1. The Field of the Invention
The present invention generally relates to a dryer, more specifically the invention relates to dryer capable of drying multiple items.
2. The Relevant Technology
Dryer mechanisms have been developed to dry footwear. For example, in U.S. Pat. No. 4,768,293, an apparatus for blowing air into footwear for warming and drying the footwear is provided. The dryer mechanism has a seal for sealing an open or ankle portion of the footwear, a duct assembly having intake and exhaust ports, and a discharge tube. The seal encircles the discharge tube and has a range of effective diameters to accommodate open portions of footwear of different sizes. The discharge tube is telescopically extensible and retractable of the seal to accommodate footwear of different heights and to retract within the seal for storage. A fan, communicating with the duct assembly and a heating element, draws air into the intake duct and discharges it through the discharge tube into the shoe. The dryer mechanism can be used to warm and dry footwear ranging from high stiff ski boots to low soft running shoes, and accommodates a wide range of sizes of such footwear. The dryer mechanism, however, only accommodates footwear.
Other dryers have been adapted to accommodate footwear and gloves. In U.S. Pat. No. 4,145,602 a ski boot and glove warmer is disclosed. The warmer includes a vertically extending blower body having a pair of spaced apart dryer tubes projecting horizontally from the front face thereof. Each tube has a boot support bail spaced below the tube for supporting the back of a boot. The tubes project into the ankle portion of the boot to direct hot air into the foot area. A pair of guides are positioned on opposite sides of the tubes for retaining the boots when the toes are arranged upwardly from the support. An electric blower directs air over a heating element and into the tubes. The warmer, however, cannot accommodate gloves and boots at the same time. Also, the guides and tubes are fixed and cannot be adjusted to fit different sizes of gloves and boots.
In various exemplary embodiments of the present invention, a drying apparatus is provided. The drying apparatus includes a housing, a tubular arm, a telescoping arm and a fan. The tubular arm is attached to the housing at a portion between proximal and distal ends. Also, the tubular arm is able to rotate tangential to the housing. The tubular arm includes a proximal end and a distal end and is attached to the housing at a portion between the proximal and distal ends. The telescoping arm is attached to the tubular arm and able to slide between an open and closed position. The telescoping arm includes an aperture that is open in the open position and covered in the closed position. The fan encased within the housing and arranged to direct airflow through the tubular arm and out the aperture when the telescoping arm is in the open position. The air flow is restricted when the telescoping arm is in the closed position.
A method of drying items of apparel is also provided. The method includes providing a drying apparatus including a housing and an arm adapted to receive a boot and a glove. Next, the arm is rotated in a plane parallel to the surface of the housing. Then, the method involves positioning one end of the arm within the boot and another end of the arm within a glove. Next, the boot and glove are dried using the drying apparatus.
These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that the drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The various exemplary embodiments provide examples of a dryer apparatus capable of drying multiple items.
The present invention has an adjustable design, which accommodates multiple combinations of gloves and footwear. For example, the drying apparatus can be adapted to dry one glove and one boot, two boots, two gloves or two gloves and two boots, and so on. Although the drying apparatus is illustrated as drying gloves and foot wear, it can also be used to dry other apparel, such as hats, socks and the like. Commonly, gloves and boots, when used in snow as in skiing, become wet. When a skiers gloves and boots become wet, they are less effective for keeping out the cold weather.
The drying apparatus 10 can be used while traveling. A person's gloves and boots will get wet when using them in the snow. When the person has an opportunity to dry the wet gloves and boots, the drying apparatus 10 can be used in a standard electrical outlet. The drying apparatus has a compact design so that it can be easily carried with the person. When the drying apparatus is not in use, the arms can be telescoped and rotated to reduce its size.
One embodiment of a drying apparatus 10 is illustrated in
The first housing portion 20 is further illustrated in
The side wall 22 extends around the perimeter of the surface 21. The vent 24 and connection aperture 25 are formed or cut into the surface 21. The channel 23 is formed on the surface 21 and extends between and around the vent 24 and the connection aperture 25. The channel 23 directs the air flow from the vent 24 to the connection aperture 25 or from the connection aperture 25 to the vent 24. The switch recess 26 is positioned on the side wall 22 to accommodate a switch 84, discussed below. The first and second housing portions 20, 30 are assembled together using fasteners 27, such as screws, bolts and nuts, adhesive and the like.
The first tubular drying arm 40 includes a first outer tube section 41, a first inner tube section 42, a first air-flow director 43, an aperture 44 and a connector 45. The first outer and first inner tube sections 41, 42 are made from a hollow tube, such as pipe. The first outer and first inner tube sections 41, 42 may be made from, for example, plastic, metal or composite materials. To assist in fitting the first tubular drying arm 40 into an article of apparel, such as a glove 100 or a boot 110, the first inner tube section 42 can be flexible. In the preferred embodiment of the invention, the first inner tube section 42 may include a flexible portion connected to the connector 45 and a rigid portion fixed to an outer end 42a, or the first inner tube telescoping end, of inner tube section 42. The first inner tube section 42 is designed to fit inside the first outer tube section 41. The outer and inner tube sections 41, 42 may be made from any shape, for example, square, round, oval and the like.
