The present invention relates to improvements in multispectral imaging for determining the characteristics of an objects, and more particularly to improvements which are capable of providing imaging of internal structure through trans-illumination apparatus and techniques.
The human visual system is able to detect light in a range of wavelengths that are typically described as “visible light.” The longest wavelengths detected are red, the mid range is green and shortest wavelengths are blue. Long wavelength light such as infrared and short wavelength light such as ultraviolet are invisible to the human eye. The characteristics of an object that we can determine with the unaided eye are limited to those that can be detected in this spectrum. Furthermore, the trichromatic system used by the eye is broadband in nature and cannot see narrowband artifacts such as would be seen by a spectrophotometer.
Several products have reached market that emit infrared light on an object and use the reflected light to detect a pattern of varying contrast in the infrared spectrum. The device then projects an image that follows those contrast changes using a wavelength within the visible spectrum. In one such product, the AccuVein AV300, detects a pattern of absorption and reflection in the infrared and re-projects that pattern as red. Given that hemoglobin absorbs infrared light to a greater degree than the surrounding tissue, the projected pattern can be used by a medical practitioner to identify the position of a vein to be used for venipuncture.
In other products, the light is captured and the processed image is displayed on a remote screen such as an LCD panel or through an eyepiece that is in line with the object.
These contrast enhancement products act as color shifters. Just as the human eye would detect variations in absorption and reflection in the three colors it can see (red, green and blue), these contrast enhancers detect the variations at wavelengths outside the visible spectrum and display the corresponding pattern inside the visible spectrum.
The invention disclosed herein extends this concepts described in the parent applications in several novel ways, which can be used individually, or in combination.
The invention can be further enhanced by combining some or all of these techniques to detect and project different characteristics of the object being scanned and projecting them back on the object.
While many of the descriptions are for embodiments that use re-projection back on to the object under study as the user interface, embodiments with user interfaces remote from the object such as an LCD screen will be useful in many applications. Furthermore, the combination of re-projection and remote displays will also be useful in many applications.
While the devices and systems described herein focus on multispectral systems and describe specific embodiments of said devices and systems, the methods, features, functions, abilities, and accessories described in the parent applications apply fully.
As is well known in the art, a laser camera works by emitting one or more laser beams and moving those beams in a pattern such that the beams cross over the area of an object of which an image is to be captured. A photo detector element in the camera captures the changes in light reflected from the object and uses that light change to create an image of the observed object. Note that as with a traditional camera, “object” should be read in this explanation as an object or as a group of objects (e.g., an apple or a still life that includes an apple). The pattern in which the beam is moved is unimportant as long as the position at which it strikes the object can be determined either directly or inferentially. Examples of patterns that can be used include raster and lissajous.
As previously mentioned, the AccuVein AV300 is a laser camera system that uses a single infrared laser scanned over the object (in this case the human body) to determine the position of hemoglobin as a proxy for the position of a vein. The device uses the general characteristic of hemoglobin in that it absorbs infrared light to a greater degree than surrounding tissue. As seen in
Through the addition of a second infrared laser of a different wavelength, or through the addition of a tunable laser allowing the wavelength to be changed, the invention could detect the difference between a vein and an artery. The user interface could then use one or more of several techniques to indicate the type of hemoglobin detected.
While a range of techniques could be used for the detection algorithm, in one embodiment the following truth table could be used:
Furthermore, a range of techniques could be used for the user interface. These include:
While the use of infrared wavelengths to detect different types of hemoglobin are used for this illustrative example, there are many characteristics well know in the art that can be determined by the absorption spectrum of an object that the invention would be equally suited to.
One embodiment of the invention uses a one or more data capture techniques as discussed previously and provides user feedback by re-projecting a re-colored image back on to the area being scanned. Since it is possible for one or more of the wavelengths of light being captured to overlap with the wavelengths of light being projected it is necessary to implement one or more techniques to prevent the projected light from being confused with the detected light.
These techniques include the following and can be combined:
The illustrative uses of asymmetrical detection and projection allows a balance between the amount of time that might be needed for capture and the processing the captured information and the need to have a sufficiently high projection rate to provide a good user experience. Other asymmetrical combinations are possible.
