movement of the redirector 1865 and the coupling optics 1858 relative to the fixed multiplexer base 1859. With the light guides 1822A-1822E being fixed in position relative to the multiplexer base 1859, movement of the multiplexer stage 1861 results in corresponding movement of the redirector 1865 and the coupling optics 1858 relative to the light guides 1822A-1822E.


In various embodiments, the multiplexer 1828 is configured to precisely align the coupling optics 1858 with each of the light guides 1822A-1822E such that the source beam 1824A generated by the light source 1824 can be precisely directed and focused by the multiplexer 1828 as a corresponding guide beam 1824B to each of the light guides 1822A-1822E. In its simplest form, as shown in FIG. 18A, the multiplexer 1828 uses a precision mechanism such as the stage mover 1863 to translate the coupling optics 1858 along a linear path. This approach requires a single degree of freedom. In certain embodiments, the linear translation mechanism in the form of the stage mover 1863, and/or the multiplexer stage 1861 can be equipped with mechanical stops so that the coupling optics 1858 can be precisely aligned with the position of each of the light guides 1822A-1822E. Alternatively, the stage mover 1863 can be electronically controlled to line the beam path of the guide beam 1824B sequentially with each individual light guide 1822A-1822E that is retained, in part, within the guide coupling housing 1850.


The multiplexer stage 1862 is configured to carry the necessary optics, such as the redirector 1865 and the coupling optics 1858, to direct and focus the light energy generated by the light source 1824 to each light guide 1822A-1822E for optimal coupling. With such design, the low divergence of the guide beam 1824A over the short distance of motion of the translated multiplexer stage 1861 has minimum impact on coupling efficiency to the light guide 1822A-1822E.


During operation, the stage mover 1863 drives the multiplexer stage 1861 to align the beam path of the guide beam 1824B with a selected light guide 1822A-1822E and then the system controller 1826 fires the light source 1824 in pulsed or semi-CW mode. The stage mover 1863 then steps the multiplexer stage 1861 to the next stop, i.e. to the next light guide 1822A-1822E, and the system controller 1826 again fires the light source 1824. This process is repeated as desired so that light energy in the form of the guide beams 1824B is directed to each of the light guides 1822A-1822E in a desired pattern. It is appreciated that the stage mover 1863 can move the multiplexer stage 1861 so that it is aligned with any of the light guides 1822A-1822E, then the system controller 1826 fires the light source 1824. In this manner, the multiplexer 1828 can achieve sequence firing through light guides 1822A-1822E or fire in any desired pattern relative to the light guides 1822A-1822E.


In this embodiment, the stage mover 1863 can have any suitable design for purposes of moving the multiplexer stage 1861 in a linear manner relative to the multiplexer base 1859. More particularly, the stage mover 1863 can be any suitable type of linear translation mechanism.


As shown in FIG. 18A, the catheter system 1800 can further include an optical element 1847, e.g., a reflecting or redirecting element such as a mirror, that reflects the source beam 1824A from the light source 1824 so that the source beam 1824A is directed toward the multiplexer 1828. In one embodiment, as shown, the optical element 1847 can be positioned along the beam path to redirect the source beam 1824A by approximately 90 degrees so that the source beam 1824A is directed toward the multiplexer 1828. Alternatively, the optical element 1847 can redirect the source beam 1824A by more than 90 degrees or less than 90 degrees. Still alternatively, the catheter system 1800 can be designed without the optical element 1847, and the light source 1824 can direct the source beam 1824A directly toward the multiplexer 1828.


Additionally, in this embodiment, the source beam 1824A being directed toward the multiplexer 1828 initially impinges on the redirector 1865, which is configured to redirect the source beam 1824A toward the coupling optics 1858. In some embodiments, the redirector 1865 redirects the source beam 1824A by approximately 90 degrees toward the coupling optics 1858. Alternatively, the redirector 1865 can redirect the source beam 1824A by more than 90 degrees or less than 90 degrees toward the coupling optics 1858. Thus, the redirector 1865 that is mounted on the multiplexer stage 1861 is configured to direct the source beam 1824A through the coupling optics 1858 so that individual guide beams 1824B are focused into the individual light guides 1822A-1822E in the guide coupling housing 1850.


The coupling optics 1858 can have any suitable design for purposes of focusing the individual guide beams 1824B to each of the light guides 1822A-1822E. In one embodiment, the coupling optics 1858 includes two lenses that are specifically configured to focus the individual guide beams 1824B as desired. Alternatively, the coupling optics 1858 can have another suitable design.


In certain non-exclusive alternative embodiments, the steering of the source beam 1824A so that it is properly directed and focused to each of the light guides 1822A-1822E can be accomplished using mirrors that are attached to optomechanical scanners, X-Y galvanometers or other multi-axis beam steering devices.


Still alternatively, although FIG. 18A illustrates that the light guides 1822A-1822E are fixed in position relative to the multiplexer base 1859, in some embodiments, it is appreciated that the light guides 1822A-1822E can be configured to move relative to coupling optics 1858 that are fixed in position. In such embodiments, the guide coupling housing 1850 itself would move, e.g., the guide coupling housing 1850 can be carried by a linear translation stage, and the system controller 1826 can control the linear translation stage to move in a stepped manner so that the light guides 1822A-1822E are each aligned, in a desired pattern, with the coupling optics 1858 and the guide beams 1824B. While such an embodiment can be effective, it is further appreciated that additional protection and controls would be required to make it safe and reliable as the guide coupling housing 1850 moves relative to the coupling optics 1858 of the multiplexer 1828 during use.



FIG. 18B is a simplified schematic perspective view illustration of a portion of the catheter system 1800 and the multiplexer 1828 illustrated in FIG. 18A. In particular, FIG. 18B illustrates another view of the guide coupling housing 1850, with the guide coupling slots 1857, that is configured to retain a portion of each of the light guides 1822A-1822E; the optical element 1847 that initially redirects the source beam 1824A from the light source 1824 (illustrated in FIG. 18A) toward the multiplexer 1828; and the multiplexer 1828, including the multiplexer base 1859, the multiplexer stage 1861, the redirector 1865 and the coupling optics 1858, that receives the source beam 1824A and then directs and focuses individual guide beams 1824B toward each of the light guides 1822A-1822E. It is appreciated that the stage mover 1863 is not illustrated in FIG. 18B for purposes of simplicity and ease of illustration.



FIG. 19A is a simplified schematic top view illustration of a portion of an embodiment of the catheter system 1900 including another embodiment of the multiplexer 1928. More particularly, FIG. 19A illustrates a light guide bundle 1922 including a plurality of light guides, such as a first light guide 1922A, a second light guide 1922B and a third light guide 1922C; a light source 1924; a system controller 1926; and the multiplexer 1928 that receives light energy in the form of a source beam 1924A, a pulsed source beam 1824A in various embodiments, from the light source 1924 and selectively and/or alternatively directs the light energy in the form of individual guide beams 1924B to each of the light guides 1922A-1922C. The light guide bundle 1922, the light guides 1922A-1922C, the light source 1924 and the system controller 1926 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 19A. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 19A for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the light guide bundle 1922 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 1928. For example, in the embodiment illustrated in FIG. 18A, the light guide bundle 1922 includes the first light guide 1922A, the second light guide 1922B, and the third light guide 1922C that are aligned in a linear arrangement relative to one another. Alternatively, the light guide bundle 1922 can include greater than three or less than three light guides.


As with previous embodiments, the multiplexer 1928 is configured to receive light energy in the form of the source beam 1924A from the light source 1924 and selectively and/or alternatively direct the light energy in the form of individual guide beams 1924B to each of the light guides 1922A-1922C. As such, as shown in FIG. 19A, the multiplexer 1928 is operatively and/or optically coupled in optical communication to the light guide bundle 1922 and/or to the plurality of light guides 1922A-1922C.


As illustrated, a guide proximal end 1922P of each of the plurality of light guides 1922A-1922C is retained within a guide coupling housing 1950, i.e. within guide coupling slots 1957 that are formed into the guide coupling housing 1950. In various embodiments, the guide coupling housing 1950 is configured to be selectively coupled to the system console 123 (illustrated in FIG. 1) so that the guide coupling slots 1957, and thus the light guides 1922A-1922C, are maintained in a desired fixed position relative to the multiplexer 1928 during use of the catheter system 1900.


Referring now to FIG. 19B, FIG. 19B is a simplified schematic perspective view illustration of a portion of the catheter system 1900 and the multiplexer 1928 illustrated in FIG. 19A. As shown in FIG. 19B, the guide coupling housing 1950 can be substantially cylindrical-shaped. It is appreciated that the guide coupling housing 1950 can have any suitable number of guide coupling slots 1957, which can be positioned and/or oriented relative to one another in any suitable manner to best align the guide coupling slots 1957 and thus the light guides 1922A-1922C of the light guide bundle 1922 relative to the multiplexer 1928. In the embodiment illustrated in FIG. 19B, the guide coupling housing 1950 includes seven guide coupling slots 1957 that are arranged in a circular and/or hexagonal packed pattern. Thus, in such embodiment, the guide coupling housing 1950 is capable of retaining the guide proximal end of up to seven light guides. Alternatively, the guide coupling housing 1950 can have greater than seven or less than seven guide coupling slots 1957, and/or the guide coupling slots 1957 can be arranged in a different manner relative to one another, such as in another suitable circular periodic pattern.


Returning to FIG. 19A, in this embodiment, the multiplexer 1928 includes one or more of a multiplexer stage 1961, a stage mover 1963, a redirector 1965, and coupling optics 1958. Alternatively, the multiplexer 1928 can include more components or fewer components than those specifically illustrated in FIG. 19A.


As shown in the embodiment illustrated in FIG. 19A, the stage mover 1963 is configured to move the multiplexer stage 1961 in a rotational manner. More particularly, in this embodiment, the multiplexer stage 1961 and/or the stage mover 1963 requires a single rotational degree of freedom. Additionally, as shown, the multiplexer stage 1961 and the guide coupling housing 1950 are aligned on a central axis 1924X of the light source 1924. As such, the multiplexer stage 1961 is configured to be rotated by the stage mover 1963 about the central axis 1924X.


The redirector 1965 and the coupling optics 1958 are mounted on and/or retained by the multiplexer stage 1961. During use of the catheter system 1900, the source beam 1924A is initially directed toward the multiplexer stage 1961 along the central axis 1924X of the light source 1924. Subsequently, the redirector 1965 is configured to deviate the source beam 1924A a fixed distance laterally off the central axis 1924X of the light source 1924, such that the source beam 1924A is directed in a direction that is substantially parallel to and spaced apart from the central axis 1924X. More specifically, the redirector 1965 deviates the source beam 1924A to coincide with the radius of the circular pattern of the light guides 1922A-1922C in the guide coupling housing 1950. As the multiplexer stage 1961 is rotated, the source beam 1924A that is directed through the redirector 1965 traces out a circular path.


It is appreciated that the redirector 1965 can have any suitable design. For example, in certain non-exclusive alternative embodiments, the redirector 1965 can be provided in the form of an anamorphic prism pair, a pair of wedge prisms, or a pair of close-spaced right angle mirrors or prisms. Alternatively, the redirector 1965 can include another suitable configuration of optics in order to achieve the desired lateral beam offset.


Additionally, as noted, the coupling optics 1958 are also mounted on and/or retained by the multiplexer stage 1961. As with the previous embodiments, the coupling optics 1958 are configured to focus the individual guide beams 1924B to each of the light guides 1922A-1922C in the light guide bundle 1922 retained, in part, within the guide coupling housing 1950 for optimal coupling.


The multiplexer 1928 is again configured to precisely align the coupling optics 1958 with each of the light guides 1922A-1922C such that the source beam 1924A generated by the light source 1924 can be precisely directed and focused by the multiplexer 1928 as a corresponding guide beam 1924B to each of the light guides 1922A-1922C. In certain embodiments, the stage mover 1963 and/or the multiplexer stage 1961 can be equipped with mechanical stops so that the coupling optics 1958 can be precisely aligned with the position of each of the light guides 1922A-1922C. Alternatively, the stage mover 1963 can be electronically controlled, such as by using stepper motors or a piezo-actuated rotational stage, to line the beam path of the guide beam 1924B sequentially with each individual light guide 1922A-1922C that is retained, in part, within the guide coupling housing 1950.


During use of the catheter system 1900, the stage mover 1963 drives the multiplexer stage 1961 to couple the guide beam 1924B with a selected light guide 1922A-1922C and then the system controller 1926 fires the light source 1924 in pulsed or semi-CW mode. The stage mover 1963 then steps the multiplexer stage 1961 angularly to the next stop, i.e. to the next light guide 1922A-1922C, and the system controller 1926 again fires the light source 1924. This process is repeated as desired so that light energy in the form of the guide beams 1924B is directed to each of the light guides 1922A-1922C in a desired pattern. It is appreciated that the stage mover 1963 can move the multiplexer stage 1961 so that it is aligned with any of the light guides 1922A-1922C, then the system controller 1926 fires the light source 1924. In this manner, the multiplexer 1928 can achieve sequence firing through light guides 1922A-1922C or fire in any desired pattern relative to the light guides 1922A-1922C.


