Technical Field
Embodiments disclosed herein relates to communications within an optical network, and in particular, to methods and apparatus for multiplexing data signals.
Description of the Related Art
With the exponential growth in communications, there is a continuing demand for increased capacity. Generally, expanding capacity of fiber optic systems has been achieved by installing more cables; increasing system bitrate; and by wavelength division multiplexing.
Wavelength division multiplexing (WDM) uses existing electronics and fibers, and simply shares fibers by transmitting different channels at different wavelengths. Generally, a wavelength division multiplexing (WDM) system uses a multiplexer at the transmitter to join optical signals together and a demultiplexer at the receiver to split them apart. Most wavelength division multiplexing (WDM) systems operate on single-mode fiber optical cables, which have a core diameter of 9 μm. One type of wavelength division multiplexing (WDM) system is referred to as a “coarse wavelength division multiplexing (CWDM)” system. Generally, coarse wavelength division multiplexing (CWDM) systems provide up to eight (8) or nine (9) communications channels. Coarse wavelength division multiplexing (CWDM) uses increased channel spacing (spacing between wavelength groupings) to permit use of less sophisticated transceiver equipment.
Unfortunately, with the ever increasing demand for bandwidth, this is not adequate. As cable installation is a laborious and costly process, it is desirable to increase signal transmission using existing infrastructure. Thus, what are needed are methods and apparatus to increase signal transmission over existing implementations of fiber optics.
In one embodiment, an optical communications system is provided. The system includes an optical transmitter and an optical receiver optically coupled to an optical combiner/splitter, the combiner/splitter coupled to optical media; and, another optical transmitter and another optical receiver optically coupled to another optical combiner/splitter, the another combiner / splitter remotely coupled to the optical media; wherein the optical transmitter and the another optical transmitter are configured to transmit optical signals at substantially the same wavelength.
At least one of the combiner/splitter and the another combiner/splitter may include an asymmetric combiner/splitter. The asymmetric combiner/splitter may include a high transmittance ratio, TR, and a low transmittance ratio, TR. The high transmittance ratio, TR, and the low transmittance ratio, TR, may have a combination of ratios that is one of 95/5, 90/10, 85/15, 80/20, 75/25, 70/30 and a ratio therebetween. At least one of the optical transmitter and the another optical transmitter is substantially insensitive to optical interference received at the operational wavelength. The optical media may include a single-mode optical fiber. A low transmittance ratio, TR, may be associated with each of the optical transmitters. A high transmittance ratio, TR, may be associated with each of the optical receivers.
In another embodiment, a method for providing an optical network configured for bi-directional communication using optical signals is provided. The method includes: selecting a first operator that includes an optical transmitter and an optical receiver optically coupled to an asymmetric optical combiner/splitter, the combiner/splitter and coupling the first operator to a first end of optical media; and, selecting another operator that includes another optical transmitter and another optical receiver optically coupled to another asymmetric optical combiner/splitter, the another operator remotely coupled to the optical media.
The method may further call for selecting the another optical transmitter for operation at substantially the same wavelength as the optical transmitter. The method may further call for associating a low transmittance ratio, TR, of each of the combiner/splitters with a respective one of the optical transmitters. The method may further call for associating a high transmittance ratio, TR, of each of the combiner/splitters with a respective one of the optical receivers. The method may further call for selecting a Fabry-Perot laser as at least one of the optical transmitters.
In another embodiment, an optical network is provided. The network includes an optical fiber; a first plurality of optical transmitters and receivers at a first end of the optical fiber, each optical transmitter and receiver configured to transmit and receive an optical link; a first optical line terminal at a first end of the optical fiber, the first optical line terminal configured to combine or split two optical links of the same wavelength on the same media; a second plurality of optical transmitters and receivers at a second end of the optical link, each optical transmitter and receiver configured to transmit and receive an optical link; a second optical line terminal at a second end of the optical fiber, the second optical line terminal configured to combine or split two optical links of the same wavelength on the same media; a first course wide division multiplex (CWDM) terminal, the first CWDM connected at a first end to the first plurality of optical transmitters and receivers and the first optical line terminal and at a second end to the optical fiber, the first CWDM configured to route optical links bi-directionally between the first plurality of optical transmitters and receivers and the first optical line terminal and the second plurality of optical transmitters and receivers; a second course wide division multiplex (CWDM) terminal, the second CWDM connected at a first end to the second plurality of optical transmitters and receivers and the second optical line terminal and at a second end to the optical fiber, the second CWDM configured to route optical links bi-directionally between the second plurality of optical transmitters and receivers and the second optical line terminal and the first plurality of optical transmitters and receivers.
Each of the first optical line terminal and the second optical line terminal may exhibit a high transmittance ratio, TR, and a low transmittance ratio. The high transmittance ratio, TR, and the low transmittance ratio, TR, may include a combination of ratios that is one of 95/5, 90/10, 85/15, 80/20, 75/25, 70/30 and a ratio therebetween. A combination of the high transmittance ratio, TR, and the low transmittance ratio, TR, may be about 90/10. At least one of the first plurality of optical transmitters and at least one of the second plurality of optical transmitters may be substantially insensitive to optical interference received at the operational wavelength. The optical fiber may be a single-mode optical fiber. The low transmittance ratio, TR, may be associated with each of the optical transmitters. The high transmittance ratio, TR, may be associated with each of the optical receivers.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Disclosed herein are techniques for communicating data with a single band of wavelengths using two separate optical links over a single fiber. The techniques for “same wavelength multiplexing” make use of asymmetrical combining and splitting of the single band of wavelengths. Advantageously, the techniques provide for substantially increased communication capacity over an existing fiber optic system. Prior to discussing the invention in detail, some aspects are introduced.
