The invention relates to a multipoint injector intended to be mounted in an injection system fixed to a combustion chamber housing of a turbomachine, such as an aircraft engine. It relates more particularly to the structure of such an injector and, in particular, the part of the structure dedicated to supplying the pilot circuit and multipoint circuit and to the cooling thereof.
Fuel injectors known as “multipoint” fuel injectors are a new generation of injectors which make it possible to adapt to different speeds of the turbomachine. Each injector is provided with two fuel circuits: that known as the “pilot” circuit which has a continuous flow optimized for low speeds and that known as the “multipoint” circuit which has an intermittent flow optimized for high speeds. The multipoint circuit is used when it is necessary to have additional thrust from the engine, in particular in the cruising and take-off phases of the aircraft.
At raised temperatures, the intermittent operation of the multipoint circuit has the major drawback of causing decomposition, otherwise known as coking, of the fuel stagnating inside the multipoint circuit when the flow thereof is considerably reduced, or even cut off. To eliminate this risk of coking, it is known to use the fuel circulating in the pilot circuit as cooling fluid for the fuel stagnating in the multipoint circuit.
Unfortunately, until now, the structure of the existing multipoint injectors has been such that the two pilot and multipoint circuits overlap one another. More specifically, such overlapping does not allow the cooling to be achieved in a satisfactorily uniform manner.
The object of the invention is, therefore, to propose a new design of multipoint injector making it possible to obtain uniform cooling of the fuel stagnating inside the multipoint circuit.
To this end, the invention relates to a multipoint-type fuel injector, intended to be mounted in a combustion chamber injection system, comprising:
By the term “arranged in a zone diametrically opposing the circulation channels” must be understood that the admission chamber is arranged on an angular section diametrically opposed to the angular section in which the circulation channels open out into the baffles. For example, when the injector comprises a single multipoint circulation channel, which extends opposite the supply arm, the admission chamber is arranged at least partially along the diameter of the ferrule passing through the multipoint circulation channel.
Thus, as a result of a concentric and continuous arrangement of the peripheral cooling baffles which open out opposite the inlet of the pilot fuel used as cooling fluid of the multipoint fuel, uniform cooling is ensured both by the length of circulation of the pilot fuel and by the exchange surfaces between the two pilot and multipoint circuits.
Moreover, with a continuous central baffle, the circulation of the multipoint fuel is uniform.
According to an advantageous embodiment, the first and second ferrules each consist of a one-piece machined part, with at least one part in the form of a first hollow cylindrical ring, the baffles being formed by said first hollow cylindrical ring and a second cylindrical ring housed inside and soldered to the first cylindrical ring and of which the base is perforated by channels opposite the multipoint channels, in order to control the cooling/supply rate, in the pilot injection channels. Until now, the baffles were made by machining, essentially by electroerosion, directly and partially in one of the two one-piece ferrules. More specifically, this direct machining in a one-piece part does not allow grooves of low height to be formed, i.e. baffles of low height. The sections of the baffles and thus of the circuits machined directly in one piece may thus be adapted according to the desired flow and velocity. Machining two hollow cylindrical rings of different section, then housing one thereof in the other and finally soldering them together makes it possible to obtain sections of very precise dimensions. Thus, it is possible to adapt said sections easily to the desired fuel flow and/or velocity. Moreover, conventional techniques of machining may be used without resorting to machining by electroerosion.
In other words, separating the external ring into two separate parts makes it possible to control the geometry of the baffles and thus the rate of cooling/supply of the pilot injection.
According to an advantageous embodiment, the admission chamber is formed in the first ferrule and communicates with the injection nozzle by means of a pipe not passing through the swirlers or any space separating them. Thus according to this embodiment, the pilot circuit is connected to the injection nozzle by means of the exterior of the injection head. This makes it possible to dispense with the perforation of additional channels in the swirlers as currently implemented. This also makes it possible to obtain further configurations of the multipoint injector with fine swirlers and/or swirlers of the multi-swirler type, i.e. with a plurality of swirler stages. More specifically, in these configurations of the injector, it is not possible to perforate the swirlers or to pass through a plurality of stages.
