The invention relates to cyclonic separating apparatus. Particularly, but not exclusively, the invention relates to cyclonic separating apparatus suitable for use in vacuum cleaners.
Vacuum cleaners which utilize cyclonic separating apparatus are well known. Examples of such vacuum cleaners are shown in EP 0042723, U.S. Pat. No. 4,373,228, U.S. Pat. No. 3,425,192, U.S. Pat. No. 6,607,572 and EP 1268076. In each of these arrangements, first and second cyclonic separating units are provided with the incoming air passing sequentially through each separating unit. In some cases, the second cyclonic separating unit includes a plurality of cyclones arranged in parallel with one another.
None of the prior art arrangements achieves 100% separation efficiency (i.e., the ability reliably to separate entrained dirt and dust from the airflow), particularly in the context of use in a vacuum cleaner. Therefore, it is an object of the invention to provide cyclonic separating apparatus which achieves a higher separation efficiency than the prior art.
The invention provides cyclonic separating apparatus comprising: a first cyclonic separating unit including at least one first cyclone; a second cyclonic separating unit located downstream of the first cyclonic separating unit and including a plurality of second cyclones arranged in parallel; and a third cyclonic separating unit located downstream of the second cyclonic separating unit and including a plurality of third cyclones arranged in parallel; characterized in that the number of second cyclones is higher than the number of first cyclones and the number of third cyclones is higher than the number of second cyclones.
Cyclonic separating apparatus according to the invention has the advantage that, when the apparatus is considered as a whole, it has a separation efficiency which is improved as compared to the individual separation efficiencies of the individual cyclonic separating units. The provision of at least three cyclonic separation units in series increases the robustness of the system so that any variations in the airflow presented to the downstream units have little or no effect on the ability of those units to maintain their separation efficiency. The separation efficiency is therefore also more reliable as compared to known cyclonic separating apparatus.
It will be understood that, by the term “separation efficiency”, we mean the ability of a cyclonic separating unit to separate entrained particles from an airflow and that, for comparison purposes, the relevant cyclonic separation units are challenged by identical airflows. Hence, in order for a first cyclonic separating unit to have a higher separation efficiency than a second cyclonic separating unit, the first unit must be capable of separating a higher percentage of entrained particles from an airflow than the second unit when both are challenged under identical circumstances. Factors which can influence the separation efficiency of a cyclonic separating unit include the size of the inlet and outlet, the angle of taper and length of the cyclone, the diameter of the cyclone and the depth of the cylindrical inlet portion at the upper end of the cyclone.
The increasing number of cyclones in each successive cyclonic separating unit allows the size of each individual cyclone to decrease in the direction of the airflow. The fact that the airflow has passed through a number of upstream cyclones means that the larger particles of dirt and dust will have been removed which allows each smaller cyclone to operate efficiently and without risk of blockage.
Preferably, the first cyclonic separating unit comprises a single first cyclone and, more preferably, the or each first cyclone is substantially cylindrical. This arrangement encourages larger particles of dirt and debris to be reliably collected and stored with a relatively low risk of re-entrainment.
Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
In use, air drawn into the cyclonic separating apparatus 100 via the hose 16 has entrained dirt and dust separated therefrom in the cyclonic separating apparatus 100. The dirt and dust is collected within the cyclonic separating apparatus 100 while the cleaned air is channeled past the motor for cooling purposes before being ejected from the vacuum cleaner 10 via an exit port in the main body 12.
The upright vacuum cleaner 20 shown in
In use, the motor and fan unit draws dirty air into the vacuum cleaner 20 via either the dirty air inlet 28 or the handle 32 (if the handle 32 is configured for use as a wand). The dirty air is carried to the cyclonic separating apparatus 100 via the ducting 30 and entrained dirt and dust is separated from the airflow and retained in the cyclonic separating apparatus 100. The cleaned air is passed across the motor for cooling purposes and then ejected from the vacuum cleaner 20 via a plurality of outlet ports 34.
The present invention relates solely to the cyclonic separating apparatus 100 as will be described below and so the detail of the remaining features of the vacuum cleaners 10, 20 are comparatively immaterial.
