The invention relates to music distribution. In certain embodiments, music is blanket transmitted (for example, via satellite downlink transmission) to each customer's user station (set top box) where selected music files are recorded. Customers preselect from a list of available music in advance using an interactive screen selector, and pay only for recorded music that they choose to playback for their enjoyment. An antipiracy “ID tag” is woven into the recorded music so that any illegal copies therefrom may be traced to the purchase transaction.
Current music distribution systems have numerous drawbacks that affect pricing, consumer satisfaction and the ability of music content providers to maximize the revenue potential of their music libraries. One distribution model, the conventional retail music store, requires high capital outlays for real estate (land and building) and high labor costs, both of which add greatly to the retail price of music recordings. Additionally, costs associated with ordering the recordings (e.g., CD's), transporting the recordings to the store locations and maintaining inventory significantly add to the retail price of recordings for both retail store operations and mail order or “music club” operations. In addition to the drawbacks mentioned above, music content providers would greatly benefit from a distribution system that makes all of their content, including older recordings, readily available at market clearing pricing.
The recent Internet music distribution model, typically based on MP3 technology, requires a customer go to an Internet site, select or be given a music selection, download reception software and a key, preview or purchase a selection, download a one-to-one encrypted (or not) compressed copy of the selection, decrypt the selection with software and play the selection on the consumer's computer or write it to a CD, DVD, MD or digital player. The download is stored in some form on the customer's hard drive.
There is an acute need in the music distribution industry for a system that will overcome problems inherent in current distribution models by providing each individual customer with ready access to thousands of recordings in a convenient low cost manner that fully satisfies user demand, while enhancing the economic incentives of music content providers to create and distribute an ever expanding offering of music.
Throughout the world today, piracy of software, music and video materials causes significant economic losses to the originators and distributors of these art forms.
Issues of music and video piracy are strongly influenced by the available recording technology. Early forms of music distribution utilized plastic records. The manufacture of records was relatively expensive, requiring the capital expense of record presses and creating metallic master molds. Mold costs had to be amortized over large numbers of copies. The cost of mold masters limited the potential profit from making and selling illegal copies.
With the development of magnetic tape recording, the cost of manufacturing copies became primarily the cost of the raw materials. Copies could be made directly from an original with costs split between the manufacture of a blank tape and the time required to record music on to each tape copy. The manufacture of lower numbers of copies for specialty music was possible and the costs of manufacturing (a pair of tape recorders and some blank tapes) made copying feasible for an individual. However, the degradation in quality from generation to generation of copies was a deterrent as well as the time required to record each copy. The degradation of the sound consisted of loss of high frequencies, a relatively poor signal-to-noise ratio of the recording (“hiss”) and tonal or volume variations due to mechanical transport of the tape across the recording head (“wow” and “flutter”).
Digital compact disk technology (CD's) again changed the piracy situation by making available high-quality copies of music to consumers in digital form that could potentially be copied with no change or degradation of sound quality. CD's use 16-bit, 44 KHz digital technology so that music recorded on a CD has excellent signal-to-noise ratio, flat frequency response that is wider than human hearing, and no constant or varying pitch distortion. The introduction of CD technology caused significant concern among content providers about the risks of circulating library-quality copies of their music. Small-scale piracy of CD's became common as consumer music “boxes” were sold that had CD players feeding tape recorders. These units allowed CD's to be easily copied although without the full sound quality and convenience of the original CD. On a larger scale, bulk pirate copies of CD's were available, particularly in foreign countries, by companies using relatively expensive CD presses. The presses allowed exact copies of CD's to be made from originals using inexpensive blanks. These same presses also allowed low-cost copying and duplication of software CD's.
Very recently, concerns about music piracy have increased as low-cost CD writers became available to consumers making it possible for personal computers not only to read and play music CD's, but also to make copies using relatively inexpensive writeable CD's. Today CD writers are available for under $200 and CD blanks for less than $1 each. Coupled with multi giga-byte hard disks, copying and editing CD's is widely available.
Today, the threat of copyright violation limits CD piracy. However, due to the cost of prosecution and the difficulty of tracing and confirming the origin of copies, this threat is only practically enforceable against major producers who are caught importing large quantities of CD's, and not individuals or small-scale pirates (e.g., teenagers with computers). As the price of CD burners and writeable CD's continues to fall, music piracy may result in increasing losses in revenue to content providers, especially if the teenage culture (that buys so many CD's) embraces piracy and kids get used to seeing CD's without boxes or colorful paintings on the CD's.
