This application is directed, in general, to heating, ventilating, and air conditioning (HVAC) systems, and more specifically, to multistage, microchannel condensers with displaced manifolds.
Heating, ventilating, and air conditioning (HVAC) systems can be used to regulate the environment within an enclosed space. Typically, an air blower is used to pull air (i.e., return air) from the enclosed space into the HVAC system through ducts and push the air into the enclosed space through additional ducts after conditioning the air (e.g., heating, cooling or dehumidifying the air). Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity. Various types of HVAC systems may be used to provide conditioned air for enclosed spaces.
These HVAC systems include a number of heat exchangers, notably one or more condensers. The HVAC systems may take a variety of sizes and styles including small residential units and large-scale roof-top units for commercial applications. In the typical HVAC system, the one or more condensers receive compressed, gaseous refrigerant from one or more compressors and condense the refrigerant into liquid form. The condenser discharges compressed, liquid refrigerant, which is then delivered to one or more evaporators to cool air to be provided to the building. The liquid refrigerant is evaporated as it passes through the evaporator producing the gaseous refrigerant that is delivered to one or more compressors to produce a compressed gas refrigerant that is delivered to the one or more condensers.
Because the HVAC systems require a significant use of energy for building operators, improvements remain desirable in the systems and in the heat exchangers including the condensers.
According to an illustrative embodiment, a heating, ventilating, and air conditioning (HVAC) system includes at least two closed refrigerant circuits and a multistage microchannel condenser fluidly coupled to both. The multistage microchannel condenser includes at least two pluralities of flat tubes interspersed in an exchange area. The system includes a first first-end manifold having long dimension at a right angle to a long dimension of the at least two pluralities of flat tubes and wherein the first first-end manifold is disposed proximate a first end of the multistage microchannel condenser and a second first-end manifold having long dimension at a right angle to a long dimension of the at least two pluralities of flat tubes and wherein the second first-end manifold is disposed proximate a first end of the multistage microchannel condenser. The system further includes a first second-end manifold having long dimension at a right angle to the long dimension of the at least two pluralities of flat tubes and wherein the first second-end manifold is disposed proximate a second end of the multistage microchannel condenser and a second second-end manifold having long dimension at a right angle to the long dimension of the at least two pluralities of flat tubes and wherein the second second-end manifold is disposed proximate a second end of the multistage microchannel condenser. The first end of the first plurality of flat tubes is fluidly coupled to the first first-end manifold and the second end of the first plurality of flat tubes is fluidly coupled to the first second-end manifold. The first end of the second plurality of flat tubes is fluidly coupled to the second first-end manifold and the second end of the second plurality of flat tubes is fluidly coupled to the second second-end manifold. In one version, wherein the first first-end manifold and the second first-end manifold are longitudinally displaced from one another in a direction parallel to the long dimension of the two pluralities of flat tubes. In another version, the first first-end manifold and the second first-end manifold are laterally displaced from one another in a direction orthogonal to the long dimension of the two pluralities of flat tubes and substantially adjacent to one another with respect to the direction of the long dimension of the two pluralities of flat tubes.
According on an illustrative embodiment, a heating, ventilating, and air conditioning (HVAC) system includes a first closed refrigeration circuit and a second closed refrigeration circuit both fluidly coupled to a condenser. The condenser comprises a multistage microchannel condenser having an exchange profile with an exchange area. The system further includes a condenser blower for producing a condenser airflow across the multistage microchannel condenser.
The multistage microchannel condenser includes a first plurality of flat tubes having a first end and a second end. The first plurality of flat tubes is for receiving and transporting the first refrigerant. Each flat tube of the first plurality of flat tubes has a plurality of microchannels and is in fluid communication with the first closed refrigeration circuit. The first plurality of flat tubes extends in a first, longitudinal direction. The microchannel condenser also includes a second plurality of flat tubes having a first end and a second end. The second plurality of flat tubes is for receiving and transporting the second refrigerant. Each flat tube of the second plurality of flat tubes has a plurality of microchannels and is in fluid communication with the second closed refrigeration circuit. The second plurality of flat tubes also extends in the first, longitudinal direction. At least a portion of the first plurality of flat tubes is interspersed with at least a portion of the second plurality of flat tubes throughout at least a majority of the exchange area.
