The present teachings relate to a cordless fastening tool and more specifically relate to a multistage solenoid that can extend and retract a driver blade of the cordless fastening tool and adjust the magnetic fields of each of the stages of the multistage solenoid based on a position of the armature within the multistage solenoid. The present teachings further relate to an internal elastic member and an external coil member that are used to retract the driver blade without the need to energize the multistage solenoid. The present teachings additionally relate to methods of transient voltage boosting when energizing the individual stages of the multistage solenoid to increase the force imparted to the driver blade and/or decrease the relative size of the multistage solenoid in the cordless fastening tool.
Traditional fastening tools can employ pneumatic actuation to drive a fastener into a workpiece. In these tools, air pressure from a pneumatic system can be utilized to both drive the fastener into the workpiece and to reset the tool after driving the fastener. It will be appreciated that in the pneumatic system, a hose and a compressor are required to accompany the tool. A combination of the hose, the tool and the compressor can provide for a large, heavy and bulky package that can be relatively inconvenient and cumbersome to transport. Other traditional fastening tools can be battery powered and can engage a transmission with an electric motor to drive a fastener. The energy consumption of the electric motor as it drives the transmission however, can limit battery life.
A solenoid has been used in fastening tools to drive small fasteners. Typically, the solenoid executes multiple impacts on the fastener to generate the force needed to drive the fastener into the workpiece. In other instances, corded fastening tools, i.e., connected to wall voltage, can use the solenoid to drive the fastener in a single stroke.
The present teachings generally include a fastening device that drives one or more fasteners into a workpiece. The fastening device generally includes a tool housing and a multistage solenoid contained in the tool housing. The multistage solenoid includes an armature member that travels through at least a first stage, a second stage, and a sense coil disposed therebetween. A driver blade assembly includes a blade member connected to the armature member. The driver blade assembly is operable between an extended condition and a retracted condition. A control module determines a position of the armature member relative to at least one of the first stage and the second stage based on a signal from the sense coil. The trigger assembly is connected to the control module and partially contained within the housing. The trigger assembly is operable to activate a driver sequence that moves the driver blade between the retracted condition and the extended condition. The control module adjusts a force imparted on the armature by at least one of the first stage, the second stage, and a combination thereof based on the signal from the sense coil.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
The following description of the various aspects of the present teachings is merely exemplary in nature and is in no way intended to limit the teachings, their application or uses. As used herein, the term module and/or control module can refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, other suitable components and/or one or more suitable combinations thereof that provide the described functionality.
With reference to
It will be appreciated in light of the present disclosure that the less power used by the multistage solenoid 12 to drive a fastener 22, the longer the battery 20 can maintain the nominal voltage (i.e., the useful charge) to operate the fastening tool 10. In one example, by determining a position of an armature 24 with a sense coil 26 between the stages of the multistage solenoid 12, the energy consumed by the multistage solenoid 12 can be conserved. The conservation of energy can be accomplished by, for example, reducing the amount of energy needed to impart a certain amount of force on the driver blade assembly 14, as discussed herein.
In a further example, an external coil member 30 and an internal elastic member 32 (
The multistage solenoid 12 can move the driver blade assembly 14 to the extended condition so that a portion of a driver blade 34 can move into a nosepiece 40. In doing so, the driver blade 34 can drive the fastener 22 from a fastener magazine 42 into a workpiece 51. In this regard, the fastener magazine 42 can sequentially feed one or more of the fasteners 22 into the nosepiece 40.
The battery 20 can be mechanically coupled to the exterior housing 16 and electrically coupled to the multistage solenoid 12 via the control module 18. As such, the control module 18 can control a first stage 50 and a second stage 52 of the multistage solenoid 12 to magnetically move the driver blade assembly 14 so that the driver blade 34 can drive the fastener 22 into the workpiece 51 when a trigger assembly 54 is retracted. In doing so, the trigger assembly 54, by way of retracting a trigger 56, can control the execution of a driver sequence. The driver sequence can include moving the driver blade assembly 14 from the retracted condition (
It will be appreciated in light of the disclosure that the movement of the driver blade assembly during the driver sequence can be completed solely with the energizing (and de-energizing) of the stages 50, 52 of the multistage solenoid 12. In one example, the polarity of the current through the multistage solenoid 12 can be reversed to change the direction of the force imparted on the driver blade assembly 14. In an attempt to, among other things, conserve electrical power and reduce the size and weight of the fastening tool 10, the exterior coil member 30 and the internal elastic member 32 can move the driver blade assembly 14 from the extended condition to the retracted condition without the need to energize the multistage solenoid 12. It will also be appreciated in light of the disclosure that the fastener 22 can be one or more nails, staples, brads, clips, or any such suitable fasteners that can be driven into the workpiece 51.