In this embodiment, the stage mover 1963 can have any suitable design for purposes of moving the multiplexer stage 1961 in a rotational manner about the central axis 1924X. More particularly, the stage mover 1963 can be any suitable type of rotational mechanism.


Alternatively, although FIG. 19A illustrates that the light guides 1922A-1922C are fixed in position relative to the multiplexer stage 1961, in some embodiments, it is appreciated that the light guides 1922A-1922C can be configured to move and/or rotate relative to coupling optics 1958 that are fixed in position. In such embodiments, the guide coupling housing 1950 itself would move, with the guide coupling housing 1950 being rotated about the central axis 1924X, and the system controller 1926 can control the rotational stage to move in a stepped manner so that the light guides 1922A-1922C are each aligned, in a desired pattern, with the coupling optics 1958 and the guide beams 1924B. In such embodiment, the guide coupling housing 1950 would not be continuously rotated, but would be rotated a fixed number of degrees and then counter-rotated to avoid the winding of the light guides 1922A-1922C.


Returning again to FIG. 19B, FIG. 19B illustrates another view of the guide coupling housing 1950, with the guide coupling slots 1957, that is configured to retain a portion of each of the light guides; and the multiplexer 1928, including the multiplexer stage 1961, the redirector 1965 and the coupling optics 1958, that receives the source beam 1924A and then directs and focuses individual guide beams 1924B toward each of the light guides. It is appreciated that the stage mover 1963 is not illustrated in FIG. 19B for purposes of simplicity and ease of illustration.



FIG. 20 is a simplified schematic top view illustration of a portion of the catheter system 2000 and still another embodiment of the multiplexer 2028. More particularly, FIG. 20 illustrates a light guide bundle 2022 including a plurality of light guides, such as a first light guide 2022A, a second light guide 2022B, a third light guide 2022C, a fourth light guide 2022D and a fifth light guide 2022E; a light source 2024; a system controller 2026; and the multiplexer 2028 that receives light energy in the form of a source beam 2024A a pulsed source beam 2024A in various embodiments, from the light source 2024 and selectively and/or alternatively directs the light energy in the form of individual guide beams 2024B to each of the light guides 2022A-2022E. The light guide bundle 2022, the light guides 2022A-2022E, the light source 2024 and the system controller 2026 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 20. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 20 for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the light guide bundle 2022 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 2028. For example, in the embodiment illustrated in FIG. 20, the light guide bundle 2022 includes the first light guide 2022A, the second light guide 2022B, the third light guide 2022C, the fourth light guide 2022D and the fifth light guide 2022E that are aligned in a linear arrangement relative to one another. Alternatively, the light guide bundle 2022 can include greater than five or less than five light guides.


The multiplexer 2028 is again configured to receive light energy in the form of the source beam 2024A from the light source 2024 and selectively and/or alternatively direct the light energy in the form of individual guide beams 2024B to each of the light guides 2022A-2022E. As such, as shown in FIG. 20, the multiplexer 2028 is operatively and/or optically coupled in optical communication to the light guide bundle 2022 and/or to the plurality of light guides 2022A-2022E.


As illustrated, a guide proximal end 2022P of each of the plurality of light guides 2022A-2022E is retained within a guide coupling housing 2050, i.e. within guide coupling slots 2057 that are formed into the guide coupling housing 2050. In various embodiments, the guide coupling housing 2050 is configured to be selectively coupled to the system console 123 (illustrated in FIG. 1) so that the guide coupling slots 2057, and thus the light guides 2022A-2022E, are maintained in a desired fixed position relative to the multiplexer 2028 during use of the catheter system 2000. It is appreciated that the guide coupling housing 2050 can have any suitable number of guide coupling slots 2057. In the embodiment illustrated in FIG. 20, five guide coupling slots 2057 are visible within the guide coupling housing 2050. Thus, in such embodiment, the guide coupling housing 2050 is capable of retaining the guide proximal end 2022P of up to five light guides. Alternatively, the guide coupling housing 2050 can have greater than five or less than five guide coupling slots 2057.


In the embodiment illustrated in FIG. 20, the multiplexer 2028 includes one or more of a multiplexer stage 2061, a stage mover 2063, one or more diffractive optical elements 2067 (or “DOE”), and coupling optics 2058. Alternatively, the multiplexer 2028 can include more components or fewer components than those specifically illustrated in FIG. 20.


As shown, the diffractive optical elements 2067 are mounted on and/or retained by the multiplexer stage 2061. Additionally, the stage mover 2063 is configured to move the multiplexer stage 2061 such that each of the one or more diffractive optical elements 2067 are selectively and/or alternatively positioned in the beam path of the source beam 2024A from the light source 2024. In one such embodiment, the stage mover 2063 moves the multiplexer stage 2061 translationally such that each of the one or more diffractive optical elements 2067 are selectively and/or alternatively positioned in the beam path of the source beam 2024A from the light source 2024.


During use of the catheter system 2000, each of the one or more diffractive optical elements 2067 is configured to separate the source beam 2024A into one, two, three or more individual guide beams 2024B. It is appreciated that the diffractive optical elements 2067 can have any suitable design. For example, in certain non-exclusive embodiments, the diffractive optical elements 2067 can be created using arrays of micro-prisms, micro-lenses, or other patterned diffractive elements.


It is appreciated that there are many possible patterns to organize the light guides 2022A-2022E in the guide coupling housing 2050 using this approach. The simplest pattern for the light guides 2022A-2022E within the guide coupling housing 2050 would be a hexagonal, close-packed pattern, similar to what was illustrated in FIGS. 19A and 19B. Alternatively, the light guides 2022A-2022E within the guide coupling housing 2050 could also be arranged in a square, linear, circular, or other suitable pattern.


As shown in FIG. 20, the guide coupling housing 2050 can be aligned on the central axis 2024X of the light source 2024, with the diffractive optical elements 2067 mounted on the multiplexer stage 2061 being inserted along the beam path between the light source 2024 and the guide coupling housing 2050. Additionally, as illustrated, the coupling optics 2058 are also positioned along the central axis 2024X of the light source 2024, and the coupling optics 2058 are positioned between the diffractive optical elements 2067 and the guide coupling housing 2050.


During operation, the source beam 2024A impinging on one of the plurality of diffractive optical elements 2067 splits the source beam 2024A into two or more deviated beams, i.e. two or more guide beams 2024B. These guide beams 2024B are, in turn, directed and focused by the coupling optics 2058 down onto the individual light guides 2022A-2022E that are retained in the guide coupling housing 2050. In one configuration, the diffractive optical element 2067 would split the source beam 2024A into as many light guides as are present within the single-use device. In such configuration, the power in each guide beam 2024B is based on the number of guide beams 2024B that are generated from the single source beam 2024A minus scattering and absorption losses. Alternatively, the diffractive optical element 2067 can be configured to split the source beam 2024A so that guide beams 2024B are directed into any single light guide or any selected multiple light guides. Thus, the multiplexer stage 2061 can be configured to retain a plurality of diffractive optical elements 2067, with multiple diffractive optical element patterns etched on a single plate, to provide options for the user or operator for coupling the guide beams 2024B to the desired number and pattern of light guides. In such embodiments, pattern selection can be achieved by moving the multiplexer stage 2061 with the stage mover 2063 translationally so that the desired diffractive optical element 2067 is positioned in the beam path of the source beam 2024A between the light source 2024 and the coupling optics 2058.


As with the previous embodiments, the coupling optics 2058 can have any suitable design for purposes of focusing the individual guide beams 2024B, or multiple guide beams 2024B simultaneously, to the desired light guides 2022A-2022E.



FIG. 21 is a simplified schematic top view illustration of a portion of the catheter system 2100 and yet another embodiment of the multiplexer 2128. More particularly, FIG. 21 illustrates a plurality of light guides, such as a first light guide 2122A, a second light guide 2122B and a third light guide 2122C; a light source 2124; a system controller 2126; and the multiplexer 2128 that receives light energy in the form of a source beam 2124A, a pulsed source beam 1824A in various embodiments, from the light source 2124 and selectively and/or alternatively directs the light energy in the form of individual guide beams 2124B to each of the light guides 2122A-2122C. The light guides 2122A-2122C, the light source 2124 and the system controller 2126 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 21. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 21 for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the catheter system 2100 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 2128. For example, in the embodiment illustrated in FIG. 21, the catheter system 2100 includes the first light guide 2122A, the second light guide 2122B and the third light guide 2122C. Alternatively, the catheter system 2100 can include greater than three or less than three light guides.


The multiplexer 2128 is again configured to receive light energy in the form of the source beam 2124A from the light source 2124 and selectively and/or alternatively direct the light energy in the form of individual guide beams 2124B to each of the light guides 2122A-2122C. As such, as shown in FIG. 21, the multiplexer 2128 is operatively and/or optically coupled in optical communication to the plurality of light guides 2122A-2122C.


However, as illustrated in FIG. 21, the multiplexer 2128 has a different design than any of the previous embodiments. In some embodiments, it may be desirable to design the multiplexer 2128 to receive the source beam 2124A from a single light source 2124 and selectively and/or alternatively direct the light energy in the form of individual guide beams 2124B to each of the light guides 2122A-2122C in a manner that is easily reconfigurable and that does not involve moving parts. For example, using an acousto-optic deflector (AOD) as the multiplexer 2128 can allow the entire output of a single light source 2124, such as a single laser, to be directed into a plurality of individual light guides 2122A-2122C. The guide beam 2124B can be re-targeted to a different light guide 2122A-2122C within microseconds by simply changing the driving frequency input into the multiplexer 2128 (the AOD), and with a pulsed laser such as a Nd:YAG, this switching can easily occur between pulses. In such embodiments, the deflection angle (Θ) of the multiplexer 2128 can be defined as follows:

Deflection angle (Θ)=Λf/v where


Λ=Optical Wavelength


f=acoustic drive frequency


v=speed of sound in modulator


As shown in FIG. 21, the source beam 2124A is directed from the light source 2124 toward the multiplexer 2128, and is subsequently redirected due to the generated deflection angle as a desired guide beam 2124B to each of the light guides 2122A-2122C. More specifically, as illustrated, when the multiplexer 2128 generates a first deflection angle for the source beam 2124A, a first guide beam 2124B1 is directed to the first light guide 2122A; when the multiplexer 2128 generates a second deflection angle for the source beam 2124A, a second guide beam 2124B2 is directed to the second light guide 2122B; and when the multiplexer 2128 generates a third deflection angle for the source beam 2124A, a third guide beam 2124B3 is directed to the third light guide 2122C. It is appreciated that, as illustrated, any desired deflection angle can include effectively no deflection angle at all, i.e. the guide beam 2124B can be directed to continue along the same axial beam path as the source beam 2124A.


In this embodiment, the multiplexer 2128 (AOD) includes a transducer 2169 and an absorber 2171 that cooperate to generate the desired driving frequency that can, in turn, generate the desired deflection angle so that the source beam 2124A is redirected as the desired guide beam 2124B toward the desired light guide 2122A-2122C. More particularly, the multiplexer 2128 is configured to spatially control the source beam 2124A. In the operation of the multiplexer 2128, the power driving the acoustic transducer 2169 is kept on, at a constant level, while the acoustic frequency is varied to deflect the source beam 2124A to different angular positions that define the guide beams 2124B1-2124B3. Thus, the multiplexer 2128 makes use of the acoustic frequency-dependent diffraction angle, such as described above.



FIG. 22 is a simplified schematic top view illustration of a portion of the catheter system 2200 and still another embodiment of the multiplexer 2228. More particularly, FIG. 22 illustrates a light guide bundle 2222 including a plurality of light guides, such as a first light guide 2222A, a second light guide 2222B and a third light guide 2222C; a light source 2224; a system controller 2226; and the multiplexer 2228 that receives light energy in the form of a source beam 2224A, a pulsed source beam 2224A in various embodiments, from the light source 2224 and selectively and/or alternatively directs the light energy in the form of individual guide beams 2224B to each of the light guides 2222A-2222C. The light guide bundle 2222, the light guides 2222A-2222C, the light source 2224 and the system controller 2226 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 22. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 22 for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the light guide bundle 2222 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 2228. For example, in the embodiment illustrated in FIG. 22, the light guide bundle 2222 includes the first light guide 2222A, the second light guide 2222B and the third light guide 2222C that are aligned in a linear arrangement relative to one another. Alternatively, the light guide bundle 2222 can include greater than three or less than three light guides.