An alternative embodiment of the invention is one in which diffuse light of one or more wavelengths is emitted and then reflected by the object under study. A digital camera using technology such as CMOS or CCD sensors captures an image of the object being studied to determine the reflection/absorption spectrum of the object. By controlling the emitted light wavelengths or by modifying the sensitivity spectrum of the image sensor, the spectral characteristics of the object can be determined.
Examples of modifying the response characteristics of the image sensor have been seen in the literature. For example, in “Laser Focus World” there is a discussion in an article titled “CMOS imager with mosaic filter detects skin disorders.” Another related discussion is found in another article with the title “MEDICAL IMAGING: Real-time multispectral imager promises portable-diagnosis.”
Transillumination
In one mode of operation, each Laser Freq 1-N is sequentially turned on for one frame of projection. The reflected light received at Photo Detectors A+B for that frame is then stored in a first frame memory location (not shown). In this manner, by sequentially stepping through Freq 1-N a multispectral image is stored in sequential frames of memory locations 1-N.
A characteristic of the system shown in
One method of penetrating deeper into the Body Part to see deeper Internal Structures is to increase the power output of the Lasers 1-N. However, as laser power is increased, the reflections off the external surface of the Body Part also increases. Eventually the Photo Detectors A+B, and the associated circuitry after them (not shown), gets saturated and the details of the Internal Structure get washed away.
Nor do the Photo Detectors have to be physically touching the skin of the Body Part. Instead, they may configured to have their Field-of-View (FOV) restricted to areas of the skin the Body Part which are not directly illuminated by lasers 1-N (
In the transillumination laser system of
Alternatively, a wide-band laser, which emits light of different wavelength simultaneously, may be used. Such lasers are known to be constructed with active media been confined to an optical fiber with various doping elements with overlapping emission spectra. Alternatively, the pulsed lasers with ultra-short pulses may be used where the spectrum is broadened by the sidebands of the frequencies associated with the pulse duration. One example of such lasers is a mode-locked laser.
In this case, different wavelengths will be detected by Photo Detectors with different spectral responses. In one embodiment, identical Photo Detectors with broadband response may have color filters which limit the response of each Detector to a narrow band of wavelengths (
In a transillumination laser system, single, multiple, or arrays of Photo Detectors may be used instead of the two Photo Detectors shown in
In
The transillumination laser systems described herein can be utilized as a multispectral system for detecting bruising and erythema (which might indicate developing pressure ulcers). For example, an article in Laser Focus World having the title “MEDICAL IMAGING: Real-time multispectral imager promises portable-diagnosis.” describes a conventional CCD camera system for detection having a masked filter array for receiving images with the following frequencies of light 460, 525, 577 and 650 nm for detection of bruising or 540, 577, 650 and 970 for detection of erythema. However, such a system differs significantly from the transillumination laser system in that the CCD camera receives the light reflected off the skin, and therefore, does not have the same contrast ratio (or signal to noise performance) as transillumination laser system utilizing the same light frequencies for viewing events under the skin. Accordingly, a transillumination laser system utilizing the frequencies, for example 460, 525, 540, 577, 650 and 970 nm can be configured as described in
While the laser system of
Closed Loop Projection
Traditional CCD cameras have a large number of pixels that provide a high-resolution image. However, with conventional CCD cameras, each of the pixels has a common exposure time, and the camera lens typically has a single optical aperture setting per picture. Accordingly, it is very difficult to take a very good picture of a very bright item positioned very close to a very dim item. For example, if you were to attempt to take a picture of a seagull next to the sun, if you set the exposure time down (short) and/or the lens aperture opening so small (higher F number) that the sun does not saturate the CCD pixels, you could image the sun but the image of the seagull would be washed out. Conversely, if you set the exposure time long, and the lens aperture opened wide (smaller F number), you could image the bird but the sun would saturate the CCD pixels corresponding to it.
