A refrigerant compressor is a device that pressurizes refrigerant gas using power from a device such as an electric motor, a diesel engine, a gasoline engine, and so forth. During the compression process, the gas is heated naturally and routed to a condenser. The condenser cools the gas to a “sub cooled” liquid. The “sub cooled” liquid is routed through an expansion nozzle to an evaporator. The expanding liquid vaporizes in the evaporator and cools the evaporator before being routed to the intake port of the compressor to repeat the refrigeration process.
Vane compressors generally include a stationary or fixed cylinder with a slot for a reciprocating vane. An orbiting cylinder is positioned within the fixed cylinder, and the reciprocating vane (e.g., with a vane spring) is inserted into the vane slot on the outer fixed cylinder, with one end maintaining contact with the smaller orbiting cylinder. The vane provides a barrier between high and low pressure regions within a cylinder cavity formed between the stationary or fixed cylinder and the orbiting cylinder.
The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
Referring generally to
The refrigerant 110 supplied to the first compressor stage 106 from outside of the sealed housing 102 can be in a gaseous state when supplied to the first compressor stage 106 and can then be converted to a liquid state after exiting the first compressor stage 106. The refrigerant 110 supplied to the second compressor stage 108 from within the sealed housing 102 can be in a gaseous state when supplied to the second compressor stage 108. Thus, the refrigerant 110 can undergo a phase change from gas to liquid (after exiting the first compressor stage 106) and then back to gas (prior to the second compressor stage 108), enhancing thermal transfer within a compressor system 100.
In some embodiments, a compressor 104 can be a multi-stage compressor including two compression chambers, one larger (e.g., low pressure stage) and one smaller (e.g., high pressure stage), one hundred and eighty degrees (180°) out of phase. For example, the compressor system 100 includes a concentric vane compression device including both the first compressor stage 106 and the second compressor stage 108. In embodiments of the disclosure, a concentric vane compression device can be implemented as described in U.S. Pat. No. 10,030,658, titled “CONCENTRIC VANE COMPRESSOR,” which is incorporated by reference herein. However, a compressor with two compression cavities is provided by way of example and is not meant to limit the present disclosure.
In some embodiments, more than one compressor 104 may be used to provide the first compressor stage 106 and the second compressor stage 108. For example, the compressor system 100 can include two or more spiral scroll compression devices forming the first compressor stage 106 and the second compressor stage 108. In embodiments of the disclosure, a spiral scroll compression device can be implemented as described in U.S. patent application Ser. No. 16/348,059, titled “SCROLL COMPRESSOR WITH CIRCULAR SURFACE TERMINATIONS,” which is incorporated by reference herein. The compressor system 100 may also include two or more other types of compressors or other devices that increases the pressure of a gas by reducing its volume, including, but not necessarily limited to: reciprocating compressors, rotary screw compressors, rotary vane compressors, rolling piston compressors, diaphragm compressors, centrifugal compressors, axial compressors, and so forth.
The compressor 104 also includes at least one crank 112 (e.g., crankshaft) for mechanically driving compression in the first compressor stage 106 and/or the second compressor stage 108. In some embodiments, the crank 112 mechanically drives compression in both the first compressor stage 106 and the second compressor stage 108. For example, a motor 114 includes a stator 116 and a rotor 118 mechanically coupled with a concentric vane compression device by the crank 112 (e.g., as described with reference to
The compressor system 100 can also include an interior cavity 120 for containing refrigerant 110 and/or other fluid (e.g., air) from the surrounding environment and oil 122 (e.g., in an oil reservoir or bottom portion of the interior cavity 120). The sealed housing 102 may be supported by a base plate 124 or other supporting structure. One or more electrical terminals 126 can be connected through the sealed housing 102 to wiring used to supply electrical power to the motor 114 and/or to other components of the compressor system 100. One or more suction pipes 128 can be used to supply the refrigerant 110 or other fluid to the first and second compressor stages 106 and 108, and one or more discharge pipes 130 can be used to supply the compressed refrigerant 110 or other fluid from the compressor system 100.