The multiplexer 2228 illustrated in FIG. 22 is substantially similar to the multiplexer 2128 illustrated and described in relation to FIG. 21. For example, as shown in FIG. 22, the multiplexer 2228 again includes a transducer 2269 and an absorber 2271 that cooperate to generate the desired driving frequency that can, in turn, generate the desired deflection angle so that the source beam 2224A is redirected as the desired guide beam 2224B toward the desired light guide 2222A-2222C. However, in this embodiment, the multiplexer 2228 further includes an optical element 2273 that is usable to transform the angular separation between the guide beams 2224B into a linear offset.


In some embodiments, in order to improve the angular resolution and the efficiency of the catheter system 2200, the input laser 2224 should be collimated with a diameter close to filling the aperture of the multiplexer 2228 (the AOD). The smaller the divergence of the input, the greater number of discrete outputs can be generated. The angular resolution of such a device is quite good, but the total angular deflection is limited. To allow a sufficient number of light guides 2222A-2222C of finite size to be accessed by a single light source 2224 and a single source beam 2224A, there are a number of means to improve the separation of the different output. For example, as shown in FIG. 22, after the individual guide beams 2224B separate, the optical element 2273, such as a lens, can be used to transform the angular separation between the guide beams 2224B into a linear offset, and can be used to direct the guide beams 2224B into closely spaced light guides 2222A-2222C, such as when the light guides 2222A-2222C are held in close proximity to one another within a guide coupling housing 2250. Additionally, folding mirrors can be used to allow adequate propagation distance to separate the different beam paths of the guide beams 2224B within a limited volume.



FIG. 23 is a simplified schematic top view illustration of a portion of the catheter system 2300 and still yet another embodiment of the multiplexer 2328. More particularly, FIG. 23 illustrates a plurality of light guides, such as a first light guide 2322A, a second light guide 2322B, a third light guide 2322C, a fourth light guide 2322D and a fifth light guide 2322E; alight source 2324; a system controller 2326; and the multiplexer 2328 that receives light energy in the form of a source beam 2324A, a pulsed source beam 2324A in various embodiments, from the light source 2324 and selectively and/or alternatively directs the light energy in the form of individual guide beams 2324B to each of the light guides 2322A-2322E. The light guides 2322A-2322E, the light source 2324 and the system controller 2326 are substantially similar in design and function as described in detail herein above. Accordingly, such components will not be described in detail in relation to the embodiment illustrated in FIG. 23. It is further appreciated that certain components of the system console 123 illustrated and described above in relation to FIG. 1, such as the power source 125 and the GUI 127, are not illustrated in FIG. 23 for purposes of simplicity and ease of illustration, but would typically be included in many embodiments.


It is appreciated that the catheter system 2300 can include any suitable number of light guides, which can be positioned and/or oriented relative to one another in any suitable manner to best align the plurality of light guides relative to the multiplexer 2328. For example, in the embodiment illustrated in FIG. 23, the catheter system 2300 includes the first light guide 2322A, the second light guide 2322B, the third light guide 2322C, the fourth light guide 2322D and the fifth light guide 2322E. Alternatively, the catheter system 2100 can include greater than five or less than five light guides.


The manner for multiplexing the source beam 2324A into multiple guide beams 2324B illustrated in FIG. 23 is somewhat similar to how the source beam 2124A was multiplexed into multiple guide beams 2124B as illustrated and described in relation to FIG. 21. However, in this embodiment, the multiplexer 2328 includes a pair of acousto-optic deflectors (AODs), i.e. a first acousto-optic deflector 2328A and a second acousto-optic deflector 2328B, that are positioned in series with one another. With such design, the multiplexer 2328 may be able to access additional light guides. Additionally, it is further appreciated that the multiplexer 2328 can include more than two acousto-optic deflectors, if desired, to be able to access even more light guides.


In the embodiment shown in FIG. 23, the source beam 2324A is initially directed toward the first AOD 2328A. The first AOD 2328A is utilized to deflect the source beam 2324A to generate a first guide beam 2324B1 that is directed toward the first light guide 2322A, and a second guide beam 2324B2 that is directed toward the second light guide 2322B2. Additionally, the first AOD 2328A also allows an undeviated beam to be transmitted through the first AOD 2328A as a transmitted beam 2324C that is directed toward the second AOD 2328B. Subsequently, the second AOD 2328B is utilized to deflect the transmitted beam 2324C, as desired, to generate a third guide beam 2324B3 that is directed toward the third light guide 2322C, a fourth guide beam 2324B4 that is directed toward the fourth light guide 2322D, and a fifth guide beam 2324B5 that is directed toward the fifth light guide 2322E.


Additionally, each AOD 2328A, 2328B can be designed in a similar manner to those described in greater detail above. For example, the first AOD 2328A can include a first transducer 2369A and a first absorber 2371A that cooperate to generate the desired driving frequency that can, in turn, generate the desired deflection angle so that the source beam 2324A is redirected as desired; and the second AOD 2328B can include a second transducer 2369B and a second absorber 2371B that cooperate to generate the desired driving frequency that can, in turn, generate the desired deflection angle so that the transmitted beam 2324C is redirected as desired. Alternatively, the first AOD 2328A and/or the second AOD 2328B can have another suitable design.


As described in detail herein, in various embodiments, the multiplexer can be utilized to solve many problems that exist in more traditional catheter systems. For example:


1) Use of a multiplexer such as described herein allows use of one light source, e.g., laser source, to power multiple fiber optic channels in a single-use device. In more traditional catheter systems, it would require a powerful and potentially large laser to power all channels of a multi-channel device simultaneously. Conversely, the approach as described in detail herein allows the use of a smaller, lower-power laser with a high repetition rate to achieve similar clinical effectiveness as a much larger laser operated at a lower repetition rate.


2) Use of a multiplexer such as described herein supports multiple single-use device configurations with a single console. The number of channels in the single-use device could be programmed, allowing varied configurations for different clinical application. Additionally, the channels, e.g., light guides, can be positioned in any suitable manner relative to one another, and/or relative to the catheter shaft, the guidewire lumen and/or the balloon to provide the desired treatments at the desired locations. Importantly, all devices could still be operated by a single laser console or system.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content and/or context clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content or context clearly dictates otherwise.


It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.


The headings used herein are provided for consistency with suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not be viewed to limit or characterize the invention(s) set out in any claims that may issue from this disclosure. As an example, a description of a technology in the “Background” is not an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” or “Abstract” to be considered as a characterization of the invention(s) set forth in issued claims.


The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices. As such, aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.


It is understood that although a number of different embodiments of the catheter systems have been illustrated and described herein, one or more features of any one embodiment can be combined with one or more features of one or more of the other embodiments, provided that such combination satisfies the intent of the present invention.


While a number of exemplary aspects and embodiments of the catheter systems have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope, and no limitations are intended to the details of construction or design herein shown.

Claims
  • 1. A catheter system for treating a treatment site within or adjacent to a vessel wall within a body of a patient, the catheter system including a single light source that generates light energy, the catheter system comprising: a first light guide and a second light guide that are each configured to selectively receive light energy from the light source;a multiplexer that receives the light energy from the light source in the form of a source beam and selectively directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide, the multiplexer including (i) a multiplexer base that is fixed in position relative to the first light guide and the second light guide, (ii) a multiplexer stage that is movably supported on the multiplexer base, (iii) a stage mover that is configured to move the multiplexer stage in a single linear degree of freedom relative to the multiplexer base, (iv) a redirector that is mounted on the multiplexer stage, and (v) coupling optics that are mounted on the multiplexer stage;a catheter shaft;a balloon that is coupled to the catheter shaft, the balloon including a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior, the balloon being selectively inflatable with the balloon fluid to expand to an inflated state such that when the balloon is in the inflated state the balloon wall is configured to be positioned adjacent to the treatment site, the first light guide and the second light guide being positioned at least partially within the balloon interior; anda system controller including a processor that is configured to control operation of the light source to generate a single source beam in the form of pulses of light energy that are directed to the multiplexer;wherein the source beam being directed toward the multiplexer initially impinges on the redirector, the redirector being configured to redirect the source beam toward the coupling optics, the coupling optics being configured to focus the individual guide beams received from the redirector to each of the first light guide and the second light guide;wherein movement of the multiplexer stage relative to the multiplexer base results in corresponding movement of the redirector and the coupling optics relative to the first light guide and the second light guide;wherein the stage mover moves the multiplexer stage to align a first beam path of a first guide beam with the first light guide before the system controller fires the light source to generate the first guide beam that is directed to the first light guide;wherein the stage mover subsequently moves the multiplexer stage to align a second beam path of a second guide beam with the second light guide before the system controller fires the light source to generate the second guide beam that is directed to the second light guide; andwherein the first light guide and the second light guide receive the light energy from the light source and guide the light energy from the light source into the balloon interior to generate plasma in the balloon fluid within the balloon interior, the plasma generation causing rapid bubble formation and imparting pressure waves upon the balloon wall adjacent to the treatment site.
  • 2. The catheter system of claim 1 wherein the multiplexer receives the light energy from the light source and simultaneously directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide.
  • 3. The catheter system of claim 1 wherein the multiplexer receives the light energy from the light source and sequentially directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide.
  • 4. The catheter system of claim 1 wherein the light source includes a laser.
  • 5. A catheter system for treating a treatment site within or adjacent to a vessel wall within a body of a patient, the catheter system including a single light source that generates light energy, the catheter system comprising: a first light guide and a second light guide that are each configured to selectively receive light energy from the light source; anda multiplexer that receives the light energy from the light source in the form of a source beam and selectively directs the light energy from the light source in the form of individual guide beams to each of the first light guide and the second light guide, the multiplexer including (i) an optical element that splits the source beam into a first guide beam and a second guide beam, and (ii) coupling optics that are configured to focus the first guide beam onto the first light guide and the second guide beam onto the second light guide;wherein the optical element includes an input surface that is partially reflective, a rear surface, and an exit surface that is anti-reflective; andwherein the source beam impinging on the input surface splits the source beam into the first guide beam that is directed toward the coupling optics, and the second guide beam that is transmitted through the input surface toward the rear surface, reflects off of the rear surface and is directed through the exit surface and toward the coupling optics.
  • 6. The catheter system of claim 5 wherein the optical element is an imperfect parallelogram.
  • 7. The catheter system of claim 1 wherein the balloon includes a drug eluting coating.
  • 8. The catheter system of claim 1 further comprising a power source that is configured to provide power to each of the light source, the system controller and the multiplexer.
  • 9. The catheter system of claim 1 wherein the redirector redirects the source beam by approximately 90 degrees toward the coupling optics.
  • 10. The catheter system of claim 1 further comprising an optical element that is positioned in a beam path of the source beam and that redirects the source beam from the light source so that the source beam is directed toward the multiplexer.
  • 11. The catheter system of claim 10 wherein the optical element redirects the source beam from the light source by approximately 90 degrees so that the source beam is directed toward the multiplexer.
  • 12. The catheter system of claim 5 further comprising a catheter shaft and a balloon that is coupled to the catheter shaft, the balloon including a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior, the balloon being selectively inflatable with the balloon fluid to expand to an inflated state such that when the balloon is in the inflated state the balloon wall is configured to be positioned adjacent to the treatment site, the first light guide and the second light guide being positioned at least partially within the balloon interior.
  • 13. The catheter system of claim 12 wherein the first light guide and the second light guide receive the light energy from the light source and guide the light energy from the light source into the balloon interior to generate plasma in the balloon fluid within the balloon interior, the plasma generation causing rapid bubble formation and imparting pressure waves upon the balloon wall adjacent to the treatment site.
RELATED APPLICATIONS

This application claims priority on U.S. Provisional Application Ser. No. 62/950,014, filed on Dec. 18, 2019; and U.S. Provisional Application Ser. No. 63/013,975, filed on Apr. 22, 2020. As far as permitted, the contents of U.S. patent application Ser. No. 17/118,427 and U.S. Provisional Application Ser. Nos. 62/950,014 and 63/013,975 are incorporated in their entirety herein by reference.