A second technological revolution is also influencing piracy. This is the ability to “compress” the amount of digital data needed to store or communicate music (or video). A one-hour music CD requires about 600 megabytes of data (16 bits/sample * 44100 samples/sec * 3600 sec * 2 channels). This large amount of data has discouraged communication of CD's over the Internet, and storage of the CD in hard drives. However, MPEG compression technology reduces the data capacity by a factor of 8 for CD music, making it easier and cheaper to communicate and store. As a result of compression technology it is now economically feasible to communicate music with CD quality over the Internet or to transmit it directly to consumer receivers from satellites. (Similar technology allows a 100-fold compression of video signals making direct-satellite TV and DVD recordings possible.) Furthermore, businesses that sell CD's by shipping them as compressed data streams to a customer's PC with a CD writer to make a final copy will make it common for CD's not to have the elaborate paint jobs of store-sold CD's and the potential to cause a sudden rise in piracy. It also should also be noted that compression depends upon and has caused powerful digital processing engines to be placed at reception sites for compressed audio or video. These engines make possible the running of protected software (protected software is software that runs the engine but can not be analyzed by outsiders to see how it works or does the encoding or decoding) that can be used for de-encryption or be capable of performing the processing necessary to add the more complex ID tags that can be used as an aspect of this invention.
Content providers are reluctant to make full-quality music available to consumers via direct satellite broadcasting or the Internet because of the risk that exact copies of their materials, their core asset, will leave their control and freely circulate among consumers resulting in huge losses in revenue to distributors and artists. This financial threat could weaken the recording and entertainment industry in the United States.
Another set of issues concerns the evolution of targeted advertising. Targeting is the presentation of material to pre-selected groups. For example, a new record thought to appeal to teenagers would be described by advertising in magazines teenagers read, TV shows they may watch or on radio stations they are likely to listen to. Because of the wide range of music types and preferences, targeted advertising is key to affordable, efficient advertising in the music industry. Similarly, the trend for CD stores to allow potential customers to sample music releases is a method of allowing very specific sampling of possible choices of targeted advertising recognizing that customers rarely purchase without prior knowledge of the group, recommendations, advertisement, or hearing part of the music.
The present invention provides music distribution systems that are beneficial to all involved parties, namely consumers, content providers and data transmission providers. In certain embodiments, consumers are able to preselect music selections from thousands of CD's that are transmitted daily. Customers of the music distribution system utilize a menu driven, graphical user interface with simplified controls that provide music selection by artist, title and category (e.g., jazz, classical, rock, etc.). Music content is blanket transmitted, preferably via direct broadcast satellite (DBS), in an encoded format directly to each customer's receiving dish or antenna which is linked to the customer's user station (set top box). In certain embodiments, the user station may store the content on a suitable intermediate storage medium such as a disk drive. The customer may “preview” the stored music for free and thereafter decide whether to purchase a permanent copy. If the purchase decision is made, a full quality CD is recorded via a CD writer that may be part of the user station. The customer is billed by the music distribution system operator. Antipiracy protection is provided by weaving an ID tag into the recorded music so that any illegal copies therefrom may be traced to the purchase transaction. An automated production facility may be provided to manufacture low-volume CD's (i.e., CD's that are not frequently requested) and distribute them by ground transportation, while the higher volume CD's are distributed by satellite as described above.
In other embodiments, the music that is selected for recording at a particular customer's user station is recorded in encrypted format on a relatively large, dedicated portion of the user station's hard disk drive from which it is directly accessed by the customer for listening. This embodiment serves as a “digital jukebox” that overcomes certain piracy considerations associated with recording the music onto conventional media such as CD's and DVD's.
Customer music preferences may be used to determine what content is stored in the limited space on their hard drive, and that content is immediately available, on demand, to the consumer. Customer preference information is thereby used to make use of limited broadcast bandwidth and system storage. This preference information is gleaned from information given by the user, and may be combined with demographic preference information collected from a population of customers.
The music distribution system of the present invention offers numerous advantages to consumers. For example, the invention provides a much greater selection of recordings than any typical retail music store or mail order operation. The invention also provides full access to the available recordings to those who live in geographically remote and/or sparsely populated areas that may presently have little or no access to retail music stores. The invention also provides full access to recordings to elderly and handicapped persons who are housebound. In addition to a larger selection and better access, the recordings (especially high demand recordings such as “top 25” CD's and new releases) are available on demand, subject only to the time period between placing an order and the next transmission of the ordered recording. Certain recordings, limited in number by the capacity of the intermediate storage medium (e.g., 80 CD's) are instantly available for purchase.
The present invention also provides the ability to update music pricing at any time, for example on a daily, weekly or monthly basis, so that consumers can choose to order music at times when content providers offer pricing specials or incentives.