The compressor system 100 can include a first bearing 132 (e.g., a main bearing) and a second bearing 134 (e.g., a sub-bearing). Together, the first bearing 132 and the second bearing 134 can constrain motion of the crank 112 and reduce friction between the crank 112 and other components of the compressor system 100. In some embodiments, the first bearing 132 is outside of and adjacent to the motor 114, e.g., as described with reference to
In some embodiments, the crank 112 can be a hollow shaft, and may include an oil pump 140, e.g., a centrifugal oil pump with another hollow shaft or a portion of the same crank disposed at one end of the crankshaft and extending into the oil 122 contained in the oil reservoir or bottom portion of the interior cavity 120. The oil pump 140 can be used to draw the oil 122 into an interior of the crank 112 and then up the crankshaft, where the oil 122 is expelled and sprayed over various components of the compressor 104. For instance, the crank 112 and/or oil pump 140 can include holes or other apertures along its length, and the oil 122 can be expelled from the interior of the crank 112 through the holes. As described herein, the oil 122 can be used to cool both the refrigerant 110 and various compressor components in addition to lubricating various compressor components.
It will be appreciated that the diameter of the crank 112 and/or the oil pump 140, as well as the number of holes or apertures and their arrangement along the crank 112 and/or the oil pump 140 may be varied to pump different volumes of oil at different rates. For example, a larger diameter crank 112 may be used to pump more oil than a comparatively smaller crank (e.g., more oil over time, more oil by volume, etc.). It should be noted that the centrifugal oil pump 140 described herein is provided by way of example only and is not meant to limit the present disclosure. In other embodiments, an oil pump 140 may be a gear-driven oil pump, an oil pump with paddles (e.g., elastomeric/rubber paddles), and/or another type of oil pump.
The compressor systems 100 may also include one or more counterweights, thrust bearings, and/or oil slingers. For example, a counterweight 142 may be fixedly coupled with the crank 112 and, in addition to providing weighted balance to the compressor 104, may act as an oil slinger. In this manner, the counterweight 142 can facilitate the dispersal/spray of cooling oil, e.g., over a top surface of the compressor 104. With reference to
The alignment posts 146 of the counterweight 142 may be used to maintain the rotational orientation of the counterweight 142 with respect to the thrust bearing 148, the crank 112, and/or other components of the compressor 104, such as an eccentrically orbiting cylinder. In some embodiments, the alignment posts 146 may be configured as metal pins cast with the counterweight 142 (e.g., as a unitary part). In other embodiments, the alignment posts 146 can be separate parts connected to the counterweight body. The thrust bearing 148 can be used to control axial movement of the compressor components (e.g., axial movement of an eccentrically orbiting cylinder). In some embodiments, the thrust bearing 148 includes an eccentric bearing 152, a front shaft bearing 154, and a rear shaft bearing 156. With reference to
Referring now to
As described, the compressor system 100 also includes an oil reservoir 162 or bottom portion of the interior cavity 120 contained by the sealed housing 102, where the oil 122 is held for lubricating the crank 112 and various components of the compressor system 100. In embodiments of the disclosure, the oil reservoir 162 receives refrigerant 110 from the condenser 160 and exchanges heat with the refrigerant 110 to cool the oil 122 held in the oil reservoir 162. For example, the refrigerant 110 is routed through the oil reservoir 162. The refrigerant 110 is then supplied to the second compressor stage 108. As described, by using a refrigerant cycle to cool the compressor oil 122, the lower oil temperatures and higher thermal transfer rates of the oil 122 can be used to provide a more effective cooling system that makes better use of the oil 122, e.g., for both lubrication and cooling of critical compressor components.
In a typical intercooler arrangement, such as for a two stage refrigeration compressor, compressed gas from a first compressor stage discharge port is routed through a heat exchanger to cool the gas prior to the gas entering the intake port of a second compressor stage. However, the temperature reduction in this arrangement is limited to prevent a phase change of the refrigerant (i.e., from a gas state to a liquid state) prior to the refrigerant entering the second compressor stage. This limit on the temperature reduction is used to avoid the phenomenon of “liquid slugging,” or liquid entering a cylinder of a reciprocating compressor and damaging the compressor.
