Munitions are typically designed with a specific operational range, and for a single use. The range and usage are designed to deliver the maximum effect without compromising accuracy. This is accomplished by selectively setting the amount of propellant in the shell, or by altering the containment or shell base configuration. In this manner, manufacturers can offer the same round in multiple operational distances. While this broadens the overall product usage, it also forces the end user either to carry a single munition that may be either ineffective or unsafe, or to carry a large number of shells.
The present invention relates to a munition (cartridge) that includes a propellant unit capable of carrying multiple propellant charges of different capacities, thus allowing the munition's payload to be deployed at multiple engagement distances, or alternatively allowing the munition to be reloaded for more than a single use.
The propellant unit 20 (
The shell base 22 has a cylinder opening 30. In the embodiment of
The propellant unit 20 includes a propellant insert or cylinder 40. The cylinder 40 is cylindrical in configuration and is closely fitted in the cylinder opening 30 of the shell base 22. The cylinder 40 is rotatable within the cylinder opening 30, about the cylinder axis 34.
The cylinder 40 has within it a plurality of propellant chambers 42. The propellant chambers 42 are disposed in a circular array centered on the cylinder axis 34. The radial distance between the cylinder axis 34 and the centers of the propellant chambers 42 is the same as the first distance between the cylinder axis 34 and the munition axis 24.
The munition 10 when assembled includes one or more propellant charges, indicated schematically at 44, that are actuatable to produce gas under pressure. The propellant charges 44 may be preformed cartridges as shown in
The propellant unit 20 also includes an index assembly 50. The index assembly 50 includes a small pin 52 located on the circumference of the cylinder, engageable in a selected depression in the cylinder 40, and a compression spring (not shown). The index assembly 50 provides a means to lock or maintain the rotational position of the cylinder 40 at selected index locations within the shell base 22. A mechanical fastener 54 holds the cylinder in axial position within the shell base 22.
The cylinder 40 is selectively rotatable within the base 22. Because of the dimensions and locations of the propellant chambers 42, the cylinder axis 34, the munition axis 24, and the index assembly 50, when the cylinder 40 is rotated within the shell base 22 and stops in an index position, the selected propellant charge 44 is centered on the munition axis and is thus in a position to direct combustion products against the projectile 12. To change the munition 10 to a different propellant, the operator depresses and holds down the index pin 52 using a small screwdriver or similar tool. With the pin 52 depressed, the cylinder 40 can be rotated around the cylinder axis 34. Once this rotation starts, the index pin 52 no longer needs to be held down, because the geometry of the parts keeps the spring compressed until the next depression 53 is reached. Once the selected alignment is achieved, the index pin 52 pops into position, centering the desired propellant charge 44, now readied for use.
The selectabilty of the propellant charge 44 can be beneficial in several ways. First, the munition 10 may have an operator selectable effective munition range, by providing different strength propellant charges 44. The operator can index the munition 10 to select a predetermined propellant charge 44 that best meets the operational needs, with each charge having a different propellant volume or type. For example, the munition 10 can be configured to propel a given payload (projectile) at distances of 400, 600, or 800 meters, depending on which propellant charge 44 is selected. A single munition 10 can thus fill the operational role of two or more independent munitions. This ability diversifies the operator's engagement capability, while increasing mobility by reducing the weight of equipment that must be carried by the operator.
Alternatively, the munition 10 can be configured for use as a multi-use munition. Plural, identical propellant charges 44 can be provided in the propellant unit 20, to provide for repeatable payload performance. The propellant unit 20 can be reloaded with a new projectile 12 two or more times, reducing bulk weight and reducing end user cost. After each shot, the operator simply replaces the projectile 12 and indexes the propellant unite 20 to the next unused position.
In the second embodiment, shown in
The embodiment of the invention that is shown in
From the foregoing description, those skilled in the art will perceive improvements, changes, and modifications in the invention. Such improvements, changes, and modifications within the skill of the art are intended to be covered by the appended claims.
This application claims priority to, and the benefit of the filing date of, U.S. Provisional Application No. 62/025,146 filed Jul. 16, 2014. This application incorporates by reference all the subject matter of said provisional application.
Number | Name | Date | Kind |
---|---|---|---|
3142959 | Klein | Aug 1964 | A |
3283719 | Grandy | Nov 1966 | A |
3313236 | Lohmann | Apr 1967 | A |
3994233 | Travor | Nov 1976 | A |
5355764 | Marinos | Oct 1994 | A |
5880397 | Crilly | Mar 1999 | A |
6142056 | Taleyarkhan | Nov 2000 | A |
6502514 | Holler | Jan 2003 | B1 |
8618455 | Hultman | Dec 2013 | B2 |
9068807 | Thomas | Jun 2015 | B1 |
9200876 | Thomas | Dec 2015 | B1 |
20120175456 | Hultman | Jul 2012 | A1 |
20150159981 | Forbes | Jun 2015 | A1 |
20160018201 | Hultman | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
253867 | Oct 1926 | GB |
Entry |
---|
PCT Application No. PCT/US2015/040687—International Search Report and Written Opinion dated May 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20160018201 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62025146 | Jul 2014 | US |