The disclosure is directed to devices providing at least one optical connection port along with methods for making the same. More specifically, the disclosure is directed to devices such as terminals or multiports comprising a connection port with a sliding actuator that engages a securing member associated with the connection port for securing an optical connector along with methods of making the same.
Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating deeper into communication networks such as in fiber to the premises applications such as FTTx, 5G and the like. As optical fiber extended deeper into communication networks the need for making robust optical connections in outdoor applications in a quick and easy manner was apparent. To address this need for making quick, reliable, and robust optical connections in communication networks hardened fiber optic connectors such as the OptiTap® plug connector were developed.
Multiports were also developed for making one or more optical connections with hardened connectors such as the OptiTap. Prior art multiports have a plurality of receptacles mounted through a wall of the housing for protecting an indoor connector inside the housing that makes an optical connection to the external hardened connector of the branch or drop cable.
Illustratively,
Although, the housing 3 of the prior art multiport 1 is rugged and weatherable for outdoor deployments, the housings 3 of multiport 1 are relatively bulky for mounting multiple receptacles 7 for the hardened connector on the housing 3. Receptacles 7 allow an optical connection between the hardened connector such as the OptiTap male plug connector on the branch cable with a non-hardened connector such as the SC connector disposed within the housing 3, which provides a suitable transition from an outdoor space to a protected space inside the housing 3.
Receptacle 7 for the OptiTap connector is described in further detail in U.S. Pat. No. 6,579,014. As depicted in U.S. Pat. No. 6,579,014, the receptacle includes a receptacle housing and an adapter sleeve disposed therein. Thus, the receptacles for the hardened connector are large and bulky and require a great deal of surface array when arranged in an array on the housing 3 such as shown with multiport 1. Further, conventional hardened connectors use a separate threaded or bayonet coupling that requires rotation about the longitudinal axis of the connector and room for grabbing and rotating the coupling by hand when mounted in an array on the housing 3.
Consequently, the housing 3 of the multiport 1 is excessively bulky. For example, the multiport 1 may be too boxy and inflexible to effectively operate in smaller storage spaces, such as the underground pits or vaults that may already be crowded. Furthermore, having all of the receptacles 7 on the housing 3, as shown in
Other multiports designs have been commercialized to address the drawbacks of the prior art multiports depicted in
Although, these types of multiport designs such as shown in
Consequently, there exists an unresolved need for multiports that allow flexibility for the network operators to quickly and easily make optical connections in their optical network while also addressing concerns related to limited space, organization, or aesthetics.
The disclosure is directed to devices such as comprising at least one connection port with an associated sliding actuator that engage a securing member associated with the connection port. As used herein, the sliding actuator is capable of moving in a longitudinal direction transverse to the translating direction of the securing member associated with the connection port. Devices that may use the concepts disclosed herein include multiports, closures or wireless devices. Methods of making the devices are also disclosed. The devices can have any suitable construction such as disclosed herein such a connection port that is keyed for inhibiting a non-compliant connector from being inserted and potentially causing damage to the device.
One aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, at least one securing member, and at least one sliding actuator. The at least one connection port is disposed on the multiport with the at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. The at least one securing member is associated with the connection port passageway, and at least one sliding actuator that engages with the at least one securing member. The sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member, thereby allowing the securing member to move from a retain position to an open position for the connection port.
Another aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, at least one securing member, and at least one sliding actuator that engages with the at least one securing member. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. At least one modular adapter sub-assembly disposed within the shell. The at least one securing member is associated with the connection port passageway where the at least one securing member is capable of translating in a direction that is transverse to the longitudinal axis, and where the at least one sliding actuator engages with the at least one securing member. The sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member.
Still another aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, at least one modular adapter sub-assembly disposed within the shell, at least one securing member, and at least one sliding actuator. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. At least one modular adapter sub-assembly disposed within the shell. The at least one securing member capable of translating being associated with the connection port passageway and the translating is in a direction that is transverse to the longitudinal axis of the at least one connection port, where a portion of the at least one securing member is part of the modular adapter sub-assembly. The at least one sliding actuator engages with a ramp of the at least one securing member. The sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member.
Yet another aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, modular adapter sub-assembly disposed within the shell, at least one securing member, and at least one sliding actuator. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. The at least one securing member capable of translating being associated with the connection port passageway where the translating is in a direction that is transverse to the longitudinal axis of the at least one connection port, and a portion of the at least one securing member comprises a bore and a ramp of an engagement surface. The sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member.
A further aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, at least one modular adapter sub-assembly disposed within the shell, at least one securing member, and at least one sliding actuator. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. The at least one securing member capable of translating being associated with the connection port passageway where the translating is in a direction that is transverse to the longitudinal axis of the at least one connection port, and the at least one securing member comprises a bore. The at least one sliding actuator engages with the at least one securing member, and is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member. The at least one securing member translates from a retain position to an open position by moving the at least one sliding actuator in the transverse direction to the translating direction of the at least one securing member.
Still another aspect of the disclosure is directed to devices or multiports comprising a shell, at least one connection port, at least one modular adapter sub-assembly disposed within the shell, at least one securing member, and at least one sliding actuator. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. The at least one securing member capable of translating being associated with the connection port passageway, and the at least one sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member. The securing member is capable of translating in a direction that is transverse to the longitudinal axis of the at least one connection port, and the at least one securing member comprises a bore and a locking feature, and wherein the at least one securing member translates from a retain position to an open position by moving the at least one sliding actuator in the transverse direction to the translating direction of the at least one securing member.
Other aspects of the disclosure are directed to devices or multiports comprising a shell, at least one connection port, a securing feature passageway, at least one securing feature associated with the at least one connection port passageway, and at least one modular adapter sub-assembly disposed within the shell. The at least one connection port comprising an optical connector opening extending from an outer surface of the multiport to a cavity of the multiport and defining a connection port passageway along a longitudinal axis. The at least one securing feature comprises a securing member and sliding actuator. The sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member. The sliding actuator is capable of sliding within a portion of the at least one securing feature passageway, and the securing member is capable of translating in a direction transverse to the longitudinal axis of the at least one connection port. The securing member translates from a retain position to an open position by moving the at least one sliding actuator. The securing member being a part of the modular adapter sub-assembly.
A still further aspect of the disclosure is directed to a wireless device comprising a shell, at least one connection port, at least one securing feature. The at least one connection port is disposed on the wireless device, the at least one connection port comprising an optical connector opening extending from an outer surface of the wireless device into a cavity of the wireless device and defining a connection port passageway along a longitudinal axis. The at least one securing feature being associated with the connection port passageway, wherein the at least one securing feature comprises a securing member and a sliding actuator, and at least one securing feature resilient member for biasing a portion of the at least one securing feature. The at least one securing member is capable of translating in a direction that is transverse to the longitudinal axis of the connection port passageway and the sliding actuator is capable of moving in a longitudinal direction transverse to the translating direction of the at least one securing member. The securing member may comprise a locking feature as desired. For instance, the locking feature may be a ramp with a ledge disposed on the bore of the securing member. The connection port of the wireless device may also comprise other features, structures or components as disclosed herein.
Other aspects of the disclosure are directed to methods of making the devices described herein. One method of making devices comprising an optical connection port comprises the steps of installing at least one securing member into the device so that the at least one securing member is associated with a respective connection port. The securing member may translate between an open position and a retain position by moving an associated sliding actuator that engages the securing member as discussed herein. A portion of the securing member may translate between an open position and a retain position in a direction that is transverse to a longitudinal axis of the connection port, and the sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the at least one securing member. Devices or methods disclosed herein may also comprise an optional securing member resilient member that is positioned for biasing a portion of the at least one securing member to a retain position. Likewise, the devices or methods disclosed herein may further optionally comprise a torsional resilient member for biasing the sliding actuator. The devices or methods may further comprise a locking feature on the securing member for engaging a fiber optic connector inserted into the connection port. Any suitable locking feature may be used, and in one embodiment the locking feature comprises a ramp with a ledge.
Devices or methods of making may further comprise the securing member translating from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port. Still other devices or methods may further comprise the securing feature 310 being capable of moving to a retain position RP automatically when a suitable fiber optic connector is fully-inserted into a connector port passageway. Yet further methods may comprise translating the at least one securing feature 310 the open position OP from a normally-biased retain position RP.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.
Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
The concepts for the devices disclosed herein are suitable for providing at least one optical connection to the device for indoor, outdoor or other environments as desired. Generally speaking, the devices disclosed and explained in the exemplary embodiments are multiports, but the concepts disclosed may be used with any suitable device as appropriate such as wireless radios or the like. As used herein, the terms “device” or “multiport” mean any device comprising at least one connection port for making an optical connection and a securing feature associated with the at least one connection port. By way of example, the multiport may be any suitable device having at least one optical connection such as a passive device like an optical closure (hereinafter “closure”) or an active device such as a wireless device having electronics for transmitting or receiving a signal.
The concepts disclosed advantageously allow compact form-factors for devices such as multiports comprising at least one connection port and a securing feature associated with the connection port. The concepts are scalable to any suitable count of connection ports on a device in a variety of arrangements or constructions. The securing features disclosed herein for devices engage directly with a portion of connector without conventional structures like prior art devices that require the turning of a coupling nut, bayonet or the like. As used herein, “securing feature” excludes threads and features that cooperate with bayonets on a connector. Thus, the devices disclosed may allow connection ports to be closely spaced together and may result in small devices since the room needed for turning a threaded coupling nut or bayonet is not necessary. The compact form-factors may allow the placement of the devices in tight spaces in indoor, outdoor, buried, aerial, industrial or other applications while providing at least one connection port that is advantageous for a robust and reliable optical connection in a removable and replaceable manner. The disclosed devices may also be aesthetically pleasing and provide organization for the optical connections in manner that the prior art multiports cannot provide.
The devices disclosed are simple and elegant in their designs. The devices disclosed comprise at least one connection port and a securing feature associated with the connection port that is suitable for retaining an external fiber optic connector received by the connection port. The connection port may include a keying portion that cooperates with a key on a complimentary external fiber optic connector to inhibit damage to the connection port by inhibiting the insertion of a non-compliant connector. The keying portion may also aid the user during blind insertion of the connector into the connection port of the device to determine the correct rotational orientation with respect to the connection port when a line of sight is not possible or practical for alignment.
Unlike prior art multiports, the concepts disclosed advantageously allow the quick and easy connection and retention by inserting the fiber optic connectors directly into the connection port of the device without the need or space considerations for turning a threaded coupling nut or bayonet for retaining the external fiber optic connector. Generally speaking, the securing features disclosed for use with devices herein may comprise two or more components with the first component translating for releasing or securing the external fiber optic connector to the device, and second component engaging the first component and sliding in order to translate the first component. In the embodiments disclosed herein, the securing features include a securing member that moves or translates in a direction that is transverse to the longitudinal axis of the connection port that receives the connector, and the sliding actuator is capable of moving in a longitudinal direction that is transverse to the translating direction of the securing member (e.g., the securing member and sliding actuators move or translate in different longitudinal directions). As used herein, the term “securing feature” excludes threaded portions or features for securing a bayonet disposed on an external connector, but cooperate in other manners for securing the external connector to the device.
Since the connector footprint used with the devices disclosed does not require the bulkiness of a coupling nut or bayonet for securing the external connector, the fiber optic connectors that cooperate with the devices disclosed herein may be significantly smaller than conventional connectors used with prior art multiports. Moreover, the present concepts for connection ports on devices allows an increased density of connection ports per volume of the shell or increased port width density since there is no need for accessing and turning the coupling nut or bayonets by hand for securing a fiber optic connector like the prior art multiports.
The devices disclosed comprise a securing member for directly engaging with a suitable portion of a connector housing of the external fiber optic connector or the like for securing an optical connection with the device. Different variations of the concepts are discussed in further detail below. The structure for securing the fiber optic connectors in the devices disclosed allows much smaller footprints for both the devices and the fiber optic connectors along with a quick-connect feature. Devices may also have a dense spacing of connection ports if desired. The devices disclosed advantageously allow a relatively dense and organized array of connection ports in a relatively small form-factor while still being rugged for demanding environments. As optical networks increase densifications and space is at a premium, the robust and small-form factors for devices such as multiports, closures and wireless devices disclosed herein becomes increasingly desirable for network operators.
The concepts disclosed herein are suitable for optical distribution networks such as for Fiber-to-the-Home and 5G applications and are equally applicable to other optical applications as well including indoor, automotive, industrial, wireless, or other suitable applications. Additionally, the concepts disclosed may be used with any suitable fiber optic connector footprint that cooperates with the securing member of the device. Various designs, constructions, or features for devices are disclosed in more detail as discussed herein and may be modified or varied as desired.
The devices disclosed may locate the at least one connection port 236 in different portions or components of the device as desired using the disclosed concepts. The concepts are shown and described with a device 200 having 4-connection ports that are optically connected to an input port arranged in an array on one end of the device, but other configurations are possible such as connection ports or input ports on both ends, an express port, a pass-through port or the like.
Connection ports 236 each comprises a respective optical connector opening 238 extending from an outer surface 234 of the multiport 200 into a cavity 216 of the multiport 200 and defining a portion of a connection port passageway 233. By way of explanation, at least one connection port 236 is molded as a portion of shell 210, but other constructions are possible such as sleeving the ports. At least one securing feature 310 is associated with the connection port passageway 233 for cooperating with the external fiber optic connector 10. As shown in
Multiport 200 of
The concepts disclosed may use a securing feature resilient member 310RM for biasing a portion of the securing feature 310 as discussed herein if desired, but embodiments do not require a securing feature resilient member depending on the construction. Multiports 200 disclosed may use one or more modular adapter sub-assemblies 310SA (
Optical connections to the devices are made by inserting one or more suitable external fiber optic connectors into respective connection port passageways 233 as desired. Specifically, the connection port passageway 233 is configured for receiving a suitable external fiber optic connector (hereinafter connector) of a fiber optic cable assembly (hereinafter cable assembly). Connection port passageway 233 is associated with a securing feature 310 for retaining (e.g., securing) the connector in the multiport 200 for making an optical connection. The securing feature 310 advantageously allows the user to make a quick and easy optical connection at the connection port 236 of multiport 200. The securing feature 310 may also operate for providing a connector release feature by moving the sliding actuator 310A to translate the securing member 310M to an open position (e.g., downward) for releasing the external fiber optic connector.