As described herein, when the heat exchanger/condenser 160 receives refrigerant 110 from the first compressor stage 106 and exchanges heat with the refrigerant 110, some or all the refrigerant 110 can be converted to liquid. By then routing the liquid refrigerant 110 through the oil reservoir 162, hot crankcase compressor oil 122 can be used to convert the liquid refrigerant 110 to gas refrigerant 110 while reducing the temperature of the compressor oil 122. The cooled compressor oil 122 can be routed through the compressor crankcase, cooling compressor surfaces, the compressor motor, and/or the gas refrigerant 110, e.g., prior to the gas refrigerant 110 entering the second compressor stage 108.
In some embodiments, the compressor system 100 includes a second heat exchanger 164 in the oil reservoir 162 or bottom portion of the interior cavity 120 contained by the sealed housing 102. The heat exchanger 164 allows heat to pass from the oil 122 to the refrigerant 110 without the oil 122 contacting the refrigerant 110. For example, the second heat exchanger 164 may also include coils (e.g., copper tubing, aluminum tubing), which may have fins for facilitating heat transfer. In some embodiments, the coils may surround the compressor 104 (e.g., in a sump-type compressor configuration). However, it should be noted that in some embodiments, rather than routing all the refrigerant 110 through a second heat exchanger, some or all the liquid refrigerant 110 may bypass the oil heat exchanger 164 and be routed directly onto critical compressor components. In embodiments, some of the incoming cool liquid refrigerant 110 from the condenser 160 may be directed onto critical compressor components, while the remaining cool liquid refrigerant 110 may be used to cool the oil 122 (e.g., using the oil 122 for both lubrication and cooling).
It is noted that temperature reduction during a compression process generally has a positive effect on compressor efficiency, increasing the efficacy of the apparatus, systems, and techniques of the present disclosure. It is also noted that the energy transfer needed to cause a phase change in the refrigerant 110 from gas to liquid or from liquid to gas is many times greater than the energy transfer associated with a temperature change without a corresponding phase change. Thus, the apparatus, systems, and techniques of the present disclosure that use a phase change in the refrigerant 110 can improve compressor cooling and may have a great effect on increasing the efficiency of the compressor systems 100 described herein.
Referring now to
Referring to
Referring now to
Referring now to
The concentric vane compressor 200 can provide two compression cavities, each divided into low and high pressure regions. The inner cavity is formed between the inner orbiting cylinder surface and the fixed cylinder surface and has a smaller displaced volume than that of the outer cavity. The outer compression cavity is formed between the fixed cylinder surface and the outer orbiting cylinder surface and has the larger displaced volume. Thus, a concentric vane compressor 200 may be configured as either a single stage compressor or a two stage compressor, e.g., with a single fixed and orbiting cylinder set. For a two stage design, the larger outer cavity may be used for the first stage, and the smaller inner cavity may be used for the second stage.
It should be noted that the outer and inner compression cavities, while sharing a common vane and common orbiting and fixed cylinders, are two separate cavities with compression cycles sequenced one hundred and eighty degrees (180°) apart. This configuration can reduce peak compressor torque (e.g., by about one-half) and/or associated noise and vibration while increasing motor running efficiency. Further, dual concentric sequential compression chambers can support the addition of flow control valves for switching between four levels of mass flow and single stage or two stage compression to increase efficiency (e.g., as weather conditions vary) while also enabling start relief (e.g., for the compressor motor). In embodiments of the disclosure, flow control valves can be located within a compressor enclosure and/or outside of the enclosure. When placed outside of a compressor enclosure, ease of maintenance and/or improved control wiring access may be provided. Additionally, an outside placement can provide for simplified control features and/or upgrade options with a common compressor design. Available features may range from a baseline unit without control valves, two or three additional mass flow levels plus single or two stage compression options, a start relief option, and so on. With outside flow control valves, these options may be available from a manufacturer and/or may be added in the field.