Music content providers realize increased income increased income because a significant portion of the existing content in their music libraries is available for sale every day. The invention also allows music content providers to change pricing at any time, e.g., daily/weekly/monthly, to optimize price vs. consumer demand. In this regard, content providers are allowed to meet consumer demand for a significant portion of the existing content inventory value every day. This provides an extremely high benefit by effectively allowing the market to clear (i.e., real demand matches supply), something that the current music distribution models do not provide.
According to the invention, music content providers are confident that they can distribute their music with extremely high security by avoiding distribution of content over open networks and open operating systems and through the use of appropriate encoding technology, including encryption/decryption and the use of ID tags that permit illegal copies to be traced.
Transmission providers (DBS satellite system providers, in preferred embodiments) realize the advantage of a significantly increased income base for supporting their services and the utilization of lower cost, off-peak time for transmission of a significant portion of the music.
This system also allows targeted advertising of specific recordings to persons of specific preferences. This advertising may be text, graphics or video on the customer's screen or portions of music.
Some of the features of the invention having been stated, other features will appear as the description proceeds, when taken in connection with the accompanying drawings, in which
While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which aspects of the preferred manner of practicing the present invention are shown, it is to be understood at the outset of the description which follows that persons of skill in the appropriate arts may modify the invention herein described while still achieving the favorable results of this invention. Accordingly, the description which follows is to be understood as being a broad, teaching disclosure directed to persons of skill in the appropriate arts, and not as limiting upon the present invention.
1. The Overall Music Distribution System, Generally
Referring to
Further details of the distribution system are provided below and in commonly owned U.S. patent application Ser. Nos. 09/385,671; 09/436,281; 09/476,078 and 09/493,854, the teachings of which are incorporated herein by reference in their entirety.
2. The Satellite(s)
According to preferred embodiments of the present invention, data transmission is achieved utilizing geostationary satellites operating in the KU band that are downlinked to conventional receiving antennae or dishes located at the customer households.
Following the recent acquisition of PrimeStar's assets by Hughes, there are now two digital broadcast satellite providers in the United States, Hughes (DSS) and EchoStar (DISH Network). EchoStar's DISH network launched an additional satellite in September 1999 (its fifth satellite) that, in combination with its previous satellites, provides continuous transmission of greater than five hundred channels to substantially the entire continental United States. EchoStar now has satellites located in the 119, 110, 61.5 and 148 positions within the Clark Belt.
With the above satellite orientations, EchoStar's new “DISH 500” system utilizes an elliptical twenty inch antenna or dish containing two LMBS heads that can receive information from two different satellites simultaneously. As mentioned above, this system permits greater than five hundred channels to be directly broadcast to each customer household.
Currently preferred embodiments of the present invention utilize the EchoStar system, most preferably the DISH 500 system, for data transmission at either real time or time-compressed transmission rates, discussed below. In alternative embodiments, the invention may be implemented utilizing the Hughes (DSS) system, or a combination of both the Hughes and EchoStar systems (resulting in a relatively smaller portion of each system's total capacity being devoted to the invention's music distribution).
3. Data Transmission Parameters
EchoStar's DISH 500 system provides a very high band width of approximately 4 megabits/sec for each channel (23 megabits/sec per transponder), for a total transmission capacity of approximately 2000 megabits/sec for five hundred channels.
It will be appreciated that instead of using more typical 120 watt DBS transponders, implementation of the present invention may be carried out with higher power transponders (e.g., 240 watt transponders) to increase the effective transponder capacity (e.g., from 23 megabits/sec to 30 megabits/sec) by reducing much of the capacity allotted for forward error correction and system management inherent in lower power transponders. Also, along with the use of higher power transponders, the invention may be carried out with quanternary (QPSK) polarization to double the effective bit transfer rate for each transponder over that which may be obtained by using current orthogonal polarization—with a sacrifice in bit error rate that is acceptable for those applications of the invention where lower video and audio resolution is not an important consideration to the customer. Thus, the use of high power transponders (e.g., 240 watts or higher) in conjunction with higher level polarization (e.g., quanternary) permits music distribution systems of the invention to be implemented utilizing less of the DBS system's total transmission capacity, permits the transmission of a greater number of music selections or other content and permits greater time compression of the transmitted data, or a combination of the above, all to the benefit of consumers.