The multistage microchannel condenser also includes a first manifold fluidly coupled to the first plurality of flat tubes at the first end of the first plurality of flat tubes. The first manifold extends in a second, vertical direction that is substantially orthogonal to the first, longitudinal direction. The multistage microchannel condenser also has a second manifold fluidly coupled to the first plurality of flat tubes at the second end of the first plurality of flat tubes and extending in the second, vertical direction. The multistage microchannel condenser further includes a third manifold fluidly coupled to the second plurality of flat tubes at the first end of the second plurality of flat tubes. The third manifold extends in the second, vertical direction. The multistage microchannel condenser further includes a fourth manifold fluidly coupled to the second plurality of flat tubes at the second end of the second plurality of flat tubes. The fourth manifold extends in the second, vertical direction. The first manifold and third manifold are parallel to one another and displaced from one another along a third, lateral direction substantially orthogonal to the first direction and second direction.
According to another illustrative embodiment, a heating, ventilating, and air conditioning (HVAC) system includes at least two closed refrigerant circuits and a multistage microchannel condenser having an exchange area and having at least two pluralities of flat tubes interspersed in the exchange area. The at least two closed refrigerant circuits are fluidly coupled to the multistage microchannel condenser. The system also includes at least two manifolds at a first longitudinal end of the at least two pluralities of flat tubes and on a first end of the multistage microchannel condenser. The at least two manifolds at the first longitudinal end are laterally displaced from one another in a direction orthogonal to a length of the two pluralities of flat tubes. The system also includes at least two manifolds at a second longitudinal end of the at least two pluralities of flat tubes and on a second end of the multistage microchannel condenser. The at least two manifolds at the second longitudinal end are laterally displaced from one another in a direction orthogonal to the length of the two pluralities of flat tubes
According to another illustrative embodiment, a multistage microchannel condenser for use in a heating, ventilating, and air conditioning (HVAC) system includes a first plurality of flat tubes and a second plurality of flat tubes. The first plurality of flat tubes has a first end and a second end. The first plurality of flat tubes is for receiving and transporting the first refrigerant. Each flat tube of the first plurality of flat tubes and second plurality of flat tubes has a plurality of microchannels. The first plurality of flat tubes is in fluid communication with the first closed refrigeration circuit, and the first plurality of flat tubes extending in a first, longitudinal direction. Likewise, the second plurality of flat tubes has a first end and a second end. The second plurality of flat tubes is for receiving and transporting the second refrigerant and is in fluid communication with the second closed refrigeration circuit. The second plurality of flat tubes also extends in the first, longitudinal direction. At least a portion of the first plurality of flat tubes is interspersed with at least a portion of the second plurality of flat tubes throughout at least a majority of the exchange area.
The multistage microchannel also includes a first manifold fluidly coupled to the first plurality of flat tubes at the first end of the first plurality of flat tubes. The first manifold extends, with respect to its long dimension, in a second, vertical direction that is substantially orthogonal to the first, longitudinal direction. The multistage microchannel also has a second manifold fluidly coupled to the first plurality of flat tubes at the second end of the first plurality of flat tubes and that extends with respect to its long dimension in the second, vertical direction. The multistage microchannel further includes a third manifold fluidly coupled to the second plurality of flat tubes at the first end of the second plurality of flat tubes and the third manifold extends with respect to its long dimension in the second, vertical direction. The multistage microchannel also has a fourth manifold fluidly coupled to the second plurality of flat tubes at the second end of the second plurality of flat tubes and the fourth manifold extends with respect to its long dimension in the second, vertical direction. The first manifold and third manifold are parallel to one another and displaced from one another along a third, lateral direction substantially orthogonal to the first direction and second direction.