US Referenced Citations (648)
Number Name Date Kind
4649924 Taccardi Mar 1987 A
4699147 Chilson et al. Oct 1987 A
4799479 Spears Jan 1989 A
4850351 Herman Jul 1989 A
4913142 Kittrell et al. Apr 1990 A
4932954 Wondrazek et al. Jun 1990 A
4955895 Suglyama Sep 1990 A
4960108 Reichel et al. Oct 1990 A
4994059 Kosa et al. Feb 1991 A
4998930 Lundahl Mar 1991 A
5034010 Kittrell et al. Jul 1991 A
5041121 Wondrazek et al. Aug 1991 A
5082343 Coult et al. Jan 1992 A
5093877 Aita et al. Mar 1992 A
5104391 Ingle Apr 1992 A
5104392 Kittrell et al. Apr 1992 A
5109452 Selvin et al. Apr 1992 A
5116227 Levy May 1992 A
5126165 Akihama et al. Jun 1992 A
5152768 Bhatta Oct 1992 A
5173049 Levy Dec 1992 A
5176674 Hofmann Jan 1993 A
5181921 Makita et al. Jan 1993 A
5200838 Nudelman Apr 1993 A
5290277 Vercimak et al. Mar 1994 A
5324282 Dodick Jun 1994 A
5328472 Steinke et al. Jul 1994 A
5336184 Teirstein Aug 1994 A
5372138 Crowley Dec 1994 A
5387225 Euteneur Feb 1995 A
5400428 Grace Mar 1995 A
5410797 Steinke et al. May 1995 A
5422926 Smith Jun 1995 A
5454809 Janssen Oct 1995 A
5456680 Taylor Oct 1995 A
5474537 Solar Dec 1995 A
5509917 Cecchetti Apr 1996 A
5540679 Fram Jul 1996 A
5562657 Griffin Oct 1996 A
5598494 Behrmann et al. Jan 1997 A
5609606 O'Boyle Mar 1997 A
5611807 O'Boyle Mar 1997 A
5661829 Zheng Aug 1997 A
5697377 Wittkamph Dec 1997 A
5718241 Ben-Haim et al. Feb 1998 A
5729583 Tang Mar 1998 A
5764843 Macken et al. Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5860974 Abele Jan 1999 A
5891135 Jackson et al. Apr 1999 A
5906611 Dodick et al. May 1999 A
5944697 Benett et al. Aug 1999 A
6015404 Altshuler Jan 2000 A
6080119 Schwarze et al. Jun 2000 A
6123923 Unger Sep 2000 A
6139510 Palermo Oct 2000 A
6186963 Schwarze et al. Feb 2001 B1
6203537 Adrian Mar 2001 B1
6210404 Shadduck Apr 2001 B1
6339470 Papademetriou et al. Jan 2002 B1
6356575 Fukumoto Mar 2002 B1
6368318 Visuri et al. Apr 2002 B1
6423055 Farr Jul 2002 B1
6500174 Maguire et al. Dec 2002 B1
6514203 Bukshpan Feb 2003 B2
6514249 Maguire Feb 2003 B1
6524251 Rabiner et al. Mar 2003 B2
6538739 Visuri et al. Mar 2003 B1
6548010 Stivland et al. Apr 2003 B1
6560387 Hehlen et al. May 2003 B1
6607502 Maguire et al. Aug 2003 B1
6631220 Liang et al. Oct 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6666834 Restle et al. Dec 2003 B2
6702781 Reifart et al. Mar 2004 B1
6773447 Laguna Aug 2004 B2
6824554 Jang Nov 2004 B1
6849994 White et al. Feb 2005 B1
6890317 Gerdts et al. May 2005 B2
6947785 Beatty et al. Sep 2005 B1
6966890 Coyle et al. Nov 2005 B2
6978168 Beatty et al. Dec 2005 B2
6990370 Beatty et al. Jan 2006 B1
7273470 Wantink Sep 2007 B2
7309324 Hayes et al. Dec 2007 B2
7367967 Eidenschink May 2008 B2
7470240 Schultheiss et al. Dec 2008 B2
7539231 Honea et al. May 2009 B1
7569032 Naimark et al. Aug 2009 B2
7599588 Eberle et al. Oct 2009 B2
7641646 Kennedy, II Jan 2010 B2
7713260 Lessard May 2010 B2
7758572 Weber et al. Jul 2010 B2
7762984 Kumoyama et al. Jul 2010 B2
7810395 Zhou Oct 2010 B2
7850685 Kunis et al. Dec 2010 B2
7867178 Simnacher Jan 2011 B2
7909797 Kennedy, II et al. Mar 2011 B2
7967781 Simpson et al. Jun 2011 B2
7972299 Carter Jul 2011 B2
7985189 Ogden et al. Jul 2011 B1
8021328 Lee Sep 2011 B2
8029473 Carter Oct 2011 B2
8043256 Hansen Oct 2011 B2
8088121 Nishide Jan 2012 B2
8162859 Schultheiss et al. Apr 2012 B2
8166825 Zhou May 2012 B2
8192368 Woodruff Jun 2012 B2
8267886 Ewing Sep 2012 B2
8292913 Warnack Oct 2012 B2
8328820 Diamant Dec 2012 B2
8364235 Kordis et al. Jan 2013 B2
8382738 Simpson et al. Feb 2013 B2
8414527 Mallaby Apr 2013 B2
8419613 Saadat Apr 2013 B2
8439890 Beyar May 2013 B2
8556813 Cashman et al. Oct 2013 B2
8574247 Adams et al. Nov 2013 B2
8657814 Werneth Feb 2014 B2
8709075 Adams et al. Apr 2014 B2
8728091 Hakala et al. May 2014 B2
8734424 Watanabe May 2014 B2
8747416 Hakala et al. Jun 2014 B2
8784362 Boutilette Jul 2014 B2
8834510 Wilson et al. Sep 2014 B2
8888788 Hakala et al. Nov 2014 B2
8956371 Hawkins et al. Feb 2015 B2
8956374 Hawkins et al. Feb 2015 B2
8986339 Warnack Mar 2015 B2
8992817 Stamberg Mar 2015 B2
9005216 Hakala et al. Apr 2015 B2
9011462 Adams et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9011511 Gregorich Apr 2015 B2
9044618 Hawkins et al. Jun 2015 B2
9044619 Hawkins et al. Jun 2015 B2
9072534 Adams et al. Jul 2015 B2
9089669 Haslinger et al. Jul 2015 B2
9131949 Coleman et al. Sep 2015 B2
9138249 Adams et al. Sep 2015 B2
9138260 Miller et al. Sep 2015 B2
9180280 Hawkins et al. Nov 2015 B2
9220521 Hawkins et al. Dec 2015 B2
9237984 Hawkins et al. Jan 2016 B2
9289132 Ghaffari et al. Mar 2016 B2
9289224 Adams et al. Mar 2016 B2
9320530 Grace Apr 2016 B2
9333000 Hakala et al. May 2016 B2
9339632 Eidenschink et al. May 2016 B2
9364645 Erikawa Jun 2016 B2
9375223 Wallace Jun 2016 B2
9421025 Hawkins et al. Aug 2016 B2
9433428 Hakala et al. Sep 2016 B2
9433745 Cully Sep 2016 B2
9504809 Bo Nov 2016 B2
9510887 Burnett Dec 2016 B2
9522012 Adams Dec 2016 B2
9554815 Adams et al. Jan 2017 B2
9555267 Ein-Gal Jan 2017 B2
9566209 Katragadda et al. Feb 2017 B2
9579114 Mantell et al. Feb 2017 B2
9585684 Nita et al. Mar 2017 B2
9592328 Jeevanandam Mar 2017 B2
9629567 Porath et al. Apr 2017 B2
9642673 Adams May 2017 B2
9662069 De Graff et al. May 2017 B2
9687166 Subramaniam Jun 2017 B2
9730715 Adams Aug 2017 B2
9737361 Magana Aug 2017 B2
9764142 Imran Sep 2017 B2
9782570 Hirszowicz Oct 2017 B2
9814476 Adams et al. Nov 2017 B2
9833348 Jordan et al. Dec 2017 B2
9839764 Chouinard Dec 2017 B2
9861377 Mantell et al. Jan 2018 B2
9867629 Hawkins et al. Jan 2018 B2
9878135 Holzapfel et al. Jan 2018 B2
9894756 Weinkam et al. Feb 2018 B2
9901704 Appling Feb 2018 B2
9955946 Miller et al. May 2018 B2
9974963 Imran May 2018 B2
9974970 Nuta et al. May 2018 B2
9993292 Adams et al. Jun 2018 B2
10039561 Adams et al. Aug 2018 B2
10086175 Torres et al. Oct 2018 B2
10124153 Feig Nov 2018 B2
10136829 Deno et al. Nov 2018 B2
10149690 Hawkins et al. Dec 2018 B2
10159505 Hakala et al. Dec 2018 B2
10194994 Deno et al. Feb 2019 B2
10201387 Grace et al. Feb 2019 B2
10206698 Hakala et al. Feb 2019 B2
10226265 Ku et al. Mar 2019 B2
10245410 Aggerholm Apr 2019 B2
10357264 Kat-Kuoy Jul 2019 B2
10405923 Yu et al. Sep 2019 B2
10406031 Thyzel Sep 2019 B2
10406318 Williams Sep 2019 B2
10420569 Adams Sep 2019 B2
10439791 Kalhan Oct 2019 B2
10441300 Hawkins Oct 2019 B2
10449339 Wilson et al. Oct 2019 B2
10463430 Dick Nov 2019 B2
10478202 Adams et al. Nov 2019 B2
10517620 Adams Dec 2019 B2
10517621 Hakala et al. Dec 2019 B1
10537287 Braido et al. Jan 2020 B2
10555744 Nguyen et al. Feb 2020 B2
10561428 Eggert et al. Feb 2020 B2
10583277 Rundquist Mar 2020 B2
10589073 Mallaby Mar 2020 B2
10617850 Tal Apr 2020 B2
10646240 Betelia et al. May 2020 B2
10668245 Kanae Jun 2020 B2
10682178 Adams et al. Jun 2020 B2
10695531 Suzuki Jun 2020 B2
10702293 Adams et al. Jul 2020 B2
10709462 Nguyen et al. Jul 2020 B2
10709872 Alvarez et al. Jul 2020 B2
10758255 Adams Sep 2020 B2
10797684 Benz et al. Oct 2020 B1
10799688 Calhoun Oct 2020 B2
10842567 Grace et al. Nov 2020 B2
10850075 Tarunaga Dec 2020 B2
10857329 Davies Dec 2020 B2
10933225 Campbell Mar 2021 B2
10959743 Adams et al. Mar 2021 B2
10966737 Nguyen Apr 2021 B2
10967156 Gulachenski Apr 2021 B2
10973538 Hakala et al. Apr 2021 B2
10980987 Tarunaga Apr 2021 B2
11000299 Hawkins et al. May 2021 B2
11020135 Hawkins Jun 2021 B1
11026707 Ku et al. Jun 2021 B2
11058492 Grace et al. Jul 2021 B2
11076874 Hakala et al. Aug 2021 B2
11116939 Jamous et al. Sep 2021 B2
11141131 Stigall Oct 2021 B2
11207493 Suzuki et al. Dec 2021 B2
11213661 Spindler Jan 2022 B2
11229772 Nita Jan 2022 B2
11229776 Kugler et al. Jan 2022 B2
11246659 Grace et al. Feb 2022 B2
11253681 Williams Feb 2022 B2
11484327 Anderson et al. Nov 2022 B2
11633200 Anderson et al. Apr 2023 B2
11779363 Vo Oct 2023 B2
11826530 Suzuki Nov 2023 B2
11911054 Singla Feb 2024 B2
11911056 Anderson et al. Feb 2024 B2
11918285 Sun et al. Mar 2024 B2
11944331 Anderson et al. Apr 2024 B2
20010016761 Rudie Aug 2001 A1
20010049464 Ganz Dec 2001 A1
20010051784 Brisken Dec 2001 A1
20020045811 Kittrell Apr 2002 A1
20020052621 Fried et al. May 2002 A1
20020065512 Fjield et al. May 2002 A1
20020082553 Duchamp Jun 2002 A1
20020183620 Tearney Dec 2002 A1
20020183729 Farr et al. Dec 2002 A1
20020188204 McNamara et al. Dec 2002 A1
20030009157 Levine et al. Jan 2003 A1
20030050632 Fjield et al. Mar 2003 A1
20030065316 Levine et al. Apr 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030125719 Furnish Jul 2003 A1
20030144654 Hilal Jul 2003 A1
20030176873 Chernenko et al. Sep 2003 A1
20040002677 Gentsler Jan 2004 A1
20040024349 Flock et al. Feb 2004 A1
20040073251 Weber Apr 2004 A1
20040097996 Rabiner May 2004 A1
20040133254 Sterzer et al. Jul 2004 A1
20040162508 Uebelacker Aug 2004 A1
20040210278 Boll Oct 2004 A1
20040243119 Lane et al. Dec 2004 A1
20040249401 Rabiner Dec 2004 A1
20040254570 Hadsjicostis Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050021013 Visuri Jan 2005 A1
20050080396 Rontal Apr 2005 A1
20050113722 Schultheiss May 2005 A1
20050171437 Carberry Aug 2005 A1
20050171527 Bhola Aug 2005 A1
20050251131 Lesh Nov 2005 A1
20050259319 Brooker Nov 2005 A1
20050273014 Gianchandani et al. Dec 2005 A1
20050277839 Alderman et al. Dec 2005 A1
20060033241 Schewe et al. Feb 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060098921 Benaron et al. May 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060200039 Brockway et al. Sep 2006 A1
20060221528 Li et al. Oct 2006 A1
20060241524 Lee et al. Oct 2006 A1
20060241572 Zhou Oct 2006 A1
20060241733 Zhang et al. Oct 2006 A1
20060270976 Savage et al. Nov 2006 A1
20070027524 Johnson Feb 2007 A1
20070043340 Thyzel Feb 2007 A1
20070060990 Satake Mar 2007 A1
20070088380 Hirszowicz et al. Apr 2007 A1
20070118057 Ein-Gal May 2007 A1
20070142819 El-Nounou et al. Jun 2007 A1
20070142821 Hennessy et al. Jun 2007 A1
20070179496 Swoyer Aug 2007 A1
20070239082 Schultheiss et al. Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070264353 Myntti et al. Nov 2007 A1
20070270897 Skerven Nov 2007 A1
20070280311 Hofmann Dec 2007 A1
20070299392 Beyar et al. Dec 2007 A1
20080033519 Burwell Feb 2008 A1
20080081950 Koenig et al. Apr 2008 A1
20080086118 Lai Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080108867 Zhou May 2008 A1
20080114341 Thyzel May 2008 A1
20080132810 Scoseria et al. Jun 2008 A1
20080175539 Brown Jul 2008 A1
20080195088 Farr et al. Aug 2008 A1
20080214891 Slenker et al. Sep 2008 A1
20080221550 Lee Sep 2008 A1
20080281157 Miyagi et al. Nov 2008 A1
20080296152 Voss Dec 2008 A1
20080319356 Cain et al. Dec 2008 A1
20090036803 Warlick et al. Feb 2009 A1
20090043300 Reitmajer et al. Feb 2009 A1
20090054881 Krespi Feb 2009 A1
20090097806 Viellerobe et al. Apr 2009 A1
20090125007 Splinter May 2009 A1
20090131921 Kurtz et al. May 2009 A1
20090192495 Ostrovsky et al. Jul 2009 A1