With reference to
The signal 80 from the sense coil 62 can, for example, indicate changes in current through the sense coil 62. Changes in current can be due to movement of the armature 72. In this regard, the armature 72 can move relative to the magnetic fields generated by windings 84 of the first stage 64 and windings 86 of the second stage 66, when one or more of the stages 64, 66 are energized. The signal 80 can therefore be indicative of the position of the armature 72 and when the position of the armature 72 is known, the position of the driver blade 74 is known as well. It will be appreciated in light of the disclosure that there are additional ways to detect the position of the armature 72 relative to the first stage 64 and/or the second stage 66 of the multistage solenoid 60, but the sense coil 62 can provide the signal 80 (in addition to or in lieu of) other methods and/or systems that can be used to detect the position of the armature 72 in the multistage solenoid 60.
In one example, the sense coil 62 can be one or more copper windings 90 disposed between the windings 84 of the first stage 64 and the windings 86 of the second stage 66. In further examples, multiple sense coils can be disposed between multiple stages of a multistage solenoid 100. In one example, the multistage solenoid 100 can include a sense coil 102 that can be disposed between a first stage 104 and a second stage 106. A sense coil 108 can be disposed between the second stage 106 and a third stage 110 of the multistage solenoid 100. A sense coil 112 can be disposed between the third stage 110 and a fourth stage 114 of the multistage solenoid 100. The sense coils 102, 108, and 112 can each provide a signal 120, 122, and 124, respectively, indicative of the position of an armature 130 relative to each of the stages 104, 106, 110, 114 of the multistage solenoid 100. As the armature 130 travels through the multistage solenoid 100, each of the sense coils 102, 108, 112 can detect the position of the armature 130, when a driver blade assembly 132 (that includes the armature 130) travels between the stages 104, 106, 110, 114 of the multistage solenoid 100.
It will be appreciated in light of the disclosure that as the number of stages increases in the multistage solenoid 12, 60, 100 that the resolution of the signal 80, 120, 122, 124 produced by the sense coil 62, 102, 108, 112 can be more relatively useful than other methods and/or systems of detecting positions of the armature 72, 130. More specifically, a signal to noise ratio of the one or more signals 80, 120, 122, 124 from the sense coils 62, 102, 108, 112 can be greater than that from a method and/or system used to detect, for example, a current inflection point associated with the multistage solenoid 12, 60, 100 that otherwise does not require a sense coil. The relative increase of the signal to noise ratio of the signal 80, 120, 122, 124 from the sense coil 62, 102, 108, 112 can be shown to justify an additional component (i.e., the one or more sense coils) between each of the stages 50, 52, 64, 66, 104, 106, 110, 114 of the respective multistage solenoid 12, 60, 100.