Described in
In
A Photo Detector (or multiple Photo Detectors or Photo Detector array) receives the reflected light and provides a corresponding voltage to the Amplifier (DC coupled). The output is then provided to the Comparator (One Bit Logic Output) that in turn provides one bit of data. That one bit indicates whether the laser was “too bright” or “too dark” for that pixel. The result is then stored as Pixel brightness information and is updated with every frame. Stored pixel brightness is changed up or down depending on the Photo Detector bit. For maximum light contrast sensitivity, pixel data is always changed by at least one bit every frame. In this manner the closed loop projection image is constantly capturing.
Depending on the bits of brightness resolution, the system requires multiple frames to fully capture an image. For example, for 8 bits (255 shades), new image capture requires 8 frames. At 60 frames per second, that's 0.13 seconds to capture. After capture, image is maintained and updated with every frame. Since laser brightness (the DAC setting) is adjusted for each pixel, the reflected light for each pixel approaches one value. That value is the midpoint of the analog Photo Detector signal range. This scheme allows the highest contrast sensitivity and highest DC gain in the front end, because the analog signal approaches a flat line. Therefore the dynamic range of the system is not limited by the dynamic range or speed of the Photo Detector amplifier chain.
It is also possible to further increase the dynamic range and speed up the data acquisition of a closed loop laser imaging system by employing a fast, moderate resolution ADC in place of a single Comparator as described above, but still varying the laser power on a pixel-by-pixel basis to ensure nearly-uniform brightness of the resulting image. In this case, the dynamic range of the system would be generally equal to the product of the bit resolutions of the laser driver and the ADC, while the number of frames needed to capture a full-resolution image will be equal to a dividend of the bit resolutions of the laser driver and the ADC.
The time period during the top scan line of the image is reserved for Laser calibration. During calibration, the laser is driven to a defined maximum and then minimum brightness. During minimum brightness, the DC bias on the Photo Detector amplifier is adjusted to compensate for any change in ambient room lighting.
While
Additionally, the information captured at one wavelength may be used to adjust the laser power of different wave-length. Such wavelength cross-coupling may increase accuracy and/or shorten acquisition time of a multispectral closed loop laser imaging system.
The multispectral laser system
Further, the concept described in the parent applications hereto of adding a visible laser as one of the Laser Freq 1-N can be applied to the multispectral laser system
Wherein it is described herein that the object is a Body Part, the multispectral laser system
System for Evaluating Teeth
The Laser Camera can be configured as a Transillumination Laser Camera, as previously described. A Photo Detector Insert, containing multiple Photo Diodes, can be placed inside the mouth of the patient and pressed against the backside of the teeth. The Photo Detector Insert will receive the laser light that is transmitted through the tooth. The Photo Detector Insert can be molded out of a transmissive gummy material so that it can slightly adhere to the backside of the teeth and provides an optical path for the 1310 nm light that scatters within the tooth and passes the light to the Photo Diodes. The light which is received by the Photo Detector Insert is converted to a signal (circuit not shown) which is then communicated (either wired or wirelessly) to the Laser Camera where the results are clocked into an image memory. Once a frame of data is clocked into an image memory it can then be output on a Monitor where the user can view the image of the teeth.
The Laser Camera can be designed as a closed loop imaging system as describe previously in
The Laser Camera can also be a multispectral camera as previously described, wherein the 1310 nm frequency is utilized with other frequency lasers for detecting other characteristics of the teeth.
