Multistage full wavefield inversion process that generates a multiple free data set

Information

  • Patent Grant
  • 10670750
  • Patent Number
    10,670,750
  • Date Filed
    Monday, October 26, 2015
    8 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
A multi-stage FWI workflow uses multiple-contaminated FWI models to predict surface-related multiples. A method embodying the present technological advancement, can include: using data with free surface multiples as input into FWI; generating a subsurface model by performing FWI with the free-surface boundary condition imposed on top of the subsurface model; using inverted model from FWI to predict multiples; removing predicted multiples from the measured data; using the multiple-free data as input into FWI with absorbing boundary conditions imposed on top of the subsurface model; and preparing a multiple free data set for use in conventional seismic data processing.
Description
FIELD OF THE INVENTION

Exemplary embodiments described herein pertain generally to the field of geophysical prospecting, and more particularly to geophysical data processing. More specifically, an exemplary embodiment can include inverting seismic data that contains multiple reflections and generating a multiple free data set for use with conventional seismic processing.


BACKGROUND

This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present invention. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present invention. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.


Seismic inversion is a process of extracting information about the subsurface from data measured at the surface of the Earth during a seismic acquisition survey. In a typical seismic survey, seismic waves are generated by a source 101 positioned at a desired location. As the source generated waves propagate through the subsurface, some of the energy reflects from subsurface interfaces 105, 107, and 109 and travels back to the surface 111, where it is recorded by the receivers 103. The seismic waves 113 and 115 that have been reflected in the subsurface only once before reaching the recording devices are called primary reflections. In contrast, multiple reflections 117 and 119 are the seismic waves that have reflected multiple times along their travel path back to the surface (dashed lines in FIG. 1). Surface-related multiple reflections are the waves that have reflected multiple times and incorporate the surface of the Earth or the water surface in their travel path before being recorded.


As illustrated by FIG. 2, the generation of surface-related multiples requires that a free surface boundary condition be imposed. FIG. 2 illustrates interbed multiple 202 and free surface multiple 204. As discussed later in the detailed description section, the present technological advancement can remove free surface multiples from a data set. The dashed component 206 of the free surface multiple would not occur in the presence of an absorbing boundary condition.


Most seismic inversion methods rely on primary reflections only and treat all other seismic modes, including multiple reflections as “noise” that need to be suppressed during conventional seismic data processing prior to inversion. There are a number of multiple suppression methods available in industry. For example, suppression methods include surface-related multiple elimination (SRME), shallow water demultiple (SWD), model-based water-layer demultiple (MWD), and predictive deconvolution. Those of ordinary skill in the art are familiar with these suppression methods, and further discussion is not needed. However, all of the methods struggle with multiple elimination if the multiple and primary reflections overlap in the recorded seismic data. Furthermore, inadequate application of multiple suppression methods may result in damage to the primary data, rendering it unusable for inversion.


An alternative approach is to use inversion algorithms which accept the data that still contain surface-related multiples. Full Wavefield Inversion (FWI) is a seismic method capable of utilizing the full seismic record, including the seismic events that are treated as “noise” by standard inversion algorithms. The goal of FWI is to build a realistic subsurface model by minimizing the misfit between the recorded seismic data and synthetic (or modeled) data obtained via numerical simulation.


FWI is a computer-implemented geophysical method that is used to invert for subsurface properties such as velocity or acoustic impedance. The crux of any FWI algorithm can be described as follows: using a starting subsurface physical property model, synthetic seismic data are generated, i.e. modeled or simulated, by solving the wave equation using a numerical scheme (e.g., finite-difference, finite-element etc.). The term velocity model or physical property model as used herein refers to an array of numbers, typically a 3-D array, where each number, which may be called a model parameter, is a value of velocity or another physical property in a cell, where a subsurface region has been conceptually divided into discrete cells for computational purposes. The synthetic seismic data are compared with the field seismic data and using the difference between the two, an error or objective function is calculated. Using the objective function, a modified subsurface model is generated which is used to simulate a new set of synthetic seismic data. This new set of synthetic seismic data is compared with the field data to generate a new objective function. This process is repeated until the objective function is satisfactorily minimized and the final subsurface model is generated. A global or local optimization method is used to minimize the objective function and to update the subsurface model.


Numerical simulation can generate data with or without free surface multiples depending on the boundary condition imposed on top of the subsurface model. The free surface boundary condition yields data with surface-related multiples, while the transparent (absorbing) boundary condition allows for generation of multiple-free data. These two modes of numerical modeling lead to two standard approaches in FWI.


In one approach, FWI requires that the input seismic data have undergone some kind of multiple suppression procedure and uses absorbing boundary condition to model multiple-free synthetic data. In the other approach, the data still contain surface-related multiples which have to be modeled by imposing a free-surface boundary condition. The second approach is preferable, since it saves both time and resources required by application of conventional multiple suppression methods. Furthermore, it ensures that the integrity of the data is not compromised and has the potential of extracting additional information contained in multiple reflections. The drawback of the second approach is that it requires accurate modeling of surface-related multiples, which appear to be extremely sensitive to errors in the water-bottom reflectivity, source signature, location, etc. Even a small mismatch between the measured and simulated multiples may result in FWI models that are contaminated by the multiples of strong-contrast interfaces.


U.S. Pat. No. 7,974,824, the entire contents of which are hereby incorporated by reference, describes the seismic inversion of data containing surface-related multiples. Instead of pre-processing seismic data to remove surface-related multiples, a seismic waveform inversion process enables comparison of simulated seismic data containing surface-related multiples with observed seismic data also containing surface-related multiples. Based on this comparing, a model of a subterranean structure can be iteratively updated.


Zhang and Schuster (2013) describes a method where least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. Zhang D. and Schuster G., “Least-squares reverse time migration of multiples,” Geophysics, Vol. 79, S11-S21, 2013.