The connector may be retained within the respective connection port 236 of the device by pushing and fully-seating the connector within the connection port 236 if the securing member 310M is allowed to translate to an open position when inserting the external connector. Alternatively, the sliding actuator 310A may be required to be translated to an open position for inserting an external connector depending on the design of the securing feature 310. To release the connector from the respective connection port 236, the sliding actuator 310A is actuated by moving the sliding actuator 310A and translating the securing member 310M so that the locking feature 20L disengages from the external connector housing 20 (
Securing feature 310 may be designed for holding a minimum pull-out force for the connector. The pullout feature is possible if the securing member 310M is allowed to move to the open position independently of turning the sliding actuator 310A. This pullout feature requires that the sliding actuator 310A does not constrain the securing member 310M from moving to the open position when excessive forces are applied and securing features 310 may be designed with either configuration. By way of example, the securing member 310M may use a resilient member 310RM for biasing the securing member to the retain position and when excessive pull-out force is applied to overcome the biasing force, then securing member 310M is allowed to translate to an open position for releasing the connector. In other embodiments, the sliding actuator 310A may be designed so that it must be translated before the securing member 310M is allowed to move to an open position.
In some embodiments, the pull-out force may be selected to release the connector before damage is done to the device or the connector. By way of example, the securing feature 310 associated with the connection port 236 may require a pull-out force of about 50 pounds (about 220N) before the connector would release. Likewise, the securing feature 310 may provide a side pull-out force for connector for inhibiting damage as well. By way of example, the securing feature 310 associated with the connection port 236 may provide a side pull-out force of about 25 pounds (about 110N) before the connector would release. Of course, other pull-out forces such as 75 pounds (about 330N) or 100 (about 440N) pounds are possible along with other side pull-out forces.
The securing features 310 disclosed herein may take many different constructions or configurations as desired. The sliding actuator 310A is capable of moving the respective securing feature 310M in a direction transverse to the longitudinal axis of the connection port passageway 233 as represented by the vertical arrows in
Generally speaking, the devices disclosed comprise at least one connection port 236 defined by an optical connector opening 238 extending into a cavity 216 of the device 200, 500, 700 along with a securing feature 310 associated with the connection port 236.
As best shown in
As best depicted in
In this embodiment, the securing member 310M comprises a bore 310B that is aligned with the least one connection port passageway 233 when assembled as best shown in
In some embodiments, a portion of the securing member 310M is capable of moving to an open position when inserting a suitable external connector 10 into the connection port passageway 233. When the connector 10 is fully-inserted into the connector port passageway 233, the securing member 310M is capable of moving to the retain position automatically. Consequently, the connector 10 is secured within the connection port 236 by the securing feature 310 without turning a coupling nut or a bayonet on the external connector like the prior art multiports. Stated another way, the securing member 310M translates from the retain position to an open position as a suitable connector 10 is inserted into the connection port 236. The securing feature passageway 245 is arranged transversely to a longitudinal axis LA of the multiport 200, but other arrangements are possible. Other securing features may operate in a similar manner, and use an opening instead of a bore that receives the connector therethrough.
Locking feature 310L comprises a retention surface 310RS. In this embodiment, the back-side of the ramp of locking feature 310L forms a ledge that cooperates with complimentary geometry on the connector housing of connector. However, retention surface 310RS may have different surfaces or edges that cooperate for securing connector for creating the desired mechanical retention. For instance, the retention surface 310RS may be canted or have a vertical wall for tailoring the pull-out force for the connection port 236. However, other geometries are possible for the retention surface 310RS. Additionally, the connection port 236 has a sealing location at a connection port passageway sealing surface with the connector that is located closer to the optical connector opening 238 at the outer surface 234 than the securing feature 310 or locking feature 310L. In other words, connection port 236 has connection port passageway sealing surface for the connector disposed at a distance from the optical connector opening 238 and the locking feature 310L and securing feature 310 are disposed at a distance further into the connection port passageway 233 than distance where the connector sealing occurs.
Generally speaking, the connection port passageways 233 may be configured for the specific connector intended to be received in the connection port 236. Likewise, the connection port passageways 233 should be configured for receiving the specific rear connector 252 for mating and making an optical connection with the connector 10.
The device 200 may also comprise at least one adapter 230A aligned with the respective connection port 236 or connection port passageway 233. Adapter 230A and other components are a portion of the modular sub-assembly 310SA as depicted in FIGS. 9-12. Adapter 230A is suitable for securing a rear connector 252 thereto for aligning the rear connector 252 with the connection port 236. One or more optical fibers 250 (
A plurality of rear connectors 252 are aligned with the respective connector port passageways 233 within the cavity 216 of the multiport 200. The rear connectors 252 are associated with one or more of the plurality of optical fibers 250. Each of the respective rear connectors 252 aligns and attaches to a structure such as the adapter 230A or other structure related to the connection port passageway 233 in a suitable matter. The plurality of rear connectors 252 may comprise a suitable rear connector ferrule 252F as desired and rear connectors 252 may take any suitable form from a simple ferrule that attaches to a standard connector type inserted into an adapter. By way of example, rear connectors 252 may comprise a resilient member for biasing the rear connector ferrule 252F or not. Additionally, rear connectors 252 may further comprise a keying feature.
The rear connectors 252 shown in
As best shown in
Adapters 230A are secured to an adapter body 255 using retainer 240. Adapters 230A may be biased using a resilient member 230RM as shown. Rear connectors 252 may take any suitable form and be aligned for mating with the connector secured with the connection ports 236 in any suitable manner. Adapters 230A may comprise latch arms for securing respective rear connectors therein.
Multiport 200 may have the input connection port 260 disposed in any suitable location. As used herein, “input connection port” is the location where external optical fibers are received or enter the device, and the input connection port does not require the ability to make an optical connection as discussed below. By way of explanation, multiport 200 may have the input connection port 260 disposed in an outboard position of the array of connection ports 236, on another side of the multiport, or disposed in a medial portion of array of connection ports 236 as desired.
Optical fibers 250 are routed from one or more of the plurality of connection ports 236 toward an input connection port 260 for optical communication within the multiport 200. Consequently, the input connection port 260 receives one or more optical fibers and then routes the optical signals as desired such as passing the signal through 1:1 distribution, routing through an optical splitter or passing optical fibers through the multiport. Splitters 275 such as shown in
Additionally, the multiports or shells 210 may comprise at least one support 210S or fiber guide for providing crush support for the multiport and resulting in a robust structure. As depicted in
Any of the multiports 200 disclosed herein may optionally be weatherproof by appropriately sealing seams of the shell 210 using any suitable means such as gaskets, O-rings, adhesive, sealant, welding, overmolding or the like. To this end, multiport 200 or devices may also comprise a sealing element 290 disposed between the first portion 210A and the second portion 210B of the shell 210. The sealing element 290 may cooperate with shell 210 geometry such as respective grooves 210G or tongues 210T in the shell 210. Grooves or tongue may extend about the perimeter of the shell 210. By way of explanation, grooves 210G may receive one or more appropriately sized O-rings or gaskets 290A for weatherproofing multiport 200, but an adhesive or other material may be used in the groove 210G. By way of example, the O-rings are suitably sized for creating a seal between the portions of the shell 210. By way of example, suitable O-rings may be a compression O-ring for maintaining a weatherproof seal. Other embodiments may use an adhesive or suitable welding of the materials for sealing the device. If welding such as ultra-sonic or induction welding of the shell is used a special sealing element 290 may be used as known in the art. If the multiport 200 is intended for indoor applications, then the weatherproofing may not be required.
As shown in
By way of explanation for multi-fiber ports, two or more optical fibers 250 may be routed from one or more of the plurality of connection ports 236 of the multiport 200 disclosed herein. For instance, two optical fibers may be routed from each of the four connection ports 236 of multiport 200 toward the input connection port 260 with or without a splitter such as single-fiber input connection port 260 using a 1:8 splitter or by using an eight-fiber connection at the input connection port 260 for a 1:1 fiber distribution. To make identification of the connection ports or input connection port(s) easier for the user, a marking indicia may be used such as text or color-coding of the multiport, color codes on the actuator 310A, or marking the input tether (e.g. an orange or green polymer) or the like.
Other configurations are possible besides an input connection port 260 that receives a connector 10. Instead of using a input connection port that receives a connector 10, multiports 200 may be configured for receiving an input tether 270 attached to the multiport at the input connection port 260 such as represented in
As best shown in
In this embodiment, modular adapter sub-assembly 310SA may comprises an adapter body 255, securing member 310M, securing feature resilient member 310RM, a ferrule sleeve 230FS, a ferrule sleeve retainer 230R, resilient member 230RM, a retainer along with the adapter 230A. Adapter body 255 has a portion of the connection port passageway 233 disposed therein.
As best depicted in
Multiport may include a fiber tray or fiber guide/supports that are discrete components that may attach to the shell 210; however, fiber guides may be integrated with the shell if desired. Shell may also 210 comprise one or more fiber guides for organizing and routing optical fibers 250. The fiber tray inhibits damage to optical fibers and may also provide a location for the mounting of other components such as splitters, electronics or the like if desired. Fiber guides may also act as support 210S for providing crush strength to the shell 210 if they have a suitable length.
Actuator 310A may also be a different color or have a marking indicia for identifying the port type. For instance, the actuator 310A may be colored red for connection ports 236 and the actuator 310A for the input connection port 260 may be colored black. Other color or marking indicia schemes may be used for pass-through ports, multi-fiber ports or ports for split signals.
As depicted in this embodiment, locking feature 310L is disposed within bore 310B of securing member 310M. As shown, locking feature 310L is configured as ramp 310RP that runs to a short flat portion, then to a ledge for creating the retention surface 310RS for engaging and retaining the connector 10 once it is fully-inserted into the connector port passageway 233 of the connection port 236. Consequently, the securing feature 310 is capable of moving to an open position (OP) when inserting a suitable connector 10 into the connector port passageway 233 since the connector housing 20 engages the ramp 310RP pushing the securing feature downward during insertion. However, other locking features may be used with the concepts disclosed herein.
As discussed herein, securing member 310M also comprises engagement surface 310ES at the upper end for cooperating with the engagement surface 310AES of the sliding actuator 310A. The engagement surface 310ES may be a protrusion or recess on the securing member 310M such as a ramp or slot or the like that engages with a complimentary engagement surface 310AES on the sliding actuator 310A. For instance, an engagement surface 310ES such as a ramp of the securing member 310M may ride on complimentary engagement surface of the sliding actuator 310A for translating the securing member 310M. Securing member 310M may also comprises standoffs 310 as best shown in
The concepts disclosed allow relatively small multiports 200 having a relatively high-density of connections along with an organized arrangement for connectors 10 attached to the multiports 200. Shells have a given height H, width W and length L that define a volume for the multiport as depicted in
The concepts disclosed allow relatively small form-factors for multiports as shown in Table 1. Table 1 below compares representative dimensions, volumes, and normalized volume ratios with respect to the prior art of the shells (i.e., the housings) for multiports having 4, 8 and 12 ports as examples of how compact the multiports of the present application are with respect to convention prior art multiports. Specifically, Table 1 compares examples of the conventional prior art multiports such as depicted in
One of the reasons that the size of the multiports may be reduced in size with the concepts disclosed herein is that the connectors that cooperate with the multiports have locking features that are integrated into the housing 20 of the connectors 10. In other words, the locking features for securing connector are integrally formed in the housing of the connector, instead of being a distinct and separate component like a coupling nut of a conventional hardened connector used with conventional multiports. Conventional connectors for multiports have threaded connections that require finger access for connection and disconnecting. By eliminating the threaded coupling nut (which is a separate component that must rotate about the connector) the spacing between conventional connectors may be reduced. Also eliminating the dedicated coupling nut from the conventional connectors also allows the footprint of the connectors to be smaller, which also aids in reducing the size of the multiports disclosed herein.
Multiport or Devices may have other constructions using the concepts disclosed.
Like, the multiport 200 of
Multiport 200 of
If used, input tether 270 may terminate the other end with a fiber optic connector or be a stubbed cable as desired. For instance, the input tether connector could be an OptiTip® connector for optical connection to previously installed distribution cables; however, other suitable single-fiber or multi-fiber connectors may be used for terminating the input tether 270 as desired. Input tether 270 may be secured to the multiport 200 in other suitable manners inside the multiport such as adhesive, a collar or crimp, heat shrink or combinations of the same. In other embodiments, the input tether could be secured using a securing member internal to the shell without the actuator as shown. The input tether to multiport interface could also be weatherproofed in a suitable manner. The input tether 270 may also have stubbed optical fibers for splicing in the field if desired, instead of the connector 278.
Furthermore, the input tether 270 may further comprise a furcation body that has a portion that fits into the multiport 200 at the input port of the shell 210 such as into the optical connector opening 238 of the input connection port 260, but the furcation body may be disposed within the shell 210 if desired as well. The furcation body is a portion of the input tether that transitions the optical fibers 250 to individual fibers for routing within the cavity 216 of the shell 210 to the respective connector ports. As an example, a ribbon may be used for insertion into the back end of the ferrule of fiber optic connector 278 and then be routed through the input tether 270 to the furcation body where the optical fibers are then separated out into individual optical fibers 250. From the furcation body the optical fibers 250 may be protected with a buffer layer or not inside the cavity 216 of the multiport 200 and then terminated on rear connector 252 as desired.