According on an illustrative embodiment, a heating, ventilating, and air conditioning (HVAC) system includes a first closed refrigeration circuit and a second closed refrigeration circuit both fluidly coupled to a condenser. The condenser comprises a multistage microchannel condenser having an exchange profile with an exchange area. The system further includes a condenser blower for producing a condenser airflow across the multistage microchannel condenser.
The multistage microchannel condenser includes a first plurality of flat tubes having a first end and a second end. The first plurality of flat tubes is for receiving and transporting the first refrigerant. Each flat tube of the first plurality of flat tubes has a plurality of microchannels and is in fluid communication with the first closed refrigeration circuit. The first plurality of flat tubes extends in a first, longitudinal direction. The microchannel condenser also includes a second plurality of flat tubes having a first end and a second end. The second plurality of flat tubes is for receiving and transporting the second refrigerant. Each flat tube of the second plurality of flat tubes has a plurality of microchannels and is in fluid communication with the second closed refrigeration circuit. The second plurality of flat tubes also extends in the first, longitudinal direction. At least a portion of the first plurality of flat tubes is interspersed with at least a portion of the second plurality of flat tubes throughout at least a majority of the exchange area.
The multistage microchannel condenser also includes a first manifold fluidly coupled to the first plurality of flat tubes at the first end of the first plurality of flat tubes and that extends, with respect to its long dimension, in a second direction that is substantially orthogonal to the first direction. The multistage microchannel condenser further includes a second manifold fluidly coupled to the first plurality of flat tubes at the second end of the first plurality of flat tubes and extending with respect to its long dimension in the second direction and a third manifold fluidly coupled to the second plurality of flat tubes at the first end of the second plurality of flat tubes and that extends with respect to its long dimension in a second direction that is substantially orthogonal to the first direction. The multistage microchannel condenser also includes a fourth manifold fluidly coupled to the second plurality of flat tubes at the second end of the second plurality of flat tubes and the fourth manifold extending with respect to its long dimension in the second direction. The first manifold and third manifold are parallel to one another and displaced from one another with respect to the first direction. At least a portion of the first plurality of flat tubes extends through the third manifold.
According to still another illustrative embodiment, a multistage microchannel condenser for use in a heating, ventilating, and air conditioning (HVAC) system includes a first plurality of flat tubes having a first end and a second end. The first plurality of flat tubes is for receiving and transporting a first refrigerant. Each flat tube of the first plurality of flat tubes has a plurality of microchannels. The first plurality of flat tubes extends, with respect to its long dimension, in a first direction. The multistage microchannel condenser also includes a second plurality of flat tubes having a first end and a second end. The second plurality of flat tubes is for receiving and transporting a second refrigerant. Again, each flat tube of the second plurality of flat tubes has a plurality of microchannels. The second plurality of flat tubes extends in the first direction. At least a portion of the first plurality of flat tubes is interspersed with at least a portion of the second plurality of flat tubes throughout at least a majority of an exchange area of a front face of the multistage microchannel condenser.
The multistage microchannel condenser also has a first manifold fluidly coupled to the first plurality of flat tubes at the first end of the first plurality of flat tubes. The first manifold extends, with respect to its long dimension, in a second direction that is substantially orthogonal to the first direction. The multistage microchannel condenser further includes a second manifold fluidly coupled to the first plurality of flat tubes at the second end of the first plurality of flat tubes. The second manifold extends, with respect to its long dimension, in the second direction. The multistage microchannel condenser also has a third manifold fluidly coupled to the second plurality of flat tubes at the first end of the second plurality of flat tubes. The third manifold extends, with respect to its long dimension, in the second direction that is substantially orthogonal to the first direction. The multistage microchannel condenser has a fourth manifold fluidly coupled to the second plurality of flat tubes at the second end of the second plurality of flat tubes. The fourth manifold extends, with respect to its long dimension, in the second direction. The first manifold and third manifold are parallel to one another and are displaced from one another with respect to the first direction. At least a portion of the first plurality of flat tubes extends through the third manifold. Still other embodiments are presented herein.