As discussed herein, the term “wavelength” generally relates to a group of wavelengths used for communicating an optical signal. That is, it is not required that the optical signal be communicated at precisely one wavelength, but that the optical signal is communicated in a group of wavelengths that may be functionally considered as being associated with the optical signal. More specifically, each “wavelength” may actually include a distribution wavelengths. The distribution may be centered around the identified wavelength, or the identified wavelength may simply be within the grouping of wavelengths.
As discussed herein, the term “channel,” “optical link,” and other similar terms generally refer to a single data stream that is communicated over communications equipment.
Referring now to
In this embodiment, a first operator 10 communicates with a second operator 20 over optical media 110. Exemplary optical media 110 includes a single mode optical fiber. The first operator 10 includes equipment that is substantially similar or identical to the equipment maintained by the second operator 20. Alternatively, the equipment of the first operator 10 and second operator 20 may be different. Of course, each of the first operator 10 and the second operator 20 may maintain substantially more equipment than shown here. That is, the equipment shown and described is limited to that which provides for communications according to the teachings herein. Additional equipment and components may be included as desired, but will not be discussed further herein.
More specifically, the first operator 10 includes an optical receiver 122 for a first channel (RX1) and an optical transmitter 124 for a second channel (TX2). The optical receiver 122 and the optical transmitter 124 are optically coupled to a combiner/splitter 120. The optical receiver 122 is optically coupled to the combiner/splitter 120 at receiver port 114. The optical transmitter 124 is optically coupled to the combiner/splitter 120 at transmitter port 116. The combiner/splitter 120 is optically coupled to the optical media 110 at fiber port 112.
Similarly, the second operator 20 includes an optical receiver 126 for the second channel (RX2) and an optical transmitter 102 for the first channel (TX1). The optical receiver 126 and the optical transmitter 102 are optically coupled to a combiner/splitter 118. The optical receiver 126 is optically coupled to the combiner/splitter 118 at receiver port 106. The optical transmitter 102 is optically coupled to the combiner/splitter 120 at transmitter port 104. The combiner/splitter 118 is optically coupled to the optical media 110 at fiber port 108.
It should be noted that the use of “RX” and “TX” nomenclature herein (in particular, with regards to
Each of the combiner/splitters 118, 120 is asymmetric. For example, in the embodiment shown, for the first operator 10, the combiner/splitter 120 has a transmittance ratio, TR, of x0.9 from the fiber port 112 to the receiver port 114. The combiner/splitter 120 has a transmittance ratio, TR, of x0.1 from the transmitter port 116 to the fiber port 112. In this exemplary embodiment, the isolation level between the transmitter port 116 and the receiver port 114 is about 60 dB. In the exemplary embodiment, the transmittance ratios, TR, provide adequate attenuation between the optical transmitters 124, 102 while transmitting adequate energy to respective optical receiver 126, 122.
By appropriately configuring the communication system 100, it is possible to provide for communications where a first signal does not substantially interfere with a second signal. For example, consider a first signal generated for the first channel (TX1). The first signal is generated by the optical transmitter 102. The first signal generated by the optical transmitter 102 will be attenuated when transmitted from the respective transmit port 104 of the combiner/splitter 118 to the fiber port 108. When transmitted through the combiner/splitter 118, the first signal will be attenuated by a low transmittance ratio, TR, (in this case, TR=0.1). When the first signal is received by the opposing combiner/splitter 120, the first signal will be split. A first portion of the first signal will be transmitted from fiber port 112 to the receiver port 114 and on to optical receiver 122, and will be further attenuated by a second, higher, transmittance ratio, TR, (in this case, TR=0.9). Accordingly, the optical energy transmitted by the optical transmitter 102 and reaching the respective optical receiver 122 will be: Energy*(0.1*0.9), or 0.09*Energy.
Similarly, a second portion of the first signal transmitted from fiber port 112 to the receiver port 116 and on to optical transmitter 124 will be further attenuated by a second, lower, transmittance ratio, TR, (in this case, TR=0.1). Accordingly, optical energy transmitted by the optical transmitter 102 and received at the opposing optical transmitter 124 (for TX2) will be: Energy*(0.1*0.1), or 0.01*Energy.
In general, each of the combiner/splitters 118, 120 includes an asymmetric set of transmittance ratios, TR. The asymmetric set of transmittance ratios, TR, includes a low coefficient and a high coefficient.
In the same example, a second signal is generated for the second channel (TX2) by the opposing optical transmitter 124. The second signal generated by the optical transmitter 124 will be attenuated by a low transmittance ratio, TR, (in this case, TR=0.1) when transmitted from the respective transmit port 116 of the combiner/splitter 120 to the fiber port 112. When the second signal is received by the opposing combiner/splitter 118, the second signal will be split. A first portion of the second signal transmitted from fiber port 108 to the receiver port 106 and on to optical receiver 126 will be further attenuated by a second, higher, transmittance ratio, TR, (in this case, TR=0.9). Accordingly, the optical energy transmitted by the optical transmitter and reaching the respective optical receiver 126 will be: Energy*(0.1*0.9), or 0.09*Energy.
Similarly, a second portion of the second signal transmitted from fiber port 108 to the receiver port 104 and on to optical transmitter 102 will be further attenuated by a second, lower, transmittance ratio, TR, (in this case, TR=0.1). Accordingly, optical energy transmitted by the optical transmitter 124 and received at the opposing optical transmitter 102 (for TX1) will be: Energy*(0.1*0.1), or 0.01*Energy.
In other words, by appropriately configuring the pair of combiners/splitters 118, 120, a respective optical receiver 122 will receive adequate optical energy to provide for signal discrimination. At the same time, with an appropriate type of optical transmitter, the opposing optical transmitter 124 does not receive signal energy that is substantial enough to cause interference with optical transmission.
Exemplary components for use as the optical transmitter 102, 124 include Fabry Perot lasers.
In view of the above, bi-directional communications over a single fiber with opposing optical signals that are centered around a single wavelength are achievable.