The input tether 270 may be assembled with the rear connectors 252 and/or fiber optic connector 278 in a separate operation from the assembly of multiport 200 if the rear connectors 252 fit through the input port. Thereafter, the rear connectors 252 may be individually threaded into the input connection port 260 of the multiport with the appropriate routing of the optical fiber slack and then have the rear connectors 252 attached to the appropriate structure for optical communication with the connection port passageways 233 of the multiport 200. The furcation body may also be secured to the connection port insert in the manner desired. By way of explanation, the input tether may be secured to shell 210 using a collar that fits into a cradle. This attachment of the input tether using collar and cradle provides improved pull-out strength and aids in manufacturing; however, other constructions are possible for securing the input tether.
As shown in
Still other devices are possible according to the concepts disclosed.
Methods for making devices 200, 500 and 700 are also disclosed herein. The methods disclosed may further include installing at least one securing feature 310 into a device 200, 500 and 700 so that the at least one securing feature 310 is associated with connection port 236. The securing member 310M may translate between an open position OP and a retain position RP and translate by moving the sliding actuator 310A as discussed herein. Some embodiments may include at least one securing feature resilient member 310RM is positioned for biasing a portion of the at least one securing member 310M to a retain position RP.
The methods may further comprise the securing member 310M comprising a bore with a locking feature 310L. The locking feature may further comprise a ramp with a ledge.
The methods may further comprise at least one securing feature 310M translating from a retain position RP to an open position OP as a suitable fiber optic connector 10 is inserted into the at least one connection port 236.
The method may further comprise securing feature 310 being capable of moving to a retain position RP automatically when a suitable fiber optic connector is fully-inserted into the at least one connector port passageway 233.
The method may further comprise translating the securing feature 310 for moving the securing feature 310 to the open position OP from a normally-biased closed position CP.
Additionally, the multiport 200 of
Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. For instance, the connection port insert may be configured as individual sleeves that are inserted into a passageway of a device, thereby allowing the selection of different configurations of connector ports for a device to tailor the device to the desired external connector. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of International Application No. PCT/US2020/033704 filed May 20, 2020, which claims the benefit of priority to U.S. Provisional Application No. 62/855,295 filed on May 31, 2019, both applications being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3074107 | Kiyoshi et al. | Jan 1963 | A |
3532783 | Pusey et al. | Oct 1970 | A |
3792284 | Kaelin | Feb 1974 | A |
3912362 | Hudson | Oct 1975 | A |
4003297 | Mott | Jan 1977 | A |
4077567 | Ginn et al. | Mar 1978 | A |
4148557 | Garvey | Apr 1979 | A |
4167303 | Bowen et al. | Sep 1979 | A |
4168109 | Dumire | Sep 1979 | A |
4188088 | Andersen et al. | Feb 1980 | A |
4336977 | Monaghan et al. | Jun 1982 | A |
4354731 | Mouissie | Oct 1982 | A |
4373777 | Borsuk et al. | Feb 1983 | A |
4413880 | Forrest et al. | Nov 1983 | A |
4423922 | Porter | Jan 1984 | A |
4440471 | Knowles | Apr 1984 | A |
4461537 | Raymer et al. | Jul 1984 | A |
4515434 | Margolin et al. | May 1985 | A |
4547937 | Collins | Oct 1985 | A |
4560232 | O'Hara | Dec 1985 | A |
4615581 | Morimoto | Oct 1986 | A |
4634214 | Cannon et al. | Jan 1987 | A |
4634858 | Gerdt et al. | Jan 1987 | A |
4684205 | Margolin et al. | Aug 1987 | A |
4688200 | Poorman et al. | Aug 1987 | A |
4690563 | Barton et al. | Sep 1987 | A |
4699458 | Ohtsuki et al. | Oct 1987 | A |
4705352 | Margolin et al. | Nov 1987 | A |
4711752 | Deacon et al. | Dec 1987 | A |
4715675 | Kevern et al. | Dec 1987 | A |
4723827 | Shaw et al. | Feb 1988 | A |
4741590 | Caron | May 1988 | A |
4763983 | Keith | Aug 1988 | A |
4783137 | Kosman et al. | Nov 1988 | A |
4842363 | Margolin et al. | Jun 1989 | A |
4844570 | Tanabe | Jul 1989 | A |
4854664 | McCartney | Aug 1989 | A |
4856867 | Gaylin | Aug 1989 | A |
4877303 | Caldwell et al. | Oct 1989 | A |
4902238 | Iacobucci | Feb 1990 | A |
4913514 | Then | Apr 1990 | A |
4921413 | Blew | May 1990 | A |
4944568 | Danbach et al. | Jul 1990 | A |
4960318 | Nilsson et al. | Oct 1990 | A |
4961623 | Midkiff et al. | Oct 1990 | A |
4964688 | Caldwell et al. | Oct 1990 | A |
4979792 | Weber et al. | Dec 1990 | A |
4994134 | Knecht et al. | Feb 1991 | A |
4995836 | Toramoto | Feb 1991 | A |
5007860 | Robinson et al. | Apr 1991 | A |
5016968 | Hammond et al. | May 1991 | A |
5028114 | Krausse et al. | Jul 1991 | A |
5058984 | Bulman et al. | Oct 1991 | A |
5067783 | Lampert | Nov 1991 | A |
5073042 | Mulholland et al. | Dec 1991 | A |
5076656 | Briggs et al. | Dec 1991 | A |
5085492 | Kelsoe et al. | Feb 1992 | A |
5088804 | Grinderslev | Feb 1992 | A |
5091990 | Leung et al. | Feb 1992 | A |
5095176 | Harbrecht et al. | Mar 1992 | A |
5129023 | Anderson et al. | Jul 1992 | A |
5131735 | Berkey et al. | Jul 1992 | A |
5134677 | Leung et al. | Jul 1992 | A |
5136683 | Aoki et al. | Aug 1992 | A |
5142602 | Cabato et al. | Aug 1992 | A |
5146519 | Miller et al. | Sep 1992 | A |
5155900 | Grois et al. | Oct 1992 | A |
5162397 | Descamps et al. | Nov 1992 | A |
5180890 | Pendergrass et al. | Jan 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5210810 | Darden et al. | May 1993 | A |
5212752 | Stephenson et al. | May 1993 | A |
5214732 | Beard et al. | May 1993 | A |
5224187 | Davisdon | Jun 1993 | A |
5231685 | Hanzawa et al. | Jul 1993 | A |
5245683 | Belenkiy et al. | Sep 1993 | A |
5263105 | Johnson et al. | Nov 1993 | A |
5263239 | Ziemek | Nov 1993 | A |
5276750 | Manning | Jan 1994 | A |
5313540 | Ueda et al. | May 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5321917 | Franklin et al. | Jun 1994 | A |
5367594 | Essert et al. | Nov 1994 | A |
5371823 | Barrett et al. | Dec 1994 | A |
5375183 | Edwards et al. | Dec 1994 | A |
5381494 | O'Donnell et al. | Jan 1995 | A |
5390269 | Palecek et al. | Feb 1995 | A |
5394494 | Jennings et al. | Feb 1995 | A |
5394497 | Erdman et al. | Feb 1995 | A |
5408570 | Cook et al. | Apr 1995 | A |
5416874 | Giebel et al. | May 1995 | A |
5425121 | Cooke et al. | Jun 1995 | A |
5452388 | Rittle et al. | Sep 1995 | A |
5519799 | Murakami et al. | May 1996 | A |
5553186 | Allen | Sep 1996 | A |
5557696 | Stein | Sep 1996 | A |
5569050 | Lloyd | Oct 1996 | A |
5588077 | Woodside | Dec 1996 | A |
5600747 | Yamakawa et al. | Feb 1997 | A |
5603631 | Kawahara et al. | Feb 1997 | A |
5608828 | Coutts et al. | Mar 1997 | A |
5631993 | Cloud et al. | May 1997 | A |
5647045 | Robinson et al. | Jul 1997 | A |
5673346 | Iwano et al. | Sep 1997 | A |
5682451 | Lee et al. | Oct 1997 | A |
5694507 | Walles | Dec 1997 | A |
5748821 | Schempp et al. | May 1998 | A |
5761359 | Chudoba et al. | Jun 1998 | A |
5781686 | Robinson et al. | Jul 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5789701 | Wettengel et al. | Aug 1998 | A |
5790740 | Cloud et al. | Aug 1998 | A |
5791918 | Pierce | Aug 1998 | A |
5796895 | Jennings et al. | Aug 1998 | A |
RE35935 | Cabato et al. | Oct 1998 | E |
5818993 | Chudoba et al. | Oct 1998 | A |
5857050 | Jiang et al. | Jan 1999 | A |
5862290 | Burek et al. | Jan 1999 | A |
5867621 | Luther et al. | Feb 1999 | A |
5876071 | Aldridge | Mar 1999 | A |
5883999 | Cloud et al. | Mar 1999 | A |
5884000 | Cloud et al. | Mar 1999 | A |
5884001 | Cloud et al. | Mar 1999 | A |
5884002 | Cloud et al. | Mar 1999 | A |
5884003 | Cloud et al. | Mar 1999 | A |
5887099 | Csipkes et al. | Mar 1999 | A |
5913001 | Nakajima et al. | Jun 1999 | A |
5920669 | Knecht et al. | Jul 1999 | A |
5923804 | Rosson | Jul 1999 | A |
5925191 | Stein et al. | Jul 1999 | A |
5926596 | Edwards et al. | Jul 1999 | A |
5960141 | Sasaki et al. | Sep 1999 | A |
5961344 | Rosales et al. | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
5993070 | Tamekuni et al. | Nov 1999 | A |
RE36592 | Giebel et al. | Feb 2000 | E |
6030129 | Rosson | Feb 2000 | A |
6035084 | Haake et al. | Mar 2000 | A |
6045270 | Weiss et al. | Apr 2000 | A |
6079881 | Roth | Jun 2000 | A |
6094517 | Yuuki | Jul 2000 | A |
6108482 | Roth | Aug 2000 | A |
6112006 | Foss | Aug 2000 | A |
6149313 | Giebel et al. | Nov 2000 | A |
6151432 | Nakajima et al. | Nov 2000 | A |
RE37028 | Cooke et al. | Jan 2001 | E |
6173097 | Throckmorton et al. | Jan 2001 | B1 |
6179482 | Takizawa et al. | Jan 2001 | B1 |
6188822 | McAlpine et al. | Feb 2001 | B1 |
6193421 | Tamekuni et al. | Feb 2001 | B1 |
RE37079 | Stephenson et al. | Mar 2001 | E |
RE37080 | Stephenson et al. | Mar 2001 | E |
6200040 | Edwards et al. | Mar 2001 | B1 |
6206579 | Selfridge et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6220762 | Kanai et al. | Apr 2001 | B1 |
6224268 | Manning et al. | May 2001 | B1 |
6224270 | Nakajima et al. | May 2001 | B1 |
6229944 | Yokokawa et al. | May 2001 | B1 |
6234683 | Waldron et al. | May 2001 | B1 |
6234685 | Carlisle et al. | May 2001 | B1 |
6249628 | Rutterman et al. | Jun 2001 | B1 |
6256438 | Gimblet | Jul 2001 | B1 |
6261006 | Selfridge | Jul 2001 | B1 |
6264374 | Selfridge et al. | Jul 2001 | B1 |
6287016 | Weigel | Sep 2001 | B1 |
6293710 | Lampert et al. | Sep 2001 | B1 |
6298190 | Waldron et al. | Oct 2001 | B2 |
6305849 | Roehrs et al. | Oct 2001 | B1 |
6321013 | Hardwick et al. | Nov 2001 | B1 |
6356390 | Hall, Jr. | Mar 2002 | B1 |
6356690 | McAlpine et al. | Mar 2002 | B1 |
6357929 | Roehrs et al. | Mar 2002 | B1 |
6371660 | Roehrs et al. | Apr 2002 | B1 |
6375363 | Harrison et al. | Apr 2002 | B1 |
6379054 | Throckmorton et al. | Apr 2002 | B2 |
6386891 | Howard et al. | May 2002 | B1 |
6402388 | Imazu et al. | Jun 2002 | B1 |
6404962 | Hardwick et al. | Jun 2002 | B1 |
6409391 | Chang | Jun 2002 | B1 |
6422764 | Marrs et al. | Jul 2002 | B1 |
6427035 | Mahony | Jul 2002 | B1 |