SUMMARY

A method, including: performing, with a computer, a first full wavefield inversion process on input seismic data that includes free surface multiples, wherein the first full wavefield inversion process is performed with a free-surface boundary condition imposed on a top surface of an initial subsurface physical property model, and the first full wavefield inversion process generates a final subsurface physical property model; predicting, with the computer, subsurface multiples with the final subsurface physical property model; removing, with the computer, the predicted subsurface multiples from the input seismic data; performing, with the computer, a second full wavefield inversion process on the input seismic data with the predicted subsurface multiples removed therefrom, wherein the second full wavefield inversion process is performed with an absorbing boundary condition imposed on a top surface of an initial subsurface physical property model, and the second full wavefield inversion process generates a multiple-free final subsurface physical property model; and using the multiple-free final subsurface physical property model as an input to an imaging or velocity model building algorithm, or in interpreting a subsurface region for hydrocarbon exploration or production.


In the method, the predicting can include using Born modeling.


In the method, the Born modeling can include using a background model and a reflectivity model.


The method can further include generating the reflectivity model by removing the background model from the intermediate inverted subsurface model by taking a derivative of the final subsurface physical property model in a vertical direction.


The method can include generating the reflectivity model by applying a filter operator to the final subsurface physical property model.


The method can include generating the reflectivity model using a migration algorithm.


In the method, the filter operator is a Butterworth filter in a wavenumber domain.


The method can further include removing direct arrivals from the input seismic data prior to the Born modeling.


In the method, the removing can include removing the subsurface multiples from the input seismic data with adaptive subtraction.


The method can further include causing subsurface multiple reflections generated by the Born modeling to be free of parasitic events.


In the method, the Born modeling can be performed with synthetic data generated from the final subsurface physical property model on regularly spaced grid nodes.


In the method, a length of an interval between the regularly spaced grid nodes can be equal to half a distance between seismic receivers in a cross-line direction.


Another method, including: performing, with a computer, a first full wavefield inversion process on input seismic data that includes free surface multiples, wherein the first full wavefield inversion process is performed with a free-surface boundary condition imposed on a top surface of an initial subsurface physical property model, and the first full wavefield inversion process generates a final subsurface physical property model; predicting, with the computer, subsurface multiples with the final subsurface physical property model; performing, with the computer, a second full wavefield inversion process on the input seismic data, wherein the second wavefield inversion process uses an objective function that only simulates primary reflections, the objective function being based on the predicted subsurface multiples, and the second full wavefield inversion process generates a multiple-free final subsurface physical property model; and using the multiple-free final subsurface physical property model as an input to an imaging or velocity model building algorithm, or in interpreting a subsurface region for hydrocarbon exploration or production.


Another method, including: performing, with a computer, a first full wavefield inversion process on input seismic data that includes free surface multiples, wherein the first full wavefield inversion process is performed with a free-surface boundary condition imposed on a top surface of an initial subsurface physical property model, and the first full wavefield inversion process generates a final subsurface physical property model; predicting, with the computer, subsurface multiples with the final subsurface physical property model; and removing, with the computer, the predicted subsurface multiples from the input seismic data and preparing multiple-free seismic data.





BRIEF DESCRIPTION OF THE DRAWINGS

While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims. It should also be understood that the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating principles of exemplary embodiments of the present invention. Moreover, certain dimensions may be exaggerated to help visually convey such principles.



FIG. 1 is an example of primary reflections and multiple reflections.



FIG. 2 is an example of an interbed surface related multiple and a free surface multiple.



FIG. 3 is an exemplary flow chart illustrating an embodiment of the present technological advancement.



FIG. 4 is an exemplary flow chart illustrating an embodiment of the present technological advancement.





DETAILED DESCRIPTION

Exemplary embodiments are described herein. However, to the extent that the following description is specific to a particular, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.


An exemplary embodiment can include inverting seismic data that contains multiple reflections and generating a multiple free data set for use with conventional seismic processing. In one embodiment, a multi-stage FWI workflow uses multiple-contaminated FWI models to predict surface-related multiples with goals of: (1) removing them from the data before applying FWI or other inversion or imaging algorithms; and (2) generating a multiple free seismic data set for use in conventional seismic data processing. By way of example, a method embodying the present technological advancement, can include: using data with free surface multiples as input into FWI; generating a subsurface model by performing FWI with the free-surface boundary condition imposed on top of the subsurface model; using inverted model from FWI to predict multiples; removing predicted multiples from the measured data; using the multiple-free data as input into FWI with absorbing boundary conditions imposed on top of the subsurface model; and preparing a multiple free data set for use in conventional seismic data processing, such as conventional imaging or velocity model building algorithms. The present technological advancement transforms seismic data into a model of the subsurface.



FIG. 3 is an exemplary flow chart illustrating an embodiment of the present technological advancement. In step 300, the data with free surface multiples is input into a computer that will apply an FWI workflow to the data with free surface multiples. The data with free surface multiples can be a full recorded data set. The data with free surface multiples can be obtained by using a source and receivers, as is well known in the art.


In step 302, FWI is performed on the data with free surface multiples in the presence of surface-related multiples. FWI is well-known to those of ordinary skill in the art. FWI can utilize an initial geophysical property model, with a free-surface boundary condition, and synthetic data can be generated from the initial geophysical property model. Generating and/or obtaining synthetic data based on an initial geophysical property model is well known to those of ordinary skill in the art. An objective function can be computed by using observed geophysical data and the corresponding synthetic data. A gradient of the cost function, with respect to the subsurface model parameter(s), can be used to update the initial model in order to generate an intermediate model. This iterative process should be repeated until the cost function reaches a predetermined threshold, at which point a final subsurface physical property model is obtained. Further details regarding FWI can be found in U.S. Patent Publication 2011/0194379, the entire contents of which are hereby incorporated by reference.