20090240242 Neuberger Sep 2009 A1
20090247945 Levit Oct 2009 A1
20090281531 Rizoiu Nov 2009 A1
20090292296 Pansky Nov 2009 A1
20090296751 Kewitsch et al. Dec 2009 A1
20090299327 Tilson et al. Dec 2009 A1
20090306533 Rousche Dec 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20100016862 Hawkins et al. Jan 2010 A1
20100036294 Mantell et al. Feb 2010 A1
20100063491 Verhagen Mar 2010 A1
20100094209 Drasler et al. Apr 2010 A1
20100114020 Hawkins et al. May 2010 A1
20100114065 Hawkins et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100160838 Krespi Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100168572 Sliwa Jul 2010 A1
20100168836 Kassab Jul 2010 A1
20100168862 Edie et al. Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191089 Stebler et al. Jul 2010 A1
20100198114 Novak et al. Aug 2010 A1
20100199773 Zhou Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100234875 Allex et al. Sep 2010 A1
20100256535 Novak et al. Oct 2010 A1
20100265733 O'Leary Oct 2010 A1
20100316333 Luther Dec 2010 A1
20110034832 Cioanta et al. Feb 2011 A1
20110059415 Kasenbacher Mar 2011 A1
20110082452 Melsky Apr 2011 A1
20110082534 Wallace Apr 2011 A1
20110118634 Golan May 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110184244 Kagaya et al. Jul 2011 A1
20110208185 Diamant et al. Aug 2011 A1
20110213349 Brown Sep 2011 A1
20110245740 Novak et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110275990 Besser et al. Nov 2011 A1
20110306956 Islam Dec 2011 A1
20120064141 Andreacchi et al. Mar 2012 A1
20120071715 Beyar et al. Mar 2012 A1
20120071867 Ryan Mar 2012 A1
20120071889 Mantell et al. Mar 2012 A1
20120089132 Dick et al. Apr 2012 A1
20120095335 Sverdlik et al. Apr 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120116289 Hawkins et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123331 Satake May 2012 A1
20120123399 Belikov May 2012 A1
20120143131 Tun Jun 2012 A1
20120157892 Reitmajer et al. Jun 2012 A1
20120197245 Burnett Aug 2012 A1
20120203255 Hawkins et al. Aug 2012 A1
20120221013 Hawkins et al. Aug 2012 A1
20120232409 Stahmann Sep 2012 A1
20120296367 Grovender et al. Nov 2012 A1
20120330293 Arai Dec 2012 A1
20130030431 Adams Jan 2013 A1
20130030447 Adams Jan 2013 A1
20130041355 Heeren et al. Feb 2013 A1
20130046207 Capelli Feb 2013 A1
20130046293 Arai et al. Feb 2013 A1
20130053762 Rontal et al. Feb 2013 A1
20130110003 Surti May 2013 A1
20130116714 Adams et al. May 2013 A1
20130165764 Scheuermann Jun 2013 A1
20130190803 Angel et al. Jul 2013 A1
20130197614 Gustus Aug 2013 A1
20130218054 Sverdlik et al. Aug 2013 A1
20130226131 Bacino et al. Aug 2013 A1
20130253466 Campbell Sep 2013 A1
20130274726 Takayama Oct 2013 A1
20130345617 Wallace Dec 2013 A1
20140005576 Adams Jan 2014 A1
20140005706 Gelfand et al. Jan 2014 A1
20140012186 Thyzel Jan 2014 A1
20140039002 Adams et al. Jan 2014 A1
20140039358 Zhou et al. Feb 2014 A1
20140039513 Hakala Feb 2014 A1
20140046229 Hawkins et al. Feb 2014 A1
20140046353 Adams Feb 2014 A1
20140052146 Curtis et al. Feb 2014 A1
20140052147 Hakala et al. Feb 2014 A1
20140058294 Gross et al. Feb 2014 A1
20140074111 Hakala Mar 2014 A1
20140114198 Samada et al. Apr 2014 A1
20140153087 Hutchings et al. Jun 2014 A1
20140155990 Nyuli Jun 2014 A1
20140180069 Millett Jun 2014 A1
20140180126 Millett Jun 2014 A1
20140180134 Hoseit Jun 2014 A1
20140188094 Islam Jul 2014 A1
20140228829 Schmitt Aug 2014 A1
20140257144 Capelli et al. Sep 2014 A1
20140257148 Jie Sep 2014 A1
20140276573 Miesel Sep 2014 A1
20140288570 Adams Sep 2014 A1
20140309536 Douk et al. Oct 2014 A1
20140336632 Toth Nov 2014 A1
20140336637 Agrawal Nov 2014 A1
20140357997 Hartmann Dec 2014 A1
20150003900 Ullrich et al. Jan 2015 A1
20150005576 Diodone et al. Jan 2015 A1
20150039002 Hawkins Feb 2015 A1
20150057648 Swift et al. Feb 2015 A1
20150073430 Hakala et al. Mar 2015 A1
20150080875 Kasprzyk et al. Mar 2015 A1
20150105715 Pikus et al. Apr 2015 A1
20150119870 Rudie Apr 2015 A1
20150126990 Sharma May 2015 A1
20150141764 Harks et al. May 2015 A1
20150250542 Islam Sep 2015 A1
20150276689 Watanabe et al. Oct 2015 A1
20150313732 Fulton, III Nov 2015 A1
20150320432 Adams Nov 2015 A1
20150342678 Deladurantaye et al. Dec 2015 A1
20150359432 Ehrenreich Dec 2015 A1
20150359557 Shimokawa Dec 2015 A1
20160008016 Cioanta et al. Jan 2016 A1
20160016016 Taylor et al. Jan 2016 A1
20160018602 Govari et al. Jan 2016 A1
20160022294 Cioanta et al. Jan 2016 A1
20160038087 Hunter Feb 2016 A1
20160095610 Lipowski et al. Apr 2016 A1
20160135828 Hawkins et al. May 2016 A1
20160135891 Feldman May 2016 A1
20160143522 Ransbury May 2016 A1
20160151639 Scharf et al. Jun 2016 A1
20160183819 Burnett Jun 2016 A1
20160183957 Hakala et al. Jun 2016 A1
20160184020 Kowalewski et al. Jun 2016 A1
20160184022 Grace et al. Jun 2016 A1
20160184023 Grace et al. Jun 2016 A1
20160184526 Beyar Jun 2016 A1
20160184570 Grace et al. Jun 2016 A1
20160228187 Gross Aug 2016 A1
20160262784 Grace et al. Sep 2016 A1
20160270806 Wallace Sep 2016 A1
20160302762 Stigall et al. Oct 2016 A1
20160234534 Hawkins et al. Nov 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160331389 Hakala et al. Nov 2016 A1
20160367274 Wallace Dec 2016 A1
20160367275 Wallace Dec 2016 A1
20170049463 Popovic et al. Feb 2017 A1
20170056035 Adams Mar 2017 A1
20170056087 Buckley Mar 2017 A1
20170086867 Adams Mar 2017 A1
20170119469 Shimizu et al. May 2017 A1
20170119470 Diamant et al. May 2017 A1
20170135709 Nguyen et al. May 2017 A1
20170151421 Asher Jun 2017 A1
20170192242 Laycock Jul 2017 A1
20170209050 Fengler et al. Jul 2017 A1
20170265942 Grace Sep 2017 A1
20170303946 Ku et al. Oct 2017 A1
20170311965 Adams Nov 2017 A1
20180008348 Grace et al. Jan 2018 A1
20180042661 Long Feb 2018 A1
20180042677 Yu et al. Feb 2018 A1
20180045897 Chia Feb 2018 A1
20180049877 Venkatasubramanian Feb 2018 A1
20180085174 Radtke et al. Mar 2018 A1
20180092763 Dagan et al. Apr 2018 A1
20180095287 Jeng et al. Apr 2018 A1
20180098779 Betelia et al. Apr 2018 A1
20180152568 Kat-kuoy Jun 2018 A1
20180214677 Tarunaga Aug 2018 A1
20180238675 Wan Aug 2018 A1
20180256250 Adams et al. Sep 2018 A1
20180280005 Parmentier Oct 2018 A1
20180303501 Hawkins Oct 2018 A1
20180303503 Eggert et al. Oct 2018 A1
20180303504 Eggert et al. Oct 2018 A1
20180304053 Eggert et al. Oct 2018 A1
20180323571 Brown et al. Nov 2018 A1
20180333043 Teriluc Nov 2018 A1
20180360482 Nguyen Dec 2018 A1
20190029702 De Cicco Jan 2019 A1
20190029703 Wasdyke et al. Jan 2019 A1
20190069916 Hawkins et al. Mar 2019 A1
20190072378 Hane et al. Mar 2019 A1
20190097380 Luft et al. Mar 2019 A1
20190099588 Ramanath et al. Apr 2019 A1
20190104933 Stern Apr 2019 A1
20190117242 Lawinger Apr 2019 A1
20190150960 Nguyen et al. May 2019 A1
20190150961 Tozzi May 2019 A1
20190167349 Shamay Jun 2019 A1
20190175111 Genereux et al. Jun 2019 A1
20190175300 Horn et al. Jun 2019 A1
20190175372 Boydan et al. Jun 2019 A1
20190175407 Bacher Jun 2019 A1
20190209368 Park et al. Jul 2019 A1
20190232066 Lim et al. Aug 2019 A1
20190247680 Mayer Aug 2019 A1
20190262594 Ogata et al. Aug 2019 A1
20190265419 Tayebati Aug 2019 A1
20190282249 Tran et al. Sep 2019 A1
20190282250 Tran et al. Sep 2019 A1
20190321100 Masotti et al. Oct 2019 A1
20190321101 Massoti et al. Oct 2019 A1
20190328259 Deno et al. Oct 2019 A1
20190365400 Adams et al. Dec 2019 A1
20190380589 Lloret Soler Dec 2019 A1
20190388002 Bozsak et al. Dec 2019 A1
20190388110 Nguyen et al. Dec 2019 A1
20190388133 Sharma Dec 2019 A1
20190388151 Bhawalkar Dec 2019 A1
20200000484 Hawkins Jan 2020 A1
20200008856 Harmouche Jan 2020 A1
20200022754 Cottone Jan 2020 A1
20200038087 Harmouche Feb 2020 A1
20200046429 Tschida et al. Feb 2020 A1
20200046949 Chisena et al. Feb 2020 A1
20200054352 Brouillette et al. Feb 2020 A1
20200060814 Murphy Feb 2020 A1
20200061931 Brown et al. Feb 2020 A1
20200069371 Brown et al. Mar 2020 A1
20200085458 Nguyen et al. Mar 2020 A1
20200085459 Adams Mar 2020 A1
20200101269 Hayes Apr 2020 A1
20200107960 Bacher Apr 2020 A1
20200108236 Salazar et al. Apr 2020 A1
20200129195 McGowan et al. Apr 2020 A1
20200129741 Kawwas Apr 2020 A1
20200155812 Zhang et al. May 2020 A1
20200197019 Harper Jun 2020 A1
20200205890 Harlev Jul 2020 A1
20200246032 Betelia et al. Aug 2020 A1
20200289202 Miyagawa et al. Sep 2020 A1
20200297366 Nguyen et al. Sep 2020 A1
20200337717 Walzman Oct 2020 A1
20200383724 Adams et al. Dec 2020 A1
20200397230 Massimini et al. Dec 2020 A1
20200397453 McGowan Dec 2020 A1
20200398033 McGowan et al. Dec 2020 A1
20200405333 Massimini et al. Dec 2020 A1
20200405391 Massimini Dec 2020 A1
20200406009 Massimini Dec 2020 A1
20200406010 Massimini et al. Dec 2020 A1
20210038237 Adams Feb 2021 A1
20210085347 Phan et al. Mar 2021 A1
20210085348 Nguyen Mar 2021 A1
20210085383 Vo et al. Mar 2021 A1
20210116302 Jean-Ruel Apr 2021 A1
20210128241 Schultheis May 2021 A1
20210137598 Cook et al. May 2021 A1
20210153939 Cook May 2021 A1
20210177442 Girdhar et al. Jun 2021 A1
20210177445 Nguyen Jun 2021 A1
20210186613 Cook Jun 2021 A1
20210212765 Verhagen Jul 2021 A1
20210220052 Cook Jul 2021 A1
20210220053 Cook Jul 2021 A1
20210244473 Cook et al. Aug 2021 A1
20210267685 Schultheis Sep 2021 A1
20210275247 Schultheis Sep 2021 A1
20210275249 Massimini et al. Sep 2021 A1
20210282792 Adams et al. Sep 2021 A1
20210290259 Hakala et al. Sep 2021 A1
20210290286 Cook Sep 2021 A1
20210290305 Cook Sep 2021 A1
20210298603 Feldman Sep 2021 A1
20210307828 Schultheis Oct 2021 A1
20210330384 Cook Oct 2021 A1
20210338258 Hawkins et al. Nov 2021 A1
20210353359 Cook Nov 2021 A1
20210369348 Cook Dec 2021 A1
20210378743 Massimini et al. Dec 2021 A1
20210378744 Fanier et al. Dec 2021 A1
20210386479 Massimini et al. Dec 2021 A1
20220000505 Hauser Jan 2022 A1
20220000506 Hauser Jan 2022 A1
20220000507 Hauser Jan 2022 A1
20220000508 Schmitt et al. Jan 2022 A1
20220000509 Laser et al. Jan 2022 A1
20220000551 Govari et al. Jan 2022 A1
20220008130 Massimini et al. Jan 2022 A1
20220008693 Humbert et al. Jan 2022 A1
20220015785 Hakala et al. Jan 2022 A1
20220021190 Pecquois Jan 2022 A1
20220022902 Spano Jan 2022 A1
20220022912 Efremkin Jan 2022 A1
20220023528 Long et al. Jan 2022 A1
20220071704 Le Mar 2022 A1
20220168594 Mayer Jun 2022 A1
20220183738 Flores et al. Jun 2022 A1
20220218402 Schultheis Jul 2022 A1
20220249165 Cook Aug 2022 A1
20220273324 Schultheis Sep 2022 A1
20220287732 Anderson et al. Sep 2022 A1
20220313293 Singh Oct 2022 A1
20220338890 Anderson et al. Oct 2022 A1
20220354578 Cook Nov 2022 A1
20220387106 Cook Dec 2022 A1
20230013920 Massimini Jan 2023 A1
20230248376 Anderson et al. Aug 2023 A1
20230310073 Adams et al. Oct 2023 A1
20230414234 Anderson et al. Dec 2023 A1
20240058060 Cook Feb 2024 A1
20240065712 Schultheis Feb 2024 A1
20240122648 Cook Apr 2024 A1
20240189543 Salinas Jun 2024 A1
20240216062 Cook Jul 2024 A1
20240277410 Cook Aug 2024 A1
20240285296 Vo Aug 2024 A1