6428215 | Nault | Aug 2002 | B1 |
6439780 | Mudd et al. | Aug 2002 | B1 |
6466725 | Battey et al. | Oct 2002 | B2 |
6496641 | Mahony | Dec 2002 | B1 |
6501888 | Gimblet et al. | Dec 2002 | B2 |
6522804 | Mahony | Feb 2003 | B1 |
6529663 | Parris et al. | Mar 2003 | B1 |
6533468 | Nakajima et al. | Mar 2003 | B2 |
6536956 | Luther et al. | Mar 2003 | B2 |
6539147 | Mahony | Mar 2003 | B1 |
6540410 | Childers et al. | Apr 2003 | B2 |
6542652 | Mahony | Apr 2003 | B1 |
6542674 | Gimblet | Apr 2003 | B1 |
6546175 | Wagman et al. | Apr 2003 | B1 |
6554489 | Kent et al. | Apr 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6599026 | Fahrnbauer et al. | Jul 2003 | B1 |
6599027 | Miyake et al. | Jul 2003 | B2 |
6614980 | Mahony | Sep 2003 | B1 |
6618526 | Jackman et al. | Sep 2003 | B2 |
6619697 | Griffioen et al. | Sep 2003 | B2 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6625375 | Mahony | Sep 2003 | B1 |
6629782 | McPhee et al. | Oct 2003 | B2 |
6644862 | Berto et al. | Nov 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6668127 | Mahony | Dec 2003 | B1 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6678442 | Gall et al. | Jan 2004 | B2 |
6678448 | Moisel et al. | Jan 2004 | B2 |
6685361 | Rubino et al. | Feb 2004 | B1 |
6695489 | Nault | Feb 2004 | B2 |
6702475 | Giobbio et al. | Mar 2004 | B1 |
6714708 | McAlpine et al. | Mar 2004 | B2 |
6714710 | Gimblet | Mar 2004 | B2 |
6729773 | Finona et al. | May 2004 | B1 |
6738555 | Cooke et al. | May 2004 | B1 |
6748146 | Parris | Jun 2004 | B2 |
6748147 | Quinn et al. | Jun 2004 | B2 |
6771861 | Wagner et al. | Aug 2004 | B2 |
6785450 | Wagman et al. | Aug 2004 | B2 |
6789950 | Loder et al. | Sep 2004 | B1 |
6809265 | Gladd et al. | Oct 2004 | B1 |
6841729 | Sakabe et al. | Jan 2005 | B2 |
6848838 | Doss et al. | Feb 2005 | B2 |
6856748 | Elkins et al. | Feb 2005 | B1 |
6877906 | Mizukami et al. | Apr 2005 | B2 |
6880219 | Griffioen et al. | Apr 2005 | B2 |
6899467 | McDonald et al. | May 2005 | B2 |
6908233 | Nakajima et al. | Jun 2005 | B2 |
6909821 | Ravasio et al. | Jun 2005 | B2 |
6916120 | Zimmel et al. | Jul 2005 | B2 |
6944387 | Howell et al. | Sep 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
6970629 | Lail et al. | Nov 2005 | B2 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7011454 | Caveney et al. | Mar 2006 | B2 |
7013074 | Battey et al. | Mar 2006 | B2 |
7025507 | De Marchi | Apr 2006 | B2 |
7033191 | Cao | Apr 2006 | B1 |
7044650 | Tran et al. | May 2006 | B1 |
7052185 | Rubino et al. | May 2006 | B2 |
7079734 | Seddon et al. | Jul 2006 | B2 |
7088899 | Reagan et al. | Aug 2006 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7090409 | Nakajima et al. | Aug 2006 | B2 |
7103255 | Reagan et al. | Sep 2006 | B2 |
7103257 | Donaldson et al. | Sep 2006 | B2 |
7104702 | Barnes et al. | Sep 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7118283 | Nakajima et al. | Oct 2006 | B2 |
7118284 | Nakajima et al. | Oct 2006 | B2 |
7120347 | Blackwell et al. | Oct 2006 | B2 |
7137742 | Theuerkorn et al. | Nov 2006 | B2 |
7146089 | Reagan et al. | Dec 2006 | B2 |
7146090 | Vo et al. | Dec 2006 | B2 |
7150567 | Luther et al. | Dec 2006 | B1 |
7165893 | Schmitz | Jan 2007 | B2 |
7171102 | Reagan et al. | Jan 2007 | B2 |
7178990 | Caveney et al. | Feb 2007 | B2 |
7184634 | Hurley et al. | Feb 2007 | B2 |
7195403 | Oki et al. | Mar 2007 | B2 |
7200317 | Reagan et al. | Apr 2007 | B2 |
7201518 | Holmquist | Apr 2007 | B2 |
7204644 | Barnes et al. | Apr 2007 | B2 |
7213975 | Khemakhem et al. | May 2007 | B2 |
7213980 | Oki et al. | May 2007 | B2 |
7228047 | Szilagyi et al. | Jun 2007 | B1 |
7232260 | Takahashi et al. | Jun 2007 | B2 |
7236670 | Lail et al. | Jun 2007 | B2 |
7241056 | Kuffel et al. | Jul 2007 | B1 |
7260301 | Barth et al. | Aug 2007 | B2 |
7261472 | Suzuki et al. | Aug 2007 | B2 |
7266265 | Gall et al. | Sep 2007 | B2 |
7266274 | Elkins et al. | Sep 2007 | B2 |
7270487 | Billman et al. | Sep 2007 | B2 |
7277614 | Cody et al. | Oct 2007 | B2 |
7279643 | Morrow et al. | Oct 2007 | B2 |
7292763 | Smith et al. | Nov 2007 | B2 |
7302152 | Luther et al. | Nov 2007 | B2 |
7318677 | Dye | Jan 2008 | B2 |
7326091 | Nania et al. | Feb 2008 | B2 |
7330629 | Cooke et al. | Feb 2008 | B2 |
7333708 | Blackwell et al. | Feb 2008 | B2 |
7336873 | Lail et al. | Feb 2008 | B2 |
7341382 | Dye | Mar 2008 | B2 |
7346256 | Marrs et al. | Mar 2008 | B2 |
7349605 | Noonan et al. | Mar 2008 | B2 |
7357582 | Oki et al. | Apr 2008 | B2 |
7366416 | Ramachandran et al. | Apr 2008 | B2 |
7394964 | Tinucci et al. | Jul 2008 | B2 |
7397997 | Ferris et al. | Jul 2008 | B2 |
7400815 | Mertesdorf et al. | Jul 2008 | B2 |
7407332 | Oki et al. | Aug 2008 | B2 |
7428366 | Mullaney et al. | Sep 2008 | B2 |
7444056 | Allen et al. | Oct 2008 | B2 |
7454107 | Miller et al. | Nov 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7467896 | Melton et al. | Dec 2008 | B2 |
7469091 | Mullaney et al. | Dec 2008 | B2 |
7477824 | Reagan et al. | Jan 2009 | B2 |
7480437 | Ferris et al. | Jan 2009 | B2 |
7484898 | Katagiyama et al. | Feb 2009 | B2 |
7485804 | Dinh et al. | Feb 2009 | B2 |
7489849 | Reagan et al. | Feb 2009 | B2 |
7492996 | Kowalczyk et al. | Feb 2009 | B2 |
7497896 | Bromet et al. | Mar 2009 | B2 |
7512304 | Gronvall et al. | Mar 2009 | B2 |
7520678 | Khemakhem et al. | Apr 2009 | B2 |
7539387 | Mertesdorf et al. | May 2009 | B2 |
7539388 | Mertesdorf et al. | May 2009 | B2 |
7542645 | Hua et al. | Jun 2009 | B1 |
7559702 | Fujiwara et al. | Jul 2009 | B2 |
7565055 | Lu et al. | Jul 2009 | B2 |
7568845 | Caveney et al. | Aug 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7621675 | Bradley | Nov 2009 | B1 |
7627222 | Reagan et al. | Dec 2009 | B2 |
7628545 | Cody et al. | Dec 2009 | B2 |
7628548 | Benjamin et al. | Dec 2009 | B2 |
7646958 | Reagan et al. | Jan 2010 | B1 |
7653282 | Blackwell et al. | Jan 2010 | B2 |
7654747 | Theuerkorn et al. | Feb 2010 | B2 |
7654748 | Kuffel et al. | Feb 2010 | B2 |
7658549 | Elkins et al. | Feb 2010 | B2 |
7661995 | Nania et al. | Feb 2010 | B2 |
7677814 | Lu et al. | Mar 2010 | B2 |
7680388 | Reagan et al. | Mar 2010 | B2 |
7708476 | Liu | May 2010 | B2 |
7709733 | Plankell | May 2010 | B1 |
7712971 | Lee et al. | May 2010 | B2 |
7713679 | Ishiduka et al. | May 2010 | B2 |
7722262 | Caveney et al. | May 2010 | B2 |
7726998 | Siebens | Jun 2010 | B2 |
7738759 | Parikh et al. | Jun 2010 | B2 |
7740409 | Bolton et al. | Jun 2010 | B2 |
7742117 | Lee et al. | Jun 2010 | B2 |
7742670 | Benjamin et al. | Jun 2010 | B2 |
7744286 | Lu et al. | Jun 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7747117 | Greenwood et al. | Jun 2010 | B2 |
7751666 | Parsons et al. | Jul 2010 | B2 |
7753596 | Cox | Jul 2010 | B2 |
7762726 | Lu et al. | Jul 2010 | B2 |
7785015 | Melton et al. | Aug 2010 | B2 |
7785019 | Lewallen et al. | Aug 2010 | B2 |
7802926 | Leeman et al. | Sep 2010 | B2 |
7805044 | Reagan et al. | Sep 2010 | B2 |
7806599 | Margolin et al. | Oct 2010 | B2 |
7820090 | Morrow et al. | Oct 2010 | B2 |
7844148 | Jenkins et al. | Nov 2010 | B2 |
7844158 | Gronvall et al. | Nov 2010 | B2 |
7844160 | Reagan et al. | Nov 2010 | B2 |
7869681 | Battey et al. | Jan 2011 | B2 |
RE42094 | Barnes et al. | Feb 2011 | E |
7881576 | Melton et al. | Feb 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7891882 | Kuffel et al. | Feb 2011 | B2 |
7903923 | Gronvall et al. | Mar 2011 | B2 |
7903925 | Cooke et al. | Mar 2011 | B2 |
7918609 | Melton et al. | Apr 2011 | B2 |
7933517 | Ye et al. | Apr 2011 | B2 |
7938670 | Nania et al. | May 2011 | B2 |
7941027 | Mertesdorf et al. | May 2011 | B2 |
7942590 | Lu et al. | May 2011 | B2 |
7959361 | Lu et al. | Jun 2011 | B2 |
8002476 | Caveney et al. | Aug 2011 | B2 |
8005335 | Reagan et al. | Aug 2011 | B2 |
8023793 | Kowalczyk et al. | Sep 2011 | B2 |
8025445 | Rambow et al. | Sep 2011 | B2 |
8041178 | Lu et al. | Oct 2011 | B2 |
8052333 | Kuffel et al. | Nov 2011 | B2 |
8055167 | Park et al. | Nov 2011 | B2 |
8083418 | Fujiwara et al. | Dec 2011 | B2 |
8111966 | Holmberg et al. | Feb 2012 | B2 |
8137002 | Lu et al. | Mar 2012 | B2 |
8147147 | Khemakhem et al. | Apr 2012 | B2 |
8157454 | Ito et al. | Apr 2012 | B2 |
8164050 | Ford et al. | Apr 2012 | B2 |
8202008 | Lu et al. | Jun 2012 | B2 |
8213761 | Gronvall et al. | Jul 2012 | B2 |
8218935 | Reagan et al. | Jul 2012 | B2 |
8224145 | Reagan et al. | Jul 2012 | B2 |
8229263 | Parris et al. | Jul 2012 | B2 |
8231282 | Kuffel et al. | Jul 2012 | B2 |
8238706 | Kachmar | Aug 2012 | B2 |
8238709 | Solheid et al. | Aug 2012 | B2 |
8249450 | Conner | Aug 2012 | B2 |
8256971 | Caveney et al. | Sep 2012 | B2 |
8267596 | Theuerkorn | Sep 2012 | B2 |
8272792 | Coleman et al. | Sep 2012 | B2 |
RE43762 | Smith et al. | Oct 2012 | E |
8301003 | De et al. | Oct 2012 | B2 |
8301004 | Cooke et al. | Oct 2012 | B2 |
8317411 | Fujiwara et al. | Nov 2012 | B2 |
8348519 | Kuffel et al. | Jan 2013 | B2 |
8363999 | Mertesdorf et al. | Jan 2013 | B2 |
8376629 | Cline et al. | Feb 2013 | B2 |
8376632 | Blackburn et al. | Feb 2013 | B2 |
8402587 | Sugita et al. | Mar 2013 | B2 |
8408811 | De et al. | Apr 2013 | B2 |
8414196 | Lu et al. | Apr 2013 | B2 |
8439577 | Jenkins | May 2013 | B2 |
8465235 | Jenkins et al. | Jun 2013 | B2 |
8466262 | Siadak et al. | Jun 2013 | B2 |
8472773 | De Jong | Jun 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
8494329 | Nhep et al. | Jul 2013 | B2 |
8496384 | Kuffel et al. | Jul 2013 | B2 |
8506173 | Lewallen et al. | Aug 2013 | B2 |
8520996 | Cowen et al. | Aug 2013 | B2 |
8534928 | Cooke et al. | Sep 2013 | B2 |
8536516 | Ford et al. | Sep 2013 | B2 |
8556522 | Cunningham | Oct 2013 | B2 |
8573855 | Nhep | Nov 2013 | B2 |
8591124 | Griffiths et al. | Nov 2013 | B2 |
8622627 | Elkins et al. | Jan 2014 | B2 |
8622634 | Arnold et al. | Jan 2014 | B2 |
8635733 | Bardzilowski | Jan 2014 | B2 |
8662760 | Cline et al. | Mar 2014 | B2 |
8668512 | Chang | Mar 2014 | B2 |
8678668 | Cooke et al. | Mar 2014 | B2 |
8687930 | McDowell et al. | Apr 2014 | B2 |
8702324 | Caveney et al. | Apr 2014 | B2 |
8714835 | Kuffel et al. | May 2014 | B2 |
8727638 | Lee et al. | May 2014 | B2 |
8737837 | Conner et al. | May 2014 | B2 |
8755654 | Danley et al. | Jun 2014 | B1 |
8755663 | Makrides-Saravanos et al. | Jun 2014 | B2 |
8758046 | Pezzetti et al. | Jun 2014 | B2 |
8764316 | Barnette et al. | Jul 2014 | B1 |
