Multiwell filtration plate

Information

  • Patent Grant
  • 6830732
  • Patent Number
    6,830,732
  • Date Filed
    Monday, October 30, 2000
    25 years ago
  • Date Issued
    Tuesday, December 14, 2004
    20 years ago
Abstract
The invention relates to a new multiwell filtration plate for high throughput applications in nucleic acid technology, preferably in a 96-well or 384-well format, consisting of two individual parts, which are firmly and tightly connected together. The upper part of the plate is a sample holder 1 for holding a sample to be filtered. The lower part of the plate is an outlet part with a filter insert for receiving a sample from the sample holder part and filtering the, sample through the filter insert.
Description




FIELD OF INVENTION




The invention relates to a new multiwell filtration plate for high throughput applications in the nucleic acid technology, preferably in the 96-well or 384-well format.




BACKGROUND




In recent years, there has been an increasing trend towards automating the isolation and purification of nucleic acids. The reason for that is that biological methods are increasingly gaining acceptance in all research fields of modern biotechnology. Automation of the isolation and purification of plasma DNA has become an urgent prerequisite due to the DNA sequencing within the worldwide genome projects (for example, the human genome project). The need to develop automation variants is not limited only to the field of plasmid DNA isolation. The automated isolation of genomic DNA from different starting materials and amounts, as well as the isolation of RNA are increasingly gaining in importance. This involves all areas of basic molecular research and increasingly also the diagnostics area.




Methods of automated isolation of nucleic acids are realized at the present time by the use of microtest plates with built-in filter materials. Formats in use at the present time are so-called 96-well or 384-well microtest plates. However, presently available 96-well microtest plates with filter material are extremely expensive for high-throughput applications. This results from the relatively complicated manufacturing methods for bringing the filter material into the microtest plates such as described in U.S. Pat. No. 4,948,442. Moreover, none of the previously known microtest plates with filter insert realize sufficient protection against cross contamination of samples when used for the isolation and purification of nucleic acids. The reason for this is the much too short outlet


30


connecting piece at the bottom of the multiwell filtration plate.




A further problem is posed by the small capacity of the reaction cavities, such as those described in European patent No. 0,098,534.




BRIEF DESCRIPTIONS OF THE INVENTION




It is an object of the invention to provide a multiwell filtration plate for nucleic acid technology, which is particularly suitable also for high throughput applications, provides protection against cross contamination of the samples and can be produced relatively inexpensively.




Another object is a method for producing the multiwell filtration plates of the present invention. The new multiwell filtration plate of the present invention has two individual parts, which are tightly connected with one another. A first part is a sample holder and the second part acts as an outlet part after filtration is completed.











BRIEF DESCRIPTION OF THE DRAWING




The invention is disclosed below in greater detail, with reference being had to the drawing, wherein





FIG. 1



a


is a plan view of the sample holder of a multiwell filtration plate according to the present invention;





FIG. 1



b


is a cross sectional view taken along the line A—A of

FIG. 1



a;







FIG. 1



c


is a cross sectional view taken along the line D—D of

FIG. 1



a;







FIG. 2



a


shows a longitudinal cross sectional view of the sample holder, the filter insert and the outlet part;





FIG. 2



b


shows the assembly of the multiwell filtration pate in a longitudinal cross sectional view; and





FIG. 3

shows a transverse cross sectional view of an outlet connecting piece.











DETAILED DESCRIPTION




As shown in

FIG. 2



b


, the upper part of the plate is defined as the sample holder


1


and the lower part of the plate as the outlet part


2


with a filter


3


. For each well, the outlet part


2


has an outlet connecting piece


4


, which are formed in accordance with the invention and over which the filtrate runs into a collecting vessel, such as a deep well plate, for further determinations. Essentially, the outlet part


2


is characterized by a specially shaped edge


8


at an outlet connecting piece


4


, of which there are 96 or 384, depending on the size and objective of the plate. These outlet connecting pieces


4


have an internal angle of inclination


7


of 20° as shown in

FIG. 3 and

, at the site of connection with the upper part, there is a supporting shoulder (sealing shoulder)


5


, which stabilizes the filter insert


3


and is from about 1.0 to about 1.5 mm and suitably 1.0 mm thick. Their length is from about 10 to about 15 mm, and suitably 12 mm. The filtration plate is optionally coupled to the outlet vessel.




The outlet connecting pieces


4


usually are round. In an alternate embodiment, the outlet connecting pieces


4


can have a star-shaped cross section at their outlet end or overall with at least 8 openings. The internal angle of inclination of 20° and the particular outlet design enable the filtered sample to run out completely and without problems into the collection vessel, such as the deep well plate.




Highly problematic cross contamination can be avoided by the length of the outlet connecting piece


4


of, for example, 12 mm. Known microtiter plates have outlets with only a maximum length of 9 mm.




The multiwell filtration plate of the present invention is also useful for applications in PCR-based infection diagnosis. As a result of the longer outlet connecting pieces


4


, the filtration plates of the present invention have a larger accommodating capacity than the previously known filtration plates, with a chamber capacity of more than 1 ml, that is, sample volumes larger than those previously customary can be processed. This also leads to more reproducible results.