20240382258 Schultheis Nov 2024 A1
Foreign Referenced Citations (196)
Number Date Country
2017205323 Jan 2022 AU
2019452180 Jan 2022 AU
2022227829 Sep 2022 AU
2229806 Mar 1997 CA
2281519 Aug 1998 CA
2983655 Oct 2016 CA
3209797 Sep 2022 CA
102057422 May 2011 CN
109223100 Jan 2019 CN
110638501 Jan 2020 CN
110638501 Jan 2020 CN
106794043 Mar 2020 CN
11399346 Jan 2022 CN
107411805 Jan 2022 CN
107899126 Jan 2022 CN
109475378 Jan 2022 CN
113876388 Jan 2022 CN
113877044 Jan 2022 CN
113907838 Jan 2022 CN
113951972 Jan 2022 CN
113951973 Jan 2022 CN
113974765 Jan 2022 CN
113974826 Jan 2022 CN
215384399 Jan 2022 CN
215386905 Jan 2022 CN
215458400 Jan 2022 CN
215458401 Jan 2022 CN
215505065 Jan 2022 CN
215534803 Jan 2022 CN
215537694 Jan 2022 CN
215584286 Jan 2022 CN
215606068 Jan 2022 CN
215651393 Jan 2022 CN
215651394 Jan 2022 CN
215651484 Jan 2022 CN
215653328 Jan 2022 CN
114053552 Feb 2022 CN
115175625 Oct 2022 CN
3038445 May 1982 DE
3836337 Apr 1990 DE
3913027 Oct 1990 DE
69431758 Jan 2003 DE
10230626 Jan 2004 DE
202008016760 Mar 2009 DE
102007046902 Apr 2009 DE
102008034702 Jan 2010 DE
102009007129 Aug 2010 DE
202010009899 Nov 2010 DE
102013201928 Aug 2014 DE
102020117713 Jan 2022 DE
0119296 Sep 1984 EP
0261831 Jun 1992 EP
558297 Sep 1993 EP
0571306 Nov 1993 EP
1179993 Feb 2002 EP
1946712 Jul 2008 EP
1946712 Jul 2008 EP
1453566 Sep 2008 EP
2157569 Feb 2010 EP
2879595 Jun 2015 EP
2879595 Jun 2015 EP
2944264 Jun 2015 EP
3226795 Oct 2017 EP
3266487 Jan 2018 EP
3318204 May 2018 EP
2879607 Feb 2019 EP
3461438 Apr 2019 EP
3473195 Apr 2019 EP
3643260 Apr 2020 EP
3076881 Jan 2022 EP
3932342 Jan 2022 EP
3936140 Jan 2022 EP
3960099 Mar 2022 EP
4051154 Sep 2022 EP
4129213 Feb 2023 EP
4277537 Nov 2023 EP
4297669 Jan 2024 EP
3182931 Jun 2024 EP
3950036 Aug 2024 EP
1082397 Sep 1967 GB
S62275446 Nov 1987 JP
1996089511 Apr 1996 JP
H09117407 May 1997 JP
2004519296 Jul 2004 JP
2008506447 Mar 2008 JP
2008083273 Apr 2008 JP
2009519777 May 2009 JP
2009213589 Sep 2009 JP
2011524203 Sep 2011 JP
4805208 Nov 2011 JP
4808620 Nov 2011 JP
2014123147 Jul 2014 JP
2015217215 Dec 2015 JP
2018538077 Dec 2018 JP
2024511710 Mar 2024 JP
20050098932 Oct 2005 KR
20080040111 May 2008 KR
20160090877 Aug 2016 KR
20180054041 May 2018 KR
WO9007904 Jul 1990 WO
WO9105332 Apr 1991 WO
WO9203095 Mar 1992 WO
1992008515 May 1992 WO
WO9208515 May 1992 WO
WO9524867 Sep 1995 WO
9902095 Jan 1999 WO
9920189 Apr 1999 WO
WO200067648 Nov 2000 WO
WO2000067648 Nov 2000 WO
2001003599 Jan 2001 WO
WO0103599 Jan 2001 WO
2006006169 Jan 2006 WO
WO2006006169 Jan 2006 WO
WO2009121017 Oct 2009 WO
WO2009149321 Dec 2009 WO
WO2009152352 Dec 2009 WO
2010042653 Apr 2010 WO
WO2011094379 Aug 2011 WO
2011126580 Oct 2011 WO
WO2011126580 Oct 2011 WO
WO2012025833 Mar 2012 WO
WO2012042619 Apr 2012 WO
WO20120052924 Apr 2012 WO
WO2012058156 May 2012 WO
WO2012099974 Jul 2012 WO
WO20120120495 Sep 2012 WO
WO2013119662 Aug 2013 WO
WO2013169807 Nov 2013 WO
WO2013169807 Nov 2013 WO
WO2014022436 Feb 2014 WO
WO2014025397 Feb 2014 WO
WO20140022867 Feb 2014 WO
WO2014138582 Sep 2014 WO
WO2015056662 Apr 2015 WO
WO2015097251 Jul 2015 WO
2015177790 Nov 2015 WO
WO2016014999 Jan 2016 WO
WO2016089683 Jun 2016 WO
WO2016090175 Jun 2016 WO
WO2016098670 Jun 2016 WO
WO2016109739 Jul 2016 WO
WO2016143556 Sep 2016 WO
WO2016151595 Sep 2016 WO
WO2017004432 Jan 2017 WO
WO20170192869 Nov 2017 WO
WO2018022593 Feb 2018 WO
WO2018022641 Feb 2018 WO
WO2018083666 May 2018 WO
WO2018175322 Sep 2018 WO
WO-2018175322 Sep 2018 WO
WO2018191013 Oct 2018 WO
WO2019200201 Oct 2019 WO
WO2019215869 Nov 2019 WO
WO2019222843 Nov 2019 WO
WO2020056031 Mar 2020 WO
WO20200086361 Apr 2020 WO
WO2020089876 May 2020 WO
WO2020157648 Aug 2020 WO
WO2020256898 Dec 2020 WO
WO2020256898 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020263469 Dec 2020 WO
WO2020263685 Dec 2020 WO
WO2020263687 Dec 2020 WO
WO2020263688 Dec 2020 WO
WO2020263689 Dec 2020 WO
WO2021061451 Apr 2021 WO
WO2021067563 Apr 2021 WO
2021086571 May 2021 WO
2021101766 May 2021 WO
WO2021096922 May 2021 WO
WO2021101766 May 2021 WO
WO2021126762 Jun 2021 WO
WO2021162855 Aug 2021 WO
WO2021173417 Sep 2021 WO
WO2021183367 Sep 2021 WO
WO2021183401 Sep 2021 WO
WO2021188233 Sep 2021 WO
WO2021202248 Oct 2021 WO
WO2021231178 Nov 2021 WO
WO2021247685 Dec 2021 WO
WO2021257425 Dec 2021 WO
WO2022007490 Jan 2022 WO
WO2022008440 Jan 2022 WO
WO2022010767 Jan 2022 WO
WO2022055784 Mar 2022 WO
WO2022125525 Jun 2022 WO
WO2022154954 Jul 2022 WO
WO2022173719 Aug 2022 WO
WO2022183075 Sep 2022 WO
WO2022187058 Sep 2022 WO
WO2022216488 Oct 2022 WO
WO2022240674 Nov 2022 WO
WO2022260932 Dec 2022 WO
WO2023107334 Jun 2023 WO
Non-Patent Literature Citations (201)
Entry
International Search Report and Written Opinion, issued by the European Patent Office for PCT/2021/XXX, dated Sep. 30, 2021.
Stelzle, F., et al. “Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery”, Lasers in Surgery and Medicine, 2010, pp. 319-325, vol. 42, Wiley-Liss Inc.
Stelzle, F., et al. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery, Sensors, 2013, pp. 13717-13731, vol. 13, Basel, Switzerland.
Tagawa, Y., et al. “Structure of laser-induced shock wave in water”, Japan Society for the Promotion of Science, 2016.
Shen, Y., et al. “Theoretical and experimental studies of directivity of sound field generated by pulsed laser induced breakdown in liquid water”, SPIE, 2013, pp. 8796141-8796148, vol. 8796, SPIE.
Preisack, M., et al. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline”, Lasers in Surgery and Medicine, 1992, pp. 520-527, vol. 12, Wiley-Liss Inc.
Versluis, M., et al. “How Snapping Shrimp Snap: Through Cavitating Bubbles”, Science Mag, 2000, pp. 2114-2117, vol. 289, American Association for the Advancement of Science, Washington DC, USA.
Yan, D., et al. “Study of the Electrical Characteristics, Shock-Wave Pressure Characteristics, and Attenuation Law Based on Pulse Discharge in Water”, Shock and Vibration, 2016, pp. 1-11, vol. 2016, Article ID 6412309, Hindawi Publishing Corporation.
Zhang, Q., et al. “Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles”, Water, 2018, pp. 1-12, vol. 10, No. 1683.
“Damage threshold of fiber facets”, NKT Photonics, 2012, pp. 1-4, Denmark.
Smith, A., et al. “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm”, Applied Optics, 2008, pp. 4812-4832, vol. 47, No. 26, Optical Society of America.
Smith, A., et al. “Deterministic Nanosecond Laser-Induced Breakdown Thresholds in Pure and Yb3 Doped Fused Silica”, SPIE, 2007, pp. 6453171-64531712, vol. 6453, SPIE.
Sun, X., et al. “Laser Induced Damage to Large Core Optical Fiber by High Peak Power Laser”, Specialty Photonics Division, 2010.
Smith, A., et al. “Nanosecond laser-induced breakdown in pure and Yb3 doped fused silica”, SPIE, 2007, vol. 6403, SPIE.
Smith, A., et al. “Optical Damage Limits to Pulse Energy From Fibers”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, pp. 153-158, vol. 15, No. 1, IEEE.
Reichel, E., et al. “A Special Irrigation Liquid to Increase the Reliability of Laser-Induced Shockwave Lithotripsy”, Lasers in Surgery and Medicine, 1992, pp. 204-209, vol. 12, Wiley-Liss Inc., Graz, Austria.
Reichel, E., et al. “Bifunctional irrigation liquid as an ideal energy converter for laser lithotripsy with nanosecond laser pulses”, SPIE Lasers in Urology, Laparoscopy, and General Surgery, 1991, pp. 129-133, vol. 1421, SPIE.
Reichel, E., et al. “Laser-induced Shock Wave Lithotripsy with a Regenerative Energy Converter”, Lasers in Medical Science, 1992, pp. 423-425, vol. 7, Bailliere Tindall.
Hardy, L., et al. “Cavitation Bubble Dynamics during Thulium Fiber Laser Lithotripsy”, SPIE BiOS, 2016, vol. 9689, SPIE.
Deckelbaum, L., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, vol. 14, Wiley-Liss Inc., Conneticuit, USA.
Shangguan, H., et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and on Submerged Targets”, Diagnostic and Therapeutic Cardiovascular Interventions VII, SPIE, 1997, pp. 783-791, vol. 2869, SPIE.
Van Leeuwen, T., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine, 1996, pp. 381-390, vol. 18, Wiley-Liss Inc., The Netherlands.
Vogel, A., et al. “Minimization of Cavitation Effects in Pulsed Laser Ablation Illustrated on Laser Angioplasty”, Applied Physics, 1996, pp. 173-182, vol. 62, Springer-Verlag.
Vogel, A., et al. “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water”, The Journal of Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, The Acoustical Society of America.
Varghese, B., et al. “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Linz, N., et al. “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state”, Physical Review, 2015, pp. 134114.1-1341141.10, vol. 91, American Physical Society.
International Search Report and Written Opinion dated Jun. 27, 2018, in PCT Application Serial No. PCT/US2018/027121.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027801.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027784.
European Search Report, for European Patent Application No. 18185152, mailed Dec. 13, 2018.
International Search Report and Written Opinion dated May 22, 2019, in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated May 29, 2019, in PCT Application Serial No. PCT/US2019/022016.
International Search Report and Written Opinion dated Jun. 22, 2018, in Application Serial No. NL2019807, issued by the European Patent Office.
Noimark, Sacha, et al., “Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging”, Advanced Functional Materials, 2016, pp. 8390-8396, vol. 26, Wiley-Liss Inc.
Chen, Sung-Liang, “Review of Laser-Generated Ultrasound Transmitters and their Applications to All-Optical Ultrasound Transducers and Imaging”, Appl. Sci. 2017, 7, 25.
Colchester, R., et al. “Laser-Generated ultrasound with optica fibres using functionalised carbon nanotube composite coatings”, Appl. Phys. Lett., 2014, vol. 104, 173504, American Institute of Physics.
Poduval, R., et al. “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite”, Appl. Phys. Lett., 2017, vol. 110, 223701, American Institute of Physics.
Tian, J., et al. “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings”, Optics Express, Mar. 2013, pp. 6109-6114, vol. 21, No. 5, Optical Society of America.
Kim, J., et al. “Optical Fiber Laser-Generated-Focused-Ultrasound Transducers for Intravascular Therapies”, IEEE, 2017.
Kang, H., et al. “Enhanced photocoagulation with catheter-based diffusing optical device”, Journal of Biomedical Optics, 2012, vol. 17, Issue 11, 118001, SPIE.
International Search Report and Written Opinion dated Jan. 3, 2020, in PCT Application Serial No. PCT/US2019/056579.
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 18185152.8, mailed Jan. 16, 2019.
European Search Report, for European Patent Application No. 18185152.8, mailed Dec. 20, 2018.