8770861 | Smith et al. | Jul 2014 | B2 |
8770862 | Lu et al. | Jul 2014 | B2 |
8821036 | Shigehara | Sep 2014 | B2 |
8837894 | Holmberg et al. | Sep 2014 | B2 |
8864390 | Chen et al. | Oct 2014 | B2 |
8870469 | Kachmar | Oct 2014 | B2 |
8879883 | Parikh et al. | Nov 2014 | B2 |
8882364 | Busse et al. | Nov 2014 | B2 |
8917966 | Thompson et al. | Dec 2014 | B2 |
8974124 | Chang | Mar 2015 | B2 |
8992097 | Koreeda et al. | Mar 2015 | B2 |
8998502 | Benjamin et al. | Apr 2015 | B2 |
8998506 | Pepin et al. | Apr 2015 | B2 |
9011858 | Siadak et al. | Apr 2015 | B2 |
9039293 | Hill et al. | May 2015 | B2 |
9075205 | Pepe et al. | Jul 2015 | B2 |
9146364 | Chen et al. | Sep 2015 | B2 |
9151906 | Kobayashi et al. | Oct 2015 | B2 |
9151909 | Chen et al. | Oct 2015 | B2 |
9158074 | Anderson et al. | Oct 2015 | B2 |
9158075 | Benjamin et al. | Oct 2015 | B2 |
9182567 | Mullaney | Nov 2015 | B2 |
9188759 | Conner | Nov 2015 | B2 |
9207410 | Lee et al. | Dec 2015 | B2 |
9207421 | Conner | Dec 2015 | B2 |
9213150 | Matsui et al. | Dec 2015 | B2 |
9223106 | Coan et al. | Dec 2015 | B2 |
9239441 | Melton et al. | Jan 2016 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9274286 | Caveney et al. | Mar 2016 | B2 |
9279951 | McGranahan et al. | Mar 2016 | B2 |
9285550 | Nhep et al. | Mar 2016 | B2 |
9297974 | Valderrabano et al. | Mar 2016 | B2 |
9297976 | Hill et al. | Mar 2016 | B2 |
9310570 | Busse et al. | Apr 2016 | B2 |
9316791 | Durrant et al. | Apr 2016 | B2 |
9322998 | Miller | Apr 2016 | B2 |
9360640 | Ishigami et al. | Jun 2016 | B2 |
9383539 | Hill et al. | Jul 2016 | B2 |
9400364 | Hill et al. | Jul 2016 | B2 |
9405068 | Graham et al. | Aug 2016 | B2 |
9417403 | Mullaney et al. | Aug 2016 | B2 |
9423584 | Coan et al. | Aug 2016 | B2 |
9435969 | Lambourn et al. | Sep 2016 | B2 |
9442257 | Lu | Sep 2016 | B2 |
9450393 | Thompson et al. | Sep 2016 | B2 |
9459412 | Katoh | Oct 2016 | B2 |
9482819 | Li et al. | Nov 2016 | B2 |
9482829 | Lu et al. | Nov 2016 | B2 |
9513444 | Barnette et al. | Dec 2016 | B2 |
9513451 | Corbille et al. | Dec 2016 | B2 |
9535229 | Ott et al. | Jan 2017 | B2 |
9541711 | Raven et al. | Jan 2017 | B2 |
9551842 | Theuerkorn | Jan 2017 | B2 |
9557504 | Holmberg et al. | Jan 2017 | B2 |
9581775 | Kondo et al. | Feb 2017 | B2 |
9588304 | Durrant et al. | Mar 2017 | B2 |
9612407 | Kobayashi et al. | Apr 2017 | B2 |
9618704 | Dean et al. | Apr 2017 | B2 |
9618718 | Islam | Apr 2017 | B2 |
9624296 | Siadak et al. | Apr 2017 | B2 |
9625660 | Daems et al. | Apr 2017 | B2 |
9638871 | Bund et al. | May 2017 | B2 |
9645331 | Kim | May 2017 | B1 |
9645334 | Ishii et al. | May 2017 | B2 |
9651741 | Isenhour et al. | May 2017 | B2 |
9664862 | Lu et al. | May 2017 | B2 |
9678285 | Hill et al. | Jun 2017 | B2 |
9678293 | Coan et al. | Jun 2017 | B2 |
9684136 | Cline et al. | Jun 2017 | B2 |
9684138 | Lu | Jun 2017 | B2 |
9696500 | Barnette et al. | Jul 2017 | B2 |
9711868 | Scheucher | Jul 2017 | B2 |
9720193 | Nishimura | Aug 2017 | B2 |
9733436 | Van et al. | Aug 2017 | B2 |
9739951 | Busse et al. | Aug 2017 | B2 |
9762322 | Amundson | Sep 2017 | B1 |
9766416 | Kim | Sep 2017 | B1 |
9772457 | Hill et al. | Sep 2017 | B2 |
9804343 | Hill et al. | Oct 2017 | B2 |
9810855 | Cox et al. | Nov 2017 | B2 |
9810856 | Graham et al. | Nov 2017 | B2 |
9829658 | Nishimura | Nov 2017 | B2 |
9829668 | Coenegracht et al. | Nov 2017 | B2 |
9851522 | Reagan et al. | Dec 2017 | B2 |
9857540 | Ahmed et al. | Jan 2018 | B2 |
9864151 | Lu | Jan 2018 | B2 |
9878038 | Siadak et al. | Jan 2018 | B2 |
D810029 | Robert et al. | Feb 2018 | S |
9885841 | Pepe et al. | Feb 2018 | B2 |
9891391 | Watanabe | Feb 2018 | B2 |
9905933 | Scheucher | Feb 2018 | B2 |
9910236 | Cooke et al. | Mar 2018 | B2 |
9921375 | Compton et al. | Mar 2018 | B2 |
9927580 | Bretz et al. | Mar 2018 | B2 |
9933582 | Lin | Apr 2018 | B1 |
9939591 | Mullaney et al. | Apr 2018 | B2 |
9964713 | Barnette et al. | May 2018 | B2 |
9964715 | Lu | May 2018 | B2 |
9977194 | Waldron et al. | May 2018 | B2 |
9977198 | Bund et al. | May 2018 | B2 |
9983374 | Li et al. | May 2018 | B2 |
10007068 | Hill et al. | Jun 2018 | B2 |
10031302 | Ji et al. | Jul 2018 | B2 |
10036859 | Daems et al. | Jul 2018 | B2 |
10038946 | Smolorz | Jul 2018 | B2 |
10042136 | Reagan et al. | Aug 2018 | B2 |
10061090 | Coenegracht | Aug 2018 | B2 |
10073224 | Tong et al. | Sep 2018 | B2 |
10094986 | Barnette et al. | Oct 2018 | B2 |
10101538 | Lu et al. | Oct 2018 | B2 |
10107968 | Tong et al. | Oct 2018 | B2 |
10109927 | Scheucher | Oct 2018 | B2 |
10114176 | Gimblet et al. | Oct 2018 | B2 |
10126508 | Compton et al. | Nov 2018 | B2 |
10180541 | Coenegracht et al. | Jan 2019 | B2 |
10209454 | Isenhour et al. | Feb 2019 | B2 |
10215930 | Mullaney et al. | Feb 2019 | B2 |
10235184 | Walker | Mar 2019 | B2 |
10261268 | Theuerkorn | Apr 2019 | B2 |
10268011 | Courchaine et al. | Apr 2019 | B2 |
10288820 | Coenegracht | May 2019 | B2 |
10317628 | Van et al. | Jun 2019 | B2 |
10324263 | Bund et al. | Jun 2019 | B2 |
10338323 | Lu et al. | Jul 2019 | B2 |
10353154 | Ott et al. | Jul 2019 | B2 |
10353156 | Hill et al. | Jul 2019 | B2 |
10359577 | Dannoux et al. | Jul 2019 | B2 |
10371914 | Coan et al. | Aug 2019 | B2 |
10379298 | Dannoux et al. | Aug 2019 | B2 |
10386584 | Rosson | Aug 2019 | B2 |
10401575 | Daily et al. | Sep 2019 | B2 |
10401578 | Coenegracht | Sep 2019 | B2 |
10401584 | Coan et al. | Sep 2019 | B2 |
10409007 | Kadar-Kallen et al. | Sep 2019 | B2 |
10422962 | Coenegracht | Sep 2019 | B2 |
10422970 | Holmberg et al. | Sep 2019 | B2 |
10429593 | Baca et al. | Oct 2019 | B2 |
10429594 | Dannoux et al. | Oct 2019 | B2 |
10434173 | Siadak et al. | Oct 2019 | B2 |
10439295 | Scheucher | Oct 2019 | B2 |
10444442 | Takano et al. | Oct 2019 | B2 |
10451811 | Coenegracht et al. | Oct 2019 | B2 |
10451817 | Lu | Oct 2019 | B2 |
10451830 | Szumacher et al. | Oct 2019 | B2 |
10488597 | Parikh et al. | Nov 2019 | B2 |
10495822 | Nhep | Dec 2019 | B2 |
10502916 | Coan et al. | Dec 2019 | B2 |
10520683 | Nhep | Dec 2019 | B2 |
10539745 | Kamada et al. | Jan 2020 | B2 |
10578821 | Ott et al. | Mar 2020 | B2 |
10585246 | Bretz et al. | Mar 2020 | B2 |
10591678 | Mullaney et al. | Mar 2020 | B2 |
10605998 | Rosson | Mar 2020 | B2 |
10606006 | Hill et al. | Mar 2020 | B2 |
10613278 | Kempeneers et al. | Apr 2020 | B2 |
10620388 | Isenhour et al. | Apr 2020 | B2 |
10656347 | Kato | May 2020 | B2 |
10677998 | Van et al. | Jun 2020 | B2 |
10680343 | Scheucher | Jun 2020 | B2 |
10712516 | Courchaine et al. | Jul 2020 | B2 |
10739534 | Murray et al. | Aug 2020 | B2 |
10746939 | Lu et al. | Aug 2020 | B2 |
10761274 | Pepe et al. | Sep 2020 | B2 |
10782487 | Lu | Sep 2020 | B2 |
10802236 | Kowalczyk et al. | Oct 2020 | B2 |
10830967 | Pimentel et al. | Nov 2020 | B2 |
10830975 | Vaughn et al. | Nov 2020 | B2 |
10852498 | Hill et al. | Dec 2020 | B2 |
10852499 | Cooke et al. | Dec 2020 | B2 |
10859771 | Nhep | Dec 2020 | B2 |
10859781 | Hill et al. | Dec 2020 | B2 |
10962731 | Coenegracht | Mar 2021 | B2 |
10976500 | Ott et al. | Apr 2021 | B2 |
11036011 | Wong | Jun 2021 | B2 |
11061191 | Van Baelen et al. | Jul 2021 | B2 |
11290188 | Tuccio et al. | Mar 2022 | B2 |
20010002220 | Throckmorton et al. | May 2001 | A1 |
20010012428 | Nakajima et al. | Aug 2001 | A1 |
20010019654 | Waldron et al. | Sep 2001 | A1 |
20010036342 | Knecht et al. | Nov 2001 | A1 |
20010036345 | Gimblet et al. | Nov 2001 | A1 |
20020012502 | Farrar et al. | Jan 2002 | A1 |
20020062978 | Sakabe et al. | May 2002 | A1 |
20020064364 | Battey et al. | May 2002 | A1 |
20020076165 | Childers et al. | Jun 2002 | A1 |
20020079697 | Griffioen et al. | Jun 2002 | A1 |
20020081077 | Nault | Jun 2002 | A1 |
20020122634 | Miyake et al. | Sep 2002 | A1 |
20020122653 | Donaldson et al. | Sep 2002 | A1 |
20020131721 | Gaio et al. | Sep 2002 | A1 |
20020159745 | Howell et al. | Oct 2002 | A1 |
20020172477 | Quinn et al. | Nov 2002 | A1 |
20030016440 | Zeidan et al. | Jan 2003 | A1 |
20030031447 | Nault | Feb 2003 | A1 |
20030059181 | Jackman et al. | Mar 2003 | A1 |
20030063866 | Melton et al. | Apr 2003 | A1 |
20030063867 | McDonald et al. | Apr 2003 | A1 |
20030063868 | Fentress | Apr 2003 | A1 |
20030063897 | Heo | Apr 2003 | A1 |
20030080555 | Griffioen et al. | May 2003 | A1 |
20030086664 | Moisel et al. | May 2003 | A1 |
20030094298 | Morrow et al. | May 2003 | A1 |
20030099448 | Gimblet | May 2003 | A1 |
20030103733 | Fleenor et al. | Jun 2003 | A1 |
20030123813 | Ravasio et al. | Jul 2003 | A1 |
20030128936 | Fahrnbauer et al. | Jul 2003 | A1 |
20030165311 | Wagman et al. | Sep 2003 | A1 |
20030201117 | Sakabe et al. | Oct 2003 | A1 |
20030206705 | McAlpine et al. | Nov 2003 | A1 |
20030210875 | Wagner et al. | Nov 2003 | A1 |
20040047566 | McDonald et al. | Mar 2004 | A1 |
20040052474 | Ampert et al. | Mar 2004 | A1 |
20040057676 | Doss et al. | Mar 2004 | A1 |
20040057681 | Quinn et al. | Mar 2004 | A1 |
20040072454 | Nakajima et al. | Apr 2004 | A1 |
20040076377 | Mizukami et al. | Apr 2004 | A1 |
20040076386 | Nechitailo | Apr 2004 | A1 |
20040086238 | Finona et al. | May 2004 | A1 |
20040096162 | Kocher | May 2004 | A1 |
20040120662 | Lail et al. | Jun 2004 | A1 |
20040120663 | Lail et al. | Jun 2004 | A1 |
20040157449 | Hidaka et al. | Aug 2004 | A1 |
20040157499 | Nania et al. | Aug 2004 | A1 |
20040206542 | Gladd et al. | Oct 2004 | A1 |
20040223699 | Melton et al. | Nov 2004 | A1 |
20040223720 | Melton et al. | Nov 2004 | A1 |
20040228589 | Melton et al. | Nov 2004 | A1 |
20040240808 | Rhoney et al. | Dec 2004 | A1 |
20040247251 | Rubino et al. | Dec 2004 | A1 |
20040252954 | Ginocchio et al. | Dec 2004 | A1 |
20040262023 | Morrow et al. | Dec 2004 | A1 |
20050019031 | Ye et al. | Jan 2005 | A1 |
20050036744 | Caveney et al. | Feb 2005 | A1 |
20050036786 | Ramachandran et al. | Feb 2005 | A1 |
20050053342 | Melton et al. | Mar 2005 | A1 |
20050054237 | Gladd et al. | Mar 2005 | A1 |
20050084215 | Grzegorzewska et al. | Apr 2005 | A1 |
20050105873 | Reagan et al. | May 2005 | A1 |
20050123422 | Lilie | Jun 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050163448 | Blackwell et al. | Jul 2005 | A1 |
20050175307 | Battey et al. | Aug 2005 | A1 |
20050180697 | De Marchi | Aug 2005 | A1 |
20050213890 | Barnes et al. | Sep 2005 | A1 |
20050213892 | Barnes et al. | Sep 2005 | A1 |
20050213899 | Hurley et al. | Sep 2005 | A1 |
20050213902 | Parsons | Sep 2005 | A1 |