This application is a continuation of U.S. patent application Ser. No. 12/925,166, on Oct. 14, 2010, which claims priority on Provisional Patent Application Ser. No. 61/278,948, filed Oct. 14, 2009, and which is a continuation-in-part of: application Ser. No. 11/478,322, filed on Jun. 29, 2006, now issued as U.S. Pat. No. 8,478,386; U.S. patent application Ser. No. 11/700,729, filed Jan. 31, 2007; U.S. patent application Ser. No. 11/807,359, filed May 25, 2007, now issued as U.S. Pat. No. 8,489,178; U.S. patent application Ser. No. 12/215,713, filed Jun. 27, 2008; and U.S. patent application Ser. No. 11/823,862, filed Jun. 28, 2007, now issued as U.S. Pat. No. 7,983,738. All of the foregoing disclosures are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3136310 | Meltzer | Jun 1964 | A |
3349762 | Kapany | Oct 1967 | A |
3511227 | Johnson | May 1970 | A |
3527932 | Thomas | Sep 1970 | A |
3818129 | Yamamoto | Jun 1974 | A |
3984629 | Gorog | Oct 1976 | A |
4030209 | Dreiding | Jun 1977 | A |
4057784 | Tafoya | Nov 1977 | A |
4109647 | Stern et al. | Aug 1978 | A |
4162405 | Chance et al. | Jul 1979 | A |
4182322 | Miller | Jan 1980 | A |
4185808 | Donohoe et al. | Jan 1980 | A |
4213678 | Pomerantzeff et al. | Jul 1980 | A |
4265227 | Ruge | May 1981 | A |
4312357 | Andersson et al. | Jan 1982 | A |
4315318 | Kato et al. | Feb 1982 | A |
4321930 | Jobsis et al. | Mar 1982 | A |
4393366 | Hill | Jul 1983 | A |
4495949 | Stoller | Jan 1985 | A |
4502075 | DeForest et al. | Feb 1985 | A |
4510938 | Jobsis et al. | Apr 1985 | A |
4536790 | Kruger et al. | Aug 1985 | A |
4565968 | Macovski | Jan 1986 | A |
4567896 | Barnea et al. | Feb 1986 | A |
4576175 | Epstein | Mar 1986 | A |
4586190 | Tsuji | Apr 1986 | A |
4590948 | Nilsson | May 1986 | A |
4596254 | Adrian et al. | Jun 1986 | A |
4619249 | Landry | Oct 1986 | A |
4669467 | Willett et al. | Jun 1987 | A |
4697147 | Moran et al. | Sep 1987 | A |
4699149 | Rice | Oct 1987 | A |
4703758 | Omura | Nov 1987 | A |
4766299 | Tierney et al. | Aug 1988 | A |
4771308 | Tejima et al. | Sep 1988 | A |
4780919 | Harrison | Nov 1988 | A |
4799103 | Muckerheide | Jan 1989 | A |
4817622 | Pennypacker et al. | Apr 1989 | A |
4846183 | Martin | Jul 1989 | A |
4861973 | Hellekson et al. | Aug 1989 | A |
4862894 | Fujii | Sep 1989 | A |
4883953 | Koashi | Nov 1989 | A |
4899756 | Sonek | Feb 1990 | A |
4901019 | Wedeen | Feb 1990 | A |
4926867 | Kanda et al. | May 1990 | A |
RE33234 | Landry | Jun 1990 | E |
4938205 | Nudelman | Jul 1990 | A |
5074642 | Hicks | Dec 1991 | A |
5088493 | Giannini et al. | Feb 1992 | A |
5090415 | Yamashita | Feb 1992 | A |
5103497 | Hicks | Apr 1992 | A |
5146923 | Dhawan | Sep 1992 | A |
5174298 | Dolfi et al. | Dec 1992 | A |
5184188 | Bull et al. | Feb 1993 | A |
5214458 | Kanai | May 1993 | A |
5222495 | Clarke et al. | Jun 1993 | A |
5261581 | Harden, Sr. | Nov 1993 | A |
5293873 | Fang | Mar 1994 | A |
5339817 | Nilsson | Aug 1994 | A |
5371347 | Plesko | Dec 1994 | A |
5406070 | Edgar et al. | Apr 1995 | A |