Returning to
As the driver blade 34, 74 travels through the multistage solenoid 12, 60, the signal 80 detected with the sense coil 26, 62 can be used to determine whether the velocity is sufficient (too high or too low) to deliver the desired depth setting. As such, in situ changes to the velocity of the driver blade 34, 74 can be made by adjusting the energy delivered to each of the stages 50, 52, 64, 66 of the multistage solenoid 12, 60 by using the position information in the signal 80 from the sense coil 26, 62. In one example, pulse width modulation can be used to adjust the energy delivered to each of the stages 50, 52, 64, 66. It will be appreciated that the pulse width modulation can be used to reduce (or increase) the energy delivered to the multistage solenoid 12, 62 during movement of the armature 24, 72 between the extended condition (
The ability to detect the signal 80 indicative of the position of the armature 24, 72 can provide the ability to conserve useful charge of the battery 20. By selectively energizing and then collapsing the magnetic fields in cascading fashion of each of the stages 50, 52, 64, 66 of the multistage solenoid 12, 60, the multistage solenoid 12, 60 can advance the driver blade 34, 74 to drive the fastener 22. Furthermore, each of the magnetic fields of the stages 50, 52, 64, 66 can be actively managed so only the needed amount of energy can be consumed by each of the stages 50, 52, 64, 66 during the driver sequence. Actively managing the stages 50, 52, 64, 66 can include relatively more accurately controlling the timing of the energizing and collapsing of the magnetic fields of the stages 50, 52, 64, 66. By more accurately limiting the duration during which the stages 50, 52, 64, 66 are energized, energy consumption can be reduced. Actively managing the magnetic fields of the stages 50, 52, 64, 66 can also include adjusting the magnetic field strength of each of the stages 50, 52, 64, 66 by using, for example, pulse width modulation. By adjusting the magnetic field strength of the stages 50, 52, the energy consumed can be minimized while the force imparted on the armature 24, 72 can be maximized. As such, the energy consumption needed to impart a certain force on the driver blade 34, 74 and the armature 24, 72 can be optimized.
It will be appreciated in light of the disclosure that the magnetic field strength of each of the stages 50, 52, 64, 66 can be computed and controlled by the control module 18, 82 based on the position of the armature 24, 72, a setting on the depth setting control 142 (
The adjusting of the magnetic field strength of each of the stages 50, 52, 64, 66 based on previous driver sequences can include determining a total distance of travel of the driver blade assembly 14, 70 as the driver blade assembly 14, 70 moves through the driver sequence. The total distance of travel can be compared to a nominal distance the driver blade assembly 14, 70 should travel during the driver sequence. It will be appreciated in light of the disclosure that too little energy consumed can cause the driver blade assembly 14, 70 to travel too little (i.e., a partial stroke), especially into the workpiece 51 (
With reference to
The driver blade assembly 150 can include the cylindrical member 154 that can function as the armature 156. The driver blade assembly 150 can also include the driver blade 170 that can travel through the nosepiece 40 to insert the fastener 22 as discussed above and with reference to
With reference to
In one example, when the external coil member 30 can no longer be compressed (i.e., complete or almost complete coil on coil contact), the internal elastic member 32 can begin to elongate as the cylindrical member 154 moves downward relative to the cap member 176. It will also be appreciated in light of the disclosure that the predetermined spring constants of the internal elastic member 32 and/or the external coil member 30 can be selected so that the internal elastic member 32 can begin to elongate before (or after) the external coil member 30 is fully compressed against the top portion 180 of the multistage solenoid 172.
The internal elastic member 32 is further stretched as the internal elastic member 32 can extend from the cavity 152 formed in the cylindrical member 154. It will be appreciated in light of the disclosure that the internal elastic member 32 and the external coil member 30 can be disposed between the cap member 176 and the top portion 180 of the multistage solenoid 172 in a pre-compressed condition. In the pre-compressed condition, neither the internal elastic member 32 nor the external coil member 30 remains in an uncompressed state (i.e., completely relaxed) in the cordless fastening tool 10, regardless of the position of the driver blade assembly 150.