The first outer and first tube sections 41, 42 are connected to the first housing portion 20 using the connector 45. The connector 45 includes a tubular arm connector portion 46 and a telescoping arm, or first extension, connector portion 47. The first inner tube section 42 is attached to the tubular arm connector portion 46 and the first outer tube section 41 is fit over the tubular arm connector portion 46. The first outer tube section 41 is able to slide between a collapsed position where it is attached to the connector 45 and an extended position where first outer tube section 41 is slid out to an outer end 42a, or the first inner tube telescoping end, of the inner tube section 42. The first inner tube section 42 includes a device such as a flange (not shown) on the outer end 42a, or the first inner tube telescoping end, to prevent the first outer tube section 41 from sliding completely off the first inner tube section. The collapsed position is illustrated in
The connector 45 includes tabs 48. The tabs 48 slide into the connection aperture 25 of the first housing portion 20 and lock into place. The tabs 48 allow the connector 45 to lock into place, yet allow the connector 45 to rotate within the connection aperture 25.
The first airflow director 43 is attached to the first outer tube section 41. In the present embodiment, the air flow director 43 has an elbow shape. The first airflow director 43 can be rotated by rotating the first outer tube section 41 or locked in place by locking the first outer tube section 41 to the connector 45. The first air-flow director 43 directs air through the aperture 44 and into a glove 100 or boot 110. The aperture 44 is oval-shaped having a length of about 0.75 inches and a width of about 0.5 inches. The aperture may be shaped any size to sufficiently dry an item of apparel, and may be round-shaped, square-shaped or the like.
As shown in
The second housing portion 30 and second tubular drying arm 50 are connected in a similar manner as the first connection housing 20 and the first tubular drying arm 40. The second housing portion 30 includes a surface 31, a side wall 32, a vent 34 and a connection aperture 35. The side wall 32 extends around the perimeter of the surface 31. The vent 34 and connection aperture 35 are formed or cut into the surface 31.
As shown in
The second airflow director 53 is attached to the second outer tube section 51. The shape and function of the second airflow director 53 is similar to that of the air flow director 43 discussed above. The second air-flow director 53 directs air through the aperture 54 and into the glove 100 or boot 110. The aperture 54 is shaped similar to that of aperture 44.
The second extension, or telescoping arm, 70 is also connected in a similar manner as the first extension, or telescoping arm, 60. The second extension, or telescoping arm, 70 includes a tube section 71, an end cap 72 and an aperture 73. The second extension, or telescoping arm, 70 extends or telescopes between a closed position and an open position as discussed above with respect to the first extension, or telescoping arm, 60. In the closed position, the aperture 73 is contained within the connector 55. The aperture 73 is sized to allow a sufficient amount of air to be released to dry an additional item when the second extension, or telescoping arm, 70 is in the open position similar to that of aperture 63. The end cap 72 is attached to the end of the tube section 71, so that when the tube section 71 is in the closed position, the end cap 72 prevents air from flowing out of the second extension, or telescoping arm, 70. The end cap 72 may also include a gripping surface 74 to assist in extending the second extension, or telescoping arm, 70 to the open position.
When the fan wheel 81 rotates, it pushes air through the channel 23, through the first and second tubular drying arms 40, 50 and out the first and second air-flow directors 43, 53. When the first and second extension, or telescoping arms, 60, 70 are in the open position, the fan wheel also directs air through the first and second extension, or telescoping arms, 60, 70.
The drying assembly 80 can also include a heater 85. The heater 85 is positioned in the path of the air flow from the fan wheel 81. The heater 85 adds heat to the air being directed through the first and second tubular drying arms 40, 50 and the first and second extensions, or telescoping arms, 60, 70 when the first and second extension, or telescoping arms, 60, 70 are in the open position. The switch 84 electrically connects the motor 82 and, if used, the heater 85. The switch 84 can be switched between an off position, cold air position and hot air position. The switch 84 is attached to the first and second housing portions 20, 30 and connected to an electrical cord 86. The electrical cord 86 includes a plug 87 on the opposing end of the switch 84. The plug 87 can be sized to be inserted into an electrical outlet. In addition, the plug may be sized to be inserted into an accessory outlet of an automobile when the motor 82 and heater 85 are reconfigured to meet the same voltage output.
The deflection plate 90 is sandwiched between the first and second housing portions 20, 30 perpendicular to the air flow. The first and second ends 91, 92 are attached to the channel 23 directly over the connectors 45, 55 using a slot, fasteners, adhesive, or the like. To further assist in directing the air flow, the deflection plate 90 includes the first recess 93 shaped in a conical shape above a midsection of the deflection plate 90 and the second recess 94 also shaped in a conical shape below the midsection of the deflection plate 90.
In
In
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
2443695 | Russell | Jun 1948 | A |
2614337 | Darbo | Oct 1952 | A |
2856700 | Wales | Oct 1958 | A |
3154392 | Littman | Oct 1964 | A |
3417482 | Peet | Dec 1968 | A |
3513564 | Gramprie | May 1970 | A |
4145602 | Lee | Mar 1979 | A |
4198765 | Miyamae | Apr 1980 | A |
4768293 | Kaffka | Sep 1988 | A |
4787153 | Chen | Nov 1988 | A |
5287636 | Lafleur et al. | Feb 1994 | A |
5289642 | Sloan | Mar 1994 | A |
5592750 | Eichten | Jan 1997 | A |
5632099 | Seifert et al. | May 1997 | A |
5720108 | Rice | Feb 1998 | A |
5894680 | Dalvy et al. | Apr 1999 | A |
6796053 | Lurie | Sep 2004 | B2 |
20030182817 | Macher et al. | Oct 2003 | A1 |
20050097768 | Burns et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070193059 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60647711 | Jan 2005 | US |