International Search Report and Written Opinion dated Jul. 29, 2020 in PCT Application Serial No. PCT/US2020/034005.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038517.
International Search Report and Written Opinion dated Sep. 9, 2020 in PCT Application Serial No. PCT/US2020/038530.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038521.
International Search Report and Written Opinion dated Sep. 7, 2020 in PCT Application Serial No. PCT/US2020/034642.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/018522.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/015204.
International Search Report and Written Opinion dated Jun. 17, 2021 in PCT Application Serial No. PCT/US2021/020934.
International Search Report and Written Opinion dated Jul. 13, 2021 in PCT Application Serial No. PCT/US2021/024216.
International Search Report and Written Opinion dated Jun. 22, 2021 in PCT Application Serial No. PCT/US2021/020937.
International Search Report and Written Opinion dated Jun. 24, 2021 in PCT Application Serial No. PCT/US2021/021272.
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated Sep. 14, 2020 in PCT Application Serial No. PCT/US2020/038523.
International Search Report and Written Opinion dated Oct. 2, 2020 in PCT Application Serial No. PCT/US2020/036107.
International Search Report and Written Opinion dated Jan. 29, 2021 in PCT Application Serial No. PCT/US2020/059961.
International Search Report and Written Opinion dated Jan. 20, 2021 in PCT Application Serial No. PCT/US2020/054792.
Provisional International Search Report and Written Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960.
Shariat, Mohammad H., et al. “Localization of the ectopic spiral electrical source using intracardiac electrograms during atrial fibrillation.” 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015.
Nademanee, Koonlawee, et al. “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate.” Journal of the American College of Cardiology 43.11 (2004): 2044-2053.
Calkins, Hugh. “Three dimensional mapping of atrial fibrillation: techniques and necessity.” Journal of interventional cardiac electrophysiology 13.1 (2005): 53-59.
Shariat, Mohammad Hassan. Processing the intracardiac electrogram for atrial fibrillation ablation. Diss. Queen's University (Canada), 2016.
Meng et al., “Accurate Recovery of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421).
Jiang et al., “Multielectrode Catheter for Substrate Mapping for Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368).
Sacher et al., “Comparison of Manual Vs Automatic Annotation to Identify Abnormal Substrate for Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336).
Oriel Instruments, “Introduction to Beam Splitters for Optical Research Applications”, Apr. 2014, pp. 1-9, https://www.azoptics.com/Article.aspx?ArticaID=871.
International Search Report and Written Opinion dated Apr. 12, 2021 in PCT Application Serial No. PCT/US2020/059960.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2020/064846.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2021/013944.
International Search Report and Written Opinion dated May 25, 2021 in PCT Application Serial No. PCT/US2021/017604.
International Search Report and Written Opinion dated Aug. 20, 2021 in PCT Application Serial No. PCT/US2021/031130.
Davletshin, Yevgeniy R., “A Computational Analysis of Nanoparticle-Mediated Optical Breakdown”, A dissertation presented to Ryerson University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in the Program of Physics, Toronto, Ontario, CA 2017.
Vogel, A., et al. “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries”, Journal Acoustical Society of America, 1988, pp. 719-731, vol. 84.
Asshauer, T., et al. “Acoustic transient generation by holmium-laser-induced cavitation bubbles”, Journal of Applied Physics, Nov. 1, 1994, pp. 5007-5013, vol. 76, No. 9, American Institute of Physics.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, Splicer Engineering AFL, Duncan, SC USA.
Ali, Ziad A., et al. “Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions”, JACC: Cardiovascular Imaging, 2017, pp. 897-906, vol. 109, No. 8, Elsevier.
Ali, Ziad A., et al. “Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification” 2018, European Society of Cardiology.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—full article”, Journal of Biophotonics, 2014, pp. 103-109, vol. 7, No. 1-2.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—proof” Journal of Biophotonics 7, 2014, No. 1-2.
Bian, D. C., et al. “Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water”, Hindawi Advances in Materials Science and Engineering, Jan. 2018, 12 pages, vol. 2018, Article ID 8025708.
Bian, D. C., et al. “Study on Breakdown Delay Characteristics Based on High-voltage Pulse Discharge in Water with Hydrostatic Pressure”, Journal of Power Technologies 97(2), 2017, pp. 89-102.
Doukas, A. G., et al. “Biological effects of laser induced shock waves: Structural and functional cell damage in vitro”, Ultrasound in Medicine and Biology, 1993, pp. 137-146, vol. 19, Issue 2, Pergamon Press, USA.
Brodmann, Marianne et al. “Safety and Performance of Lithoplasty for Treatment of Calcified Peripheral Artery Lesions”, JACC, 2017, vol. 70, No. 7.
Brouillette, M., “Shock Waves at Microscales”, 2003, pp. 3-12, Springer-Verlag.
Mirshekari, G., et al. “Shock Waves in Microchannels”, 2013, pp. 259-283, vol. 724, Cambridge University Press.
“Bubble Dynamics and Shock Waves”, Springer, 2013, Springer-Verlag, Berlin Heildelberg.
Hardy, Luke A., et al. “Cavitation Bubble Dynamics During Thulium Fiber Laser Lithotripsy”, SPIE, Feb. 29, 2016, vol. 9689, San Francisco, California, USA.
Claverie, A., et al. “Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge”, Review of Scientific Instruments, 2014, American Institute of Physics.
Blackmon, Richard L., et al. “Comparison of holmium: YAG and thulium fiber laser lithotripsy ablation thresholds, ablation rates, and retropulsion effects”, Journal of Biomedical Optics, 2011, vol. 16(7), SPIE.
Debasis, P., et al. “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations”, Applied Optics, Aug. 10, 2016, vol. 55, No. 23, Optical Society of America.
Cook, Jason R., et al. “Tissue mimicking phantoms for photoacoustic and ultrasonic imaging”, Biomedical Optics Express, 2011, vol. 2, No. 11, Optical Society of America.
Deckelbaum, Lawrence I., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, Wiley-Liss Inc.
Costanzo, F., “Underwater Explosion Phenomena and Shock Physics”, Research Gate, 2011.
Mizeret, J. C., et al. “Cylindrical fiber optic light diffuser for medical applications”, Lasers in Surgery and Medicine, 1996, pp. 159-167, vol. 19, Issue 2, Wiley-Liss Inc., Lausanne, Switzerland.
De Silva, K., et al. “A Calcific, Undilatable Stenosis Lithoplasty, a New Tool in the Box?”, JACC: Cardiovascular Interventions, 2017, vol. 10, No. 3, Elsevier.
Vesselov, L., et al. “Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers”, Applied Optics, 2005, pp. 2754-2758, vol. 44, Issue 14, Optical Society of America.
Hutchens, Thomas C., et al. “Detachable fiber optic tips for use in thulium fiber laser lithotripsy”, Journal of Biomedical Optics, Mar. 2013, vol. 18(3), SPIE.
Kostanski, Kris L., et al. “Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers in Photodynamic Cancer Therapy”, Journal of Applied Polymer Science, 2009, pp. 1516-1523, vol. 112, Wiley InterScience.
Kristiansen, M., et al. “High Voltage Water Breakdown Studies”, DoD, 1998, Alexandria, VA, USA.
Dwyer, J. R., et al. “A study of X-ray emission from laboratory sparks in air at atmospheric pressure”, Journal of Geophysical Research, 2008, vol. 113, American Geophysical Union.
Jansen, Duco E., et al. “Effect of Pulse Duration on Bubble Formation and Laser-Induced Pressure Waves During Holmium Laser Ablation”, Lasers in Surgery and Medicine 18, 1996, pp. 278-293, Wiley-Liss Inc., Austin, TX, USA.
Shangguan, HanQun et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and on Submerged Targets”, SPIE, 1997, pp. 783-791, vol. 2869.
Varghese, B., et al. “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation”, SPIE, Mar. 9, 2016, vol. 9740, SPIE, San Francisco, USA.
Varghese, B., et al. “Effects of polarization and apodization on laser induced optical breakdown threshold”, Optics Express, Jul. 29, 2013, vol. 21, No. 15, Optical Society of America.
Bonito, Valentina, “Effects of polarization, plasma and thermal initiation pathway on irradiance threshold of laser induced optical breakdown”, Philips Research, 2013, The Netherlands.
Vogel, A. et al. “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales”, Applied Physics B 68, 1999, pp. 271-280, Springer-Verlag.
Kang, Hyun W., et al. “Enhanced photocoagulation with catheter based diffusing optical device”, Journal of Biomedical Optics, Nov. 2012, vol. 17(11), SPIE.
Esch, E., et al. “A Simple Method for Fabricating Artificial Kidney Stones of Different Physical Properties”, National Institute of Health Public Access Author Manuscript, Aug. 2010.
Sner, Jeffrey M., et al. “Excimer Laser Atherectomy”, Circulation, Jun. 1990, vol. 81, No. 6, American Heart Association, Dallas, TX, USA.
Israel, Douglas H., et al. “Excimer Laser-Facilitated Balloon Angioplasty of a Nondilateable Lesion”, JACC, Oct. 1991, vol. 18, No. 4, American College of Cardiology, New York, USA.
Van Leeuwen, Ton G., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine 18, 1996, pp. 381-390, Wiley-Liss Inc., Utrecht, The Netherlands.
Nguyen, H., et al. “Fabrication of multipoint side-firing optical fiber by laser micro-ablation”, Optics Letters, May 1, 2017, vol. 42, No. 9, Optical Society of America.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, IEEE, Duncan, SC, USA.
Whitesides, George M., et al. “Fluidic Optics”, 2006, vol. 6329, SPIE, Cambridge, MA, USA.
Forero, M., et al. “Coronary lithoplasty: a novel treatment for stent underexpansion”, Cardiovascular Flashlight, 2018, European Society of Cardiology.
Ghanate, A. D., et al. “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario”, Journal of Biomedical Optics, Feb. 2011, pp. 1-9, vol. 16(2), SPIE.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, Jun. 1996, pp. 3465-3474, Acoustical Society of America, Austin, TX, USA.
Blackmon, Richard L., et al. “Holmium: YAG Versus Thulium Fiber Laser Lithotripsy”, Lasers in Surgery and Medicine, 2010, pp. 232-236, Wiley-Liss Inc.
Varghese, B., “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Noack, J., “Influence of pulse duration on mechanical effects after laser-induced breakdown in water”, Journal of Applied Physics, 1998, pp. 7488-EOA, vol. 83, American Institute of Physics.
Van Leeuwen, Ton G., et al. “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit”, Circulation, Apr. 1993, vol. 87, No. 4, American Heart Association, Dallas, TX, USA.