Selection of appropriate combiner/splitter components may include consideration of length of the optical media 110 (that is, a degree of attenuation within the optical media 110), power of the respective optical transmitters, types of optical transmitters, sensitivity of optical receivers, cost, availability and other such factors.
Optical network 200 further includes a first course wide division multiplex (CWDM) terminal 202. The first CWDM terminal 202 is connected at a first end to the first plurality of optical transmitters and receivers. The first CWDM terminal 202 is configured to route optical links bi-directionally between the first plurality of optical transmitters and receivers and the optical fiber 210. The second CWDM terminal 204 is connected to the second plurality of optical transmitters and receivers and the optical fiber 210. The second CWDM terminal 204 is configured to route optical links bi-directionally between the second plurality of optical transmitters and receivers and the optical fiber 210.
In the exemplary embodiment, the optical network 200 is configured to operate with ten communications channels (TX/RX1, TX/RX2, . . . TX/RX10). The optical network 200 makes use of nine separate wavelengths (λ1, λ2, . . . λ9). Communications channels TX/RX9 and TX/RX10 make use of a single wavelength, λ9.
In this exemplary embodiment, the first coarse wavelength division multiplexing (CWDM) terminal 202 is configured with equipment as may be known in the art for generating, transmitting and receiving optical signals in an optical communications system. Similarly, the second coarse wavelength division multiplexing (CWDM) terminal 204 is configured with equipment as may be known in the art for generating, transmitting and receiving optical signals in an optical communications system.
The first coarse wavelength division multiplexing (CWDM) terminal 202 is also configured with combiner/splitter 206 which is configured to provide for communicating data with a single band of wavelengths (λ9) using two separate optical links (TX/RX9 and TX/RX10) over optical fiber 210. The second coarse wavelength division multiplexing (CWDM) terminal 204 is also configured with combiner/splitter 208 which is configured to provide for communicating data with a single band of wavelengths (λ9) using two separate optical links (TX/RX9 and TX/RX10) over the optical fiber 210.
Having set forth exemplary embodiments, some additional aspects are now introduced.
The teachings herein may be applied in any type of optical communication system and/or architecture deemed appropriate. For example, in some other embodiments of a coarse wavelength division multiplexing (CWDM) system, at least some of the other wavelengths (λ1, λ2, . . . λ8) are used for “same wavelength multiplexing” techniques as provided for with regard to
The optical transmitter may include any device deemed appropriate. Generally, optical transmitters are selected for insensitivity to low levels of optical interference at the operational wavelength of the optical transmitter. That is, in general, each optical transmitter is substantially insensitive to wavelengths received from the opposing optical transmitter (as a result of attenuation by the two combiner/splitter elements in combination with the properties of the optical transmitter). In some embodiments, the optical transmitter includes a Fabry Perot laser. In some other embodiments, the optical transmitter includes a discrete coaxial packaged laser, a small form pluggable (SFP) transceivers, a small form pluggable plus (SFP+) transceivers (if using FP) and other such devices.
The optical receiver may include any device deemed appropriate. Generally, optical receivers are selected for sensitivity to low levels of optical signals at the operational wavelength. In some embodiments, the optical receiver includes any one of a discrete coaxial packaged photodiode, a SFP transceivers, a SFP+ transceivers any other similar device.
Wavelengths may be centered around any wavelength deemed appropriate. For example, wavelengths may be centered about groupings used by conventional optical systems. More specifically, wavelengths selected for use in a communications channel may be centered about any one of 1270, 1310, 1350, 1400, 1480, 1550, and 1630 nm.
Optical combiners/splitters may employ any distribution of transmittance ratios, TR, deemed appropriate. For example, the transmittance ratios, TR, may include high/low combinations such as: 95/5, 90/10, 85/15, 80/20, 75/25, 70/30 and ratios there between.
Other optical devices may be included. For example, a variety of optical couplings and associated components may be included.
The combiner/splitter units selected may operate on any principle deemed appropriate. For example, in some embodiments, the combiner/splitter using polarizing technology. Attenuators, absorbers, reflectors, birefringent elements and other such components may be included within the combiner/splitter (or elsewhere) within the communications system.
The optical media may include a continuous fiber, an optical network, or any other optical system deemed appropriate. It is not required that the optical media be a single, continuous fiber. For example, in some embodiments, at least another splitter may be incorporated. That is, in some embodiments, one combiner/splitter is coupled to one end of the optical media, while an opposing combiner/splitter is coupled to an opposing end of the optical media. In some other embodiments, such as where intermediate couplings, other devices and/or multiple operators are used, one combiner/splitter is coupled to the optical media, while another combiner/splitter is remotely coupled to the optical media.
One set of wavelengths is substantially the same as another set of wavelengths if systems using the wavelengths are functionally adequate in performance.
Various other components may be included and called upon for providing for aspects of the teachings herein. Standards of performance are to be judged by a system designer, manufacturer, user or other similarly interested party. The term “substantial” as used herein generally relates to adequacy of resulting system performance.