Illustrative embodiments of the present disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
Referring now to the drawings and initially to
The first condenser 108 produces a high pressure liquid refrigerant that is delivered through a portion (liquid line) of the first closed refrigeration circuit 102 to a first expansion device 112, or metering device. The first expansion device 112 produces a low pressure liquid refrigerant that is delivered through a portion of the first closed refrigeration circuit 102 to a first evaporator 114. A first blower 116 moves air 118 across the first evaporator 114 to produce conditioned air 120, which may be delivered to a climate-controlled environment. In the process of cooling the air 118, the refrigerant becomes a low-pressure gas that is delivered to the first compressor 106 through a portion (suction line) of the first closed refrigeration circuit 102. The cycle repeats, as it is a closed circuit.
The second closed refrigeration circuit 104 is analogous to the first closed refrigeration circuit 102. Thus, the second closed refrigeration circuit 104 includes a second compressor 122 fluidly coupled to a second condenser 124. The first condenser 108 and the second condenser 124 form the same multi-stage condensing unit as will be explained further below. The second closed refrigeration circuit 104 also includes a second expansion device 126, a second evaporator 128, and a second blower 130. The second blower 130 moves a second airflow 132 to be treated across the evaporator 128 to produce a second conditioned air 134.
The first condenser 108 and the second condenser 124 comprise condenser unit 135 that is a microchannel condenser and in the preferred embodiment is a multistage microchannel condenser having portions of at least two interspersed closed refrigeration circuits, e.g., closed refrigeration circuits 102 and 104, involved. For reference purposes, the condenser unit 135 extends in a first direction 136 (or longitudinal direction), a second direction 138 (or vertical direction for the orientation shown), and third direction 140 (or lateral direction). The directions 136, 138, 140, or axes, are orthogonal to one another and are for reference. The condenser unit 135 has a first side 137 and a second side 139. As described with various permutations further below, the first side 137 may include one or more intake manifolds and the second side 139 may include one or more outlet manifolds.
Condenser cooling air 141 may be moved by a condenser blower 143 across the condenser unit 135 to remove heat from the condenser 135. The cooling air 141 impacts a front face 147 of the condenser unit 135. A discharge airflow 145 leaves the condenser 135 with the rejected heat. The cooling air 141 flows across substantially the entire condenser exchange profile, or exchange area 149. The exchange area 149 is the area of the condenser where heat is exchanged between the condenser and the cooling air 141.
Referring now primarily to
Referring now primarily to
Referring now primarily to
Returning again to
Referring now primarily to
After entering the first inlet 302, the refrigerant is introduced into a first manifold 306 that is on a first end 308 of the multistage microchannel condenser 300. The first manifold 306 extends (in its long dimension) in the second direction 138 from a bottom 310 to a top 312 for the orientation shown. The first manifold 306 has a baffling member 314 defining a first chamber 316 (intake manifold) and a second chamber 318 (return manifold). A first plurality of flat tubes 320 having a first end 322 and a second end 324 is fluidly coupled to the first manifold 306. A plurality of fins 321 may be coupled to the first plurality of flat tubes 320. The fins 321 are shown on the top side (for the orientation shown) of the flat tubes 320 except the top most one. The first plurality of flat tubes 320 are for receiving and transporting the first refrigerant from the first closed refrigeration circuit. Each flat tube of the first plurality of flat tubes 320 has a plurality of microchannels (e.g., 144 in
In operation of the multistage microchannel condenser 300 for the first refrigeration circuit according to one illustrative embodiment, the first refrigerant enters the first inlet 302 and is delivered into the first chamber 316 (intake manifold) of the first manifold 306 from where the first refrigerant is delivered to flat tubes 334, 336, 338, 340, and 342 of the first plurality of flat tubes 320. The first refrigerant traverses the flat tubes 334, 336, 338, 340, and 342 and is introduced into the second manifold 326 from where the first refrigerant is delivered to flat tubes 344 and 346 of the first plurality of flat tubes 320. The first refrigerant traverses the flat tubes 344 and 346 and is delivered into the second chamber 318 (return manifold) of the first manifold 306 from where it exits through first outlet 348 to continue in the first refrigeration circuit. It should be understood that the number of tubes included in the first plurality of flat tubes 320 is for illustration purposes and any number of tubes might be used.