4. Details of the User Station and Operation
Referring again to
The encoded music content is scheduled and transmitted to the direct broadcast satellite up-link facility 100 by the system operator through central controller 36. In addition, periodic digital program/pricing information is transmitted to the up-link facility, for example, every ten minutes. While it is understood that direct broadcast satellite transmission currently operates in the KU Band, other frequencies can also be employed to achieve similar results. It is understood that the music content can be transmitted at real or time compressed speeds. In preferred embodiments, music content is transmitted at faster than real time speeds, where real time speeds refer to the playback speed of the recorded music. For example, a single satellite transponder capable of 23 megabits/sec transmission can transmit a typical 4 minute song in less than 4 seconds, for example, in certain applications approximately 2 seconds per song utilizing high compression techniques. Thus, EchoStar's DBS programming capacity (discussed above) allows transmission of 400,000 to 500,000 song titles (approximately 30,000 to 40,000 CD's) during a four hour period (assuming 4 seconds per song), most preferably during a period of low viewership, e.g., 1:00 AM to 5:00 AM. Using a single transponder for blanket music transmission permits transmission of 500 to 600 CD's in a four hour period.
The digital music content and program/pricing information, once received by the appropriate satellite, are then transmitted down broadly (i.e., “blanket transmitted”) to geographic coverage areas where the user stations can receive the downlink transmissions.
The music program and pricing information are received by the home user's satellite dish 110 and transmitted to download module 120 contained in the user station where it is decoded and stored digitally in storage module 130 also contained in the user station.
The customer preselects music content to be downloaded by selecting the content utilizing the graphical user interface 135 shown on the TV screen. The order is communicated to central controller 36 by Internet or modem. Pricing information for the preselected music content is then transmitted to the billing module 140 contained in the user station where it is stored in nonvolatile memory such as SPAM for subsequent querying via the phone line by central controller 36.
The music content preselected by the customer is blanket transmitted by satellite 20 at the scheduled time and is received by the home user's satellite dish 110. This music content is transmitted to download module 120 where it is decoded and stored digitally in storage module 130.
In certain embodiments, the user station 28 will also contain an audio speaker system (not shown) to allow the customer to “preview” the stored music before it is recorded permanently on a CD or other recordable medium and subsequently paid for. In this embodiment, the preselected pricing information stored in billing module 140 will not be transmitted for payment to the system operator until the customer has either listened to the music content a set number of times, for example, 3 times, or the customer indicates via the graphical user interface that he wishes to permanently record it. As an alternative, previewing may be accomplished by playing a highly compressed “preview” copy through the customer's speaker system or headphones. Highly compressed material lacks richness, signal to noise ratio, stereo channels and high-frequency bandwidth. Preview can be communicated in perhaps 1% to 10% of the final copy depending upon the compression schemes used. Each preview has a brief section (20 seconds) of the real sound of the selection to allow the customer to really sample the material as well as generate interest in paying for a “good copy”. If desired, the preview material may be further hobbled with some simple distortion, added noise, limited low end, crackles and pops, voice overlay, missing sections, sliding notches, amplitude compression. Content providers may be given choice as to the nature of the hobbling beyond the heavy transmission compression.
When the customer decides to purchase the music, the graphical user interface prompts the customer to insert a recordable medium such as a writeable CD into the user station, or attach other recording device to the user station's output connectors. (In certain cases, the customer may choose to record preselected music content multiple times. In such cases the music content provider may offer pricing discounts for multiple recordings.) The user station records the preselected music content stored in the user station and then either deletes the music contained in storage module 130 once the recording has been completed or allows the customer to manually delete content no longer desired.
The customer accesses (or navigates) the graphical user interface via a hand held remote. In preferred embodiments, the remote control communicates via infrared LED transmitter to an infrared sensor contained on the user station. An optional keyboard can be utilized by the customer to access (or navigate) the graphical user interface via the same infrared sensor contained on the user station.
The above sequence of operation is summarized in
It will be appreciated that in certain embodiments of the invention the transmission of music by the system operator and the ordering of music by customers may be carried out in connection with an interactive music television channel broadcast by cable or satellite. In this instance, typically the music channel will telecast video content, usually a “music video”, while also permitting customers to interact via remote control to achieve certain functions, including ordering music. In this implementation, a customer may be allowed to “preview” music while watching a music video, without requiring a high capacity storage medium (e.g., a hard disk drive) in the set top box. This music preview method utilizes the channel bandwidth beyond that needed to convey the music video. The remaining bandwidth (bits per second) are allocated through the use of a Packet Identifier System (PID) to contain additional music or text information. This is accomplished through header codes on the packets of the downloaded data stream that identify different packets as part of the main video/music stream or available for alternate uses. Each alternative use stream is called a PID.