Preferably, the pipe is connected, on the one hand, to the part of the admission chamber opposite the part opening out from the peripheral baffles and, on the other hand, to the part of the hub of the stage of swirlers opposite and in communication with the housing of the injection nozzle.
Further preferably, the pipe is a tube bent in a U-shape, of which one of the branches connected to the hub of the stage of swirlers extends along the axis of the injection nozzle and the other of the branches connected in parallel to the admission chamber extending in parallel to the axis of the injection nozzle. Thus a connection is obtained which has a small spatial requirement and which does not prevent or hardly prevents the entry of air onto the swirlers. The use of a bent and soldered tube is furthermore easy to implement and cost-effective.
In order to supply individually the baffles, the injector may further comprise a one-piece part forming a fuel distributor, the distributor comprising:
Preferably, the body of the distributor is perforated by four separate channels, two thereof each communicating with a pilot circulation channel of the first ferrule, itself opening out onto the external peripheral baffle and of which the two further baffles each communicate with a pilot circulation channel of the first ferrule, itself opening onto the internal peripheral baffle.
According to a variant, the swirlers of each stage are swirlers arranged in a helical manner relative to the axis of the injector and of uniform thickness over the width of the stage.
As a result of the invention, it is further possible to implement any thickness of swirler.
According to a further variant, there are two stages of swirlers interlocked with said peripheral stage, itself interlocked in the internal opening of the second ferrule.
The invention also relates to a combustion chamber for a turbomachine comprising at least one multipoint injector as disclosed above.
The invention also relates to a turbomachine comprising a combustion chamber to which an injector is fixed as disclosed above, mounted in an injection system, itself fixed to the combustion chamber.
The invention also relates to a method of manufacturing a ferrule intended to be assembled in a multipoint fuel injector, according to which multipoint injection channels are perforated on the periphery of the ferrule, characterized in that the following steps are implemented:
Such a method which uses soldering of two one-piece parts to one another and the previous machining thereof makes it possible, therefore, to create sections of the cooling circuit of the multipoint fuel which are of dimensions which may be easily controlled.
The invention finally relates to a method of manufacturing a multipoint fuel injector comprising a first ferrule and a second ferrule manufactured as above, characterized in that the following steps are implemented:
Further advantages and features will emerge more clearly from reading the detailed description given below by way of indication and made with reference to the following figures:
A part of the combustion chamber 1 of a turbomachine is shown in
Each multipoint injector 3 essentially comprises an arm for supplying fuel 30, one or more swirler stages 31 permitting, as do the swirlers 23 of the injection system, air to be introduced with a gyrating movement, a fuel injection nozzle 32 positioned on the axis I-I′ of the injector 3 and a network 33 of n fuel injection orifices 330 perforated on the periphery of the injector 3 (
A multipoint injector 3 is thus designed to have, on the one hand, a fuel injection nozzle 32 arranged along its axis which injects fuel at a constant rate, generally optimized for low engine speeds and, on the other hand, multipoint orifices 330 perforated on the periphery of the injector and which inject fuel at an intermittent rate for high engine speeds, for example those required during take off of an aircraft equipped with the engine. In current designs, as explained below, the fuel circuit provided to supply the injection nozzle 32 and denoted “pilot circuit” is also used to cool the fuel circuit provided to supply the multipoint orifices 330 and denoted “multipoint circuit”. More specifically, since this multipoint circuit is intended to provide fuel intermittently, fuel stagnates inside said circuit and a risk of coking or fouling of this stagnating fuel remains. Cooling the multipoint circuit continuously by the pilot circuit has, therefore, the purpose of avoiding any risk of fuel coking.