In step 304, an inverted FWI model (i.e., a subsurface physical property model) is generated through the performance of FWI by imposing a free-surface boundary condition on top of the initial subsurface model and subsequent revised models during the iterative FWI process. In some cases, the inverted FWI model might be contaminated by the multiples of the strong-contrast interfaces.


In step 306, the inverted FWI model is used to predict surface-related multiples. To predict surface-related multiples, an approach described in Zhang and Schuster (2013) can be used. Assuming that a subsurface model m can be separated into a slowly varying (background) component m0 and a rapidly varying (reflectivity) component δm, the following equations can be used to predict multiple reflections for the measured data d (ω, xg, xs) associated with the source at location xs and receivers at locations xg:












[



2



+


(

ω







m
0



(
x
)



)

2



]



P


(
x
)



=

d


(

ω
,

x
g

,

x
s


)



,




(
1
)









[



2



+


(

ω







m
0



(
x
)



)

2



]



M


(
x
)



=


ω
2




2





δ






m


(
x
)





(


m
o



(
x
)


)

3




P


(
x
)




,




(
2
)








where ω is an angular frequency. Equation (1) describes the propagation of the background wavefield P(x) through the background model m0. Equation (2) computes the surface-related multiples M(x) generated when the background wavefield P(x) interacts with the reflectivity model δm (see the right-hand side of Equation (2)). The theory underlying equations (1)-(2) assumes that seismic data d(ω, xg, xs) is recorded by receivers positioned on a dense and regularly spaced grid. Due to the acquisition limitations, both assumptions are violated in a typical seismic survey. Irregularities in the acquisition geometry cause artifacts in the predicted multiples. The artifacts manifest themselves as parasitic events that can be easily mistaken for the real multiple or primary reflections.


In the present embodiment, the measured data (seismic data d) on the right-hand side of equation (1) is replaced with synthetic data recorded on a regular and dense acquisition geometry. The present embodiment assumes a near-perfect match between the measured and synthetic data and requires a model of the subsurface that ensures such a match. Advantageously, the present embodiment takes advantage of a subsurface model built by applying FWI to the data with free surface multiples (step 304). Despite the fact that, in some cases, such a model might contain multiples from strong contrast interfaces and is not a correct representation of the subsurface, it is built by minimizing the mismatch (i.e., cost function) between the measured and synthetic data. Therefore, it can generate synthetic data which is a highly accurate approximation of the measured data.


There are two approaches to predicting surface related multiples. Both approaches require replacing measured data with synthetic data. FWI inverted model is utilized for this purpose. Despite the fact that, in some cases, such a model might contain multiples from strong contrast interfaces and is not a correct representation of the subsurface, it is built by minimizing the mismatch (i.e., cost function) between the measured and synthetic data. Therefore, it can generate synthetic data which is a highly accurate approximation of the measured data. The first approach is discussed above in regards to Zhang and Schuster (2013). The second approach includes the following steps:

    • 1. generate synthetic data using FWI inverted model with free surface boundary conditions on top of the model;
    • 2. generate synthetic data using FWI inverted model with absorbing boundary conditions on top of the model and mirror sources and receivers. Synthetic data generated with absorbing boundary conditions contains primary reflections only. Mirror sources and receivers ensure that reflections have source and receivers ghosts that match those of the data generated in Step 1. Using mirror sources and receivers for generating source and receiver ghosts is well known to those of the ordinary skill in the art and is discussed, for example, in the patent “Full-wavefield inversion using mirror source-receiver geometry”; and
    • 3. subtract synthetic primaries generated in Step 2 from the data generated in Step 1 to obtain surface related multiples.


In step 308, predicted multiples are removed from the measured data. Surface-related multiples predicted by equations (1)-(2) can be removed from the measured data by adaptive subtraction methods. Adaptive subtraction is a method for matching and removing coherent noise, such as multiple reflections. Adaptive subtraction involves a matching filter to compensate for the amplitude, phase, and frequency distortions in the predicted noise model. Conventional adaptive subtraction techniques are known to those of ordinary skill in the art and they, for example, can be used to remove the predicted multiples in the present embodiment. Examples of adaptive subtraction can be found, for example, in Nekut, A. G. and D. J. Verschuur, 1998, Minimum energy adaptive subtraction in surface-related multiple attenuation: 68th Ann. Internat. Mtg., 1507.1510, Soc. of Expl. Geophys., the entire contents of which is incorporated by reference, and Neelamani, R., A. Baumstein, and W. S. Ross, 2008, Adaptive subtraction using complex curvelet transforms: 70th EAGE Conference and Exhibition, Rome, G048, the entire contents of which is incorporated by reference.


The resulting multiple-free data (step 310) can be used as an input into any inversion algorithm as well as conventional seismic data processing flows.


Step 312 includes performing a second full wavefield inversion process on the input seismic data with the predicted subsurface multiples removed therefrom, wherein the second full wavefield inversion process is performed with an absorbing boundary condition imposed on a top surface of an initial subsurface physical property model.


Step 314 includes generating, with the second full wavefield inversion process, a multiple-free final subsurface physical property model.


In step 316, if the acceptance criteria are satisfied, the process can move to step 318, which can include using the multiple-free final physical property subsurface model as an input to a migration algorithm or in interpreting a subsurface region for hydrocarbon exploration or production (e.g., drilling a well or imaging the subsurface). If the acceptance criteria are not satisfied, the process can return to step 306 for another iteration. The acceptance criteria can include having an interpreter examine the model and determine if it is acceptable. If the interpreter does not find the model acceptable, additional iterations can be executed. Of course, this interpretation by an interpreter can be computer assisted with well-known interpretation software.