When introducing elements of the present invention or the embodiment(s) thereof, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the listed elements.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 14/962,279 filed on Dec. 8, 2015, which claims the benefit of priority to U.S. Provisional Application No. 62/090,658, filed on Dec. 11, 2014, the content of both are relied upon and incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4365865 | Stiles | Dec 1982 | A |
4449246 | Seiler et al. | May 1984 | A |
4573212 | Lipsky | Feb 1986 | A |
4665560 | Lange | May 1987 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Haydon | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
4939852 | Brenner | Jul 1990 | A |
4943136 | Popoff | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5059927 | Cohen | Oct 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5159479 | Takagi | Oct 1992 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi | Nov 1993 | A |
5263108 | Kurokawa et al. | Nov 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5299947 | Barnard | Apr 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5325223 | Bears | Jun 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5343320 | Anderson | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5455592 | Huddle | Oct 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5500763 | Ota | Mar 1996 | A |
5502446 | Denninger | Mar 1996 | A |
5513176 | Dean et al. | Apr 1996 | A |
5519830 | Opoczynski | May 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5583517 | Yokev et al. | Dec 1996 | A |
5598288 | Collar | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5615034 | Hori | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5661582 | Kintis et al. | Aug 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5694232 | Parsay et al. | Dec 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5774789 | van der Kaay et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790606 | Dent | Aug 1998 | A |
5793772 | Burke et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805975 | Green, Sr. et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809422 | Raleigh et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5828658 | Ottersten et al. | Oct 1998 | A |
5832379 | Mallinckrodt | Nov 1998 | A |
5835857 | Otten | Nov 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5859719 | Dentai et al. | Jan 1999 | A |
5862460 | Rich | Jan 1999 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5953670 | Newson | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
5995832 | Mallinckrodt | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006069 | Langston et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6031645 | Ichikawa | Feb 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6049705 | Xue | Apr 2000 | A |
6061161 | Yang et al. | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6112086 | Wala | Aug 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6128477 | Freed | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6198432 | Janky | Mar 2001 | B1 |
6211978 | Wojtunik | Apr 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6236784 | Ido | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6286163 | Trimble | Sep 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6301240 | Slabinski et al. | Oct 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6308085 | Shoki | Oct 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6414624 | Endo et al. | Jul 2002 | B2 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby et al. | Jul 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6459519 | Sasai et al. | Oct 2002 | B1 |
6459989 | Kirkpatrick et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan et al. | Feb 2003 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6553239 | Langston | Apr 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580393 | Holt | Jun 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6598009 | Yang | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6696917 | Heitner et al. | Feb 2004 | B1 |
6697603 | Lovinggood et al. | Feb 2004 | B1 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6714800 | Johnson et al. | Mar 2004 | B2 |
6731880 | Westbrook et al. | May 2004 | B2 |
6745013 | Porter et al. | Jun 2004 | B1 |
6758913 | Tunney et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6771862 | Karnik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6842459 | Binder | Jan 2005 | B1 |
6847856 | Bohannon | Jan 2005 | B1 |
6850510 | Kubler | Feb 2005 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi | Mar 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6882311 | Walker et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6895249 | Gaal | May 2005 | B2 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6914539 | Hoctor et al. | Jul 2005 | B2 |
6915058 | Pons | Jul 2005 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6919858 | Rofougaran | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6933849 | Sawyer | Aug 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6946989 | Vavik | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6967347 | Estes et al. | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
6977502 | Hertz | Dec 2005 | B1 |
7002511 | Ammar et al. | Feb 2006 | B1 |
7006039 | Miyamoto et al. | Feb 2006 | B2 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020473 | Splett | Mar 2006 | B2 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7023382 | Akano | Apr 2006 | B1 |
7024166 | Wallace | Apr 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7035671 | Solum | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7047028 | Cagenius et al. | May 2006 | B2 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7092726 | Shi et al. | Aug 2006 | B2 |
7093985 | Lord et al. | Aug 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7114859 | Tuohimaa et al. | Oct 2006 | B1 |
7123939 | Bird et al. | Oct 2006 | B1 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7160032 | Nagashima et al. | Jan 2007 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Norrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7250907 | Krumm et al. | Jul 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7280011 | Bayar et al. | Oct 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7348843 | Qiu et al. | Mar 2008 | B1 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366150 | Lee et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7412224 | Kotola et al. | Aug 2008 | B2 |
7424228 | Williams et al. | Sep 2008 | B1 |