In preparing the novel multiwell filtration plate of the present invention, both parts of the multiwell filtration plate are firmly connected together in a production run by using hydraulic compression. The compression takes place in each case at the depressions with the suitably 96 or 384 outlet connecting pieces


4


. In the mold the internal compressing edges are sharpened so that, during the compression, for which the filter insert


3


, such as a filter sheet or mat, is placed between the upper part


1


and the lower part


2


, and filter inserts are punched out cleanly corresponding to the depressions. These punched-out filter inserts are pressed with the upper part into the lower part and are placed on the supporting shoulder


5


in the lower part


2


. The upper part of the plate, the filter platelet and the lower part of the plate are firmly and tightly pressed together by hydraulic pressure. Such a compression becomes possible according to the invention because the lower part and the upper part of the new multiwell filtration plates are manufactured in two precision molds by the hot channel technique in which molds are matched precisely to one another, with a maximum tolerance of {fraction (1/1000)} mm. Sharp cutting edges at the compression parts of the two plate parts enable individual filters to be punched out from a filter plate in one processing step together with the actual compression.




The multiwell filtration plate is suitably produced by injection molding with carefully adjusted injection molding parameters. The filtration plates of the present invention are made of known materials, such as polystyrene or polypropylene. The injection molding material used is suitably is a high-grade polystyrene.




Since only accurately fitting injection molded parts are used, the pressing takes place without sealing lips or gaskets. The present invention solves all existing problems in an ideal manner. The plate is prepared by a new method which highly efficiently and cost effectively enables a filtration material to be introduced into the multiwell filtration plate. Furthermore, the novel multiwell filtration plate is dimensioned so that previously encountered cross contaminations can be eliminated by the shape of the outlet connecting piece


4


. External dimensions (width and length) of the plate and the arrangement of the depressions (suitably in an 8×12 matrix) correspond to those of normal microtitration plates. A further advantage is the increase in the capacity of the reaction cavities to about 1 ml. That enables realization of all standard applications of the automated isolation and purification of nucleic acids without problems with one plate.



Claims
  • 1. A multiwell filtration plate which comprisesa sample holder having a plurality of openings for holding a sample to be filtered; an outlet part adjacent to said sample holder part for receiving said sample from said sample holder part, said outlet part comprising a plurality of outlet connecting pieces aligned and permanently joint with said openings of said sample holder part without sealing components, each of said outlet connecting pieces comprising: a first inner bore corresponding to an opening of said sample holder part: a second inner bore defining a lumen within said outlet connecting piece and having a diameter smaller than said first inner bore; a supporting shoulder connecting said first and second inner bores for supporting a filter insert: a filter insert supported by said supporting shoulder: and an outlet end; wherein said outlet connecting piece has a length of at least about 10 mm and an internal angle of inclination of about 20°.
  • 2. The multiwell filtration plate of claim 1, wherein each outlet connecting piece has a round or star-shaped outlet end.
  • 3. The multiwell filtration plate of claim 2, wherein said star-shaped outlet end has, 8 openings.
  • 4. The multiwell filtration plate of claim 1, wherein each outlet connecting piece has a length from 10 to 15 mm.
  • 5. The multiwell filtration plate of claim 4, wherein each outlet connecting piece is at least 12 mm long.
Priority Claims (1)
Number Date Country Kind
100 41 825 Aug 2000 DE
US Referenced Citations (32)
Number Name Date Kind
3295686 Krueger Jan 1967 A
4902481 Clark et al. Feb 1990 A
4948442 Manns Aug 1990 A
4948564 Root et al. Aug 1990 A
4956298 Diekmann Sep 1990 A
5085781 Tsuru et al. Feb 1992 A
5096575 Cosack Mar 1992 A
5108704 Bowers et al. Apr 1992 A
5141719 Fernwood et al. Aug 1992 A
5205989 Aysta Apr 1993 A
5264184 Aysta et al. Nov 1993 A
5283039 Aysta Feb 1994 A
5368729 Stefkovich et al. Nov 1994 A
5464541 Aysta et al. Nov 1995 A
RE35267 Tsuru et al. Jun 1996 E
5595653 Good et al. Jan 1997 A
5620662 Perlman Apr 1997 A
5620663 Aysta et al. Apr 1997 A
5792430 Hamper Aug 1998 A
5846493 Bankier et al. Dec 1998 A
5855852 Bienhaus et al. Jan 1999 A
5888831 Gautsch Mar 1999 A
5906796 Blevins et al. May 1999 A
6027694 Boulton et al. Feb 2000 A
6054100 Stanchfield et al. Apr 2000 A
6159368 Moring et al. Dec 2000 A
6183645 DeWitt Feb 2001 B1
6200533 Blevins et al. Mar 2001 B1
6338802 Bodner et al. Jan 2002 B1
6391241 Cote et al. May 2002 B1
20010001643 Simpson et al. May 2001 A1
20010001644 Coffman et al. May 2001 A1
Foreign Referenced Citations (2)
Number Date Country
3214287 Dec 1982 DE
02151769 Jun 1990 JP