5418546 | Nakagakiuchi et al. | May 1995 | A |
5423091 | Lange | Jun 1995 | A |
5436655 | Hiyama et al. | Jul 1995 | A |
5445157 | Adachi et al. | Aug 1995 | A |
D362910 | Creaghan | Oct 1995 | S |
5455157 | Hinzpeter et al. | Oct 1995 | A |
5485530 | Lakowicz et al. | Jan 1996 | A |
5487740 | Sulek et al. | Jan 1996 | A |
5494032 | Robinson et al. | Feb 1996 | A |
5497769 | Gratton et al. | Mar 1996 | A |
5504316 | Bridgelall et al. | Apr 1996 | A |
5519208 | Esparza et al. | May 1996 | A |
5541820 | McLaughlin | Jul 1996 | A |
5542421 | Erdman | Aug 1996 | A |
5598842 | Ishihara et al. | Feb 1997 | A |
5603328 | Zucker et al. | Feb 1997 | A |
5608210 | Esparza et al. | Mar 1997 | A |
5610387 | Bard et al. | Mar 1997 | A |
5625458 | Alfano et al. | Apr 1997 | A |
5631976 | Bolle et al. | May 1997 | A |
5655530 | Messerschmidt | Aug 1997 | A |
5678555 | O'Connell | Oct 1997 | A |
5716796 | Bull et al. | Feb 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5740801 | Branson | Apr 1998 | A |
5747789 | Godik | May 1998 | A |
5756981 | Roustaei et al. | May 1998 | A |
5758650 | Miller et al. | Jun 1998 | A |
5772593 | Hakamata | Jun 1998 | A |
5787185 | Clayden | Jul 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5836877 | Zavislan | Nov 1998 | A |
5847394 | Alfano et al. | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5929443 | Alfano et al. | Jul 1999 | A |
5946220 | Lemelson | Aug 1999 | A |
5947906 | Dawson, Jr. et al. | Sep 1999 | A |
5966204 | Abe | Oct 1999 | A |
5966230 | Swartz et al. | Oct 1999 | A |
5969754 | Zeman | Oct 1999 | A |
5982553 | Bloom et al. | Nov 1999 | A |
5988817 | Mizushima et al. | Nov 1999 | A |
5995856 | Manheimer et al. | Nov 1999 | A |
5995866 | Lemelson | Nov 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6032070 | Flock et al. | Feb 2000 | A |
6056692 | Schwartz | May 2000 | A |
6061583 | Ishihara et al. | May 2000 | A |
6083486 | Weissleder et al. | Jul 2000 | A |
6101036 | Bloom | Aug 2000 | A |
6113536 | Aboul-Hosn et al. | Sep 2000 | A |
6122042 | Wunderman et al. | Sep 2000 | A |
6132379 | Patacsil et al. | Oct 2000 | A |
6135599 | Fang | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6142650 | Brown et al. | Nov 2000 | A |
6149061 | Massieu et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6171301 | Nelson et al. | Jan 2001 | B1 |
6178340 | Svetliza | Jan 2001 | B1 |
6179260 | Ohanian | Jan 2001 | B1 |
6230046 | Crane et al. | May 2001 | B1 |
6240309 | Yamashita et al. | May 2001 | B1 |
6251073 | Imran et al. | Jun 2001 | B1 |
6263227 | Boggett et al. | Jul 2001 | B1 |
6272376 | Marcu et al. | Aug 2001 | B1 |
6301375 | Choi | Oct 2001 | B1 |
6305804 | Rice et al. | Oct 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6334850 | Amano et al. | Jan 2002 | B1 |
6353753 | Flock et al. | Mar 2002 | B1 |
6424858 | Williams | Jul 2002 | B1 |
6436655 | Bull et al. | Aug 2002 | B1 |
6438396 | Cook et al. | Aug 2002 | B1 |
6463309 | Ilia | Oct 2002 | B1 |
6464646 | Shalom et al. | Oct 2002 | B1 |
6523955 | Eberl et al. | Feb 2003 | B1 |
6542246 | Toida | Apr 2003 | B1 |