In order to create a dense and regular receiver grid required by the multiple prediction algorithm implemented in step 306, a bounding box is defined based on the minimum and maximum values of the source and receiver locations in the original acquisition geometry. The receivers are positioned at regular intervals inside the bounding box. The length of the interval between the regular grid nodes can be equal to half the distance between the receivers in the cross-line direction. Finally, the geometry is padded with additional receivers to mitigate artifacts due to the truncation of receiver lines. The width of the padding is equal to the length of the taper function used to gradually force the recorded wavefield to zero. The original source locations are preserved, since the multiple prediction algorithm does not require sources on the regular grid. However, it is possible to generate additional data for such multiple suppression algorithms as EPSI, SRME, etc. A forward simulation is run using the final FWI model and record the wavefield at the new receiver locations.


Before inserting the recorded wavefields as source functions into Born modeling as part of step 306, a taper is applied to the traces recorded by the receivers located in the padding zone at the edges of the receiver lines. The purpose of this step is to ensure that the subsurface multiple reflections generated by Born modeling are free of the parasitic events (e.g., artifacts that can be easily mistaken for the real multiple or primary reflections). Any function smoothly varying between 1 and 0 can be used as a taper. One example of such a function is Hann window function:











ω


(
n
)


=

0.5


(

1
+

cos


(


2





π





n


N
-
1


)



)



,




(
3
)








where N represent the length of the function in samples and n varies from 0 to N. Each sample of the taper function corresponds to the receiver in the padding zone. About 40 samples are sufficient to force the wavefield in the padding zone to zero.


The direct arrivals should be removed from the recorded wavefield prior to Born modeling. The direct arrivals correspond to the part of the wavefield that propagates through the water column from the source to the receivers. In deep water applications, the direct arrivals are well separated from the rest of the wavefield and are typically removed by muting. In shallow water, the direct arrivals are intermingled with other seismic events and cannot be muted without damage to the primary data. This embodiment can make use of the known water velocity to model the direct arrival and then subtract it from the data. After removing the direct arrivals, a taper is applied to the traces at the edges of the receiver lines to gradually force the wavefield to zero.


Born equations (1)-(2) utilize two subsurface models. The background model is smooth and contains only long wavelengths. It can be obtained from tomography, low frequency FWI, or by applying a smoothing operator to the final high-frequency FWI model. There are several ways to build the reflectivity model. One method includes removing the background component from the final FWI model by taking its derivative in the vertical direction. Alternatively, the background component can be removed by application of a filtering operator to the final FWI model. While both approaches produce a feasible reflectivity model, the second approach has the advantage of preserving the reflectivity spectrum of the original velocity model. A Butterworth filter (which is a type of signal processing filter designed to have as flat frequency response as possible in the passband) can be used in the wavenumber domain as the filtering operator, a non-limiting example of which is:












B


(
ω
)


2

=

1

1
+


(

ω

ω
c


)


2

N





,




(
4
)








where ω is a wavenumber at which calculation is made, ωc is a cut-off wavenumber, and N is the length of the filter in samples.


The choice of the cutoff wavenumber depends on the velocity model and frequency of the measured data. For example, for a model that has velocities ranging from 1500 m/s to 5500 m/s and seismic data with the highest frequency of 40 Hz, the cutoff wavenumber is 0.005 m−1.


The reflectivity model can also be generated using seismic migration. Migration algorithms relocate seismic events recorded at the surface of the Earth to the subsurface location where the events occurred. The image of the subsurface obtained after migration of the data that contains surface related multiples can be used as input into Born modeling. Kirchhoff migration is a well-known, cost-efficient and robust way to migrate the data, however, any migration algorithm can be used. Seismic Imaging: a review of the techniques, their principles, merits and limitations, Etienne Robein Houten, The Netherlands: EAGE Publications, 2010, the entire contents of which is hereby incorporated by reference, describes a number of migration algorithms that could be used to generate the reflectivity model.


The multiples generated by the Born equations are recorded on the original acquisition geometry. Adaptive subtraction is used to remove the multiples from the measured data.


In a second embodiment, instead of removing predicted multiples from the data, they are incorporated into FWI. An exemplary way to achieve this is to explicitly include multiples into the definition of the objective function. The conventional L2 objective function is defined as follows:











E


(
c
)


=


1
2






u
-
d



2



,




(
5
)








where c is the model of the subsurface and d and u denote observed and simulated data, respectively. As mentioned above, inversion of data that contains surface related multiples can be challenging due to the mismatch between the measured and simulated multiples. However, if the surface related multiples are available prior to the numerical simulation, it is possible to design an operator M that accounts for the discrepancies between the simulated and measured multiples. In this case, the total simulated data u can be represented as a sum of primary reflections u0 and surface related multiples usrm. Then the objective function requires simulation of the primary reflections u0 only:










E


(
c
)


=


1
2








u
0

+

Mu
srm

-
d



2

.






(
6
)







The operator M could be built from a Weiner filter. A Weiner filter minimizes the mean square error between the estimated and observed signals. In the present embodiment, the estimated signal is predicted multiples, and the observed signal is measured data. Such Weiner filters are well known and are described, for example, in Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data, Oz Yilmaz, Stephen M. Doherty, Society of Exploration Geophysicists, 2000, the entire contents of which are hereby incorporated by reference.



FIG. 4 illustrates an exemplary method embodying the present technological advancement, where the predicted multiples are incorporated into FWI. Steps 400, 402, 404, and 406 of FIG. 4 are analogous to steps 300, 302, 304, and 306 of FIG. 3, and do not need to be further discussed here.