20050213921 | Mertesdorf et al. | Sep 2005 | A1 |
20050226568 | Nakajima et al. | Oct 2005 | A1 |
20050232550 | Nakajima et al. | Oct 2005 | A1 |
20050232552 | Takahashi et al. | Oct 2005 | A1 |
20050232567 | Reagan et al. | Oct 2005 | A1 |
20050244108 | Billman et al. | Nov 2005 | A1 |
20050271344 | Grubish et al. | Dec 2005 | A1 |
20050281510 | Vo et al. | Dec 2005 | A1 |
20050281514 | Oki et al. | Dec 2005 | A1 |
20050286837 | Oki et al. | Dec 2005 | A1 |
20050286838 | Oki et al. | Dec 2005 | A1 |
20060002668 | Lail et al. | Jan 2006 | A1 |
20060008232 | Reagan et al. | Jan 2006 | A1 |
20060008233 | Reagan et al. | Jan 2006 | A1 |
20060008234 | Reagan et al. | Jan 2006 | A1 |
20060045428 | Theuerkorn et al. | Mar 2006 | A1 |
20060045430 | Theuerkorn et al. | Mar 2006 | A1 |
20060056769 | Khemakhem et al. | Mar 2006 | A1 |
20060056770 | Schmitz | Mar 2006 | A1 |
20060088247 | Tran et al. | Apr 2006 | A1 |
20060093278 | Elkins et al. | May 2006 | A1 |
20060093303 | Reagan et al. | May 2006 | A1 |
20060093304 | Battey et al. | May 2006 | A1 |
20060098932 | Battey et al. | May 2006 | A1 |
20060120672 | Cody et al. | Jun 2006 | A1 |
20060127016 | Baird et al. | Jun 2006 | A1 |
20060133748 | Seddon et al. | Jun 2006 | A1 |
20060133758 | Mullaney et al. | Jun 2006 | A1 |
20060133759 | Mullaney et al. | Jun 2006 | A1 |
20060147172 | Luther et al. | Jul 2006 | A1 |
20060153503 | Suzuki et al. | Jul 2006 | A1 |
20060153517 | Reagan et al. | Jul 2006 | A1 |
20060165352 | Caveney et al. | Jul 2006 | A1 |
20060171638 | Dye | Aug 2006 | A1 |
20060171640 | Dye | Aug 2006 | A1 |
20060210750 | Morrow et al. | Sep 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060257092 | Lu et al. | Nov 2006 | A1 |
20060269204 | Barth et al. | Nov 2006 | A1 |
20060269208 | Allen et al. | Nov 2006 | A1 |
20060280420 | Blackwell et al. | Dec 2006 | A1 |
20060283619 | Kowalczyk et al. | Dec 2006 | A1 |
20060291787 | Seddon | Dec 2006 | A1 |
20070031100 | Garcia et al. | Feb 2007 | A1 |
20070031103 | Tinucci et al. | Feb 2007 | A1 |
20070036483 | Shin et al. | Feb 2007 | A1 |
20070041732 | Oki et al. | Feb 2007 | A1 |
20070047897 | Cooke et al. | Mar 2007 | A1 |
20070077010 | Melton et al. | Apr 2007 | A1 |
20070098343 | Miller et al. | May 2007 | A1 |
20070110374 | Oki et al. | May 2007 | A1 |
20070116413 | Cox | May 2007 | A1 |
20070127872 | Caveney et al. | Jun 2007 | A1 |
20070140642 | Mertesdorf et al. | Jun 2007 | A1 |
20070160327 | Lewallen et al. | Jul 2007 | A1 |
20070189674 | Scheibenreif et al. | Aug 2007 | A1 |
20070237484 | Reagan et al. | Oct 2007 | A1 |
20070263961 | Khemakhem et al. | Nov 2007 | A1 |
20070286554 | Kuffel et al. | Dec 2007 | A1 |
20080019641 | Elkins et al. | Jan 2008 | A1 |
20080020532 | Monfray et al. | Jan 2008 | A1 |
20080044145 | Jenkins et al. | Feb 2008 | A1 |
20080069511 | Blackwell et al. | Mar 2008 | A1 |
20080080817 | Melton et al. | Apr 2008 | A1 |
20080112681 | Battey et al. | May 2008 | A1 |
20080131068 | Mertesdorf et al. | Jun 2008 | A1 |
20080138016 | Katagiyama et al. | Jun 2008 | A1 |
20080138025 | Reagan et al. | Jun 2008 | A1 |
20080166906 | Nania et al. | Jul 2008 | A1 |
20080175541 | Lu et al. | Jul 2008 | A1 |
20080175542 | Lu et al. | Jul 2008 | A1 |
20080175544 | Fujiwara et al. | Jul 2008 | A1 |
20080175548 | Knecht et al. | Jul 2008 | A1 |
20080226252 | Mertesdorf et al. | Sep 2008 | A1 |
20080232743 | Gronvall et al. | Sep 2008 | A1 |
20080240658 | Leeman et al. | Oct 2008 | A1 |
20080260344 | Smith et al. | Oct 2008 | A1 |
20080260345 | Mertesdorf et al. | Oct 2008 | A1 |
20080264664 | Dinh et al. | Oct 2008 | A1 |
20080273837 | Margolin et al. | Nov 2008 | A1 |
20090003772 | Lu et al. | Jan 2009 | A1 |
20090034923 | Miller et al. | Feb 2009 | A1 |
20090041411 | Melton et al. | Feb 2009 | A1 |
20090041412 | Danley et al. | Feb 2009 | A1 |
20090060421 | Parikh et al. | Mar 2009 | A1 |
20090060423 | Melton et al. | Mar 2009 | A1 |
20090067791 | Greenwood et al. | Mar 2009 | A1 |
20090067849 | Oki et al. | Mar 2009 | A1 |
20090074363 | Parsons et al. | Mar 2009 | A1 |
20090074369 | Bolton et al. | Mar 2009 | A1 |
20090123115 | Gronvall et al. | May 2009 | A1 |
20090129729 | Caveney et al. | May 2009 | A1 |
20090148101 | Lu et al. | Jun 2009 | A1 |
20090148102 | Lu et al. | Jun 2009 | A1 |
20090148103 | Lu et al. | Jun 2009 | A1 |
20090148104 | Lu et al. | Jun 2009 | A1 |
20090148118 | Gronvall et al. | Jun 2009 | A1 |
20090148120 | Reagan et al. | Jun 2009 | A1 |
20090156041 | Radle | Jun 2009 | A1 |
20090162016 | Lu et al. | Jun 2009 | A1 |
20090185835 | Park et al. | Jul 2009 | A1 |
20090190895 | Reagan et al. | Jul 2009 | A1 |
20090238531 | Holmberg et al. | Sep 2009 | A1 |
20090245737 | Fujiwara et al. | Oct 2009 | A1 |
20090245743 | Cote et al. | Oct 2009 | A1 |
20090263097 | Solheid et al. | Oct 2009 | A1 |
20090297112 | Mertesdorf et al. | Dec 2009 | A1 |
20090317039 | Blazer et al. | Dec 2009 | A1 |
20090317045 | Reagan et al. | Dec 2009 | A1 |
20100008909 | Siadak et al. | Jan 2010 | A1 |
20100014813 | Ito et al. | Jan 2010 | A1 |
20100014824 | Lu et al. | Jan 2010 | A1 |
20100014867 | Ramanitra et al. | Jan 2010 | A1 |
20100015834 | Siebens | Jan 2010 | A1 |
20100021254 | Jenkins et al. | Jan 2010 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100040331 | Khemakhem et al. | Feb 2010 | A1 |
20100040338 | Sek | Feb 2010 | A1 |
20100054680 | Lochkovic et al. | Mar 2010 | A1 |
20100061685 | Kowalczyk et al. | Mar 2010 | A1 |
20100074578 | Imaizumi et al. | Mar 2010 | A1 |
20100080516 | Coleman et al. | Apr 2010 | A1 |
20100086260 | Parikh et al. | Apr 2010 | A1 |
20100086267 | Cooke et al. | Apr 2010 | A1 |
20100092129 | Conner | Apr 2010 | A1 |
20100092133 | Conner | Apr 2010 | A1 |
20100092136 | Nhep | Apr 2010 | A1 |
20100092146 | Conner et al. | Apr 2010 | A1 |
20100092169 | Conner et al. | Apr 2010 | A1 |
20100092171 | Conner | Apr 2010 | A1 |
20100129034 | Kuffel et al. | May 2010 | A1 |
20100144183 | Nania et al. | Jun 2010 | A1 |
20100172616 | Lu et al. | Jul 2010 | A1 |
20100197222 | Scheucher | Aug 2010 | A1 |
20100215321 | Jenkins | Aug 2010 | A1 |
20100220962 | Caveney et al. | Sep 2010 | A1 |
20100226615 | Reagan et al. | Sep 2010 | A1 |
20100232753 | Parris et al. | Sep 2010 | A1 |
20100247053 | Cowen et al. | Sep 2010 | A1 |
20100266242 | Lu et al. | Oct 2010 | A1 |
20100266244 | Lu et al. | Oct 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100272399 | Griffiths et al. | Oct 2010 | A1 |
20100284662 | Reagan et al. | Nov 2010 | A1 |
20100290741 | Lu et al. | Nov 2010 | A1 |
20100303426 | Davis | Dec 2010 | A1 |
20100303427 | Rambow et al. | Dec 2010 | A1 |
20100310213 | Lewallen et al. | Dec 2010 | A1 |
20100322563 | Melton et al. | Dec 2010 | A1 |
20100329625 | Reagan et al. | Dec 2010 | A1 |
20110019964 | Nhep et al. | Jan 2011 | A1 |
20110047731 | Sugita et al. | Mar 2011 | A1 |
20110067452 | Gronvall et al. | Mar 2011 | A1 |
20110069932 | Overton et al. | Mar 2011 | A1 |
20110108719 | Ford et al. | May 2011 | A1 |
20110116749 | Kuffel et al. | May 2011 | A1 |
20110123166 | Reagan et al. | May 2011 | A1 |
20110129186 | Lewallen et al. | Jun 2011 | A1 |
20110164854 | Desard et al. | Jul 2011 | A1 |
20110222826 | Blackburn et al. | Sep 2011 | A1 |
20110262099 | Castonguay et al. | Oct 2011 | A1 |
20110262100 | Reagan et al. | Oct 2011 | A1 |
20110299814 | Nakagawa | Dec 2011 | A1 |
20110305421 | Caveney et al. | Dec 2011 | A1 |
20120002925 | Nakagawa | Jan 2012 | A1 |
20120008909 | Mertesdorf et al. | Jan 2012 | A1 |
20120045179 | Theuerkorn | Feb 2012 | A1 |
20120063724 | Kuffel et al. | Mar 2012 | A1 |
20120063729 | Fujiwara et al. | Mar 2012 | A1 |
20120106912 | McGranahan et al. | May 2012 | A1 |
20120106913 | Makrides-Saravanos et al. | May 2012 | A1 |
20120134629 | Lu et al. | May 2012 | A1 |
20120183268 | De et al. | Jul 2012 | A1 |
20120213478 | Chen et al. | Aug 2012 | A1 |
20120251060 | Hurley | Oct 2012 | A1 |
20120251063 | Reagan et al. | Oct 2012 | A1 |
20120252244 | Elkins et al. | Oct 2012 | A1 |
20120275749 | Kuffel et al. | Nov 2012 | A1 |
20120321256 | Caveney et al. | Dec 2012 | A1 |
20130004122 | Kingsbury | Jan 2013 | A1 |
20130020480 | Ford et al. | Jan 2013 | A1 |
20130034333 | Holmberg et al. | Feb 2013 | A1 |
20130064506 | Eberle et al. | Mar 2013 | A1 |
20130094821 | Logan | Apr 2013 | A1 |
20130109213 | Chang | May 2013 | A1 |
20130114930 | Smith et al. | May 2013 | A1 |
20130136402 | Kuffel et al. | May 2013 | A1 |
20130170834 | Cho et al. | Jul 2013 | A1 |
20130209099 | Reagan et al. | Aug 2013 | A1 |
20130236139 | Chen et al. | Sep 2013 | A1 |
20130266562 | Siadak et al. | Oct 2013 | A1 |
20130315538 | Kuffel et al. | Nov 2013 | A1 |
20140016902 | Pepe | Jan 2014 | A1 |
20140050446 | Chang | Feb 2014 | A1 |
20140056561 | Lu et al. | Feb 2014 | A1 |
20140079356 | Pepin et al. | Mar 2014 | A1 |
20140133804 | Lu et al. | May 2014 | A1 |
20140133806 | Hill et al. | May 2014 | A1 |
20140133807 | Katoh | May 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140153876 | Dendas et al. | Jun 2014 | A1 |
20140153878 | Mullaney | Jun 2014 | A1 |
20140161397 | Gallegos et al. | Jun 2014 | A1 |
20140205257 | Durrant et al. | Jul 2014 | A1 |
20140219609 | Nielson et al. | Aug 2014 | A1 |
20140219622 | Coan et al. | Aug 2014 | A1 |
20140233896 | Ishigami et al. | Aug 2014 | A1 |
20140241670 | Barnette et al. | Aug 2014 | A1 |
20140241671 | Koreeda et al. | Aug 2014 | A1 |
20140241689 | Bradley et al. | Aug 2014 | A1 |
20140254987 | Caveney et al. | Sep 2014 | A1 |
20140294395 | Waldron et al. | Oct 2014 | A1 |
20140314379 | Lu et al. | Oct 2014 | A1 |
20140328559 | Kobayashi et al. | Nov 2014 | A1 |
20140341511 | Daems et al. | Nov 2014 | A1 |
20140348467 | Cote et al. | Nov 2014 | A1 |
20140355936 | Bund et al. | Dec 2014 | A1 |
20150003787 | Chen et al. | Jan 2015 | A1 |
20150003788 | Chen et al. | Jan 2015 | A1 |
20150036982 | Nhep et al. | Feb 2015 | A1 |
20150110451 | Blazer et al. | Apr 2015 | A1 |
20150144883 | Sendelweck | May 2015 | A1 |
20150153532 | Holmberg et al. | Jun 2015 | A1 |
20150168657 | Islam | Jun 2015 | A1 |
20150183869 | Siadak et al. | Jul 2015 | A1 |
20150185423 | Matsui et al. | Jul 2015 | A1 |
20150253527 | Hill et al. | Sep 2015 | A1 |
20150253528 | Corbille et al. | Sep 2015 | A1 |
20150268423 | Burkholder et al. | Sep 2015 | A1 |
20150268434 | Barnette et al. | Sep 2015 | A1 |
