There have been rapidly growing demands and efforts to develop a low-cost snapshot multi spectral imager for applications such as accurate color reproduction, machine/robot vision, plant and vegetation research, food processing, counterfeit detection, early stage diagnosis of cancer, medical in-vivo imaging, and defense applications (point/stand-off optical spectral detection systems for remote sensing). Especially the demand for accurate color reproduction is highly desired with growing number of smart displays equipped with color camera modules and color displays.
A typical multispectral imager may be made from, e.g., rotating filter wheels or mechanically diced thin-film dichroic filters mounted in front of an image sensor, or multiple cameras with bulk dichroic filters. Even for those touted as commercial systems, there may be no effective volume production pathway with significant price or reduced complexity enhancements at even as few as tens or hundreds of units.
A multispectral multi-camera display unit made of multiple cameras around the display unit for accurate color image, 3D image and multispectral image for health monitoring is presented. The multispectral camera presented uses monolithic filter array layer as multispectral mosaic pattern. The emitting light is also modulated to generate a specific spectral light.
The inventors have realized that multiple multispectral imagers of the type described herein may be used at one display unit with a conductive layer including a periodic pattern of elements as multispectral filter mosaic pattern. This way, the multispectral multi-camera display unit, not only can acquire accurate color images, multispectral images but also can acquire 3D images at the same time. The multispectral images acquired can also be used for health monitoring of the human, face and any part of body.
In one aspect, a multispectral multi-camera display unit is disclosed, including: a display unit, a camera array; and an image integration processing unit. In some embodiments, the camera array is configured such that at least one camera is located at each of two or more sides of the display unit. In some embodiments, each camera comprises a color image sensor or multispectral imager.
In another aspect, a method is disclosed including the steps of: providing a multispectral multi-camera display unit, comprising: a display unit; a multispectral camera array comprising two or more cameras; and an image integration processing unit; wherein the camera array is configured such that at least one camera is located at each of at least two sides of the display unit. In some embodiments the method includes the steps of: processing images from different cameras of the array with the image integration processing to generate a display image; and displaying the display image on the display unit.
Unless otherwise specified, the words “a” or “an” as used herein mean “one or more”. The term “light” includes visible light as well as ultraviolet (UV) and infrared (IR) radiation. The disclosure includes the following embodiments.
As used herein, the term “multispectral” refers to images containing information content related to more than one wavelength band of incident light. For example, well know RGB sensors produce multispectral images information content related to three wavelength bands corresponding to red, green, and blue visible light. Other multispectral images may include information content related to two bands of light or more than three bands of light. In some cases multispectral images may include information content related to more than one wavelength bands outside of the visible spectrum (e.g., UV or IR).
In
In some embodiments, the imager unit 110 may be a multispectral imager unit. For example, in some embodiments the imager unit 110 may include one or more black and white image sensors paired with one or more band pass filters. In some embodiments the imager unit 110 may include a color image sensor (e.g. an RGB image sensor) with embedded filter array, such as an RGB Bayer pattern filter array. In some embodiments the imager unit 110 may include a multispectral imager. In some embodiments the multispectral imager may include multiple band pass filters, e.g., more than one, more than two, more than three, or more band pass filters.
In various embodiments, the display unit 130 may be any suitable type of display unit including, e.g., an LCD or plasma display, a touch sensitive display, a 3D display, or combinations thereof.
In various embodiments, the multispectral multi-camera display unit 100 may include a processor (not shown) in communication with the imager units 110 and the display unit 130. In some embodiments, the processor may process signals from the imager units 110 to generate an image (e.g., accurate color, multispectral, or 3D image) for display on the display unit 130.
For example, in some embodiments, the processor my include an image integration processing unit that merges the images from different imager units 110 to form an image, e.g., a mirror-like non-distorted image using the separation distance information among the imager units 110. In some embodiments, the image integration processing unit merges the images from the imager units 110 to form a natural color image utilizing different spectral information of each camera.
In some embodiments, the image integration processing unit merges the images from different imager units 110 to form a multispectral image of, e.g., a human, face, body or any part of the body. In some embodiments, multispectral image is used to interpret the health condition of the human, face or any part of the body. For example, infrared information from the image may be used to identify regions of elevated temperature indicative of a disorder such as a bacterial infection.
In some embodiments, the image integration processing unit merges the images from different imager units 110 of the array to form a 3D image.
In some embodiments, the multispectral multi-camera display unit 100 may include a light source 170. In some embodiments, the light source generates output light with selected spectral content. For example, in some embodiments, the light source 170 includes a plurality of light sub-sources (e.g., LEDs) each generating light at different wavelengths or wavelength ranges. These sub-sources may be modulated (e.g., as controlled by the processor) so that the overall output of the light source 170 has selected spectral content.
In some embodiments, the multispectral multi-camera display unit 100 may include an ambient spectral light sensor 180 that detects information related to the ambient spectral background information of the environment and provides this information to the processor (e.g., for use in generating images for display on the display unit 130).
In
The multispectral multi-camera unit 200 may have an operative connection 220 to the display unit 130. The connection may be a wired connection (e.g., a USB connection), a wireless (e.g., a Bluetooth or WiFi connection), and optical connection (e.g., an Ethernet connection), or any other suitable connection.