International Search Report and Written Opinion, issued by the EP/ISA, in PCT/US2021/048819, dated Jan. 14, 2022.
International Search Report and Written Opinion dated Jun. 28, 2022, in PCT Application Serial No. PCT/US2022/015577.
International Search Report and Written Opinion dated Jun. 27, 2022, in PCT Application Serial No. PCT/US2022/022460.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. Oct. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. Dec. 2, 2021. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Meng et al., “Accurate Recovery of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). May 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Jiang et al., “Multielectrode Catheter for Substrate Mapping for Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Sacher et al., “Comparison of Manual Vs Automatic Annotation to Identify Abnormal Substrate for Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
International Search Report and Written Opinion dated Nov. 8, 2022 in PCT Application Serial No. PCT US/2022/039678.
International Search Report and Written Opinion, PCT Application Serial No. PCT/US2022/047751 issued Feb. 10, 2023, by the European Patent Office.
Vogel, A., et al. “Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina”, Investigative Ophthalmology & Visual Science, Jun. 1994, pp. 3032-3044, vol. 35, No. 7, Association for Research in Vision and Ophthalmology.
Jones, H. M., et al. “Pulsed dielectric breakdown of pressurized water and salt solutions”, Journal of Applied Physics, Jun. 1998, pp. 795-805, vol. 77, No. 2, American Institute of Physics.
Kozulin, I., et al. “The dynamic of the water explosive vaporization on the flat microheater”, Journal of Physics: Conference Series, 2018, pp. 1-4, IOP Publishing, Russia.
Cross, F., “Laser Angioplasty”, Vascular Medicine Review, 1992, pp. 21-30, Edward Arnold.
Doukas, A. G., et al. “Laser-generated stress waves and their effects on the cell membrane”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, pp. 997-1003, vol. 5, Issue 4, IEEE.
Noack, J., et al. “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density”, IEEE Journal of Quantum Electronics, 1999, pp. 1156-1167, vol. 35, No. 8, IEEE.
Pratsos, A., “The use of Laser for the treatment of coronary artery disease”, Bryn Mawr Hospital, 2010.
Li, Xian-Dong, et al. “Influence of deposited energy on shock wave induced by underwater pulsed current discharge”, Physics of Plasmas, 2016, vol. 23, American Institute of Physics.
Logunov, S., et al. “Light diffusing optical fiber illumination”, Renewable Energy and the Environment Congress, 2013, Corning, NY, USA.
Maxwell, A. D., et al. “Cavitation clouds created by shock scattering from bubbles during histotripsy”, Acoustical Society of America, 2011, pp. 1888-1898, vol. 130, No. 4, Acoustical Society of America.
Mcateer, James A., et al. “Ultracal-30 Gypsum Artificial Stones for Research on the Mechinisms of Stone Breakage in Shock Wave Lithotripsy”, 2005, pp. 429-434, Springer-Verlag.
Vogel, A., et al. “Mechanisms of Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses”, Lasers in Surgery and Medicine, 1994, pp. 32-43, vol. 15, Wiley-Liss Inc., Lubeck, Germany.
Vogel, A., et al. “Mechanisms of Pulsed Laser Ablation of Biological Tissues”, Chemical Reviews, 2003, pp. 577-644, vol. 103, No. 2, American Chemical Society.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland.
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland.
Mayo, Michael E., “Interaction of Laser Radiation with Urinary Calculi”, Cranfield University Defense and Security, PHD Thesis, 2009, Cranfield University.
Mirshekari, G., et al. “Microscale Shock Tube”, Journal of Microelectromechanical Systems, 2012, pp. 739-747, vol. 21, No. 3, IEEE.
“Polymicro Sculpted Silica Fiber Tips”, Molex, 2013, Molex.
Zhou, J., et al. “Optical Fiber Tips and Their Applications”, Polymicro Technologies A Subsidiary of Molex, Nov. 2007.
Liang, Xiao-Xuan, et al. “Multi-Rate-Equation modeling of the energy spectrum of laser-induced conduction band electrons in water”, Optics Express, 2019, vol. 27, No. 4, Optical Society of America.
Nachabe, R., et al. “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods”, Journal of Biomedical Optics, 2011, vol. 16(8), SPIE.
Naugol'nykh, K. A., et al. “Spark Discharges in Water”, Academy of Sciences USSR Institute of Acoustics, 1971, Nauka Publishing Co., Moscow, USSR.
Van Leeuwen, Ton G., et al. “Noncontact Tissue Ablation by Holmium: YSGG Laser Pulses in Blood”, Lasers in Surgery and Medicine, 1991, vol. 11, pp. 26-34, Wiley-Liss Inc.
Nyame, Yaw A., et al. “Kidney Stone Models for In Vitro Lithotripsy Research: A Comprehensive Review”, Journal of Endourology, Oct. 2015, pp. 1106-1109, vol. 29, No. 10, Mary Ann Liebert Inc., Cleveland, USA.
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing.
Zheng, W., “Optical Lenses Manufactured on Fiber Ends”, IEEE, 2015, Splicer Engineering, Duncan SC USA.
Dwyer, P. J., et al. “Optically integrating balloon device for photodynamic therapy”, Lasers in Surgery and Medicine, 2000, pp. 58-66, vol. 26, Issue 1, Wiley-Liss Inc., Boston MA USA.
“The New Optiguide DCYL700 Fiber Optic Diffuser Series”, Optiguide Fiber Optic Spec Sheet, Pinnacle Biologics, 2014, Pinnacle Biologics, Illinois, USA.
Van Leeuwen, Ton G., et al. “Origin of arterial wall dissections induced by pulsed excimer and mid-infared laser ablation in the pig”, JACC, 1992, pp. 1610-1618, vol. 19, No. 7, American College of Cardiology.
Oshita, D., et al. “Characteristic of Cavitation Bubbles and Shock Waves Generated by Pulsed Electric Discharges with Different Voltages”, IEEE, 2012, pp. 102-105, Kumamoto, Japan.
Karsch, Karl R., et al. “Percutaneous Coronary Excimer Laser Angioplasty in Patients With Stable and Unstable Angina Pectoris”, Circulation, 1990, pp. 1849-1859, vol. 81, No. 6, American Heart Association, Dallas TX, USA.
Murray, A., et al. “Peripheral laser angioplasty with pulsed dye laser and ball tipped optical fibres”, The Lancet, 1989, pp. 1471-1474, vol. 2, Issue 8678-8679.
Mohammadzadeh, M., et al. “Photoacoustic Shock Wave Emission and Cavitation from Structured Optical Fiber Tips”, Applied Physics Letters, 2016, vol. 108, American Institute of Physics Publishing LLC.
Doukas, A. G., et al. “Physical characteristics and biological effects of laser-induced stress waves”, Ultrasound in Medicine and Biology, 1996, pp. 151-164, vol. 22, Issue 2, World Federation for Ultrasound in Medicine and Biology, USA.
Doukas, A. G., et al. “Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient”, Ultrasound in Medicine and Biology, 1995, pp. 961-967, vol. 21, Issue 7, Elsevier Science Ltd., USA.
Piedrahita, Francisco S., “Experimental Research Work on a Sub-Millimeter Spark-Gap for Sub Nanosecond Gas Breakdown”, Thesis for Universidad Nacional De Colombia, 2012, Bogota, Colombia.
Vogel, A., et al. “Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance”, IEEE Journal of Selected Topics in Quantum Electronics, 1996, pp. 847-859, vol. 2, No. 4, IEEE.
Park, Hee K., et al. “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface”, Journal of Applied Physics, 1996, pp. 4072-4081, vol. 80, No. 7, American Institute of Physics.
Cummings, Joseph P., et al. “Q-Switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties”, SPIE, Laser-Tissue Interaction III, 1992, pp. 242-253, vol. 1646.
Lee, Seung H., et al. “Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications”, Optics Express, 2015, vol. 23, No. 16, Optical Society of America.
Hui, C., et al. “Research on sound fields generated by laser-induced liquid breakdown”, Optica Applicata, 2010, pp. 898-907, vol. XL, No. 4, Xi'an, China.
Riel, Louis-Philippe, et al. “Characterization of Calcified Plaques Retrieved From Occluded Arteries and Comparison with Potential Artificial Analogues”, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, pp. 1-11, ASME, Canada.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, 1996, pp. 3465-3475, vol. 99, No. 6, Acoustical Society of America.
Rocha, R., et al. “Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis”, Photomedicine and Lsser Surgery, 2008, pp. 329-335, vol. 26, No. 4, Mary Ann Liebert Inc.
Scepanovic, Obrad R., et al. “Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque”, Journal of Biomedical Optics, 2011, pp. 1-10, vol. 16, No. 1, SPIE.
Serruys, p. W., et al. “Shaking and Breaking Calcified Plaque Lithoplasty, a Breakthrough in Interventional Armamentarium?”, JACC: Cardiovascular Imaging, 2017, pp. 907-911, vol. 10, No. 8, Elsevier.
Vogel, A., et al. “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water”, The Journal of the Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, Acoustical Society of America.
Vogel, A., et al. “Shock-Wave Energy and Acoustic Energy Dissipation After Laser-induced Breakdown”, SPIE, 1998, pp. 180-189, vol. 3254, SPIE.
“Laser Beam Couplers series 60SMS—for coupling into single-mode and polarization-maintaining fiber cables”. Product for sale by Schafter+Kirchhoff, https://www.sukhamburg.com/. Copyright 2020.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/062170.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/065073.
Partial Search Report and Provisional Opinion dated May 3, 2022 in PCT Application No. PCT/US2022/015577.
International Search Report and Written Opinion dated May 13, 2022 in PCT Application Serial No. PCT/US2022/017562.
International Search Report and Written Opinion dated Aug. 25, 2022 in PCT Application Serial No. PCT US/2022/028035.
International Search Report and Written Opinion dated Sep. 15, 2022 in PCT Application Serial No. PCT US/2022/032045.
International Search Report and Written Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960.
AccuCoat, “Beamsplitter: Divide, combine & conquer”; 2023.
Lin et al., “Photoacoustic imaging”, Science Direct; 2021.
Zhou et al., “Photoacoustic Imaging with fiber optic technology: A review”, Science Direct; 2020.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2022/053775, dated Apr. 21, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/011497, dated Apr. 28, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/012599, dated May 19, 2023.
PathFinder Digital, “Free Space Optics vs. Fiber Optics”, 2023.
International Search Report and Written Opinion, issued in Application Serial No. PCT/US2023/016152, dated Jul. 12, 2023.
Shen, Yajie et al. “High-peak-power and narrow-linewidth Q-switched Ho: YAG laser in-band pumped at 1931 nm.” Applied Physics Express 13.5 (2020): 052006. (Year 2020).
“Custom Medical Skived Tubing”, Duke Extrusion, 2025. https://www.dukeextrusion.com/tubing-options/skived-tubing.
Related Publications (1)
Number Date Country
20210186613 A1 Jun 2021 US
Provisional Applications (2)
Number Date Country
63013975 Apr 2020 US
62950014 Dec 2019 US