In the retracted condition, the internal elastic member 32 can be contained within the cavity 152 of the cylindrical member 154. In this regard, the cylindrical member 154 can define an aperture 182 formed in a generally central position on a top surface 184 (
In the retracted condition, almost all of the internal elastic member 32 can be contained within the aperture 182 and the cavity 152 formed within the cylindrical member 154. In this regard, the cap member 176 can abut the cylindrical member 154 until the internal elastic member 32 begins to expand when the cap member 176 contacts the top portion 180 of the multistage solenoid 172. As the driver blade 170 (and the greater driver blade assembly 150) move from the retracted condition to the extended condition, the internal elastic member 32 can be further elongated (further loaded) and can extend from the aperture 182 formed in the cylindrical member 154. When the driver blade assembly 150 returns to the retracted condition, the cap member 176 can abut a stop member 186 (
The internal elastic member 32 and the external coil member 30 permit the cordless fastening tool 10 to return the driver blade 170 from the extended condition to the retracted condition without the need to energize the multistage solenoid 172. In one example, the driver blade assembly 150 can be obstructed and held in the extended condition because the driver blade 170 is in a jam condition. The jam condition can define, for example, the driver blade 170 being held in the extended condition due to a misalignment of the fastener 22. When the user 140 partially disassembles the nosepiece 40 of the cordless fastening tool 10 (
It will be appreciated in light of the disclosure that the multistage solenoid 172 need not be energized, i.e., no electrical power needs to be directed to the cordless fastening tool 10, to return the driver blade 170 to the retracted condition. It will further be appreciated in light of the disclosure that the battery 20 (
With reference to
Similar to the multistage solenoid 12, 60, 100, 172 (
When the stages 210, 212 are energized, a force is imparted on the armature 24 (see, e.g.,
With reference to
The voltage boosting circuit 200 can magnetize and demagnetize the boost modules 204 and 206 multiple times (e.g., on the order of 1000 times) while the stages 210, 212 are energizing. When the voltage boosting circuit 200 discontinues current to boost modules 204, 206, the boost voltage delivered to the stages 210, 212 can be approximately equal to the nominal battery voltage plus the boost voltage. It will be appreciated in light of the disclosure that as the boost modules 204, 206 demagnetize, the boost voltage will decrease. At this point, current can be restored to the boost modules 204, 206 to re-magnetize the boost modules 204, 206. Current can then be discontinued to the boost modules 204, 206 to once again develop the boost voltage at the output of boost modules 204, 206. When the trigger assembly 54 (
Returning to
It will be appreciated in light of the disclosure that the voltage boosting circuit 200 can be configured for a low duty cycle operation. In this regard, the voltage boosting circuit 200 can be configured to operate in a transient fashion, as operating continuously could cause excess heat production. It will be appreciated in light of the disclosure that the control module 18 can de-energize the multistage solenoid 202 and in doing so can discontinue the boosting of the multistage solenoid 202 by the boost modules 204, 206 even when the driver sequence is not complete.
It will be appreciated in light of the present disclosure that the boost modules 204, 206 can be implemented in the voltage boosting circuit 200 in greater numbers (i.e., more than two) or only a single boost module need be used. It will also be appreciated in light of the present disclosure that the number of boost modules used in the fastening tool 10 can be based on various considerations including the amount of force imparted on the armature 24 by the multistage solenoid 12, packaging of the fastening tool 10 and moreover cost and complexity for the fastening tool 10.
With reference to
In one example and with reference to
With reference to
It will be appreciated in light of the disclosure that the above switching power supply examples can be implemented, in part, similar to a push-pull converter switching power supply. As such, the transformer can be configured with one or two primary windings and two (or four) switching transistors, which can be shown to provide a benefit that can include a balanced magnetization loop because no direct current is in the primary windings of the transformer. This can be shown to permit use of a smaller transformer for a given output power because the magnetic material in the transformers can be more efficiently utilized. It will also be appreciated in light of the disclosure that different arrangements can be implemented, such as the inclusion of a center-tapped transformer and additional switching transistors. In a further example, the above switching power supply examples can also be implemented, in part, similar to a Royer converter switching power supply. As such, the transformer can be configured to self-oscillate using transistor driving signals in lieu of the switching transistors discussed herein.
In yet another example, the above switching power supply examples can also be implemented similar to a DC to AC inverter. The DC to AC inverter can first boost the nominal voltage of the battery voltage up to the boost voltage using any of the above methods. An output can then be chopped using transistors to produce a 60 Hz wave. In this regard, the 60 Hz AC power can be used to drive an AC operated multistage solenoid in a fastening tool. This arrangement could further be implemented on fastening tools that can operate in both a cordless manner and a corded manner, such as a hybrid tool that can be both battery operated or corded and connect to a wall voltage.