For example, a common bit rate for a satellite or cable transmission channel may be three megabits per second. A VHS or better quality music advertisement containing a static advertising border and music video can be transmitted at a rate of 1.5 megabits per second. The remaining 1.5 megabits per second is available to be encoded as ten 0.15 megabit per second PIDs. Thus, using the PIDs a viewer of a music video male be given the choice to hear as previews the other tracks on the CD that is the subject of the music video. One PID may contain clips of the music of each track available for preview on a CD. The duration of each clip could be the duration of the entire music video divided by the number of tracks available for preview. A user may interact with the music video to choose to listen to the clips rather than the music video using a hand-held remote or other methods developed by those skilled in the art of interactive TV. When a user selects to listen to the music previews of a particular CD rather than watching the music video, the image on the screen may be static (e.g., displaying only the CD jacket) or slowly shifting static image while full quality clips of the CD tracks play. Other PIDs might be used to carry the lower-bit rate video or communicate other written or graphical advertising, such as information or clips from other albums by the same band or another band of similar genre.
Optional digital content/programming transmission links (i.e., optional means for blanket transmitting music and other data) are shown in FIG. 4. These include, but are not limited to, cable, optical fiber, DSL and the Internet.
5. Alternative Technologies for Scheduling Transmission of Music
Certain embodiments of the invention divide music into “tiers” of transmission frequency. For example, the music may be divided into three tiers, with Tier 1 music (the most popular) being transmitted every 30 minutes, Tier 2 music every four hours and Tier 3 music (the least requested) being sent late night. This assignment of music to appropriate tiers occurs on a daily or weekly basis. Other embodiments simply transmit all music once a day, for example during late night, off-peak hours. However, due to bandwidth limits and the significant costs of existing satellite transmission systems, it may be desirable to actively manage the transmission schedules of music to maximize consumer satisfaction (see FIG. 6).
Active scheduling of music on an hourly basis allows maximizing consumer satisfaction by monitoring music requests from all or a subset of satellite receivers and appropriately scheduling transmissions of the music. This might mean having a fixed schedule for 90% of the next few hours of transmissions, but allocating the last 10% of bandwidth (or purchasing extra bandwidth) to send music that happens to be more popular that day. More popular music might happen due to quickly changing popularity demographics perhaps due to a news story, Internet review or cultural happenstance. The effect may be to move a selection to the maximum rate of transmission (e.g., every 15 minutes) or move a Tier 3 selection from an overnight transmission to an hourly transmission. Similarly, a Tier 1 selection that is poorly requested might be replaced.
There are many possible schemes for assigning transmission slots varying from the “hottest 10%” scheme above to methods that assign slots based upon the estimated ordering demographics. For instance, if college students are determined to place a high value on quick delivery of their selection whereas the “older adult” market is as satisfied with one-hour or two-hour delivery, then requests coming from the college market may get priority assignment of transmissions. The demographics of the current ordering population might be estimated from the type of music being ordered or recognizing the request source, like a request from a “college town” is likely a college request.
The mechanisms to handle active scheduling rely on knowing what selections are currently being requested. Current satellite receivers operated by EchoStar and Hughes communicate by modem with central computers on varying schedules. In some systems, modem connections are infrequent and credit is extended to the customer so that a receiver can order six or eight movies before requiring connection to the billing computers. In other systems, individual receivers might be contacted (“pinged”) by the billing computers on a daily basis to check for usage. Active scheduling of music transmission times requires that all or part of the satellite receivers contact the central computer whenever an order is placed. This communication would occur over phone modem, cable modem or Internet and may be initiated without the customer's knowledge. Copies of order records in the central computer must be transferred to a computing system that schedules transmissions, and then schedules must be communicated to the system that feeds music (or video) to the satellite uplink transmitters. If desirable, transmission schedule information can be updated on the consumer interface as soon as schedules are revised, perhaps allowing a consumer to imagine that their order has prompted the system to send a selection more frequently. Schedules are only a fraction of a megabyte in size and may be sent very frequently without significantly impacting bandwidth.
One example of active scheduling of music will be described with reference to
It will be appreciated that according to this example, the DBS (or cable) receiver is left on the designated music channel until the requested recording is downloaded. However, this scheme may be carried out with a receiver having a microprocessor permitting the receiver to play one channel for viewing on the television while simultaneously downloading customer requested recordings from the music channel. As will be appreciated by those skilled in the art, the capability of permitting simultaneous television viewing and music downloading via separate channels in the DBS (or cable) receiver is readily achievable by provision of a microprocessor having sufficient processing speed.