6556854 | Sato et al. | Apr 2003 | B1 |
6556858 | Zeman | Apr 2003 | B1 |
6599247 | Stetten | Jul 2003 | B1 |
6631286 | Pfeiffer et al. | Oct 2003 | B2 |
6648227 | Swartz et al. | Nov 2003 | B2 |
6650916 | Cook et al. | Nov 2003 | B2 |
6671540 | Hochman | Dec 2003 | B1 |
6689075 | West | Feb 2004 | B2 |
6690964 | Bieger et al. | Feb 2004 | B2 |
6702749 | Paladini et al. | Mar 2004 | B2 |
6719257 | Greene et al. | Apr 2004 | B1 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6777199 | Bull et al. | Aug 2004 | B2 |
6782161 | Barolet et al. | Aug 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6882875 | Crowley | Apr 2005 | B1 |
6889075 | Marchitto et al. | May 2005 | B2 |
6913202 | Tsikos et al. | Jul 2005 | B2 |
6923762 | Creaghan, Jr. | Aug 2005 | B1 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
7092087 | Kumar et al. | Aug 2006 | B2 |
7113817 | Winchester, Jr. et al. | Sep 2006 | B1 |
7158660 | Gee, Jr. et al. | Jan 2007 | B2 |
7158859 | Wang et al. | Jan 2007 | B2 |
7204424 | Yavid et al. | Apr 2007 | B2 |
7225005 | Kaufman et al. | May 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7239909 | Zeman | Jul 2007 | B2 |
7247832 | Webb | Jul 2007 | B2 |
7280860 | Ikeda et al. | Oct 2007 | B2 |
7283181 | Allen et al. | Oct 2007 | B2 |
7302174 | Tan et al. | Nov 2007 | B2 |
7333213 | Kempe | Feb 2008 | B2 |
D566283 | Brafford et al. | Apr 2008 | S |
7359531 | Endoh et al. | Apr 2008 | B2 |
7376456 | Marshik-Geurts et al. | May 2008 | B2 |
7428997 | Wiklof et al. | Sep 2008 | B2 |
7431695 | Creaghan | Oct 2008 | B1 |
7448995 | Wiklof et al. | Nov 2008 | B2 |
7532746 | Marcotte et al. | May 2009 | B2 |
7545837 | Oka | Jun 2009 | B2 |
7559895 | Stetten et al. | Jul 2009 | B2 |
7579592 | Kaushal | Aug 2009 | B2 |
7608057 | Woehr et al. | Oct 2009 | B2 |
7699776 | Walker et al. | Apr 2010 | B2 |
7708695 | Akkermans et al. | May 2010 | B2 |
7792334 | Cohen et al. | Sep 2010 | B2 |
7846103 | Cannon, Jr. et al. | Dec 2010 | B2 |
7848103 | Zhan | Dec 2010 | B2 |
7904138 | Goldman et al. | Mar 2011 | B2 |
7904139 | Chance | Mar 2011 | B2 |
7925332 | Crane et al. | Apr 2011 | B2 |
7966051 | Xie et al. | Jun 2011 | B2 |
8032205 | Mullani | Oct 2011 | B2 |
8078263 | Zeman et al. | Dec 2011 | B2 |
8187189 | Jung et al. | May 2012 | B2 |
8199189 | Kagenow et al. | Jun 2012 | B2 |
8320998 | Sato | Nov 2012 | B2 |
8336839 | Boccoleri et al. | Dec 2012 | B2 |
8364246 | Thierman | Jan 2013 | B2 |
8467855 | Yasui | Jun 2013 | B2 |
8480662 | Stolen et al. | Jul 2013 | B2 |
8494616 | Zeman | Jul 2013 | B2 |
8498694 | McGuire, Jr. et al. | Jul 2013 | B2 |
8509495 | Xu et al. | Aug 2013 | B2 |
8537203 | Seibel et al. | Sep 2013 | B2 |
8548572 | Crane | Oct 2013 | B2 |
8630465 | Wieringa et al. | Jan 2014 | B2 |
8649848 | Crane et al. | Feb 2014 | B2 |
20010006426 | Son et al. | Jul 2001 | A1 |
20010056237 | Cane et al. | Dec 2001 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020111546 | Cook | Aug 2002 | A1 |
20020118338 | Kohayakawa | Aug 2002 | A1 |
20020188203 | Smith et al. | Dec 2002 | A1 |