20150293310 | Kanno | Oct 2015 | A1 |
20150309274 | Hurley et al. | Oct 2015 | A1 |
20150316727 | Kondo et al. | Nov 2015 | A1 |
20150346435 | Kato | Dec 2015 | A1 |
20150346436 | Pepe et al. | Dec 2015 | A1 |
20160015885 | Pananen et al. | Jan 2016 | A1 |
20160041346 | Barnette et al. | Feb 2016 | A1 |
20160062053 | Mullaney | Mar 2016 | A1 |
20160085032 | Lu et al. | Mar 2016 | A1 |
20160109671 | Coan et al. | Apr 2016 | A1 |
20160116686 | Durrant et al. | Apr 2016 | A1 |
20160126667 | Droesbeke et al. | May 2016 | A1 |
20160131851 | Theuerkorn | May 2016 | A1 |
20160131857 | Pimentel et al. | May 2016 | A1 |
20160139346 | Bund et al. | May 2016 | A1 |
20160154184 | Bund et al. | Jun 2016 | A1 |
20160154186 | Gimblet et al. | Jun 2016 | A1 |
20160161682 | Nishimura | Jun 2016 | A1 |
20160161688 | Nishimura | Jun 2016 | A1 |
20160161689 | Nishimura | Jun 2016 | A1 |
20160187590 | Lu | Jun 2016 | A1 |
20160202431 | Hill et al. | Jul 2016 | A1 |
20160209599 | Van et al. | Jul 2016 | A1 |
20160209602 | Theuerkorn | Jul 2016 | A1 |
20160216468 | Gimblet et al. | Jul 2016 | A1 |
20160238810 | Hubbard et al. | Aug 2016 | A1 |
20160246019 | Ishii et al. | Aug 2016 | A1 |
20160249019 | Westwick et al. | Aug 2016 | A1 |
20160259133 | Kobayashi et al. | Sep 2016 | A1 |
20160259134 | Daems et al. | Sep 2016 | A1 |
20160306122 | Tong et al. | Oct 2016 | A1 |
20160327754 | Hill et al. | Nov 2016 | A1 |
20170023758 | Reagan et al. | Jan 2017 | A1 |
20170038538 | Isenhour et al. | Feb 2017 | A1 |
20170045699 | Coan et al. | Feb 2017 | A1 |
20170052325 | Mullaney et al. | Feb 2017 | A1 |
20170059784 | Gniadek et al. | Mar 2017 | A1 |
20170123163 | Lu et al. | May 2017 | A1 |
20170123165 | Barnette et al. | May 2017 | A1 |
20170131509 | Xiao et al. | May 2017 | A1 |
20170139158 | Coenegracht | May 2017 | A1 |
20170160492 | Lin et al. | Jun 2017 | A1 |
20170168248 | Hayauchi et al. | Jun 2017 | A1 |
20170168256 | Reagan et al. | Jun 2017 | A1 |
20170170596 | Goossens et al. | Jun 2017 | A1 |
20170176252 | Marple et al. | Jun 2017 | A1 |
20170176690 | Bretz et al. | Jun 2017 | A1 |
20170182160 | Siadak et al. | Jun 2017 | A1 |
20170219782 | Nishimura | Aug 2017 | A1 |
20170235067 | Holmberg et al. | Aug 2017 | A1 |
20170238822 | Young et al. | Aug 2017 | A1 |
20170254961 | Kamada et al. | Sep 2017 | A1 |
20170254962 | Mueller-Schlomka et al. | Sep 2017 | A1 |
20170261696 | Compton et al. | Sep 2017 | A1 |
20170261698 | Compton et al. | Sep 2017 | A1 |
20170261699 | Compton et al. | Sep 2017 | A1 |
20170285275 | Hill et al. | Oct 2017 | A1 |
20170285279 | Daems et al. | Oct 2017 | A1 |
20170288315 | Scheucher | Oct 2017 | A1 |
20170293091 | Lu et al. | Oct 2017 | A1 |
20170336587 | Coan et al. | Nov 2017 | A1 |
20170343741 | Coenegracht et al. | Nov 2017 | A1 |
20170343745 | Rosson | Nov 2017 | A1 |
20170351037 | Watanabe et al. | Dec 2017 | A1 |
20180031774 | Van et al. | Feb 2018 | A1 |
20180079569 | Simpson | Mar 2018 | A1 |
20180081127 | Coenegracht | Mar 2018 | A1 |
20180143386 | Coan et al. | May 2018 | A1 |
20180151960 | Scheucher | May 2018 | A1 |
20180180831 | Blazer et al. | Jun 2018 | A1 |
20180224610 | Pimentel et al. | Aug 2018 | A1 |
20180239094 | Barnette et al. | Aug 2018 | A1 |
20180246283 | Pepe et al. | Aug 2018 | A1 |
20180259721 | Bund et al. | Sep 2018 | A1 |
20180267265 | Zhang et al. | Sep 2018 | A1 |
20180329149 | Mullaney et al. | Nov 2018 | A1 |
20180372962 | Isenhour et al. | Dec 2018 | A1 |
20190004251 | Dannoux et al. | Jan 2019 | A1 |
20190004252 | Rosson | Jan 2019 | A1 |
20190004255 | Dannoux et al. | Jan 2019 | A1 |
20190004256 | Rosson | Jan 2019 | A1 |
20190004258 | Dannoux et al. | Jan 2019 | A1 |
20190011641 | Isenhour et al. | Jan 2019 | A1 |
20190018210 | Coan et al. | Jan 2019 | A1 |
20190033532 | Gimblet et al. | Jan 2019 | A1 |
20190038743 | Siadak et al. | Feb 2019 | A1 |
20190041584 | Coenegracht et al. | Feb 2019 | A1 |
20190041585 | Bretz et al. | Feb 2019 | A1 |
20190041595 | Reagan et al. | Feb 2019 | A1 |
20190058259 | Scheucher | Feb 2019 | A1 |
20190107677 | Coenegracht et al. | Apr 2019 | A1 |
20190147202 | Harney | May 2019 | A1 |
20190162910 | Gurreri | May 2019 | A1 |
20190162914 | Baca et al. | May 2019 | A1 |
20190170961 | Coenegracht et al. | Jun 2019 | A1 |
20190187396 | Finnegan et al. | Jun 2019 | A1 |
20190235177 | Lu et al. | Aug 2019 | A1 |
20190250338 | Mullaney et al. | Aug 2019 | A1 |
20190271817 | Coenegracht | Sep 2019 | A1 |
20190324217 | Lu et al. | Oct 2019 | A1 |
20190339460 | Dannoux et al. | Nov 2019 | A1 |
20190339461 | Dannoux et al. | Nov 2019 | A1 |
20190369336 | Van et al. | Dec 2019 | A1 |
20190369345 | Reagan et al. | Dec 2019 | A1 |
20190374637 | Siadak et al. | Dec 2019 | A1 |
20200012051 | Coenegracht et al. | Jan 2020 | A1 |
20200036101 | Scheucher | Jan 2020 | A1 |
20200049922 | Rosson | Feb 2020 | A1 |
20200057205 | Dannoux et al. | Feb 2020 | A1 |
20200057222 | Dannoux et al. | Feb 2020 | A1 |
20200057223 | Dannoux et al. | Feb 2020 | A1 |
20200057224 | Dannoux et al. | Feb 2020 | A1 |
20200057723 | Chirca et al. | Feb 2020 | A1 |
20200096705 | Rosson | Mar 2020 | A1 |
20200096709 | Rosson | Mar 2020 | A1 |
20200096710 | Rosson | Mar 2020 | A1 |
20200103599 | Rosson | Apr 2020 | A1 |
20200103608 | Johnson et al. | Apr 2020 | A1 |
20200110229 | Dannoux et al. | Apr 2020 | A1 |
20200110234 | Holmberg et al. | Apr 2020 | A1 |
20200116949 | Rosson | Apr 2020 | A1 |
20200116952 | Rosson | Apr 2020 | A1 |
20200116953 | Rosson | Apr 2020 | A1 |
20200116954 | Rosson | Apr 2020 | A1 |
20200116958 | Pannoux et al. | Apr 2020 | A1 |
20200116962 | Dannoux et al. | Apr 2020 | A1 |
20200124805 | Rosson et al. | Apr 2020 | A1 |
20200124812 | Dannoux et al. | Apr 2020 | A1 |
20200132939 | Coenegracht et al. | Apr 2020 | A1 |
20200192042 | Coan et al. | Jun 2020 | A1 |
20200209492 | Rosson | Jul 2020 | A1 |
20200218017 | Coenegracht | Jul 2020 | A1 |
20200225422 | Van et al. | Jul 2020 | A1 |
20200225424 | Coenegracht | Jul 2020 | A1 |
20200241211 | Shonkwiler et al. | Jul 2020 | A1 |
20200348476 | Hill et al. | Nov 2020 | A1 |
20200371306 | Mosier et al. | Nov 2020 | A1 |
20200393629 | Hill et al. | Dec 2020 | A1 |
20210318499 | Cote et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
2006232206 | Oct 2006 | AU |
1060911 | May 1992 | CN |
1071012 | Apr 1993 | CN |
1213783 | Apr 1999 | CN |
1231430 | Oct 1999 | CN |
1114839 | Jul 2003 | CN |
1646962 | Jul 2005 | CN |
1833188 | Sep 2006 | CN |
1922523 | Feb 2007 | CN |
1985205 | Jun 2007 | CN |
101084461 | Dec 2007 | CN |
101111790 | Jan 2008 | CN |
101195453 | Jun 2008 | CN |
201408274 | Feb 2010 | CN |
201522561 | Jul 2010 | CN |
101806939 | Aug 2010 | CN |
101846773 | Sep 2010 | CN |
101866034 | Oct 2010 | CN |
101939680 | Jan 2011 | CN |
201704194 | Jan 2011 | CN |
102141655 | Aug 2011 | CN |
102346281 | Feb 2012 | CN |
202282523 | Jun 2012 | CN |
203224645 | Oct 2013 | CN |
203396982 | Jan 2014 | CN |
103713362 | Apr 2014 | CN |
104064903 | Sep 2014 | CN |
104280830 | Jan 2015 | CN |
104603656 | May 2015 | CN |
104704411 | Jun 2015 | CN |
105467529 | Apr 2016 | CN |
105492946 | Apr 2016 | CN |
106716205 | May 2017 | CN |
106873086 | Jun 2017 | CN |
110954996 | Apr 2020 | CN |
3537684 | Apr 1987 | DE |
3737842 | Sep 1988 | DE |
19805554 | Aug 1998 | DE |
0012566 | Jun 1980 | EP |
0026553 | Apr 1981 | EP |
0122566 | Oct 1984 | EP |
0130513 | Jan 1985 | EP |
0244791 | Nov 1987 | EP |
0462362 | Dec 1991 | EP |
0468671 | Jan 1992 | EP |
0469671 | Feb 1992 | EP |
0547778 | Jun 1993 | EP |
0547788 | Jun 1993 | EP |
0762171 | Mar 1997 | EP |
0782025 | Jul 1997 | EP |
0855610 | Jul 1998 | EP |
0856751 | Aug 1998 | EP |
0856761 | Aug 1998 | EP |
0940700 | Sep 1999 | EP |
0949522 | Oct 1999 | EP |
0957381 | Nov 1999 | EP |
0997757 | May 2000 | EP |
1065542 | Jan 2001 | EP |
1122566 | Aug 2001 | EP |
1243957 | Sep 2002 | EP |
1258758 | Nov 2002 | EP |
1391762 | Feb 2004 | EP |
1431786 | Jun 2004 | EP |
1438622 | Jul 2004 | EP |
1678537 | Jul 2006 | EP |
1759231 | Mar 2007 | EP |
1810062 | Jul 2007 | EP |
2069845 | Jun 2009 | EP |
2149063 | Feb 2010 | EP |
2150847 | Feb 2010 | EP |
2193395 | Jun 2010 | EP |
2255233 | Dec 2010 | EP |
2333597 | Jun 2011 | EP |
2362253 | Aug 2011 | EP |
2401641 | Jan 2012 | EP |
2609458 | Jul 2013 | EP |
2622395 | Aug 2013 | EP |
2734879 | May 2014 | EP |
2815259 | Dec 2014 | EP |
2817667 | Dec 2014 | EP |
2992372 | Mar 2016 | EP |
3022596 | May 2016 | EP |
3064973 | Sep 2016 | EP |
3101740 | Dec 2016 | EP |
3207223 | Aug 2017 | EP |
3245545 | Nov 2017 | EP |
3265859 | Jan 2018 | EP |
3336992 | Jun 2018 | EP |
3362830 | Aug 2018 | EP |
3427096 | Jan 2019 | EP |
3443395 | Feb 2019 | EP |
3535614 | Sep 2019 | EP |
3537197 | Sep 2019 | EP |
3646074 | May 2020 | EP |
3646079 | May 2020 | EP |
1184287 | May 2017 | ES |
2485754 | Dec 1981 | FR |
2022284 | Dec 1979 | GB |
2154333 | Sep 1985 | GB |
2169094 | Jul 1986 | GB |
201404194 | Feb 2010 | IN |
52-030447 | Mar 1977 | JP |
58-142308 | Aug 1983 | JP |
61-145509 | Jul 1986 | JP |
62-054204 | Mar 1987 | JP |
63-020111 | Jan 1988 | JP |
63-078908 | Apr 1988 | JP |
63-089421 | Apr 1988 | JP |
03-063615 | Mar 1991 | JP |
03-207223 | Sep 1991 | JP |
05-106765 | Apr 1993 | JP |
05-142439 | Jun 1993 | JP |
05-297246 | Nov 1993 | JP |
06-320111 | Nov 1994 | JP |
07-318758 | Dec 1995 | JP |
08-050211 | Feb 1996 | JP |
08-054522 | Feb 1996 | JP |
08-062432 | Mar 1996 | JP |
08-292331 | Nov 1996 | JP |
09-049942 | Feb 1997 | JP |
09-135526 | May 1997 | JP |
09-159867 | Jun 1997 | JP |
09-203831 | Aug 1997 | JP |
09-325223 | Dec 1997 | JP |
09-325249 | Dec 1997 | JP |
10-170781 | Jun 1998 | JP |
10-332953 | Dec 1998 | JP |
10-339826 | Dec 1998 | JP |
11-064682 | Mar 1999 | JP |
11-119064 | Apr 1999 | JP |
11-248979 | Sep 1999 | JP |
11-271582 | Oct 1999 | JP |
11-281861 | Oct 1999 | JP |
11-326693 | Nov 1999 | JP |
11-337768 | Dec 1999 | JP |
11-352368 | Dec 1999 | JP |
2000-002828 | Jan 2000 | JP |
2001-116968 | Apr 2001 | JP |
2001-290051 | Oct 2001 | JP |
2002-520987 | Jul 2002 | JP |
2002-250987 | Sep 2002 | JP |
2003-009331 | Jan 2003 | JP |
2003-070143 | Mar 2003 | JP |
2003-121699 | Apr 2003 | JP |
2003-177279 | Jun 2003 | JP |
2003-302561 | Oct 2003 | JP |
2004-361521 | Dec 2004 | JP |
2005-024789 | Jan 2005 | JP |
2005-031544 | Feb 2005 | JP |
2005-077591 | Mar 2005 | JP |
2005-114860 | Apr 2005 | JP |
2005-520987 | Jul 2005 | JP |