6. Use of Intermediate Storage Capability (Storage Module 130) of the User Station to Store Music That Is Available “On Demand” for Permanent Recording
As discussed above, storage module 130 of user station 28 includes an intermediate music storage medium (e.g., a hard drive) that stores each music recording that the customer selects for downloading until such time as the customer either makes (and pays for) a permanent copy of the recording (e.g., via a CD burner), the customer deletes the recording from memory, or the recording is written over when the storage medium's capacity is reached (e.g., on a “first in, first out” basis) . When the user station is provided with a storage module 130 having a substantial data storage capacity, it is possible for many recordings to be immediately available to the customer for permanent recording. For example, a user station 28 in the form of a DBS (or cable) system “set top box” may have a disk drive with a storage capacity on the order of 17 Gigabytes, with 8 Gigabytes devoted to the intermediate music data storage function of storage module 130. This 8 Gigabyte storage medium permits the storage of approximately 80 compressed CD's at all times in each customer's user station. The customer, therefore, at all times has immediate on-demand access to the approximately 80 CD's in his storage module for permanent recording on his recorder (e.g., CD burner). Music on the hard drive can be stored in encrypted format to prevent loss.
Thus, one advantage of a large storage capacity at storage module 130 is that a customer may download a significant number of recordings for “previewing” as described above, and maintain those recordings in intermediate storage for a considerable period of time before having to make a decision on whether to make (and pay for) permanent copies. However, this large intermediate storage capacity opens up other possibilities, as well. For example, according to one manner of carrying out the invention, the system operator may automatically (i.e., without requiring customer preselection) download certain very popular recordings to every customer storage module on a periodic basis, such as 1 to 10 featured CD's every day. At 5 automatically downloaded CD's per day to each customer, an 80 CD storage capacity and a “first in, first out” write-over protocol would permit each automatically downloaded CD to remain in the intermediate storage of storage module 130 and available for on-demand permanent recording for approximately 15 days, with the exact time depending upon how many customer-selected recordings are downloaded during that period. Thus, over any 15 day period, the system operator may automatically make available (at 5 automatic downloads per day) 75 popular recordings for all customers, without the customers having to preselect anything. Of course, the preselection option for all catalog music remains available at all times. It will be appreciated that the automatic downloading of recordings to all customer user stations can be readily achieved by the system operator simply communicating (e.g., daily) to all user stations the ID header information for that day's automatically downloaded recordings. The user station downloads recordings to the intermediate storage in storage module 130 just as if the recording had been preselected by the customer. The graphical user interface alerts the customer that the recordings are available by a cue such as “YOU'VE GOT TUNES”.
7. Using Customer Preference Information
In a more customer-specific manner of carrying out the invention, different sets of recordings are automatically downloaded at customer user stations according to the music preferences of the customer. For example, each customer may use the graphical user interface (see
As described above, the system operator may create, for example, 10 to 20 customer profiles and assign each customer to one of these profiles according to music preference information entered by the customer. Thereafter, the customer receives (e.g., daily) the set of automatically downloaded recordings for his particular profile category. However, in other embodiments of the invention, customer preference information may also be used in a more sophisticated fashion to tailor the profiles to the individual tastes of a customer or the tastes of the customer household family members. To this end, the customer may use the graphical user interface (
Referring to
Along with music, there is blanket transmission of catalogs and other advertising or customer interest information. The storage and display of this information may be based on customer profiles. For example, an advertisement for a new CD that is expected to appeal to young adults, country music fans, and customers living in North Carolina would have this information contained in its header, and the receiver would recognize if any of its users are in any of these categories and will appropriately store or not store this advertisement on the hard drive, and may determine to display or not display this ad on the user's TV catalog. Similarly, advertisements for other related merchandise, like Willie Nelson hair bands, might also be displayed. Text describing individual artists or related events might also be stored with the catalog.
8. Promotional-Based Streaming
Promotions may include movie soundtracks for movies that are being broadcast by DBS or cable. In this situation, prior to broadcast of the movie, the soundtrack is broadcast and automatically downloaded to all user stations. When the movie is broadcast, viewers of the movie are informed that the soundtrack for the very movie they are viewing is on their hard drive and available for immediate on-demand purchase. Purchases may be made during the movie by appropriate means; for example, a translucent icon may appear on the screen and purchase made by simply clicking on the icon. Or, the purchase can simply be made at the conclusion of the movie where, preferably, viewers are reminded that the soundtrack is available on their hard drive for on-demand purchase.