7429951 | Kennedy, Jr. et al. | Sep 2008 | B2 |
7442679 | Stolle et al. | Oct 2008 | B2 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7453363 | Reynolds | Nov 2008 | B2 |
7454222 | Huang et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7483711 | Burchfiel | Jan 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
7593704 | Pinel et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599672 | Shoji et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7627250 | George et al. | Dec 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks et al. | Jan 2010 | B2 |
7653397 | Pernu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7675936 | Mizutani et al. | Mar 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7697574 | Suematsu et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7715722 | Hoke et al. | May 2010 | B1 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7787823 | George et al. | Aug 2010 | B2 |
7787854 | Conyers et al. | Aug 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7812775 | Babakhani et al. | Oct 2010 | B2 |
7817958 | Scheinert et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7844273 | Scheinert | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848731 | Dianda et al. | Dec 2010 | B1 |
7848770 | Scheinert | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7880677 | Rofougaran et al. | Feb 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7912506 | Lovberg et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7929940 | Dianda et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7948897 | Stuart et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7990925 | Tinnakornsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8023886 | Rofougaran | Sep 2011 | B2 |
8027656 | Rofougaran et al. | Sep 2011 | B2 |
8031121 | Rofougaran et al. | Oct 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8107464 | Schmidt et al. | Jan 2012 | B2 |
8174428 | Wegener | May 2012 | B2 |
8274929 | Schmidt et al. | Sep 2012 | B2 |
8275265 | Kobyakov et al. | Sep 2012 | B2 |
8279800 | Schmidt et al. | Oct 2012 | B2 |
8310963 | Singh | Nov 2012 | B2 |
8346091 | Kummetz et al. | Jan 2013 | B2 |
8422884 | Mao | Apr 2013 | B2 |
8467823 | Seki et al. | Jun 2013 | B2 |
8548330 | Berlin et al. | Oct 2013 | B2 |
8548526 | Schmidt et al. | Oct 2013 | B2 |
8583100 | Koziy et al. | Nov 2013 | B2 |
8599794 | Ahmadi | Dec 2013 | B2 |
8634766 | Hobbs et al. | Jan 2014 | B2 |
8676214 | Fischer et al. | Mar 2014 | B2 |
8681917 | McAllister et al. | Mar 2014 | B2 |
8693342 | Uyehara et al. | Apr 2014 | B2 |
8694034 | Notargiacomo | Apr 2014 | B2 |
8699881 | Iannone | Apr 2014 | B1 |
8699982 | Singh | Apr 2014 | B2 |
8737300 | Stapleton et al. | May 2014 | B2 |
8792933 | Chen | Jul 2014 | B2 |
8873585 | Oren et al. | Oct 2014 | B2 |
8908607 | Kummetz et al. | Dec 2014 | B2 |
8913892 | Berlin et al. | Dec 2014 | B2 |
8948816 | Fischer et al. | Feb 2015 | B2 |
8958789 | Bauman et al. | Feb 2015 | B2 |
8976067 | Fischer | Mar 2015 | B2 |
9001811 | Wala et al. | Apr 2015 | B2 |
9130613 | Oren et al. | Sep 2015 | B2 |
9258052 | George | Feb 2016 | B2 |
9432095 | Berlin et al. | Aug 2016 | B2 |
9525472 | George et al. | Dec 2016 | B2 |
9531452 | George et al. | Dec 2016 | B2 |
20010036199 | Terry | Nov 2001 | A1 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020009070 | Lindsay et al. | Jan 2002 | A1 |
20020012495 | Sasai et al. | Jan 2002 | A1 |
20020048071 | Suzuki et al. | Apr 2002 | A1 |
20020051434 | Ozluturk et al. | May 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020111149 | Shoki | Aug 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Amon et al. | Aug 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020128009 | Boch et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20030002604 | Fifield et al. | Jan 2003 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030112826 | Ashwood Smith et al. | Jun 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040033076 | Song | Feb 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040068751 | Basawapatna et al. | Apr 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040102196 | Weckstrom et al. | May 2004 | A1 |
20040105435 | Morioka | Jun 2004 | A1 |
20040126068 | Van Bijsterveld | Jul 2004 | A1 |
20040126107 | Jay et al. | Jul 2004 | A1 |
20040139477 | Russell et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162084 | Wang | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040164902 | Karlsson et al. | Aug 2004 | A1 |
20040165568 | Weinstein | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040175173 | Deas | Sep 2004 | A1 |
20040196404 | Loheit et al. | Oct 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203703 | Fischer | Oct 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040208643 | Roberts et al. | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20050041693 | Priotti | Feb 2005 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050123232 | Piede et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050176458 | Shklarsky et al. | Aug 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050269930 | Shimizu et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060025101 | Li | Feb 2006 | A1 |
20060028352 | McNamara et al. | Feb 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060046662 | Moulsley et al. | Mar 2006 | A1 |
20060056283 | Anikhindi et al. | Mar 2006 | A1 |
20060056327 | Coersmeier | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060063494 | Zhang et al. | Mar 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060120395 | Xing et al. | Jun 2006 | A1 |
20060128425 | Rooyen | Jun 2006 | A1 |
20060159388 | Kawase et al. | Jul 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189280 | Goldberg | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060203836 | Kim | Sep 2006 | A1 |
20060217132 | Drummond-Murray et al. | Sep 2006 | A1 |
20060223439 | Pinel et al. | Oct 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060262014 | Shemesh et al. | Nov 2006 | A1 |
20060268738 | Goerke et al. | Nov 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20060276227 | Dravida | Dec 2006 | A1 |
20070008939 | Fischer | Jan 2007 | A1 |
20070009266 | Bothwell | Jan 2007 | A1 |
20070040687 | Reynolds | Feb 2007 | A1 |
20070054682 | Fanning et al. | Mar 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070071128 | Meir et al. | Mar 2007 | A1 |
20070072646 | Kuwahara et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070099578 | Adeney et al. | May 2007 | A1 |
