One of the problems associated with multivibrators is that its comparator switching transition level is very sensitive to changes in ambient temperature and power supply voltage. This change causes the multivibrator to have variations in the pulse duration time or oscillation frequency. To reduce this instability some form of compensation is necessary. One of the methods used is to use a FET as a resister to control the charging time of a capacitor. The FET resistance value is controlled by a temperature dependent voltage, which varies to maintain a constant capacitor charging time. This is described in U.S. Pat. No. 4,547,749 issued to Clinton Kuo. Another method is to use a constant current source circuit, which is designed to be temperature independent, to charge and discharge a timing capacitor. This is described in U.S. Pat. No. 4,714,901 issued to Jain et al.
In these methods the variation in pulse width or oscillator frequency has been reduced by controlling the charging time of capacitors, but nothing has been done to correct an other large error source, the comparator input offset voltage and its sensitivity to temperature and supply voltage change.
The object of this invention are monostable and astable multivibrators in which the pulse width or frequency stability, respectively is increased by reducing the effect of the comparator input offset voltage. The reduction is accomplished by alternately reversing the input connections to the comparator. This maintains a constant average switching transition level which allows the multivibrator to maintain high stability even as power supply voltage level and operating temperature change.
There are many different well known multivibrator circuits, but they all use the principle of using the time period required to charge and or discharge a capacitor to one or more voltage levels to determine the output pulse width or frequency. The capacitor voltage level is sensed by one or more comparators which provide a output signal indicating if the voltage level is below or above that of a reference voltage level. In practice comparators have an internal offset voltage that changes the capacitor voltage level at which the comparators output signal changes relative to the reference voltage. This offset voltage changes the multivibrator operating frequency or pulse width since as the required capacitor voltage level changes the required charge and or discharge time changes.
The change in the average pulse width or oscillator frequency can be reduced by reducing the average input offset voltage of the comparators to substantially zero volts over multiple output pulses or cycles of oscillation. The difference of the individual pulse width will depend on the comparators offset voltage however the average pulse width will remain substantially constant. By applying the multivibrator output frequency signal to well known circuits such as frequency dividers a constant pulse width or duty cycle output signal can be obtained that is determined by the multivibrators average pulse width or frequency. By maintaining the comparators average input offset voltage at substantially zero volts, the pulse width or oscillator frequency stability is increased.
The present invention is directed to increasing the multivibrator average pulse width or frequency stability by reducing the average circuit value of the comparator offset voltage. As explained in detail below, the multivibrator contains at least one differential input comparator which is connected by switching means to timing and voltage reference circuits.
Referring also to
At time B, the voltage level of timing capacitor 23 exceeds the DC reference voltage level on line 29 plus comparator 37 offset voltage, the output of comparator 37 output on line 39 goes high. Line 39 is connected through switch means 49 to input line 45 of R S flip flop 47, which functions as a latch, and frequency dividers 54. R S flip flop 47 output on line 48 goes low (essentially 0 volts) and timing capacitor 23 begins being discharged through resistor 22. Also the output of frequency dividers 54 on line 57 goes high causing switch means 32 and 53 to change connections. Comparator 38 input line 35 is now connected to line 34 and input line 33 is connected to line 27. Line 46 is now connected to the output of inverter 42 on line 44. The output of inverter 42 is the inverted signal level of comparator 38 output.
At time C, the voltage level of timing capacitor 23 is less than the DC reference voltage level on line 34 minus comparator 38 offset voltage, the output of comparator 38 output on line 40 goes low and the output of inverter 42 goes high. Line 44 is connected through switch means 53 to R S flip flop 47 and frequency dividers 51 input line 46. R S flip flop 47 output on line 48 now goes high and timing capacitor 23 again begins being charged. Also the output of frequency dividers 51 on line 56 goes high causing switch means 26 and 49 to change connections. Comparator 37 input line 30 is now connected to line 29 and input line 28 is connected to line 27. Line 45 is now connected to the output of inverter 41 on line 43. The output of inverter 41 is the inverted signal level of comparator 37 output.
At time D, the voltage level of timing capacitor 23 exceeds the DC reference voltage level on line 29 minus comparator 37 offset voltage, the output of comparator 37 output on line 39 goes low and the output of inverter 41 goes high. Line 43 is connected through switch means 49 to line 45. R S flip flop 47 output on line 48 goes low and timing capacitor 23 begins being discharged through resistor 22. Also the output of frequency dividers 54 on line 57 goes low causing switch means 32 and 53 to change connections. Comparator 38 input line 35 is now connected to line 27 and input line 33 is connected to line 34. Line 46 is now connected to the output of comparator 38 line 40.
At time E, the voltage level of timing capacitor 23 is less than the DC reference voltage level on line 34 plus comparator 38 offset voltage, the output of comparator 38 output on line 40 goes high. Line 40 is connected through switch means 53 to R S flip flop 47 and frequency dividers 51 input line 46. R S flip flop 47 output on line 48 now goes high and timing capacitor 23 again begins being charged. The output of frequency dividers 51 on line 56 goes low causing switch means 26 and 49 to change connections. Multivibrator 1 has now finished a complete cycle of operation and has returned to the same state as at time A and continues repeating the operation.
The invention's principle of operation is further clarified using the simplified circuits shown in
Referring now to
Referring now to
Referring again to
The
Although the above description has been directed to preferred embodiments of the invention, it will be understood and appreciated by those skilled in the art that other variations and modifications may be made without departing from the spirit and scope of the invention, and therefore the invention includes the full range of equivalents of the features and aspects set forth in the claims.
The benefits of filing this invention as Provisional application for patent “MULTIVIBRATOR WITH REDUCED AVERAGE OFFSET VOLTAGE”, U.S. PTO 60/652,812 filed Feb. 15, 2005 by Fred Mirow are claimed.
Number | Date | Country | |
---|---|---|---|
60652812 | Feb 2005 | US |