9. Alternative Embodiment: Use of the User Station (Set Top Box) as a “Digital Jukebox”
Embodiments of the invention described elsewhere herein provide several means for carrying out the blanket transmission and recording of music files for customer playback, including recording blanket transmitted music onto an intermediate storage medium such as a hard disk drive followed by burning of the music files the customer wishes to purchase onto CD's or other conventional storage media, such as DVD's and other optical, magnetic or solid state storage media. However, creation of a musical recording on a conventional medium such as a CD presents certain piracy considerations. As an alternative to these approaches, the blanket broadcasted music that is selected for recording at a particular customer's set top box (by direct customer selection, customer profiling, new release promotion, etc.) is recorded on a relatively large, dedicated portion of a high capacity storage medium such as a hard disk drive from which it is directly accessed by the customer for listening. In this manner, blanket broadcasting of music and selective consumer choice allows the creation of a “digital jukebox” by which consumers have the ability to select music content from a very large music catalog and then select songs to be played from the jukebox. Music is contained in the jukebox in encrypted form on the hard disk drive and is subsequently made available to the consumer as watermarked, analog signals that are paid for before the content leaves the set top box. Jukebox material can also be downloaded to portable, removable media (such as a CD) in encrypted form allowing playing at a remote site by a player capable of tracking and/or limiting the number of times each song is played. The resulting system provides consumers access to a very large content library that can be played as a play list in any sequence and at any time, for example, continuous playback, shuffle, sort-by-artist, etc. This also allows content providers the ability to control their libraries and structure royalty agreements with artists on any suitable terms, including a per-play CD, or per-song basis.
According to this alternative embodiment, music is transmitted in compressed and encoded format, preferably via satellite. As described elsewhere herein, music may be broadcast continuously or nightly by a tier-based system that accounts for the popularity and newness of the music. Each customer has a receiver to receive the blanket music broadcast. Songs are stored in compressed, encrypted format on the receiver's hard disk drive. Typically, sixty minutes of songs in compressed format would occupy about 50 megabytes so that twenty hours of music may be stored in 1 gigabyte of space on a hard disk drive. Songs are heard by a selection being decrypted, decompressed and watermarked in the set-top box and then outputted as an analog voltage at a connector on the box. The customer may listen to the music through headphones or through their audio system connecting to the audio output connector on the set-top box. Other embodiments may use a wireless connection to the box such as an infrared, RF or house wiring link. In all cases the audio signal leaving the box preferably is watermarked.
Customers select the songs to be recorded on the hard disk drive of their “jukebox” generally in the manner described above by using a graphical interface on their TV or by signing up with a subscription service that keeps their jukebox filled with music matching their profile or interests. Songs may be added as albums or as individual songs. Additional songs may also be downloaded as preview material or placed on set top boxes requested by the content provider to acquaint customers with new material.
Multiple methods may be employed for charging customers for listening to the music. Customers may be charged on a per-play for each song, or may be charged as a monthly subscription such as $5 per month for 100 playings of any songs. Actual billing may be part of monthly fees for the set-top box or credit may be advanced to the customer. Similarly, a customer may outright purchase a group of songs or a CD. In the case of a purchase, an unencrypted copy of the CD can be given to the customer either by recording the CD at his set top box or by shipping him a CD by mail.
Separate from charging the customer, demographics of the playing of songs may be recorded by the system and uploaded on a weekly or monthly basis to central controller 36 for the purpose of compiling individual user profile data or group song selection demographics. Similarly, non-customer specific data may be used to reimburse artists based upon the number of times their songs have been played by customers.
Customers may also be given the option to take music to locations remote from their house by recording the encrypted and compressed songs on a CD using the same read/write technology that is on their set top box for handling video or data. Music stored on a removable CD may be stored in compressed format, in which case about ten hours of songs could be stored on one CD, or in non-compressed format, in which case about seventy minutes could be stored. In either case, preferably encryption is used to prevent non-system devices from playing the music. The decision to compress or not compress may be made based on the hardware, hence cost, available on the playback system for doing decompression. Portable players may be devices capable of reading CD's with the additional capacity of playing back movies. This same device could read a music CD, decompress and decrypt the music and output the music with watermarking to an audio connection for headphone, speaker or listening. Watermarking may be done in the set top box prior to recording the removable media and/or by the playback device. A description of portable players for music and/or moles and their use in conjunction with this invention is described in commonly assigned U.S. application Ser. No. 09/675,025, filed Sep. 28, 2000, entitled “Video Distribution System”, incorporated herein by reference in its entirety.
10. Alternative Embodiment: Secure Downloading of Music through a Set Top Box Without Using Internal Mass Storage
Many existing cable and satellite set top boxes do not have a high capacity storage medium (e.g., a hard disk drive) available for storage of music. For use with these older set top boxes, a music distribution system of the invention may use a read/write microdisk and controller attached to the Universal Serial Bus (USB) or bus extension connector on the set top box. An example of a writable microdisk that can be used for this purpose is the DataPlay microdrive available from DataPlay, Inc. of Boulder, Colo., USA. The DataPlay microdrive uses removable read/write optical disks much like a writable CD drive, but smaller. DataPlay units are capable of compressing and decompressing music so that a typical 70 minute CD (about 600 megabytes) can be stored in about 50 megabytes, allowing five full CD's to be held by a disk having a diameter of approximately 32 mm.