2006-023502 | Jan 2006 | JP |
2006-146084 | Jun 2006 | JP |
2006-259631 | Sep 2006 | JP |
2006-337637 | Dec 2006 | JP |
2007-078740 | Mar 2007 | JP |
2007-121859 | May 2007 | JP |
2008-191422 | Aug 2008 | JP |
2008-250360 | Oct 2008 | JP |
2009-265208 | Nov 2009 | JP |
2010-152084 | Jul 2010 | JP |
2010-191420 | Sep 2010 | JP |
2011-033698 | Feb 2011 | JP |
2013-041089 | Feb 2013 | JP |
2013-156580 | Aug 2013 | JP |
2014-085474 | May 2014 | JP |
2014-095834 | May 2014 | JP |
2014-134746 | Jul 2014 | JP |
5537852 | Jul 2014 | JP |
5538328 | Jul 2014 | JP |
2014-157214 | Aug 2014 | JP |
2014-219441 | Nov 2014 | JP |
2015-125217 | Jul 2015 | JP |
2016-109816 | Jun 2016 | JP |
2016-109817 | Jun 2016 | JP |
2016-109819 | Jun 2016 | JP |
2016-156916 | Sep 2016 | JP |
3207223 | Nov 2016 | JP |
3207233 | Nov 2016 | JP |
10-2013-0081087 | Jul 2013 | KR |
222688 | Apr 1994 | TW |
9425885 | Nov 1994 | WO |
9836304 | Aug 1998 | WO |
0127660 | Apr 2001 | WO |
0192927 | Dec 2001 | WO |
0192937 | Dec 2001 | WO |
0225340 | Mar 2002 | WO |
0336358 | May 2003 | WO |
2004061509 | Jul 2004 | WO |
2005045494 | May 2005 | WO |
2006009597 | Jan 2006 | WO |
2006052420 | May 2006 | WO |
2006113726 | Oct 2006 | WO |
2006123777 | Nov 2006 | WO |
2008027201 | Mar 2008 | WO |
2008150408 | Dec 2008 | WO |
2008150423 | Dec 2008 | WO |
2009042066 | Apr 2009 | WO |
2009113819 | Sep 2009 | WO |
2009117060 | Sep 2009 | WO |
2009154990 | Dec 2009 | WO |
2010092009 | Aug 2010 | WO |
2010099141 | Sep 2010 | WO |
2011044090 | Apr 2011 | WO |
2011047111 | Apr 2011 | WO |
2012027313 | Mar 2012 | WO |
2012037727 | Mar 2012 | WO |
2012044741 | Apr 2012 | WO |
2012163052 | Dec 2012 | WO |
2013016042 | Jan 2013 | WO |
2013055714 | Apr 2013 | WO |
2013083729 | Jun 2013 | WO |
2013122752 | Aug 2013 | WO |
2013126488 | Aug 2013 | WO |
2013177016 | Nov 2013 | WO |
2014151259 | Sep 2014 | WO |
2014167447 | Oct 2014 | WO |
2014179411 | Nov 2014 | WO |
2014197894 | Dec 2014 | WO |
2015047508 | Apr 2015 | WO |
2015144883 | Oct 2015 | WO |
2015197588 | Dec 2015 | WO |
2016059320 | Apr 2016 | WO |
2016073862 | May 2016 | WO |
2016095213 | Jun 2016 | WO |
2016100078 | Jun 2016 | WO |
2016115288 | Jul 2016 | WO |
2016156610 | Oct 2016 | WO |
2016168389 | Oct 2016 | WO |
2017063107 | Apr 2017 | WO |
2017146722 | Aug 2017 | WO |
2017155754 | Sep 2017 | WO |
2017178920 | Oct 2017 | WO |
2018083561 | May 2018 | WO |
2018175123 | Sep 2018 | WO |
2018204864 | Nov 2018 | WO |
2019005190 | Jan 2019 | WO |
2019005191 | Jan 2019 | WO |
2019005192 | Jan 2019 | WO |
2019005193 | Jan 2019 | WO |
2019005194 | Jan 2019 | WO |
2019005195 | Jan 2019 | WO |
2019005196 | Jan 2019 | WO |
2019005197 | Jan 2019 | WO |
2019005198 | Jan 2019 | WO |
2019005199 | Jan 2019 | WO |
2019005200 | Jan 2019 | WO |
2019005201 | Jan 2019 | WO |
2019005202 | Jan 2019 | WO |
2019005203 | Jan 2019 | WO |
2019005204 | Jan 2019 | WO |
2019006176 | Jan 2019 | WO |
2019036339 | Feb 2019 | WO |
2019126333 | Jun 2019 | WO |
2019195652 | Oct 2019 | WO |
2020101850 | May 2020 | WO |
Entry |
---|
Liu et al., “Variable optical power splitters create new apps”, Retrieved from: https://www.lightwaveonline.com/fttx/pon-systems/article/16648432/variable-optical-power-splitters-create-new-apps, 2005, 14 pages. |
International Search Report and Writien Opinion PCT/US2018/040126 dated Oct. 9, 2018. |
International Search Report and Written Opinion of the European International Searching Authority; PCT/US2019/061420; dated Feb. 25, 2020; 11 Pgs. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US18/039485; dated Dec. 13, 2018; 10 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US19/061129; dated Feb. 24, 2020; 8 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US19/67781; dated Apr. 2, 2020; 12 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/039020; dated Mar. 8, 2019; 15 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/039484; dated Oct. 5, 2018; 11 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2019/058316; dated May 13, 2020; 16 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2020/053443; dated Dec. 21, 2020; 15 pages; European Patent Office. |
International Search Report and Written Opinion PCT/US2018/039485 dated Dec. 13, 2018. |
International Search Report received for International Patent Application Serial No. PCT/US2017/063862 dated Feb. 4, 2019. |
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019. |
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980. |
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007. |
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6. |
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 SEC. 10.3, 12.2, 165 Pgs. |
Stratos: Lightwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs. |
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs. |
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004). |
Xiao et al. “1 xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015. |
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding. |
Chinese Patent Application No. 201780094010.8, Office Action dated May 7, 2021, 22 pages (12 pages of English Translation and 10 pages of Original Document), Chinese Patent Office. |
Chinese Patent Application No. 201780094437.8, Office Action dated Apr. 27, 2021, 28 pages (10 pages of English Translation and 18 pages of Original Document), Chinese Patent Office. |
Chinese Patent Application No. 201880053104.5, Office Action dated Mar. 26, 2021, 13 pages (4 pages of English Translation and 9 pages of Original Document), Chinese Patent Office. |
Chinese Patent Application No. 201880056460.2, Office Action dated May 19, 2021, 12 pages (English Translation Only), Chinese Patent Office. |
Chinese Patent Application No. 201780093746.3, Office Action dated Mar. 3, 2021; 10 pages (English Translation Only); Chinese Patent Office. |
Chinese Patent Application No. 201780093746.3, Office Action dated Oct. 9, 2021, 7 pages English Translation Only, Chinese Patent Office. |
Chinese Patent Application No. 201780094098.3, Office Action dated Mar. 22, 2021, 13 pages (English Translation Only); Chinese Patent Office. |
Chinese Patent Application No. 201780094420.2, Office Action dated Apr. 28, 2021, 22 pages (4 pages of English Translation and 18 pages of Original Document), Chinese Patent Office. |
Chinese Patent Application No. 201880048258.5, Office Action dated Mar. 18, 2021, 10 pages (English Translation Only); Chinese Patent Office. |
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs. |
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs. |
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs. |
Corning Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002). |
Corning Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002). |
Corning Cable Systems, “SST-Drop (Dielectric) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002). |
European Patent Application No. 17817986.7 Communication pursuant to Article 94(3) EPC dated Nov. 20, 2020; 7 Pages; European Patent Office. |
European Patent Application No. 17817988.3 Communication pursuant to Article 94(3) EPC dated Nov. 20, 2020; 7 Pages; European Patent Office. |
European Patent Application No. 17817986.7 Communication from the Examining Division dated May 19, 2021; 2 Pages; European Patent Office. |
European Patent Application No. 17817987.5 Communication from the Examining Division dated May 21, 2021; 2 Pages; European Patent Office. |
European Patent Application No. 17817987.5 Office Action dated Nov. 5, 2020; 9 Pages; European Patent Office. |
European Patent Application No. 17817988.3 Communication from the Examining Division dated May 19, 2021; 2 Pages; European Patent Office. |
European Patent Application No. 18738181.9 Office Action dated May 21, 2021; 7 Pages; European Patent Office. |
European Patent Application No. 18738181.9 Office Action dated Nov. 5, 2020; 8 Pages; European Patent Office. |
European Patent Application No. 18743172.1 Communication pursuant to Article 94(3) EPC dated Nov. 20, 2020; 7 Pages; European Patent Office. |
European Patent Application No. 20198906.8 European Search Report and Search Opinion dated Feb. 24, 2021; 8 Pages; European Patent Office. |
Faulkner et al. “Optical networks for local Iopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989). |
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064077; dated Jan. 9, 2020; 11 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064087; dated Jan. 9, 2020; 10 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064092; dated Jan. 9, 2020; 12 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064095; dated Jan. 9, 2020; 12 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064096; dated Jan. 9, 2020; 9 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/039494; dated Jan. 9, 2020; 10 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/040011; dated Jan. 9, 2020; 12 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/040104; dated Jan. 9, 2020; 11 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/040126; dated Jan. 9, 2020; 14 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2018/039484; dated Jan. 9, 2020; 10 Pages; European Patent Office. |
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2018/039485; dated Jan. 9, 2020; 8 Pages; European Patent Office. |
International Search Report and Writien Opinion PCT/US2017/064077 dated Feb. 26, 2018. |
International Search Report and Writien Opinion PCT/US2017/064084 dated Feb. 26, 2018. |
International Search Report and Writien Opinion PCT/US2017/064087 dated Feb. 26, 2018. |
International Search Report and Writien Opinion PCT/US2017/064092 dated Feb. 23, 2018. |
International Search Report and Writien Opinion PCT/US2017/064093 dated Feb. 26, 2018. |
International Search Report and Writien Opinion PCT/US2017/064095 dated Feb. 23, 2018. |
International Search Report and Writien Opinion PCT/US2017/064096 dated Feb. 26, 2018. |
International Search Report and Writien Opinion PCT/US2018/039494 dated Oct. 11, 2018. |
International Search Report and Writien Opinion PCT/US2018/040011 dated Oct. 5, 2018. |
International Search Report and Writien Opinion PCT/US2018/040104 dated Oct. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20220075123 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62855295 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/033704 | May 2020 | WO |
Child | 17527625 | US |