A difference between the method of FIG. 3 and the method of FIG. 4 is that the subtracting step 308 is omitted from the method of FIG. 4, and instead the second FWI process uses the predicted multiples as a priori information. Step 408 includes using multiple-free data from Step 406 as input into an FWI workflow that uses the modified objective function definition and absorbing boundary conditions imposed on top of the subsurface model.


Steps 410, 412, and 414 of FIG. 4 are analogous to steps 314, 316, and 318 of FIG. 3, and do not need to be further discussed here.


In all practical applications, the present technological advancement must be used in conjunction with a computer, programmed in accordance with the disclosures herein. Preferably, in order to efficiently perform FWI, the computer is a high performance computer (HPC), known as to those skilled in the art. Such high performance computers typically involve clusters of nodes, each node having multiple CPU's and computer memory that allow parallel computation. The models may be visualized and edited using any interactive visualization programs and associated hardware, such as monitors and projectors. The architecture of system may vary and may be composed of any number of suitable hardware structures capable of executing logical operations and displaying the output according to the present technological advancement. Those of ordinary skill in the art are aware of suitable supercomputers available from Cray or IBM.


The present techniques may be susceptible to various modifications and alternative forms, and the examples discussed above have been shown only by way of example. However, the present techniques are not intended to be limited to the particular examples disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the spirit and scope of the appended claims.

Claims
  • 1. A method, comprising: performing, with a computer, a first full wavefield inversion process on input seismic data that includes free surface multiples, wherein the first full wavefield inversion process is performed with a free-surface boundary condition imposed on a top surface of an initial subsurface physical property model, and the first full wavefield inversion process generates a final subsurface physical property model;predicting, with the computer, subsurface multiples with the final subsurface physical property model;wherein the method further includes, (a) removing, with the computer, the predicted subsurface multiples from the input seismic data and preparing multiple-free seismic data, and performing, after the removing, a second full wavefield inversion process on the input seismic data with the predicted subsurface multiples removed therefrom, wherein the second full wavefield inversion process is performed with an absorbing boundary condition imposed on the top surface of an initial subsurface physical property model, and the second full wavefield inversion process generates a multiple-free final subsurface physical property model, or(b) performing, with the computer, a second full wavefield inversion process on the input seismic data, wherein the second wavefield inversion process uses an objective function that only simulates primary reflections, the objective function being based on the predicted subsurface multiples, and the second full wavefield inversion process generates a multiple-free final subsurface physical property model;using the multiple-free final subsurface physical property model as an input to an imaging or velocity model building algorithm, or in interpreting a subsurface region for hydrocarbon exploration or production; andforming and displaying, with the computer, a seismic image of the subsurface region, wherein the seismic image identifies a location of structure in earth's subsurface that returned seismic waves to receivers that recorded the input seismic data.
  • 2. The method of claim 1, wherein the predicting includes using Born modeling.
  • 3. The method of claim 2, wherein the Born modeling includes using a background model and a reflectivity model.
  • 4. The method of claim 3, wherein the method includes generating the reflectivity model by removing the background model from the intermediate inverted subsurface model by taking a derivative of the final subsurface physical property model in a vertical direction.
  • 5. The method of claim 3, wherein the method includes generating the reflectivity model by applying a filter operator to the final subsurface physical property model.
  • 6. The method of claim 5, wherein the filter operator is a Butterworth filter in a wavenumber domain.
  • 7. The method of claim 3, wherein the method includes generating the reflectivity model using a migration algorithm.
  • 8. The method of any one of claims 2 to 6, wherein the method further includes removing direct arrivals from the input seismic data prior to the Born modeling.
  • 9. The method of claim 2, wherein the method further comprises causing subsurface multiple reflections generated by the Born modeling to be free of parasitic events by applying a taper to traces included in the input seismic data.
  • 10. The method of claim 2, wherein the Born modeling is performed with synthetic data generated from the final subsurface physical property model on regularly spaced grid nodes.
  • 11. The method of claim 10, wherein a length of an interval between the regularly spaced grid nodes is equal to half a distance between seismic receivers in a cross-line direction.
  • 12. The method of claim 1, wherein the method includes step (a) and the removing of the predicted subsurface multiples includes removing the predicted subsurface multiples from the input seismic data with adaptive subtraction.
  • 13. The method of claim 1, wherein the predicting comprises: generating first synthetic data using the final subsurface physical property model with free surface boundary conditions on top of the final subsurface physical property model;generating second synthetic data, consisting of only primary reflections, using the final subsurface physical property model with absorbing boundary conditions on top of the final subsurface physical property model and mirror sources and receivers; andsubtracting the primary reflections from the first synthetic data to obtain the subsurface multiples.
  • 14. The method of claim 1, further comprising causing a well to be drilled based on the seismic image.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/117,227 filed Feb. 17, 2015, entitled MULTISTAGE FULL WAVEFIELD INVERSION PROCESS THAT GENERATES A MULTIPLE FREE DATA SET, the entirety of which is incorporated by reference herein.