20030018271 | Kimble | Jan 2003 | A1 |
20030037375 | Riley et al. | Feb 2003 | A1 |
20030052105 | Nagano et al. | Mar 2003 | A1 |
20030120154 | Sauer et al. | Jun 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030156260 | Putilin et al. | Aug 2003 | A1 |
20040015062 | Ntziachristos et al. | Jan 2004 | A1 |
20040015158 | Chen et al. | Jan 2004 | A1 |
20040022421 | Endoh et al. | Feb 2004 | A1 |
20040046031 | Knowles et al. | Mar 2004 | A1 |
20040087862 | Geng | May 2004 | A1 |
20040171923 | Kalafut et al. | Sep 2004 | A1 |
20040222301 | Willins et al. | Nov 2004 | A1 |
20040237051 | Clauson | Nov 2004 | A1 |
20050017924 | Utt et al. | Jan 2005 | A1 |
20050033145 | Graham et al. | Feb 2005 | A1 |
20050043596 | Chance | Feb 2005 | A1 |
20050047134 | Mueller et al. | Mar 2005 | A1 |
20050085732 | Sevick-Muraca et al. | Apr 2005 | A1 |
20050085802 | Gruzdev et al. | Apr 2005 | A1 |
20050113650 | Pacione et al. | May 2005 | A1 |
20050131291 | Floyd et al. | Jun 2005 | A1 |
20050135102 | Gardiner et al. | Jun 2005 | A1 |
20050141069 | Wood et al. | Jun 2005 | A1 |
20050143662 | Marchitto et al. | Jun 2005 | A1 |
20050146765 | Turner et al. | Jul 2005 | A1 |
20050154303 | Walker et al. | Jul 2005 | A1 |
20050157939 | Arsenault et al. | Jul 2005 | A1 |
20050161051 | Pankratov et al. | Jul 2005 | A1 |
20050168980 | Dryden et al. | Aug 2005 | A1 |
20050174777 | Cooper et al. | Aug 2005 | A1 |
20050175048 | Stern et al. | Aug 2005 | A1 |
20050187477 | Serov et al. | Aug 2005 | A1 |
20050215875 | Khou | Sep 2005 | A1 |
20050265586 | Rowe et al. | Dec 2005 | A1 |
20050281445 | Marcotte et al. | Dec 2005 | A1 |
20060007134 | Ting | Jan 2006 | A1 |
20060020212 | Xu et al. | Jan 2006 | A1 |
20060025679 | Viswanathen et al. | Feb 2006 | A1 |
20060052690 | Sirohey et al. | Mar 2006 | A1 |
20060058683 | Chance | Mar 2006 | A1 |
20060081252 | Wood | Apr 2006 | A1 |
20060100523 | Ogle et al. | May 2006 | A1 |
20060103811 | May | May 2006 | A1 |
20060122515 | Zeman et al. | Jun 2006 | A1 |
20060129037 | Kaufman et al. | Jun 2006 | A1 |
20060129038 | Zelenchuk et al. | Jun 2006 | A1 |
20060151449 | Warner, Jr. et al. | Jul 2006 | A1 |
20060173351 | Marcotte et al. | Aug 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060206027 | Malone | Sep 2006 | A1 |
20060232660 | Nakajima et al. | Oct 2006 | A1 |
20060253010 | Brady et al. | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20060276712 | Stothers | Dec 2006 | A1 |
20070015980 | Numada et al. | Jan 2007 | A1 |
20070016079 | Freeman et al. | Jan 2007 | A1 |
20070070302 | Govorkov et al. | Mar 2007 | A1 |
20070115435 | Rosendaal | May 2007 | A1 |
20070129634 | Hickey et al. | Jun 2007 | A1 |
20070176851 | Willey et al. | Aug 2007 | A1 |
20070238957 | Yared | Oct 2007 | A1 |
20080045841 | Wood et al. | Feb 2008 | A1 |
20080147147 | Griffiths et al. | Jun 2008 | A1 |
20080194930 | Harris et al. | Aug 2008 | A1 |
20080214940 | Benaron | Sep 2008 | A1 |
20090018414 | Toofan | Jan 2009 | A1 |
20090082629 | Dotan | Mar 2009 | A1 |
20090171205 | Kharin et al. | Jul 2009 | A1 |