A concentric vane compressor 200 can be used for various applications, including, but not necessarily limited to, pumping fluid and/or gas. For example, a concentric vane compressor 200 can be used as a compressor for refrigeration and/or air conditioning applications, and so forth. The apparatus, systems, and techniques described herein, can provide low cost, low noise, and/or high efficiency oil lubricated rotary compressors that can be used in, for example, refrigeration compressor applications. Using concentric sequential compression, a low clearance volume may be provided. Further, the concentric vane compressor 200 can facilitate start unloading. In some embodiments, a single wrap design allows for a reduced compressor diameter and/or leakage area (e.g., as compared to a multiple wrap design). Further, a concentric vane compressor 200 can provide higher liquid slugging tolerance (e.g., because the orbiting cylinders are not restricted from moving away from the stationary cylinder to relieve pressure spikes). As described herein, this tolerance for liquid slugging can enable a compressor system 100 to achieve a higher degree of temperature reduction (e.g., as compared to the limited temperature reduction available in a typical intercooler, where such temperature reduction is limited to prevent a phase change of the refrigerant prior to the refrigerant entering the second compressor stage).
In embodiments of the disclosure, a concentric vane compressor 200 includes a first cylinder 202 having a wall 204 with an interior surface 206 and an exterior surface 208. The concentric vane compressor 200 also includes a second cylinder 210 disposed within the first cylinder 202. The second cylinder 210 has an exterior surface 212. The interior surface 206 of the first cylinder 202 and the exterior surface 212 of the second cylinder 210 define the second compressor stage 108. The concentric vane compressor 200 also includes a partition between the interior surface 206 of the first cylinder 202 and the exterior surface 212 of the second cylinder 210 to divide the second compressor stage 108 into a first inner region and a second inner region, where a first intake port 220 is in fluid communication with the first inner region of the second compressor stage 108, and a first exhaust port 222 is in fluid communication with the second inner region of the second compressor stage 108.
The concentric vane compressor 200 also includes a third cylinder 224 disposed around the first cylinder 202. The third cylinder 224 has an interior surface 226. The exterior surface 208 of the first cylinder 202 and the interior surface 226 of the third cylinder 224 define the first compressor stage 106. The concentric vane compressor 200 also includes another partition between the exterior surface 208 of the first cylinder 202 and the interior surface 226 of the third cylinder 224 to divide the first compressor stage 106 into a first outer region and a second outer region, where a second intake port 234 is in fluid communication with the first outer region of the first compressor stage 106, and a second exhaust port 236 is in fluid communication with the second outer region of the first compressor stage 106. For the purposes of the present disclosure, the term “third cylinder” shall be defined as any three-dimensional shape having a cylindrical interior surface, and shall encompass the shapes described with reference to the accompanying figures, along with other shapes not described in the accompanying figures. For example, a third cylinder as described herein may be a rectangular prism having a cylindrical interior surface, a hexagonal prism having a cylindrical interior surface, and so on.
The concentric vane compressor 200 includes one sealing interface for sealing first ends of the second compressor stage 108 and the first compressor stage 106, and another sealing interface for sealing second ends of the second compressor stage 108 and the first compressor stage 106. For example, the first cylinder 202 is connected to one end plate 238, and the second and third cylinders 210 and 224 are connected to another end plate 240. In embodiments of the disclosure, the second cylinder 210 and the third cylinder 224 are configured to orbit with respect to the center of the first cylinder 202 to create alternating regions of high pressure and low pressure in the first and second inner regions of the second compressor stage 108 and the first and second outer regions of the first compressor stage 106. For example, the second and third cylinders 210 and 224 and the end plate 240 form a roller that eccentrically orbits the crank 112.
In some embodiments, a concentric vane compressor 200 can be constructed using a through-shaft design. For example, the crank 112 (e.g., a crankshaft) may extend through the end plates 238 and 240. A drive mechanism, such as a motor, can be used to drive the second and third cylinders 210 and 224 in orbit with respect to the first cylinder 202. Referring to
Referring now to
Referring now to
It should be noted that while two second and third cylinders 210 and 224 are illustrated in the accompanying figures, more or fewer cylinders may be included with a concentric vane compressor 200. For example, the third cylinder 224 may be replaced with a compression spring and/or another biasing mechanism for biasing the vane 252 against the first cylinder 202. Further, additional cylinders and/or additional vanes may be included to create additional compression chambers.