As to the second pathway, a second refrigerant is introduced into the second inlet 304. The second inlet 304 is fluidly coupled to third manifold 350 having a baffling member 352 that defines a third chamber 354 (second intake manifold) and a fourth chamber 356 (second return manifold). The third manifold 350 defines a second end 358 of the multistage microchannel condenser 300. A second plurality of flat tubes 360 having a first end 362 and a second end 364 is fluidly coupled to the third manifold 350 at the second end 364. A plurality of fins 361 may be coupled to the second plurality of flat tubes 360 on a top side (for the orientation shown).
The second plurality of flat tubes 360 is for receiving and transporting the second refrigerant. Each flat tube of the second plurality of flat tubes 360 has a plurality of microchannels (e.g., 144 in
Thus, the second refrigerant is introduced into the multistage microchannel condenser 300 through second inlet 304 from where the second refrigerant is introduced into the third chamber 354 (intake manifold) of the third manifold 350. From there, the second refrigerant enters flat tubes 370, 372, 374, and 376 and traverses the second plurality of flat tubes 360 and is introduced into the fourth manifold 366. From there, the second refrigerant is delivered into flat tubes 378 and 380 and traverses the flat tubes 378 and 380 and is introduced into the fourth chamber 356 (return manifold) and exits second outlet 382. While flat tubes 334 and 380 are described as having channels and conducting flow, in some embodiments these exterior flat tubes may be for protection or solid or may be altered in other ways.
An exchange profile 384 is defined by the second manifold 326 on an interior edge, the fourth manifold 366 (left border for the orientation shown) on an interior edge, flat tube 380 (bottom border for the orientation shown) and flat tube 334 (top border for the orientation shown), and an exchange area is defined therein on the front face 391. It will be appreciated that at least a portion of the first plurality of flat tubes 320 is interspersed with at least a portion of the second plurality of flat tubes 360 throughout at least a majority of the exchange area. In this way, when the condenser fan (143 in
The manifolds 306, 326, 350, 366 are displaced from one another but on a line in the second direction 136, or longitudinally, as is clear from the top views
Referring now primarily to
Referring now primarily to
In the illustrative embodiment of
With reference to
In the illustrative embodiments of
Referring now primarily to
A first stepped portion 422 is formed on the first end 404 to provide a space for another laterally adjacent manifold to be placed as will be described further below. Outboard of the first stepped portion 422 is a first manifold extension portion 423. The other end of the flat tube 400 is shown with a second distal end 424 in fluid communication with a chamber 426 of the second manifold 416 to allow refrigerant to flow into or out of the chamber 426. A second stepped portion 428 is formed on the second end 406 to provide space for another laterally adjacent manifold to be placed as will be described further below. Outboard of the second stepped portion 428 is a second manifold extension portion 429.
Referring now primarily to
A first stepped portion 450 is formed on the first end 434 to provide a space for another laterally adjacent manifold to be placed as will be described further below. Outboard of the first stepped portion 450 is a manifold extension portion 451. The other end of the flat tube 430 is shown with a second distal end 452 in fluid communication with a chamber 454 to allow refrigerant to flow into or out of the chamber 454. A second stepped portion 456 is formed on the second end 444 to provide space for another laterally adjacent manifold to be placed, such as the manifolds 416. Outboard of the second stepped portion 456 is a manifold extension portion 457. The manifold extension portions provide a path for fluidly coupling to a manifold. The manifold extension portions may continue the microchannels on that portion or have a larger conduit portion.