20070104165 | Hanaoka et al. | May 2007 | A1 |
20070135169 | Sychaleun et al. | Jun 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070155314 | Mohebbi | Jul 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070173288 | Skarby et al. | Jul 2007 | A1 |
20070182626 | Samavati et al. | Aug 2007 | A1 |
20070184841 | Choi et al. | Aug 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070243899 | Hermel et al. | Oct 2007 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070257796 | Easton et al. | Nov 2007 | A1 |
20070264009 | Sabat, Jr. et al. | Nov 2007 | A1 |
20070264011 | Sone et al. | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20070280159 | Liu et al. | Dec 2007 | A1 |
20070280370 | Liu | Dec 2007 | A1 |
20070292143 | Yu et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080005219 | Nabar et al. | Jan 2008 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080008134 | Satou et al. | Jan 2008 | A1 |
20080013473 | Proctor, Jr. et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080043714 | Pernu | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080063397 | Hu et al. | Mar 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080084951 | Chen et al. | Apr 2008 | A1 |
20080089692 | Sorin | Apr 2008 | A1 |
20080089699 | Li | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080107202 | Lee et al. | May 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080129594 | Pera et al. | Jun 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232305 | Oren et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080233967 | Montojo et al. | Sep 2008 | A1 |
20080247716 | Thomas | Oct 2008 | A1 |
20080253280 | Tang et al. | Oct 2008 | A1 |
20080253351 | Pernu et al. | Oct 2008 | A1 |
20080253773 | Zheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268766 | Narkmon et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080279137 | Pernu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291818 | Leisten | Nov 2008 | A1 |
20080291830 | Pernu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310464 | Schneider | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20080311876 | Leenaerts et al. | Dec 2008 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090061939 | Andersson et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090087179 | Underwood et al. | Apr 2009 | A1 |
20090088071 | Rofougaran | Apr 2009 | A1 |
20090092073 | Doppler et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090141780 | Cruz-Albrecht et al. | Jun 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090180407 | Sabat et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090239521 | Mohebbi | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090247109 | Rofougaran | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252204 | Shatara et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090278596 | Rofougaran et al. | Nov 2009 | A1 |
20090279593 | Rofougaran et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20090316609 | Singh | Dec 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100142598 | Murray et al. | Jun 2010 | A1 |
20100142955 | Yu et al. | Jun 2010 | A1 |
20100144285 | Behzad et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100150060 | Vitek | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100159859 | Rofougaran | Jun 2010 | A1 |
20100188998 | Pernu et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225520 | Mohamadi et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246541 | Kim | Sep 2010 | A9 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100261501 | Behzad et al. | Oct 2010 | A1 |
20100265874 | Palanki et al. | Oct 2010 | A1 |
20100284323 | Tang et al. | Nov 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110008042 | Stewart | Jan 2011 | A1 |
20110013904 | Khermosh | Jan 2011 | A1 |
20110019999 | George et al. | Jan 2011 | A1 |
20110021146 | Pernu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110026932 | Yeh et al. | Feb 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110066774 | Rofougaran | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110122912 | Benjamin et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110135308 | Tarlazzi et al. | Jun 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110200325 | Kobyakov et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110206383 | Chien et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222616 | Jiang et al. | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110223958 | Chen et al. | Sep 2011 | A1 |
20110223960 | Chen et al. | Sep 2011 | A1 |
20110223961 | Chen et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110243201 | Phillips et al. | Oct 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110268446 | Cune et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110274433 | Presi | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20110305284 | Mueck et al. | Dec 2011 | A1 |
20120002750 | Hooli et al. | Jan 2012 | A1 |
20120046039 | Hagerman et al. | Feb 2012 | A1 |
20120087670 | Han et al. | Apr 2012 | A1 |
20120140660 | Kang et al. | Jun 2012 | A1 |
20120170542 | Zangi | Jul 2012 | A1 |
20120177026 | Uyehara et al. | Jul 2012 | A1 |
20120208581 | Ishida et al. | Aug 2012 | A1 |
20120213111 | Shimezawa et al. | Aug 2012 | A1 |
20120243513 | Fujishima et al. | Sep 2012 | A1 |
20120281565 | Sauer | Nov 2012 | A1 |
20120314797 | Kummetz et al. | Dec 2012 | A1 |
20120327800 | Kim et al. | Dec 2012 | A1 |
20130017863 | Kummetz et al. | Jan 2013 | A1 |
20130095875 | Reuven | Apr 2013 | A1 |
20130101005 | Aryanfar | Apr 2013 | A1 |
20130150063 | Berlin et al. | Jun 2013 | A1 |
20130195000 | Shen et al. | Aug 2013 | A1 |
20130235962 | O'Keefe et al. | Sep 2013 | A1 |
20130343765 | Rohde | Dec 2013 | A1 |
20140078920 | Tandra et al. | Mar 2014 | A1 |
20140126914 | Berlin et al. | May 2014 | A1 |
20140211875 | Berlin et al. | Jul 2014 | A1 |
20140226698 | Negus et al. | Aug 2014 | A1 |
20140269859 | Hanson et al. | Sep 2014 | A1 |
20140314061 | Trajkovic et al. | Oct 2014 | A1 |
20150003565 | George et al. | Jan 2015 | A1 |
20150023283 | Liu et al. | Jan 2015 | A1 |
20150098351 | Zavadsky et al. | Apr 2015 | A1 |
20150098372 | Zavadsky et al. | Apr 2015 | A1 |
20150098419 | Zavadsky et al. | Apr 2015 | A1 |
20150256237 | George et al. | Sep 2015 | A1 |
20160036505 | George et al. | Feb 2016 | A1 |
20160134348 | George et al. | May 2016 | A1 |
20160173223 | Rosenfelder et al. | Jun 2016 | A1 |
20170093472 | George et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Feb 1998 | CA |