US Referenced Citations (226)
Number Name Date Kind
3812457 Weller May 1974 A
3864667 Bahjat Feb 1975 A
4159463 Silverman Jun 1979 A
4168485 Payton et al. Sep 1979 A
4545039 Savit Oct 1985 A
4562650 Nagasawa et al. Jan 1986 A
4575830 Ingram et al. Mar 1986 A
4594662 Devaney Jun 1986 A
4636957 Vannier et al. Jan 1987 A
4675851 Savit et al. Jun 1987 A
4686654 Savit Aug 1987 A
4707812 Martinez Nov 1987 A
4715020 Landrum, Jr. Dec 1987 A
4766574 Whitmore et al. Aug 1988 A
4780856 Becquey Oct 1988 A
4823326 Ward Apr 1989 A
4924390 Parsons et al. May 1990 A
4953657 Edington Sep 1990 A
4969129 Currie Nov 1990 A
4982374 Edington et al. Jan 1991 A
5260911 Mason et al. Nov 1993 A
5469062 Meyer, Jr. Nov 1995 A
5583825 Carrazzone et al. Dec 1996 A
5677893 de Hoop et al. Oct 1997 A
5715213 Allen Feb 1998 A
5717655 Beasley Feb 1998 A
5719821 Sallas et al. Feb 1998 A
5721710 Sallas et al. Feb 1998 A
5790473 Allen Aug 1998 A
5798982 He et al. Aug 1998 A
5822269 Allen Oct 1998 A
5838634 Jones et al. Nov 1998 A
5852588 de Hoop et al. Dec 1998 A
5878372 Tabarovsky et al. Mar 1999 A
5920838 Norris et al. Jul 1999 A
5924049 Beasley et al. Jul 1999 A
5999488 Smith Dec 1999 A
5999489 Lazaratos Dec 1999 A
6014342 Lazaratos Jan 2000 A
6021094 Ober et al. Feb 2000 A
6028818 Jeffryes Feb 2000 A
6058073 VerWest May 2000 A
6125330 Robertson et al. Sep 2000 A
6219621 Hornbostel Apr 2001 B1
6225803 Chen May 2001 B1
6311133 Lailly et al. Oct 2001 B1
6317695 Zhou et al. Nov 2001 B1
6327537 Ikelle Dec 2001 B1
6374201 Grizon et al. Apr 2002 B1
6381543 Guerillot et al. Apr 2002 B1
6388947 Washbourne et al. May 2002 B1
6480790 Calvert et al. Nov 2002 B1
6522973 Tonellot et al. Feb 2003 B1
6545944 de Kok Apr 2003 B2
6549854 Malinverno et al. Apr 2003 B1
6574564 Lailly et al. Jun 2003 B2
6593746 Stolarczyk Jul 2003 B2
6662147 Fournier et al. Dec 2003 B1
6665615 Van Riel et al. Dec 2003 B2
6687619 Moerig et al. Feb 2004 B2
6687659 Shen Feb 2004 B1
6704245 Becquey Mar 2004 B2
6714867 Meunier Mar 2004 B2
6735527 Levin May 2004 B1
6754590 Moldoveanu Jun 2004 B1
6766256 Jeffryes Jul 2004 B2
6826486 Malinverno Nov 2004 B1
6836448 Robertsson et al. Dec 2004 B2
6842701 Moerig et al. Jan 2005 B2
6859734 Bednar Feb 2005 B2
6865487 Charron Mar 2005 B2
6865488 Moerig et al. Mar 2005 B2
6876928 Van Riel et al. Apr 2005 B2
6882938 Vaage et al. Apr 2005 B2
6882958 Schmidt et al. Apr 2005 B2
6901333 Van Riel et al. May 2005 B2
6903999 Curtis et al. Jun 2005 B2
6905916 Bartsch et al. Jun 2005 B2
6906981 Vauge Jun 2005 B2
6927698 Stolarczyk Aug 2005 B2
6944546 Xiao et al. Sep 2005 B2
6947843 Fisher et al. Sep 2005 B2
6970397 Castagna et al. Nov 2005 B2
6977866 Huffman et al. Dec 2005 B2
6999880 Lee Feb 2006 B2
7046581 Calvert May 2006 B2
7050356 Jeffryes May 2006 B2
7069149 Goff et al. Jun 2006 B2
7027927 Routh et al. Jul 2006 B2
7072767 Routh et al. Jul 2006 B2
7092823 Lailly et al. Aug 2006 B2
7110900 Adler et al. Sep 2006 B2
7184367 Yin Feb 2007 B2
7230879 Herkenoff et al. Jun 2007 B2
7271747 Baraniuk et al. Sep 2007 B2
7330799 Lefebvre et al. Feb 2008 B2
7337069 Masson et al. Feb 2008 B2
7373251 Hamman et al. May 2008 B2
7373252 Sherrill et al. May 2008 B2
7376046 Jeffryes May 2008 B2
7376539 Lecomte May 2008 B2
7400978 Langlais et al. Jul 2008 B2
7436734 Krohn Oct 2008 B2
7480206 Hill Jan 2009 B2
7584056 Koren Sep 2009 B2
7599798 Beasley et al. Oct 2009 B2
7602670 Jeffryes Oct 2009 B2
7616523 Tabti et al. Nov 2009 B1
7620534 Pita et al. Nov 2009 B2
7620536 Chow Nov 2009 B2
7646924 Donoho Jan 2010 B2
7672194 Jeffryes Mar 2010 B2
7672824 Dutta et al. Mar 2010 B2
7675815 Saenger et al. Mar 2010 B2
7679990 Herkenhoff et al. Mar 2010 B2
7684281 Vaage et al. Mar 2010 B2
7710821 Robertsson et al. May 2010 B2
7715985 Van Manen et al. May 2010 B2
7715986 Nemeth et al. May 2010 B2
7725266 Sirgue et al. May 2010 B2
7791980 Robertsson et al. Sep 2010 B2
7835072 Izumi Nov 2010 B2
7840625 Candes et al. Nov 2010 B2
7940601 Ghosh May 2011 B2
7974824 Song Jul 2011 B2
8121823 Krebs et al. Feb 2012 B2
8248886 Neelamani et al. Aug 2012 B2
8428925 Krebs et al. Apr 2013 B2
8437998 Routh et al. May 2013 B2
8547794 Gulati et al. Oct 2013 B2
8688381 Routh et al. Apr 2014 B2
8781748 Laddoch et al. Jul 2014 B2
8990053 Lazaratos et al. Mar 2015 B2
20020099504 Cross et al. Jul 2002 A1
20020120429 Ortoleva Aug 2002 A1
20020183980 Guillaume Dec 2002 A1
20040199330 Routh et al. Oct 2004 A1
20040225438 Okoniewski et al. Nov 2004 A1
20060235666 Assa et al. Oct 2006 A1
20070036030 Baumel et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070274155 Ikelle Nov 2007 A1
20080175101 Saenger et al. Jul 2008 A1
20080306692 Singer et al. Dec 2008 A1
20090006054 Song Jan 2009 A1
20090067041 Krauklis et al. Mar 2009 A1
20090070042 Birchwood et al. Mar 2009 A1
20090083006 Mackie Mar 2009 A1
20090164186 Haase et al. Jun 2009 A1
20090164756 Dokken et al. Jun 2009 A1
20090187391 Wendt et al. Jul 2009 A1
20090248308 Luling Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090259406 Khadhraoui et al. Oct 2009 A1
20100008184 Hegna et al. Jan 2010 A1
20100018718 Krebs et al. Jan 2010 A1
20100039894 Abma et al. Feb 2010 A1
20100054082 McGarry et al. Mar 2010 A1
20100088035 Etgen et al. Apr 2010 A1
20100103772 Eick et al. Apr 2010 A1
20100118651 Liu et al. May 2010 A1
20100142316 Keers et al. Jun 2010 A1
20100161233 Saenger et al. Jun 2010 A1
20100161234 Saenger et al. Jun 2010 A1
20100185422 Hoversten Jul 2010 A1
20100208554 Chiu et al. Aug 2010 A1
20100212902 Baumstein et al. Aug 2010 A1
20100246324 Dragoset, Jr. et al. Sep 2010 A1
20100265797 Robertsson et al. Oct 2010 A1
20100270026 Lazaratos et al. Oct 2010 A1
20100286919 Lee et al. Nov 2010 A1
20100299070 Abma Nov 2010 A1
20110000678 Krebs et al. Jan 2011 A1
20110040926 Donderici et al. Feb 2011 A1
20110051553 Scott et al. Mar 2011 A1
20110090760 Rickett et al. Apr 2011 A1
20110103187 Albertin May 2011 A1
20110131020 Meng Jun 2011 A1
20110134722 Virgilio et al. Jun 2011 A1
20110182141 Zhamikov et al. Jul 2011 A1
20110182144 Gray Jul 2011 A1
20110191032 Moore Aug 2011 A1
20110194379 Lee et al. Aug 2011 A1
20110222370 Downton et al. Sep 2011 A1
20110227577 Zhang et al. Sep 2011 A1
20110235464 Brittan et al. Sep 2011 A1
20110238390 Krebs et al. Sep 2011 A1
20110246140 Abubakar et al. Oct 2011 A1
20110267921 Mortel et al. Nov 2011 A1
20110267923 Shin Nov 2011 A1
20110276320 Krebs et al. Nov 2011 A1
20110288831 Tan et al. Nov 2011 A1
20110299361 Shin Dec 2011 A1
20110320180 Al-Saleh Dec 2011 A1
20120010862 Costen Jan 2012 A1
20120014215 Saenger et al. Jan 2012 A1