In embodiments of the disclosure, surfaces on both the second and third cylinders 210 and 224, and the first cylinder 202, are circular in cross-section, or formed by constant radii. Because the vane 252 inserted between the second and third cylinders 210 and 224 is a separate part, the constant radius compression cavity surfaces on the second and third cylinders 210 and 224, and the first cylinder 202, can be machined using conventional turning processes, which may be performed with greater accuracy and/or at a comparatively lower cost (e.g., when compared to a non-constant radius configuration).
Referring now to
R2, which is equal to the inside radius of the interior surface 226 of the third cylinder 224, or the radius of the compression surface of the third cylinder 224, can then be determined as follows:
R2=R1+S+W
R3, which is equal to the inside radius of the interior surface 206 of the first cylinder 202, or the radius of the inside compression surface of the first cylinder 202, can be determined as follows:
R3=R1+S/2
R4, which is equal to the outside radius of the exterior surface 208 of the first cylinder 202, or the radius of the outer compression surface of the first cylinder 202, can be determined as follows:
R4=R3+W
In embodiments of the disclosure, VW, which is equal to the width of the vane 252, can be selected to allow the vane 252 to travel radially through the first cylinder 202, while providing minimum clearance for gas sealing purposes. The width of the vane 252 may be selected based upon space requirements, and the width of the vane slot 254 in the first cylinder 202 may be equal to the vane width VW plus a desired seal clearance. It should be noted that a comparatively small vane width VW may increase the bending stress on the vane 252 (e.g., due to gas pressure and/or friction between the vane 252 and the second and third cylinders 210 and 224). Further, a vane width VW that permits the second and third cylinders 210 and 224 to contact the edge of the vane 252 may cause a loss of vane seal and/or excessive wear between the vane 252 and the orbiting surfaces the second and third cylinders 210 and 224. Thus, the width of the vane 252 can be selected to be greater than at least a minimum vane width. For instance, VWm, which is equal to this minimum vane width, can be determined as follows:
VW
m
=S*(R2−R1)/(R2+R1)
VL, which is equal to the length of the vane 252, or the distance between the two outer ends of the vane, can be determined as follows:
VL=R2−R1
In embodiments of the disclosure, the vane 252 includes a tip radius, or a radius at the two outer ends of the vane. VTR, which is equal to this vane tip radius, can be determined as follows:
VTR=VL/2
It should be noted that the concentric vane compressor 200 may include other dimensional relationships and that the dimensional relationships heretofore described are provided by way of example only and not meant to limit the present disclosure. Thus, the concentric vane compressor 200 of the present invention is not necessarily limited to these dimensional relationships. Additionally, for the purposes of the present disclosure, the term “equal to” shall be understood to mean equal to within the limits of precision machinability.
Because the surfaces on the second and third cylinders 210 and 224 are circular, rotational orientation of the second and third cylinders 210 and 224 is not necessarily required. Thus, the need for an external anti-rotation device may be eliminated, allowing the second and third cylinders 210 and 224 to freely rotate while orbiting the center of the first cylinder 202. A cost savings may be achieved by eliminating the anti-rotation device. Additionally, wear on the surfaces of the second and third cylinders 210 and 224, which may be caused by the vane 252, the first cylinder 202, and/or the shell 256, can be uniformly distributed over the entire mating surfaces (e.g., rather than being concentrated in a small region). Additionally, free rotation of the second and third cylinders 210 and 224 can uniformly distribute the heat of gas compression over the entire mating surfaces (e.g., again, rather than being concentrated in a small region). The apparatus, systems, and techniques described herein can provide a reduced peak wear rate and/or uniformity of temperature over the second and third cylinders 210 and 224, and reduction of temperatures in the high pressure region, resulting in less part distortion, lower gas temperatures, and so forth.
It should be noted that while the compression cavities created by the inner and outer second and third cylinders 210 and 224 may share a common vane 252, they can act as separate compression chambers, sequenced one hundred and eighty degrees (180°) apart. The apparatus, systems, and techniques described herein can reduce peak torque for single stage compressors, and may provide a two stage compressor design using the second and third cylinders 210 and 224. For a two stage design, the larger outer cavity can be used for the first stage, and the smaller inner cavity can be used for the second stage. For example, in some embodiments, the first intake port 220 can be connected to (e.g., in fluid communication with) the second exhaust port 236 to form a two stage compressor.