2242707 | Jan 1999 | CA |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0355328 | Feb 1990 | EP |
0477952 | Apr 1992 | EP |
0477952 | Apr 1992 | EP |
0709974 | May 1996 | EP |
0461583 | Mar 1997 | EP |
851618 | Jul 1998 | EP |
0687400 | Nov 1998 | EP |
0938204 | Aug 1999 | EP |
0993124 | Apr 2000 | EP |
1037411 | Sep 2000 | EP |
1085684 | Mar 2001 | EP |
1179895 | Feb 2002 | EP |
1267447 | Dec 2002 | EP |
1347584 | Sep 2003 | EP |
1363352 | Nov 2003 | EP |
1391897 | Feb 2004 | EP |
1443687 | Aug 2004 | EP |
1455550 | Sep 2004 | EP |
1501206 | Jan 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1267447 | Aug 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1227605 | Jan 2008 | EP |
1954019 | Aug 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2219310 | Aug 2010 | EP |
2313020 | Nov 1997 | GB |
2323252 | Sep 1998 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
H4189036 | Jul 1992 | JP |
05252559 | Sep 1993 | JP |
05260018 | Oct 1993 | JP |
05327569 | Dec 1993 | JP |
05327576 | Dec 1993 | JP |
09083450 | Mar 1997 | JP |
09162810 | Jun 1997 | JP |
09200840 | Jul 1997 | JP |
11068675 | Mar 1999 | JP |
2000152300 | May 2000 | JP |
2000341744 | Dec 2000 | JP |
2002264617 | Sep 2002 | JP |
2002353813 | Dec 2002 | JP |
2003148653 | May 2003 | JP |
2003172827 | Jun 2003 | JP |
2004172734 | Jun 2004 | JP |
2004245963 | Sep 2004 | JP |
2004247090 | Sep 2004 | JP |
2004264901 | Sep 2004 | JP |
2004265624 | Sep 2004 | JP |
2004317737 | Nov 2004 | JP |
2004349184 | Dec 2004 | JP |
2005018175 | Jan 2005 | JP |
2005087135 | Apr 2005 | JP |
2005134125 | May 2005 | JP |
2007228603 | Sep 2007 | JP |
2008172597 | Jul 2008 | JP |
20010055088 | Jul 2001 | KR |
20110087949 | Aug 2011 | KR |
9603823 | Feb 1996 | WO |
9613102 | May 1996 | WO |
9804054 | Jan 1998 | WO |
9810600 | Mar 1998 | WO |
00042721 | Jul 2000 | WO |
0072475 | Nov 2000 | WO |
0178434 | Oct 2001 | WO |
0184760 | Nov 2001 | WO |
0186755 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
0230141 | Apr 2002 | WO |
02091618 | Nov 2002 | WO |
02102102 | Dec 2002 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004056019 | Jul 2004 | WO |
2004059934 | Jul 2004 | WO |
2004086795 | Oct 2004 | WO |
2004093471 | Oct 2004 | WO |
2004107783 | Dec 2004 | WO |
2005062505 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
2005073897 | Aug 2005 | WO |
2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005111959 | Nov 2005 | WO |
2006011778 | Feb 2006 | WO |
2006018592 | Feb 2006 | WO |
2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006051262 | May 2006 | WO |
2006060754 | Jun 2006 | WO |
2006094441 | Sep 2006 | WO |
2006105185 | Oct 2006 | WO |
2006133609 | Dec 2006 | WO |
2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
2007075579 | Jul 2007 | WO |
2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
2007091026 | Aug 2007 | WO |
2007133630 | Nov 2007 | WO |
2008008249 | Jan 2008 | WO |
2008027213 | Mar 2008 | WO |
2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
2008116014 | Sep 2008 | WO |
2006046088 | May 2009 | WO |
2009100395 | Aug 2009 | WO |
2009100396 | Aug 2009 | WO |
2009100397 | Aug 2009 | WO |
2009100398 | Aug 2009 | WO |
2010087919 | Aug 2010 | WO |
2010090999 | Aug 2010 | WO |
2010132739 | Nov 2010 | WO |
2011005162 | Jan 2011 | WO |
2011043172 | Apr 2011 | WO |
2011100095 | Aug 2011 | WO |
2011112373 | Sep 2011 | WO |
2011139939 | Nov 2011 | WO |
2011158302 | Dec 2011 | WO |
2011160117 | Dec 2011 | WO |
2012024345 | Feb 2012 | WO |
2012054553 | Apr 2012 | WO |
2012148256 | Nov 2012 | WO |
2012148938 | Nov 2012 | WO |
2012148940 | Nov 2012 | WO |
2012170865 | Dec 2012 | WO |
2013009283 | Jan 2013 | WO |
2013009835 | Jan 2013 | WO |
2014070236 | May 2014 | WO |
2014082070 | May 2014 | WO |
2014082072 | May 2014 | WO |
2014082075 | May 2014 | WO |
2014144314 | Sep 2014 | WO |
2015054162 | Apr 2015 | WO |
2015054164 | Apr 2015 | WO |
2015054165 | Apr 2015 | WO |
Entry |
---|
Examination Report for European patent application 10702806.0 dated Sep. 12, 2013, 11 pages. |
Non-final Office Action for U.S. Appl. No. 13/194,429 dated Mar. 1, 2013, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/194,429 dated Jul. 9, 2013, 9 pages. |
International Search Report for PCT/US2011/043405 dated Apr. 25, 2012, 4 pages. |
Non-final Office Action for U.S. Appl. No. 11/958,062 dated Nov. 6, 2013, 16 pages. |
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3. |
International Search Report and Written Opinion for PCT/US2007/025855 dated Mar. 19, 2008, 14 pages. |
International Preliminary Report on Patentability for PCT/US2007/025855 dated Jul. 2, 2009, 9 pages. |
Bahl et al. “Enhancements to the RADAR User Location and Tracking System,” Microsoft Research Technical Report, Feb. 2000, pp. 1-13. |
Frikel et al, “A Robust Mobile Positioning Algorithm,” EURASIP Proceedings, ISCCSP 2006, pp. 1-4. |
Pahlavan et al, “An Overview of Wireless Indoor Geolocation Techniques and Systems,” LNCS 1818, pp. 1-13, 2000. |
Wann et al, “Hybrid TDOA/AOA Indoor Positioning and Tracking Using Extended Kalman Filters,” 63rd IEEE VTC 2006, pp. 1058-1062. |
Ibernon-Fernandez, R., et al., “Comparison Between Measurements and Simulations of Conventional and Distributed MIMO System,” IEEE Antennas and Wireless Propagation Letters, vol. 7, Aug. 2008, pp. 546-549. |
Tarlazzi L, et al., “Characterization of an Interleaved F-DAS MIMO Indoor Propagation Channel,” Loughborough Antennas & Propagation Conference, Nov. 2010, Loughborough, United Kingdom, IEEE, pp. 505-508. |
Tolli, Antti, “Resource Management in Cooperative MIMO-OFDM Cellular Systems,” Academic Dissertation—ACTA Universitatis Ouluensis, No. C Technica 296, Apr. 11, 2008, pp. 1-198 |
Vitucci, E.M., et al., “Analysis of the Performance of LTE Systems in an Interleaved F-DAS MIMO Indoor Environment,” Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Apr. 11-15, 2011, Rome, Italy, IEEE, pp. 2184-2186. |
Wei, Xinning, et al., “Cooperative communication with partial channel-state information in multiuser MIMO systems,” International Journal of Electronics and Communications, vol. 65, No. 4, Apr. 2011 (available online May 15, 2010), Elsevier GmbH, pp. 349-360. |
International Search Report for PCT/US2013/070489 dated Feb. 24, 2014, 4 pages. |
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages. |
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages. |
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages. |
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages. |
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages. |