20120014216 Saenger et al. Jan 2012 A1
20120051176 Liu Mar 2012 A1
20120073824 Routh Mar 2012 A1
20120073825 Routh Mar 2012 A1
20120082344 Donoho Apr 2012 A1
20120143506 Routh et al. Jun 2012 A1
20120215506 Rickett et al. Aug 2012 A1
20120218859 Soubaras Aug 2012 A1
20120253758 Lazaratos Oct 2012 A1
20120275264 Kostov et al. Nov 2012 A1
20120275267 Neelamani et al. Nov 2012 A1
20120290214 Huo et al. Nov 2012 A1
20120314538 Washbourne et al. Dec 2012 A1
20120316790 Washbourne et al. Dec 2012 A1
20120316844 Shah et al. Dec 2012 A1
20130060539 Baumstein Mar 2013 A1
20130081752 Kurimura et al. Apr 2013 A1
20130238246 Krebs et al. Sep 2013 A1
20130279290 Poole Oct 2013 A1
20130282292 Wang et al. Oct 2013 A1
20130301387 van Groenestijn Nov 2013 A1
20130311149 Tang Nov 2013 A1
20130311151 Plessix Nov 2013 A1
20140136171 Sword, Jr. May 2014 A1
20140350861 Wang et al. Nov 2014 A1
20140358504 Baumstein et al. Dec 2014 A1
20140372043 Hu et al. Dec 2014 A1
20140379266 Jiao et al. Dec 2014 A1
20150012221 Bansal et al. Jan 2015 A1
20160061974 Bansal Mar 2016 A1
Foreign Referenced Citations (21)
Number Date Country
2 796 631 Nov 2011 CA
1 094 338 Apr 2001 EP
1 746 443 Jan 2007 EP
2 390 712 Jan 2004 GB
2 391 665 Feb 2004 GB
WO 2006037815 Apr 2006 WO
WO 2007046711 Apr 2007 WO
WO 2008042081 Apr 2008 WO
WO 2008123920 Oct 2008 WO
WO 2009067041 May 2009 WO
WO 2009117174 Sep 2009 WO
WO 2010085822 Jul 2010 WO
WO 2011040926 Apr 2011 WO
WO 2011091216 Jul 2011 WO
WO 2011093945 Aug 2011 WO
WO 2012024025 Feb 2012 WO
WO 2012041834 Apr 2012 WO
WO 2012083234 Jun 2012 WO
WO 2012134621 Oct 2012 WO
WO 2012170201 Dec 2012 WO
WO 2013081752 Jun 2013 WO
Non-Patent Literature Citations (163)
Entry
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al.
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al.
Nekut, A.G. et al., “Minimum energy adaptive subtraction in surface-related multiple attenuation,” 1998 SEG Expanded Absracts, 4 pgs., (1998).
Neelamani, R. et al., “Adaptive Subtraction Using Complex Curvelet Transforms,” 70th EAGE Conf. & Exh., Room, Italy, 5 pgs. (Jun. 9-12, 2008).
Zhang, D., et al., “Least-squares reverse time migration of multiples,” Geophysics 79(1), pp. S11-S2, (Jan.-Feb. 2014).
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs.
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173.
Aki et al. (1980), “Quantitative Seismology, Theory and Methods,” Chapter 5.20, W.H. Freeman & Co., pp. 133-155.
Amundsen, L. (2001), “Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 60(1), pp. 327-341.
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs.
Barr, F.J. et al. (1989), “Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable,” 59th Annual SEG meeting, Expanded Abstracts, pp. 653-656.
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247.
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917.
Beasley, C. (2012), “A 3D simultaneous source field test processed using alternating projections: a new active separation method,” Geophsyical Prospecting 60, pp. 591-601.
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790.
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631.
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs.
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292.
Ben-Hadj-Ali, H. et al. (2011), “An efficient frequency-domain full waveform inversion method using simultaneous encoded sources,” Geophysics 76(4), pp. R109-R124.
Benitez, D. et al. (2001), “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine 31, pp. 399-406.
Berenger, J-P. (1994), “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200.
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142.
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264.
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938.
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108.
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1047.
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473.
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46.
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515.
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd Eage Conference, Abstract, pp. F026.
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation norm,” Geophysical Prospecting 60, pp. 748-758.
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813.
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14.
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113.
Donerici, B. et al. (1005), “Improved FDTD Subgridding Algorithms Via Digital Filtering and Domain Overriding,” IEEE Transactions on Antennas and Propagation 53(9), pp. 2938-2951.
Downey, N. et al. (2011), “Random-Beam Full-Wavefield Inversion,” 2011 San Antonio Annual Meeting, pp. 2423-2427.
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642.
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356.
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116.
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248.
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50.
Etgen, J.T. et al. (2007), “Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial,” Geophysics 72(5), pp. SM223-SM230.
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230.
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104.
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734.
Gao, H. et al. (2008), “Implementation of perfectly matched layers in an arbitrary geometrical boundary for leastic wave modeling,” Geophysics J. Int. 174, pp. 1029-1036.
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397.
Godfrey, R. J. et al. (1998), “Imaging the Foiaven Ghost,” SEG Expanded Abstracts, 4 pgs.
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54.
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs.
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45.
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167.
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf.
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637.
Heinkenschloss, M. (2008), :“Numerical Solution of Implicity Constrained Optimization Problems,” CAAM Technical Report TR08-05, 25 pgs.
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194.
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs.
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478.
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321.
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680.
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371.
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70.
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181.