The cyclonic separating apparatus 100 forming part of each of the vacuum cleaners 10, 20 is shown in
The cyclonic separating apparatus 100 shown in
A dirty air inlet 118 is provided at the upper end of the outer bin 102 below the upper wall 116. The dirty air inlet 118 is arranged tangentially to the outer bin 102 (see
The annular chamber 128 is arranged radially outwardly of the upper end of a tapering cyclone 130 which lies coaxially with the outer bin 102. The cyclone 130 has an upper inlet portion 132 which is generally cylindrical in shape and in which two air inlets 134 are formed. The inlets 134 are spaced about the circumference of the upper inlet portion 132. The inlets 134 are slot-like in shape and communicate directly with the annular chamber 128. The cyclone 130 has a tapering portion 136 depending from the upper inlet portion 132. The tapering portion 136 is frusto-conical in shape and terminates at its lower end in a cone opening 138.
A third cylindrical wall 140 extends between the base 106 and a portion of the outer wall of the tapering portion 136 of the cyclone 130 above the cone opening 138. When the base 106 is in the closed position, the third cylindrical wall 140 is sealed thereagainst. The cone opening 138 thus opens into an otherwise closed cylindrical chamber 142. A vortex finder 144 is provided at the upper end of the cyclone 130 to allow air to exit the cyclone 130.
The vortex finder 144 communicates with a plenum chamber 146 located above the cyclone 130. Arranged circumferentially around the plenum chamber 146 are a plurality of cyclones 148 arranged in parallel with one another. Each cyclone 148 has a tangential inlet 150 which communicates with the plenum chamber 146. Each cyclone 148 is identical to the other cyclones 148 and comprises a cylindrical upper portion 152 and a tapering portion 154 depending therefrom. The tapering portion 154 of each cyclone 148 extends into and communicates with an annular chamber 156 which is formed between the second and third cylindrical walls 112, 140. A vortex finder 158 is provided at the upper end of each cyclone 148 and each vortex finder 158 communicates with an outlet chamber 160 having an exit port 162 for ducting cleaned air away from the apparatus 100.
As has been mentioned above, the cyclone 130 is coaxial with the outer bin 102. The eight cyclones 148 are arranged in a ring which is centered on the axis 164 of the outer bin 102. Each cyclone 148 has an axis 166 which is inclined downwardly and towards the axis 164. The axes 166 are all inclined to the axis 164 at the same angle. Also, the angle of taper of the cyclone 130 is greater than the angle of taper of the cyclones 148 and the diameter of the upper inlet portion 132 of the cyclone 130 is greater than the diameter of the cylindrical upper portion 152 of each of the cyclones 148.
In use, dirt-laden air enters the apparatus 100 via the dirty air inlet 118 and, because of the tangential arrangement of the inlet 118, the airflow follows a helical path around the outer wall 104. Larger dirt and dust particles are deposited by cyclonic action in the annular chamber 114 and collected therein. The partially-cleaned airflow exits the annular chamber 114 via the perforations 124 in the shroud 122 and enters the passage 126. The airflow then passes into the annular chamber 128 and from there to the inlets 134 of the cyclone 130. Cyclonic separation is set up inside the cyclone 130 so that separation of some of the dirt and dust which is still entrained within the airflow occurs. The dirt and dust which is separated from the airflow in the cyclone 130 is deposited in the cylindrical chamber 142 while the further cleaned airflow exits the cyclone 130 via the vortex finder 144. The air then passes into the plenum chamber 146 and from there into one of the eight cyclones 148 wherein further cyclonic separation removes some of the dirt and dust still entrained. This dirt and dust is deposited in the annular chamber 156 while the cleaned air exits the cyclones 148 via the vortex finders 158 and enters the outlet chamber 160. The cleaned air then leaves the apparatus 100 via the exit port 162.
Dirt and dust which has been separated from the airflow will be collected in all three of the chambers 114, 142 and 156. In order to empty these chambers, the catch 110 is released to allow the base 106 to pivot about the hinge 108 so that the base falls away from the lower ends of the cylindrical walls 104, 112 and 140. Dirt and dust collected in the chambers 114, 142, 156 can then easily be emptied from the apparatus 100.