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613. |
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages. |
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages. |
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages. |
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967. |
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages. |
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209. |
Advisory Action for U.S. Appl. No. 12/712,758 dated Sep. 16, 2013, 3 pages. |
Final Office Action for U.S. Appl. No. 12/712,758 dated May 24, 2013, 17 pages. |
Non-final Office Action for U.S. Appl. No. 12/712,758 dated Jan. 10, 2012, 14 pages. |
Examination Report for European patent application 07835803.3 dated Aug. 13, 2013, 6 pages. |
Extended European Search Report for patent application 10014262.9 dated Mar. 14, 2011, 6 pages. |
International Search Report and Written Opinion for PCT/US2012/034853 dated Aug. 6, 2012, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/034855 dated Jul. 26, 2012, 10 pages. |
Written Opinion of the International Searching Authority for European patent application 11701916.6 dated Sep. 21, 2012, 10 pages. |
International Search Report for PCT/US2011/021799 dated Apr. 6, 2011, 4 pages. |
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages. |
Hansryd, Jonas et al., “Microwave capacity evolution,” Ericsson Review, Jun. 21, 2011, 6 pages. |
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041. |
Examination Report for European Patent Application No. 11733965.5 dated Oct. 10, 2014, 6 pages. |
International Search Report for PCT/US2013/034328 dated Jul. 3, 2013, 5 pages. |
International Preliminary Report on Patentability for PCT/US2013/034328 dated Oct. 1, 2014, 8 pages. |
Non-final Office Action for U.S. Appl. No. 13/598,078 dated Dec. 22, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/078,949 dated Sep. 10, 2015, 29 pages. |
Notice of Allowance for U.S. Appl. No. 13/598,078 dated May 12, 2015, 8 pages. |
Non-final Office Action for U.S. Appl. No. 14/148,908 dated May 22, 2015, 20 pages. |
Notice of Allowance for U.S. Appl. No. 14/242,139 dated Oct. 22, 2014, 12 pages. |
Diehm, et al., “The FUTON Prototype: Broadband Communication through Coordinated Multi-Point using a Novel Integrated Optical/Wireless Architecture,” Presented at Globecom Workshops, Dec. 6-10, 2010, Miami, Florida, IEEE, pp. 757-762. |
Fan, Shu-Hao et al., “Spectrally Efficient 60-GHz xy-MIMO Data Transport over a Radio-Over-Fiber System for Gigabit Wireless Local Area Networks,” Presented at IEEE Global Telecommunications Conference, Dec. 6-10, 2010, Miami, Florida, IEEE, 4 pages. |
Lee et al., “Evaluation of 60 GHz MIMO Channel Capacity in the Conference Room STA-STA Scenario,” Vehicular Technology Conference (VTC Sping), 2011 IEEE 73rd, pp. 1-5, May 15-18, 2011. |
Sheldon, C. et al., “A 60GHz Line-of-Sight 2×2 MIMO Link Operating at 1.2 Gbps,” Presented at Antennas and Propogation Society International Symposium, Jul. 5-11, 2008, San Diego, California, IEEE, 4 pages. |
Written Opinion for European Patent Application No. 13798863.0 dated Aug. 6, 2015, 10 pages. |
Non-final Office Action for U.S. Appl. No. 14/487,232 dated Jun. 23, 2015, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/227,108 dated Nov. 18, 2015, 8 pages. |
Final Office Action for U.S. Appl. No. 14/487,232 dated Oct. 15, 2015, 7 pages. |
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages. |
Heath, Robert, et al., “Multiuser MIMO in Distributed Antenna Systems with Out-of-Cell Interference,” IEEE Transactions on Signal Processing, vol. 59, Issue 10, Oct. 2011, IEEE, 4885-4899. |
Notice of Allowance for U.S. Appl. No. 14/078,949 dated Feb. 3, 2016, 9 pages. |
Non-final Office Action for U.S. Appl. No. 14/079,977 dated Mar. 4, 2016, 21 pages. |
Notice of Allowance for U.S. Appl. No. 14/079,977 dated Apr. 29, 2016, 8 pages. |
Non-final Office Action for U.S. Appl. No. 14/447,014 dated Jan. 20, 2016, 6 pages. |
Non-final Office Action for U.S. Appl. No. 14/721,357, dated Jan. 4, 2016, 10 pages. |
Final Office Action for U.S. Appl. No. 14/721,357 dated Mar. 1, 2016, 12 pages. |
Advisory Action for U.S. Appl. No. 14/721,357, dated Jun. 30, 2016, 3 pages. |
Notice of Allowance for U.S. Appl. No. 14/721,357, dated Aug. 16, 2016, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/962,279, dated Jan. 27, 2017, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/997,694, dated Feb. 8, 2017, 16 pages. |
Notice of Allowance for U.S. Appl. No. 14/962,279, dated May 12, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/997,694, dated Jul. 5, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/271,843, dated Jun. 21, 2017, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 15/372,490, dated Aug. 21, 2017, 9 pages. |
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710. |
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168. |
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985. |
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208. |
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011. |
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58. |
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages. |
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages. |
International Search Report and Written Opinion for International patent application PCT/US2007/013802 dated May 8, 2008, 12 pages. |
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages. |
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages. |
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282. |
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118. |
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751. |
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480. |
Second Office Action for Chinese patent application 20078002293.6 dated Aug. 30, 2012, 10 pages. |
International Search Report for PCT/US2010/022847 dated Jul. 12, 2010, 3 pages. |
International Search Report for PCT/US2010/022857 dated Jun. 18, 2010, 3 pages. |
Decision on Appeal for U.S. Appl. No. 11/451,237 dated Mar. 19, 2013, 7 pages. |
Decision on Rejection for Chinese patent application 200780022093.6 dated Feb. 5, 2013, 9 pages. |
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56. |
Final Office Action for U.S. Appl. No. 15/271,843, dated Feb. 7, 2018, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20170324505 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62090658 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14962279 | Dec 2015 | US |
Child | 15655228 | US |