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789.
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163.
Kennett, B.L.N. et al. (1988), “Subspace methods for large inverse problems with multiple parameter classes,” Geophysical J. 94, pp. 237-247.
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188.
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731.
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs.
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270.
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575.
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387.
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459.
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432.
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663.
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069.
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18.
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059.
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174.
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39.
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013.
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16.
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276.
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166.
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16.
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982.
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228.
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25.
Mora, P. (1989), “Inversion=migration + tomography,” Geophysics 64, pp. 888-901.
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45.
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs.
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111.
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176.
Nocedal, J. et al. (2000), “Numerical Optimization-Calculating Derivatives,” Chapter 8, Springer Verlag, pp. 194-199.
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs.
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808.
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64.
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083.
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987.
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor, Progress in Optics XXVII, Elsevier, pp. 317-397.
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362.
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901.
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308.
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384.
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436.
Ronen S. et al. (2005), “Imaging Downgoing waves from Ocean Bottom Stations,” SEG Expanded Abstracts, pp. 963-967.
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438.
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58.
Sambridge, M.S. et al. (1991), “An Alternative Strategy for Non-Linear Inversion of Seismic Waveforms,” Geophysical Prospecting 39, pp. 723-736.
Schoenberg, M. et al. (1989), “A calculus for finely layered anisotropic media,” Geophysics 54, pp. 581-589.
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114.
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862.
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384.
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs.
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57.
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135.
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158.
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606.
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385.
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248.
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73.
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815.
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs.
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. P.SM213-P.SM221.
Symes, W.W. (2009), “Interface error analysis for numerical wave propagation,” Compu. Geosci. 13, pp. 363-371.
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205.
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107.
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037.
Amundsen, L., et al., (2014), “Wave Equation Processing Using Finite-Difference Progagators, Part 1: Wavefield Dissection and Imaging of Marine Multicomponent Seismic Data”, Geophysics, vol. 79, No. 6, pp. T287-T300.
Neelamani, R., et al., (2010), “Adaptive Subtraction Using Complex-Valued Curvelet Transforms”, Geophysics, vol. 75, No. 4, pp. V51-V60.
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903.
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399.
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79.
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266.
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894.
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8.
Valenciano, A.A. (2008), “Imaging by Wave-Equation Inversion,” A Dissertation, Stanford University, 138 pgs.
Van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28.
Van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766.
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893.
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177.
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132.
Versteeg, R. (1994), “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge, pp. 927-936.
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144.
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39.
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541.
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83.
Wong, M. et al. (2010), “Joint least-squares inversion of up- and down-going signal for ocean bottom data sets,” SEG Expanded Abstracts 29, pp. 2752-2756.
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159.
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759.
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363.
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177.
Yang, K. et al. (2000), “Quasi-Orthogonal Sequences for Code-Division Multiple-Access Systems,” IEEE Transactions on Information Theory 46(3), pp. 982-993.
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060.
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs.
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28.
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201.
Related Publications (1)
Number Date Country
20160238722 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62117227 Feb 2015 US