It will be appreciated from the foregoing description that the apparatus 100 includes three distinct stages of cyclonic separation. The outer bin 102 constitutes a first cyclonic separating unit consisting of a single first cyclone which is generally cylindrical in shape. In this first cyclonic separating unit, the relatively large diameter of the outer wall 104 means that, primarily, comparatively large particles of dirt and debris will be separated from the airflow because the centrifugal forces applied to the dirt and debris are relatively small. Some fine dust will be separated as well. A large proportion of the larger debris will reliably be deposited in the annular chamber 114.
The cyclone 130 forms a second cyclonic separating unit. In this second cyclonic separating unit, the radius of the second cyclone 130 is much smaller than that of the outer wall 104 and so the centrifugal forces applied to the remaining entrained dirt and dust are much greater than those applied in the first cyclonic separating unit. Hence the efficiency of the second cyclonic separating unit is higher than that of the first cyclonic separating unit. The performance of the second cyclonic separating unit is also enhanced because it is challenged with an airflow in which a smaller range of particle sizes is entrained, the larger particles having been removed by the cyclonic separation which has already taken place in the first cyclone of the first cyclonic separating unit.
The third cyclonic separating unit is formed by the eight smaller cyclones 148. In this third cyclonic separating unit, each third cyclone 148 has an even smaller diameter than the second cyclone 130 of the second cyclonic separating unit and so is capable of separating finer dirt and dust particles than the second cyclonic separating unit. It also has the added advantage of being challenged with an airflow which has already been cleaned by the first and second cyclonic separating units and so the quantity and average size of entrained particles is smaller than would otherwise have been the case. This reduces any risk of blockage of the inlets and outlets of the cyclones 148.
The separation efficiency of the first cyclonic separating unit is thus lower than the separation efficiency of the second cyclonic separating unit and the separation efficiency of the second cyclonic separating unit is lower than the separation efficiency of the third cyclonic separating unit. By this, we mean that the separation efficiency of the first cyclone is lower than the separating efficiency of the second cyclone and the separating efficiency of the second cyclone is lower than the separating efficiency of all eight third cyclones taken together. Hence, the separation efficiency of each successive cyclonic separating unit increases.
Cyclonic separating apparatus 200 according to the invention is shown in
As described above, the first cyclonic separating unit consists of a single, cylindrical first cyclone 202 which is delimited by an outer cylindrical wall 204, a base 206 and a second cylindrical wall 212. A dirty air inlet 218 is provided tangentially to the outer wall 204 to ensure that cyclonic separation occurs in the first cyclone 202 and larger particles of dirt and debris are collected in the annular chamber 214 at the lower end of the cyclone 202. As before, the only exit from the first cyclone 202 is via the perforations 224 in the shroud 222 into a passage 226 located between the shroud 222 and the second cylindrical wall 212.
In this embodiment, the second cyclonic separating unit consists of two tapering second cyclones 230 arranged in parallel with one another. The second cyclones 230 are located side by side inside the outer wall of the apparatus 200 as can be seen in
The third cyclonic separating unit consists of four third cyclones 248 arranged in parallel. Each third cyclone 248 has an upper inlet portion 252 which includes an inlet 250 communicating with the chamber 246. Each third cyclone 248 also has a frusto-conical portion 254 depending from the inlet portion 252 and communicating with a closed chamber 256 via a cone opening. The chamber 256 is closed with respect to the chamber 242 by means of a pair of walls 270 (see
The first cyclone 202 has an axis 264, each second cyclone 230 has an axis 265 and each third cyclone has an axis 266. In this embodiment, the axes 264, 265 and 266 lie parallel to one another. However, the diameters of the first, second and third cyclones 202, 230, 248 decrease to provide increasing separation efficiencies in successive cyclonic separating units.
The apparatus 200 operates in a manner similar to the operation of the apparatus 100 shown in
Each cyclonic separating unit has a separation efficiency which in greater than that of the previous cyclonic separating unit. This allows the second and third cyclonic separating units to operate more effectively because they are challenged with an airflow in which a smaller range of particles is entrained.
Each of the cyclonic separating units can consist of different numbers and different shapes of cyclone.