The display unit 130 may include a display frame 120. In various embodiments, the display frame 120 may have any suitable number of sides used (e.g., one, two, three, four, five, six seven, eight, nine, ten or more, such as 1-100 or any sub-range thereof). The multispectral multi-camera unit 200 may have a frame receptacle 230 that may be attached and fit to the display unit frame 120. Various embodiments may include one or more attachment devices used to secure the display unit 130 in the receptacle 230. The attachment devices may include, e.g., a latch, a magnetic attachment, a hook and loop attachment, a frictional attachment, or any other suitable attachment device.
In some embodiments, the imager unit 210 may be a multispectral imager unit. For example, in some embodiments the imager unit 210 may include one or more black and white image sensors paired with one or more band pass filters. In some embodiments the imager unit 210 may include a color image sensor (e.g. an RGB image sensor) with embedded filter array, such as an RGB Bayer pattern filter array. In some embodiments the imager unit 210 may include a multispectral imager. In some embodiments the multispectral imager may include multiple band pass filters, e.g., more than one, more than two, more than three, or more band pass filters.
In various embodiments, the a multispectral multi-camera unit 200, the display unit 130, or both, may include one or more processor (not shown) in communication with the imager units 210 and the display unit 130. In some embodiments, the processor may process signals from the imager units 210 to generate an image (e.g., accurate color, multispectral, or 3D image) for display on the display unit 130. In various embodiments the processors may perform any of the image processing functions described above with reference to the multispectral multi-camera unit 100 of
In some embodiments, the multi-camera unit 200, the display unit 130, or both, may include a light source 270 and/or an ambient spectral light sensor 180 of the type described above with reference to the multispectral multi-camera unit 200 of
In various embodiments, the display unit 130 may be any suitable type of display unit including, e.g., an LCD or plasma display, a touch sensitive display, a 3D display, or combinations thereof.
In
In some embodiments, the image sensor 320 may be a black and white image sensor, such as a CCD or CMOS sensor. In some embodiments, the image sensor may be a color image sensor such as an RGB image sensor. For example, the image sensor 320 may be an RGB sensor with embedded filter such an RGB Bayer pattern filter array. For example, as shown in
In some embodiments, the imager sensor 320 may be a multispectral imager with any suitable number of embedded band pass filters (e.g., more than one, more than two, more than three, or more band pass filters).
In some embodiments, e.g., where the image sensor 320 includes one or more embedded filters, the separate filter 310 may be omitted.
In general, any suitable filter may be used for filter 310 or an embedded filter in the image sensor 320.
In various embodiments, filter 310 or one or more filters embodied in the image sensor 320 may be formed as a layer or layers of highly conductive structured materials. The highly conductive structured material layer may include a periodic pattern or patterns of elements (e.g. nanoscale or micron scale elements). The elements have shapes and sizes configured such that a transmittance spectrum of the conductive layer has at least one pass band within a target wavelength range, e.g., due to the plasmonic behavior of the elements. Exemplary filters are described in International Pub. No. WO/2012/040466, SPECTRUM RECONSTRUCTION METHOD FOR MINIATURE SPECTROMETERS, published Mar. 29, 2012; International Pub. No. WO/2010/108086, NANO-OPTIC FILTER ARRAY BASED SENSOR, published Sep. 23, 2010; International Pub. No. WO/2009/009077, DIGITAL FILTER SPECTRUM SENSOR, published Jan. 15, 2009; International Pub. No. WO/2008/147403 TUNABLE PLASMONIC FILTER, published Dec. 4, 2008; International Pub. No. WO/2008/082569 WAVELENGTH SELECTIVE METALLIC EMBOSSING NANOSTRUCTURE, published Jul. 10, 2008; and International Pub. No. WO/2008/085385, PLASMONIC FABRY-PEROT FILTER, published Jul. 17, 2008; the entire contents of each of which are incorporated herein by reference.
In
Although in the example shown nine different band pass filters arranged in a 3×3 repeating pattern are used, and other suitable number of filters in any suitable pattern may be used. For example, in some embodiments any number of filters, e.g., one to sixteen or more, may be used. In some embodiments, the filters may be arranged in a mosaic pattern having repeating blocks of filters such as 2×2, 2×3, 3×2, 3×3 (as shown), 4×3, 3×4 or 4×4 blocks.
In some embodiments, each of the band pass filters in the mosaic pattern 510 may be made of a layer or layers of highly conductive structured materials. The highly conductive structured material layer may include a periodic pattern or patterns of elements (e.g., nano-scale or micron scale elements). The elements have shapes and sizes configured such that a transmittance spectrum of the conductive layer has at least one pass band within the target wavelength range, e.g., due to the plasmonic behavior of the element. Exemplary filters are described in the publications incorporated by reference above.
In various embodiments, the multispectral imagers 300, 400 and 500 shown in
Although the foregoing refers to particular preferred embodiments, it will be understood that the present invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the present invention.
All of the publications, patent applications and patents cited in this specification are incorporated herein by reference in their entirety.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/816,939 filed Apr. 29, 2013, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61816939 | Apr 2013 | US |