As currently implemented (
As currently implemented, the bodies of the first 34 and second 35 ferrules are interlocked such that their internal openings and external diameters mutually overlap at least partially. Their overlapping defines a hollow volume comprising at least three concentric baffles of which the central baffle 360 opens out onto the multipoint channels 351 and the other peripheral baffles 361, 362 are adapted to circulate fuel around the central baffle 360 in order to cool the fuel supplying the multipoint channels 351, and then in order to supply the injection nozzle 32 (
However, with the current design (
Thus, the current structure of a multipoint injector 3 does not allow perfect uniformity to be achieved in the cooling of the multipoint fuel circulating in the central baffle 360. More specifically, the pilot fuel circulates either by following a spiral path (
According to the invention, completely uniform cooling of the multipoint fuel circuit is obtained by means of the fuel circuit. To achieve this, on the one hand, the three concentric baffles 360, 361, 362 are continuous over their entire circumference (
Thus the baffles 360, 361, 362 both of the pilot fuel circuit and of the multipoint fuel circuit are concentric solid rings, resulting in the uniform cooling. In other words, the baffles 360, 361, 362 do not communicate with one another, which simplifies their geometry. Thus it is possible to produce said baffles by conventional machining.
As illustrated in
According to a preferred manufacturing method, the ferrule 35 is a one-piece part machined to form the hollow cylindrical ring 350, the other ring 380 also being a one-piece part 38 of dimensions adapted to be housed inside the large hollow cylindrical ring and machined. The two bases 380a are sealingly soldered to one another, then perforated simultaneously in order to obtain the multipoint injection channels 351, 3800. To obtain the first ferrule 34, a one-piece part is produced comprising a large solid cylindrical ring 343 and a small solid cylindrical ring 344 projecting axially relative to the large ring 343, the pilot 342p and multipoint 342m circulation channels are perforated in the solid cylindrical rings 343, 344, then the diameters of the solid perforated cylindrical rings 343, 344 are machined. Thus the first ferrule 34 is interlocked in the second ferrule 35, so as to achieve overlapping both between the large, solid and hollow rings 343, 350 and between the small, solid and hollow rings 344, 380, then the rings 343, 350, 344, 380 are sealingly soldered to one another.
According to the variant of
The swirlers of each stage 31, 31a may thus be swirlers 31 arranged in a helical manner relative to the axis I-I′ of the injector and of uniform thickness over the width of the stage and advantageously reduced to a minimum. The injector 3 may comprise two stages 31, 31a of swirlers interlocked with said peripheral stage, itself interlocked in the internal opening of the ferrule 35 (
In order to obtain separate circulation channels 342, a separate supply has to be produced upstream in the fuel supply. Thus a one-piece part 4 is provided forming a fuel distributor of which the body 40 is soldered to the inside of the connection 340 of the ferrule 34 and perforated by at least two separate channels 400, 401, 402, 403 each communicating, on the one hand, with the inside of the arm 30 connected to the pilot supply circuit and, on the other hand, with at least one pilot circulation channel 342p, perforated in the ferrule 34. The distributor 4 also comprises a duct 41 which extends inside the arm 30 and which is connected, on the one hand, to the multipoint supply circuit and, on the other hand, to a multipoint circulation channel 342m perforated in the first ferrule 34.
According to an advantageous variant of
It goes without saying that further modifications may be implemented without departing further from the scope of the invention, namely to propose continuous cooling baffles which do not communicate with one another and which are arranged concentrically with the central multipoint baffle which is also continuous.
Thus a second ferrule 35 has been shown in the form of a one-piece part (
A ferrule without venturis naturally falls within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
07 57025 | Aug 2007 | FR | national |
This application is a division of U.S. application Ser. No. 12/185,451 filed Aug. 4, 2008, the entire contents of which is incorporated herein by reference. U.S. application Ser. No. 12/185,451 is based upon and claims the benefit of priority from prior French Application No. 0757025 filed Aug. 10, 2007.
Number | Name | Date | Kind |
---|---|---|---|
6523350 | Mancini et al. | Feb 2003 | B1 |
20070157616 | Hernandez et al. | Jul 2007 | A1 |
20070169486 | Hernandez et al. | Jul 2007 | A1 |
20100115955 | Goeke et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
1 806 536 | Jul 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20120186083 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12185451 | Aug 2008 | US |
Child | 13428932 | US |