The present invention generally relates to the manufacture of logs or rolls of a web material, and more particularly to a multiprocessing apparatus and a process of forming logs of web material with sealed tails.
Conventionally, the manufacture of rolls of toilet tissue, kitchen towels or like products requires a number of processing steps, including unwinding the web material from a log of a large diameter and rewinding it on a log of a same length but with a smaller diameter suitable for consumer's use. The unwinding and rewinding processes are usually conducted in a rewinding machine.
It is usually known that to be competitive, the rewinding process has to be highly automated and efficient with high rewinding speeds. In this regard, many technical features are currently developed and implemented in processing machines with variant degrees of successes.
PCT Application Publication No. WO 2004/046006, the disclosure of which is incorporated herein by reference, describes the construction of a log-processing apparatus that integrates a gluing device to seal the tail of the wound log. The gluing device is constructed from a rotary arm that operatively rotates to contact and apply a glue layer on the web material being fed along a winding roller. While applying the glue layer on the web material, the rotary arm also pinches on the web material to sever it along a perforation line and thereby form a tail of the log.
U.S. Pat. No. 6,000,657, the disclosure of which is also incorporated herein by reference, describes a variant construction of a log-processing machine provided with a log control system. The log control system includes at least two control fingers that operatively slide to convey a winding core to the log-winding unit, sever the web material to define a tail of the log, and push and unload the wound log that freely rolls toward a deceleration hood, respectively.
In U.S. Pat. No. 6,056,229, the disclosure of which is incorporated herein by reference, the log-processing machine includes a stationary plate mounted contiguous to a winding roller of the log-winding unit. The web material is fed along the stationary plate to the winding roller. A conveying arm slides to pinch against the web material on the stationary plate so that the web material tears off at an adjacent perforation line.
The processing apparatuses from the prior art have a number of disadvantages that call for improvements. For example, tail sealing is usually not achieved adequately because the tail applied with glue is not properly wound on the log after it is unloaded from the log-winding unit. This may result in a final log product that exhibits a coarse tail appearance because the adhesion between the tail and the log is not uniform.
Therefore, there is presently a need for a log multiprocessing apparatus that can integrate many functional operations in a single system capable of producing a final log product with an improved aesthetic appearance.
The present application describes a log multiprocessing apparatus and a process of forming logs of a web material.
In one embodiment, the log multiprocessing apparatus comprises a log-winding unit operable to wind a log from a winding core, a conveyor operable to deliver a winding core to the log-winding unit, a severing arm operable to cut out a tail of one tog, a glue applicator operable to dispense at least one glue layer on a part of the web material corresponding to the tail of one log, and a tail-processing unit operable to press and seal the tail of one log.
In some embodiments, the glue applicator includes a printing roller having a surface provided with one or more imprinting patterns configured to contact and dispense at least one portion of glue on a part of the web material. In some variant embodiments, the glue includes color glue.
In some variations, the log-winding unit includes a plurality of rotary winding elements. In other variations, the severing arm is slidable between a first position retracted in one rotary element and a second position where the severing arm thrusts against the web material to cut out a tail of a log being wound at the log-winding unit.
In some embodiments, the tail-processing unit includes a conveying belt, a guiding plate and two pressing rollers. In some variations, the conveying belt is operable to decelerate one log rolling along the guiding plate toward the two pressing rollers. In other variations, the two pressing rollers form a nip in which one log is rotated to seal the tail of the log.
In one embodiment, a multiprocessing apparatus for forming logs of a web material comprises a log-winding unit, a conveyor operable to deliver one winding core to the log-winding unit, a severing arm operable to cut out a tail of one log, a printing unit and a tail-processing unit. The printing unit is operable to transfer at least one printed pattern on an area of the web material corresponding to the tail of one log, wherein at least a part of the printed pattern includes one glue layer. The tail-processing unit is operable to press and seal the tail of one log.
In another embodiment, a process of forming a log of a web material is described. The process comprises winding a web material around a rotating winding core to form a log, severing the web material to form a tail of one wound log, printing a pattern on the tail of one log, wherein the printed pattern includes at least a glue layer, and pressing and sealing the tail on the log.
The foregoing is a summary and shall not be construed to limit the scope of the claims. The operations and structures disclosed herein may be implemented in a number of ways, and such changes and modifications may be made without departing from this invention and its broader aspects. Other aspects, inventive features, and advantages of the invention, as defined solely by the claims, are described in the non-limiting detailed description set forth below.
The present application describes a multiprocessing apparatus and a process of forming logs of a web material. The web of material can be made of tissue paper or any kinds of flexible materials that can be wound and processed into logs. In the drawings, similar reference numerals designate like elements unless otherwise described.
Web material W inputted to the apparatus 100 passes through a perforator unit 110, which in this embodiment may have a perforating roller 111 with a plurality of blades 113 interacting with fixed blades 115 carried by a shaft 117. The perforator unit 110 is operable to form parallel perforation lines on the web material W.