The first plurality of flat tubes 402 and the second plurality of flat tubes 432 may be combined in various patterns, such as alternating, to intersperse the first plurality of flat tubes 402 and the second plurality of flat tubes 432. In doing this, the manifolds do not interfere and two closed refrigerant circuits exist.
Referring now primarily to
A second refrigerant is delivered as an aspect of a second closed refrigeration circuit (see, e.g., 104 in
Again, while the first plurality of flat tubes 402 is interspersed with the second plurality of flat tubes 432 in an alternating pattern over the exchange area, it should be understood that other patterns might be used such as varying the alternating number, twists, and designs.
Referring now primarily to
Flat tubes 400, 478, 480, 482 are fluidly coupled to the first chamber 420 of the first manifold 414. Flat tubes 484 and 488 are fluidly coupled to the second chamber 441 of the first manifold 414. Flat tubes 430, 492, 494 are fluidly coupled to the first chamber 448 of the third manifold 440. Flat tubes 496, 498, and 466 are fluidly coupled to the second chamber 500 of the third manifold 440. In this embodiment, chambers 420 and 448 are both intake chambers for the first refrigeration circuit and the second refrigeration circuit, respectively, and chambers 441 and 500 are outtake chambers for the first refrigeration circuit and the second refrigeration circuit, respectively. The chambers 426 and 454 are turn around or return chambers.
In operation according to one illustrative embodiment, the first refrigerant enters the inlet 460 and enters a first chamber 420 (
Likewise, the second refrigerant from the second refrigeration circuit (e.g., 104 in
Referring now again primarily to
The illustrative embodiments presented are not intended to be limiting and variations may be made in other embodiments. For example, instead of two manifolds on each end, there may be a single manifold 600 with multiple chambers 602, 604 as shown in
Referring now primarily to
The multistage microchannel condensers 300 and 458 further includes a first second-end manifold 326, 416 having long dimension at a right angle to the long dimension of the at least two pluralities of flat tubes 320, 360, 402, 432 and wherein the first second-end manifold 326, 416 is disposed proximate a second end of the multistage microchannel condenser. The multistage microchannel condensers 300 and 458 further includes a second second-end manifold 350, 442 having long dimension at a right angle to the long dimension of the at least two pluralities of flat tubes 320, 360, 402, 432 and wherein the second second-end manifold 350, 442 is disposed proximate a second end of the multistage microchannel condenser 300, 458. The first end of the first plurality of flat tubes 320, 402 is fluidly coupled to the first first-end manifold 306, 414 for intake and the second end of the first plurality of flat tubes 320, 402 is fluidly coupled to the first second-end manifold 326, 416. The first end of the second plurality of flat tubes 360, 432 is fluidly coupled to the second first-end manifold 366, 440 and the second end of the second plurality of flat tubes 360, 432 is fluidly coupled to the second second-end manifold 350, 442.
In one illustrative embodiment (
According to one illustrative embodiment, a multistage microchannel condenser for use in a heating, ventilating, and air conditioning (HVAC) system includes a first plurality of flat tubes having a first end and a second end, the first plurality of flat tubes for receiving and transporting the first refrigerant, each flat tube of the first plurality of flat tubes having a plurality of microchannels and in fluid communication with the first closed refrigeration circuit, the first plurality of flat tubes extending in a first, longitudinal direction; a second plurality of flat tubes having a first end and a second end, the second plurality of flat tubes for receiving and transporting the second refrigerant, each flat tube of the second plurality of flat tubes having a plurality of microchannels and in fluid communication with the second closed refrigeration circuit, the second plurality of flat tubes extending in the first, longitudinal direction; wherein at least a portion of the first plurality of flat tubes is interspersed with at least a portion of the second plurality of flat tubes throughout at least a majority of the exchange area; a first manifold fluidly coupled to the first plurality of flat tubes at the first end of the first plurality of flat tubes, and the first manifold extending with respect to its long dimension in a second, vertical direction that is substantially orthogonal to the first, longitudinal direction; a second manifold fluidly coupled to the first plurality of flat tubes at the second end of the first plurality of flat tubes and extending with respect to its long dimension in the second, vertical direction; a third manifold fluidly coupled to the second plurality of flat tubes at the first end of the second plurality of flat tubes and the third manifold extending with respect to its long dimension in the second, vertical direction; a fourth manifold fluidly coupled to the second plurality of flat tubes at the second end of the second plurality of flat tubes and the fourth manifold extending with respect to its long dimension in the second, vertical direction; and wherein the first manifold and third manifold are parallel to one another and displaced from one another along a third, lateral direction substantially orthogonal to the first direction and second direction.