With reference to
When the capacitors 406 are charged, the boost control 408 of the voltage boosting circuit 400 can switch the capacitors 406 such that they are now in series with the voltage of the battery 402. It will be appreciated in light of the disclosure that when the switching frequency is relatively high, the capacitors 406 can be relatively compact in size. In one example, the switching frequency can be about ten kilohertz and, in this instance, the boost control 408 can be electronic. When switching frequencies are lower, however, mechanical and/or electronic switches can be implemented. Output of the capacitors 406 to the multistage solenoid 410 can be delivered as multiple relatively small pulses which can (or need not) be staggered in time.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While specific aspects have been described in the specification and illustrated in the drawings, it will be understood by those skilled in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the present teachings. Furthermore, the mixing and matching of features, elements, and/or functions between various aspects of the present teachings may be expressly contemplated herein so that one skilled in the art from the present teachings that features, elements, and/or functions of one aspect of the present teachings may be incorporated into another aspect, as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation, configuration or material to the present teachings without departing from the essential scope thereof. Therefore, it is intended that the present teachings not be limited to particular aspects illustrated by the drawings described in the specification as the best mode presently contemplated for carrying out the present teachings, but that the scope of the present teachings include many aspects and examples following within the foregoing description and the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/087,547, filed on Aug. 8, 2008. The above disclosure is hereby incorporated by reference. This application claims the benefit and is a continuation-in-part of of U.S. patent application Ser. No. 12/402,974, which was filed on Mar. 12, 2009 (now U.S. Pat. No. 7,665,540), which is a divisional of U.S. patent application Ser. No. 11/670,088, which was filed on Feb. 1, 2007 (now U.S. Pat. No. 7,537,145).
Number | Name | Date | Kind |
---|---|---|---|
2861778 | Spurlin | Nov 1958 | A |
2923937 | Laucher | Feb 1960 | A |
3193167 | Newton | Jul 1965 | A |
3552627 | Moreno | Jan 1971 | A |
3589587 | Manganaro | Jun 1971 | A |
3636707 | Saari et al. | Jan 1972 | A |
3672029 | Butriss | Jun 1972 | A |
3786286 | Palsson et al. | Jan 1974 | A |
3803840 | Toczycki | Apr 1974 | A |
3820705 | Beals | Jun 1974 | A |
3857081 | Gebelein, Jr. | Dec 1974 | A |
4005812 | Doyle et al. | Feb 1977 | A |
4053094 | Males | Oct 1977 | A |
4149297 | Monacelli | Apr 1979 | A |
4163310 | Sigmund | Aug 1979 | A |
4163311 | Sigmund | Aug 1979 | A |
4183453 | Barrett et al. | Jan 1980 | A |
4230249 | Nasiatka et al. | Oct 1980 | A |
4270687 | Maurer | Jun 1981 | A |
4293088 | Barrett et al. | Oct 1981 | A |
4298072 | Baker et al. | Nov 1981 | A |
4313552 | Maurer | Feb 1982 | A |
4319705 | Geist et al. | Mar 1982 | A |
4375867 | Novak et al. | Mar 1983 | A |
4442965 | Leistner | Apr 1984 | A |
4524897 | Bachmann | Jun 1985 | A |
4549681 | Yamamoto et al. | Oct 1985 | A |
4553074 | Jacquemet | Nov 1985 | A |
4556803 | Weigert | Dec 1985 | A |
4573621 | Merkator et al. | Mar 1986 | A |
4597517 | Wagdy | Jul 1986 | A |
4821614 | Fleet et al. | Apr 1989 | A |
4863089 | McCardle et al. | Sep 1989 | A |
4872381 | Stroms | Oct 1989 | A |
4942996 | Wolfberg et al. | Jul 1990 | A |
5257014 | Zimmermann | Oct 1993 | A |
5634582 | Morrison, Jr. et al. | Jun 1997 | A |
6431430 | Jalbert et al. | Aug 2002 | B1 |
6499642 | Amada | Dec 2002 | B1 |
6598777 | Osuga et al. | Jul 2003 | B2 |
7099136 | Seale et al. | Aug 2006 | B2 |
20020117531 | Schnell et al. | Aug 2002 | A1 |
20070246015 | Moreno et al. | Oct 2007 | A1 |
20080185418 | Gross et al. | Aug 2008 | A1 |
20080251559 | Uejima et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
4300871 | Jul 1994 | DE |
0226027 | Jun 1987 | EP |
20-1984-0001187 | Jul 1984 | KR |
20-1989-0006131 | Sep 1989 | KR |
10-1999-0022357 | Mar 1999 | KR |
10-2007-0007328 | Jan 2007 | KR |
WO 0214026 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20100032468 A1 | Feb 2010 | US | |
20120111918 A9 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61087547 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11670088 | Feb 2007 | US |
Child | 12402974 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12402974 | Mar 2009 | US |
Child | 12536787 | US |