Feeding roller 122 conveys the web material toward a glue applicator 130. The position of the feeding roller 122 can be adjusted via an actuating arm 124 so as to produce a suitable tension within the web material and thereby ensure that it is correctly fed downstream through the glue applicator 130 and, subsequently, to a log-winding unit 140.
In the illustrated embodiment, the glue applicator 130 is constructed as a printing unit. The glue applicator unit 130 includes a printing roller 132 interposed between a transfer roller 131 and a base roller 133, and a glue dispenser 136. The surface of the printing roller 132 is provided with one or more imprinting pads 134a and 134b. The transfer roller 131 is impregnated with glue supplied from the glue dispenser 136, and then transfers the glue to the imprinting pads 134a and 134b of the printing roller 132.
The printer roller 132 rotates in a direction opposite to that of the transfer roller 131 and base roller 133 so as to print patterns including glue layers on the web material W traveling through the printer roller 132 and base roller 133. Since a printing technique is used, both visible and invisible marks or logos of different colors may be formed on the web material wound around the winding core. An indenting technique may also be used to create indentations of marks or logos on the web material wound around the winding core without any inks or glues.
Referring back to
Referring back to
A rotary core-urging arm 160 is configured to push and engage one winding core C2 in the throat 144. The core-urging arm 160 rotates synchronously to a rotation of the printing roller 132 so that the engagement of the winding core C2 in the throat 144 approximately corresponds to the passage of a portion of the web material provided with glue portions inside the throat 144.
Each winding core C2 is brought to the inlet of the throat 144 via a conveying mechanism 170 including one or more carrier finger 172. The carrier finger 172 moves cyclically along with a belt 174 to convey winding cores to the inlet of the throat 144. The conveying mechanism 170 may be of different shape so long as it brings winding core C2 to the inlet of the throat 144 to allow synchronous feeding of the winding core C2 to the throat 144 by the core-urging arm 160.
A tail-processing unit 180 is assembled downstream from the log-winding unit 140. The tail-processing unit 180 includes a conveyor belt 181, a guiding plate 182 and two opposite pressing rollers 185 and 187. The conveyor belt 181 drives the rolling of a log along the guiding plate 182 at a decelerated speed until it reaches the pressing rollers 185 and 187. The pressing rollers 185 and 187 rotate in a same direction, for example counterclockwise, and at a same speed to form a nip in which one log is pressed and kept rotating for a period of time to ensure that its tail provided with the glue adequately adheres on the log.
Referring to
In this embodiment, two imprinting pads 134a and 134b are provided: a first imprinting pad 134a for applying a first glue layer T on the tail of the web material being wound on the log L1, and a second imprinting pad 134b for applying a second glue layer F on an area of the web material to adhere on the next winding core C2. The two imprinting pads 134a and 134b are spaced away from each other at such a distance that the respective T and F glue layers are applied at two distant areas of the web material separated by at least one perforation line.
Referring to
Referring to
Referring to
Referring to
Many variations of the apparatus described in this invention may be envisioned according to the specific requirements of the final log product.
In the variant embodiment of
The slitting unit 220 includes rotary slitter blades 221 and a base blade 222 interacting with each other to sever a single continuous ribbon of web material into parallel strips of web material. The positions of the rotary slitter blades 221 are adjustable via an actuator 224 to set the width of each strip of web material and also move the slitter blades 221 relative to the base blade 222. A vacuum suction device 225 is operable to evacuate unwanted peripheral portions of the web material cut out by the slitter blades 221.
As shown in the embodiment of
The cut strips of web material are processed through the glue applicator 130, log-winding unit 140, and tail-processing unit 180 according to a processing sequence similar to that illustrated in
Before it reaches the log-winding unit 140, a winding core C is mounted with a shaft B at the core-engaging unit 240, and subsequently cut in desired section lengths at the core-cutting unit 250.
One shaft B to be inserted inside a winding core C is placed inside the gap 248 between the two belt inserters 244 and is stopped in the sliding direction of the belt inserts 244 by an abutment 246. The shaft B is positioned approximately aligned with a winding core C to mount in. The conveying belt 242 conveys the winding core C to engage and come into contact between the two belt inserters 244, which then drive the winding core C to longitudinally slide and engage with the shaft B.
As shown in
The core-cutting unit 250 includes a blade roller 252 and two positioning rollers 254 that form a nip where a winding core undergoes radial cutting to define core sections of given lengths S. The length S of each log section corresponds to the respective width of the strips of web material cut out from the slitting unit 220.
The winding core cut in core sections then is conveyed to the inlet of the throat 144 of the log-winding unit 140. After the winding core has been wound into a log and released from the tail-processing unit 180, the finally formed log includes log sections of the length S.
The skilled artisan will appreciate that the different processing units described in this application may be implemented in a single integrated system or independently implemented in separate processing stations according to the customer's demands. For example, when no marks or logos are desired, the printing roller 132 may simply act as a glue applicator.
Realizations in accordance with the present invention therefore have been described in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance. Structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in the claims that follow.
Number | Date | Country | |
---|---|---|---|
Parent | 11081110 | Mar 2005 | US |
Child | 11616579 | Dec 2006 | US |