Firstly, in
In the arrangement shown in
In the arrangement shown in
The arrangements illustrated in
It will be understood that further cyclonic separating units can be added downstream of the third cyclonic separating unit if desired. It will also be understood that the cyclonic separating units can be physically arranged to suit the relevant application. For example, the second and/or third cyclonic separating units can be arranged physically outside the first cyclonic separating unit if space permits. Equally, if any one of the cyclonic separating units includes a large number of cyclones, the cyclones can be arranged in two or more groups or include cyclones of different dimensions. Furthermore, the cyclones included within a multi-cyclone separating unit can be arranged such that their axes lie at different angles of inclination to the central axis of the apparatus. This can facilitate compact packaging solutions.
Number | Date | Country | Kind |
---|---|---|---|
0510863.4 | May 2005 | GB | national |
This application is a continuation of U.S. patent application Ser. No. 11/794,514, filed Jun. 26, 2007 and having a filing completion date of Jun. 10, 2008, which is a national stage application under 35 U.S.C. §371 of International Application No. PCT/GB2006/001673, filed May 9, 2006, which claims the priority of United Kingdom Application No. 0510863.4, filed May 27, 2005, the contents of which prior applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3425192 | Norman | Feb 1969 | A |
3724176 | Vishnevsky | Apr 1973 | A |
4373228 | Dyson | Feb 1983 | A |
5129124 | Gamou et al. | Jul 1992 | A |
6238451 | Conrad et al. | May 2001 | B1 |
6607572 | Gammack et al. | Aug 2003 | B2 |
6835222 | Gammack | Dec 2004 | B2 |
7976597 | Smith | Jul 2011 | B2 |
20060230724 | Han et al. | Oct 2006 | A1 |
20080172994 | Courtney et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
0042723 | Dec 1981 | EP |
0 613 935 | Sep 1994 | EP |
0728435 | Aug 1996 | EP |
1157651 | Nov 2001 | EP |
1268076 | Jan 2003 | EP |
2360719 | Oct 2001 | GB |
2 367 019 | Mar 2002 | GB |
2367511 | Apr 2002 | GB |
2372470 | Aug 2002 | GB |
2 424 603 | Oct 2006 | GB |
2424606 | Oct 2006 | GB |
50-84964 | Jul 1975 | JP |
52-14775 | Feb 1977 | JP |
63-28144 | Feb 1988 | JP |
7-3270 | Jan 1995 | JP |
7-186041 | Jul 1995 | JP |
2002-326041 | Nov 2002 | JP |
2004-520138 | Jul 2004 | JP |
2002-0078798 | Oct 2002 | KR |
WO-02067753 | Sep 2002 | WO |
Entry |
---|
Retail Advertisement of Dyson vacuum cleaner model DC07 published Jun. 2001; (12 pages). |
Retail Advertisement of Dyson vacuum cleaner model DC08 published Apr. 2002;(14 pages). |
Retail Advertisement of Dyson vacuum cleaners similar to models DC07and DC08 published Mar. 29, 2005;(4 pages). |
GB Search Report dated Sep. 28, 2005, directed to counterpart GB Application No. 0510864.2;(1 page). |
International Search Report dated Aug. 8, 2006, directed to counterpart International Application No. PCT/GB2006/001661;(3 pages). |
Grounds of Invalidity served by Claimant on Sep. 10, 2007 to the High Court, Chancery Division of the United Kingdom;(5 pages). |
GB search report mailed on May 15, 2008 directed at application No. 0510862.6;(4 pages). |
Courtney et al., Suggestion of Interference under 37 CFR 41.202(a) filed in co-pending U.S. Appl. No. 11/794,227 dated Dec. 9, 2008;(14 pages). |
Courtney et al., Suggestion of Interference under 37 CFR 41.202(a) filed in co-pending U.S. Appl. No. 11/794,227 dated Dec. 30, 2008;(29 pages). |
Courtney et al., Express Notice of Abandonment filed in co-pending U.S. Appl. No. 11/794,227 dated Mar. 31, 2009;(2 pages). |
Japanese Notice of Reasons for Rejection mailed Feb. 16, 2010, directed to related Japanese Application No. 2008-512898;(5 pages). |
Courtney et al., U.S. Office Action mailed May 12, 2010, directed to U.S. Appl. No. 11/794,226;(6 pages). |
Courtney et al., U.S. Office Action mailed Jun. 28, 2010, directed to U.S. Appl. No. 11/794,514;(7 pages). |
Number | Date | Country | |
---|---|---|---|
20110061351 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11794514 | US | |
Child | 12953112 | US |