According to another illustrative embodiment, a method for cooling air using a heating, ventilating, and air conditioning (HVAC) system includes: circulating a first refrigerant through a first closed refrigerant circuit; circulating a second refrigerant through a second closed refrigerant circuit; while keep the first refrigerant and second refrigerant separated, cooling the first refrigerant and the second refrigerant in a multistage microchannel condenser. The step of cooling the first refrigerant and second refrigerant comprises: flowing the first refrigerant into a first manifold of the multistage microchannel condenser and into a first portion of a first plurality of flat tubes and into a second manifold of the multistage microchannel condenser and returning the first refrigerant to a portion of the first manifold through another portion of the first plurality of flat tubes; flowing the second refrigerant into a third manifold of the multistage microchannel condenser and into a first portion of a second plurality of flat tubes and into a fourth manifold of the multistage microchannel condenser and returning the second refrigerant to a portion of the third manifold through another portion of the second plurality of flat tubes; wherein the first plurality of flat tubes and the second plurality of flat tubes are at least partially interspersed; and wherein two of the first manifold, the second manifold, the third manifold, and the fourth manifold are disposed on a first end of the multistage microchannel condenser and are displaced from one another either longitudinally or laterally. In a further embodiment, a different two of the first manifold, the second manifold, the third manifold, and the fourth manifold are disposed on a second end of the multistage microchannel condenser and are displaced from one another either longitudinally or laterally.
In some illustrative embodiments, the enhanced efficiency given that the heat exchange takes place over all the exchange area may allow the condenser blower to be operated at a slower speed and still produce the same results as a current system. In some embodiments, the heat exchangers herein may be used in other HVAC components (other than condensers) requiring heat transfer and having a need for partial and full loads at different times.
In the detailed description of the preferred embodiments herein, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The detailed description herein is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims. Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment. Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment.
This application is a divisional of U.S. application Ser. No. 15/954,589 filed Apr. 16, 2018, which claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/486,415, titled, “Multistage, Microchannel Condensers with Laterally Displaced Manifolds for Use in HVAC Systems,” filed Apr. 17, 2017 and U.S. Provisional Application Ser. No. 62/486,413, titled, “Multistage, Microchannel Condensers with Longitudinally Displaced Manifolds for Use in HVAC Systems,” filed Apr. 17, 2017, all of which are incorporated herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5099576 | Shinmura | Mar 1992 | A |
20110056667 | Taras | Mar 2011 | A1 |
20120011867 | Koons | Jan 2012 | A1 |
20120111034 | Campbell et al. | May 2012 | A1 |
20120111035 | Campbell et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2810010 | Dec 2014 | EP |
H05272882 | Oct 1993 | JP |
2013116178 | Aug 2013 | WO |
Entry |
---|
Decision to Grant European Patent received in European Application No. 18167834.3, dated Jan. 30, 2020. |
European Search Report received in European Application No. 18167834.3, dated Nov. 11, 2018. |
Number | Date | Country | |
---|---|---|---|
20200378660 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62486415 | Apr 2017 | US | |
62486413 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15954589 | Apr 2018 | US |
Child | 16997911 | US |