It is noted that a large contributor to vane wear in typical stationary vane compressors is the pressure differential across the vane. Since these are predominantly single stage compressors, the maximum pressure differential across the vane is the discharge pressure minus the suction pressure. In the two stage version of the concentric vane compressor 200 described herein, the intermediate pressure is between the suction pressure and the discharge pressures. The differential pressure across the first stage end of the vane is the intermediate pressure minus the suction pressure. The differential pressure across the second stage end of the vane is the discharge pressure minus the intermediate pressure. Both of these differential pressures and resulting vane forces may be significantly lower than those of a typical stationary vane compressor. Thus, the resulting vane wear of a concentric vane compressor 200 may be comparatively lower than that of a typical stationary vane compressor.
As described herein, the center region of a concentric vane compressor 200 can be enlarged, moving the discharge port and compression cavities radially outward, without increasing the dead space adjacent to the discharge port at the end of the compression cycle. This configuration may yield a high compression ratio design. Enlarging the central region can be done to allow room for an eccentric, an eccentric bearing, a shaft, and shaft bearings, with the shaft passing through the eccentric and supported by shaft bearings on each side of the eccentric. This can reduce the radial forces on the shaft bearings, allowing the use of smaller bearings and/or shafting. Additionally, the eccentric can be located axially within the plane of the second and third cylinders 210 and 224 and the first cylinder 202, allowing radial pressure forces between the second and third cylinders 210 and 224 to pass through the plane of the eccentric bearing and reduce non-symmetric axial thrust between the second and third cylinders 210 and 224 and the first cylinder 202.
A concentric vane compressor 200 may have one or both the second and third cylinders 210 and 224 and/or the first cylinder 202 coated with an abradable coating of enough thickness to cause interference at all sealing surfaces between the members. During the manufacturing or assembly sequence, the second and third cylinders 210 and 224, and the first cylinder 202, can be assembled and operated, causing the excess coating to abrade away leaving a near perfect match between the surfaces of the second and third cylinders 210 and 224 and the first cylinder 202. This process may reduce the need for precise machining.
Referring now to
It should be noted that other components of a compressor system 100 may also include slots or channels to facilitate both lubrication and cooling of various components, including, but not necessarily limited to, bearing surfaces of the vane 252, the vane slot 254, radial bearings, and thrust bearings. For example, oil flow paths can be provided through and/or around the crank 112, first bearing 132, second bearing 134, thrust bearing 148, eccentric bearing 152, front shaft bearing 154, rear shaft bearing 156, upper thrust bearing 158, and so forth. Further, the flow paths and/or flow areas for the oil 122 can be adjusted to keep various components at temperatures more consistent with adjacent or proximal components. For example, flow areas around the vane 252 can be configured to keep the vane 252 at a temperature close to that of the first cylinder 202, the second cylinder 210, and/or the third cylinder 224.
Further, in some embodiments, one or more channels 258 may be provided on a side or sides of the vane 252 (e.g., proximate to the channels 258 defined at the vane slot 254) and on a top and/or bottom surface of the vane 252 (e.g., between the channels 258 defined at the vane slot 254), as shown in
Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
The present application is a continuation-in-part under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/044,106, filed Jul. 24, 2018, and titled “CONCENTRIC VANE COMPRESSOR,” which itself is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/139,608, filed Apr. 27, 2016, titled “CONCENTRIC VANE COMPRESSOR,” and now issued as U.S. Pat. No. 10,030,658. The present application is also a continuation-in-part under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/348,059, filed May 7, 2019, and titled “SCROLL COMPRESSOR WITH CIRCULAR SURFACE TERMINATIONS.” U.S. patent application Ser. No. 15/139,608, U.S. patent application Ser. No. 16/044,106, and U.S. patent application Ser. No. 16/348,059 are herein incorporated by reference in their entireties. The present application is also a continuation-in-part of International Application No. PCT/US2016/060807, filed Nov. 7, 2016, and titled, “SCROLL COMPRESSOR WITH CIRCULAR SURFACE TERMINATIONS,” which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15139608 | Apr 2016 | US |
Child | 16044106 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16348059 | May 2019 | US |
Child | 16780371 | US | |
Parent | 16044106 | Jul 2018 | US |
Child | 16348059 | US |