20100051808 | Zeman et al. | Mar 2010 | A1 |
20100061598 | Seo | Mar 2010 | A1 |
20100087787 | Woehr et al. | Apr 2010 | A1 |
20100177184 | Berryhill et al. | Jul 2010 | A1 |
20100312120 | Meier | Dec 2010 | A1 |
20110275932 | Leblond et al. | Nov 2011 | A1 |
20130147916 | Bennett et al. | Jun 2013 | A1 |
20140039309 | Harris et al. | Feb 2014 | A1 |
20140046291 | Harris et al. | Feb 2014 | A1 |
20140194747 | Kruglick | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2289149 | May 1976 | FR |
1298707 | May 1970 | GB |
1298707 | Feb 1972 | GB |
1507329 | Apr 1978 | GB |
S60-108043 | Jun 1985 | JP |
04-042944 | Feb 1992 | JP |
07-255847 | Oct 1995 | JP |
08-023501 | Jan 1996 | JP |
08023501 | Jan 1996 | JP |
08-164123 | Jun 1996 | JP |
2000-316866 | Nov 2000 | JP |
2000316866 | Nov 2000 | JP |
2002-328428 | Nov 2002 | JP |
2002328428 | Nov 2002 | JP |
2002345953 | Dec 2002 | JP |
2002-345953 | Dec 2002 | JP |
2004-237051 | Aug 2004 | JP |
2004237051 | Aug 2004 | JP |
2004237051 | Aug 2004 | JP |
2004329786 | Nov 2004 | JP |
2004-329786 | Nov 2004 | JP |
2006-102360 | Apr 2006 | JP |
2003-0020152 | Mar 2003 | KR |
20030020152 | Mar 2003 | KR |
WO 9422370 | Oct 1994 | WO |
WO 1994 22370 | Oct 1994 | WO |
WO 0639925 | Dec 1996 | WO |
WO 9639925 | Dec 1996 | WO |
WO 1996 39925 | Dec 1996 | WO |
WO 1998 26583 | Jun 1998 | WO |
WO 9826583 | Jun 1998 | WO |
WO 9948420 | Sep 1999 | WO |
WO 1999 48420 | Sep 1999 | WO |
WO 0182786 | Nov 2001 | WO |
WO 2001-82786 | Nov 2001 | WO |
WO 03009750 | Feb 2003 | WO |
WO 2003-009750 | Feb 2003 | WO |
WO 2005-053773 | Jun 2005 | WO |
WO 2005053773 | Jun 2005 | WO |
WO 2007-078447 | Jul 2007 | WO |
Entry |
---|
Nikbin, Darius, “IPMS Targets Colour Laser Projectors,” Optics & Laser Europe, Mar. 2006, Issue 137, p. 11 |
http://www.wikihow.com/See-Blood-Weins-in-Your-Hand-With-a- Flashlight “How to See Blood Veins in Your Hand With a Flashlight”. |
Wiklof, Chris, “Display Technology Spawns Laser Camera,” LaserFocusWorld, Dec. 1, 2004, vol. 40, Issue 12, PennWell Corp., USA. |
Nikbin, Darius, “IPMS Targets Colour Laser Projectors,” Optics & Laser Europe, Mar. 1006, Isue 137, p. 11. |
http://sciencegeekgirl.wordpress.com/category/science-myths/page/2/ Myth 7: Blood is Blue. |
http://www.exploratorium.edu/sports/hnds_up/hands6.html “Hands Up! To Do & Notice: Getting the Feel of Your Hand”. |
http://www.wikihow.com/See-Blook-Veins-in-Your-Hand-With-a- Flashlight “How to See Blood Veins in Your Hand With a Flashlight”. |
Number | Date | Country | |
---|---|---|---|
20150105648 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61278948 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12925166 | Oct 2010 | US |
Child | 14053775 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11478322 | Jun 2006 | US |
Child | 12925166 | US | |
Parent | 11700729 | Jan 2007 | US |
Child | 11478322 | US | |
Parent | 11807359 | May 2007 | US |
Child | 11700729 | US | |
Parent | 12215713 | Jun 2008 | US |
Child | 11807359 | US | |
Parent | 11823862 | Jun 2007 | US |
Child | 12215713 | US |