Using a connected DataPlay disk (or another form of connected permanent memory such as a small hard drive or flash card) music is downloaded to the memory device in compressed and encrypted form. An example of a protected, encrypted form is a secure “container” available from Intertrust Technologies Corporation of Santa Clara, Calif., USA. Utilizing the Intertrust secure container technology, or equivalent system, the music arrives in encrypted packets and is directly stored on the writeable storage medium in the secure containers. After purchase of the music, a “key” can be provided (usually by purchase) that allows the player to “unlock” the secure, encrypted containers, and replace the compressed, encrypted music with conventionally compressed music available to be played on any unit capable of reading the media. In the case of a DataPlay implementation, the unit reads a segment of the secure music, decrypts it and then rewrites it to the DataPlay disk, perhaps over top of the portion of the disk containing the segment of encrypted music that was just decoded. After purchasing the key and unlocking the music, the customer can play the music an unlimited number of times on any player capable of reading the media. The media may be removable so that after purchasing and decrypting the media the music may be played from a small portable player or at a friend's house using his player. Players that may be used include a DataPlay player, a PC with a USB port, or a portable player capable of reading flash-disk technology.
DataPlay uses a form of digital rights management (DRM) called ContentKey™ that works by permanently recording a key code in a special area of the digital media which is not accessible to users. The advantage for the consumer is that the key is recorded on the media which is transportable to various digital devices. This contrasts to conventional encryption schemes which restrict the use of unlocked content to a particular CPU. DataPlay digital media can record multiple keys, allowing incremental or serial sales from a single piece of media. The DataPlay system is designed to support multiple digital rights management (DRM) systems and act as a clearinghouse for DRM transactions and ContentKey activations.
In certain embodiments, the players that are used may be limited to those that output music in analog form preventing direct digital duplication of the music. For example, a set stop box would only communicate through its USB port with a secure player furnishing an authenticated handshake, and not allow downloading and decrypting the music on a PC.
There are several methods that may be used for purchasing the key to unlock and decrypt the music container. In one embodiment a transaction is conducted via the telephone connection of the set top box. In this instance, the decision to purchase may be conducted by interactive software residing on the set top box that allows a user to request the music. Acting on the request, the set top box conducts a billing communication to the central controller through a back channel that then supplies a numerical “key” back to the player. Other methods of conducting the transaction may be accomplished without requiring a set top box phone connection. For example, a player may be connected to the USB port on a PC, the player's internal ID and music ID manually communicated to a web site, and a key downloaded through the USB port to the player that allows only unlocking the specifically requested piece of music on that specific player. Another option may be communication through an existing cable modem providing adequate backchannel capabilities to a central server or head end. Thus, no other music could be unlocked nor could any other player download and unlock the music. Once unlocked and decrypted, the music may be played on any compatible player much like the process of buying a CD and playing it on any CD player that one has available, including lending the CD to a friend to play on their CD player.
11. Alternative Embodiment: Utilizing Internet Peer-to-Peer Music Sharing Systems (e.g., Napster) In Conjunction with the Present Invention (
As is well known in the art, peer-to-peer music sharing systems using internet communication have evolved. One such system, Napster, functions by having each user run client software acquired from Napster. A user running this software can access a central catalog from a Napster internet site that describes what songs are currently available from users currently logged onto the Napster file sharing system. After selecting desired song(s) the user is connected to the address of another user currently logged into Napster and running the Napster client software. The sharing software then negotiates transmission of the requested song from the second user's computer to the first user's computer. The transferred music may or may not be copyrighted. Song quality depends upon many factors including the quality of the recording at the “donor's” computer, the connection between the donor's computer and the internet, and the donor allowing the Napster software the time to complete the transmission of the music. Because many Napster connections involve modem/phone line connections at one or both computers, only limited amounts of music can be transmitted in a reasonable time. This peer-to-peer music sharing scheme is dependent upon donor libraries which usually contain individual songs rather than full length albums, and a person who wishes to receive all the songs on a CD may have to visit several computers several times to acquire them.
In accordance with the invention, customers of the music distribution systems described herein who are also users of a peer-to-peer music sharing system may utilize the features of both systems to enhance the variety and quality of the music available to them. In one representative embodiment, users of a peer-to-peer music sharing system are informed by an icon or highlight within the peer-to-peer system catalog whenever catalog selections are available in their entirety in full-quality form through normal blanket broadcasts (or shipment by mail). Available music selection information is provided to the peer-to-peer system by the music distribution system operator. By simply clicking on the icon (or highlighted selection) while at the peer-to-peer music sharing systems website, an order for the selection is communicated to the central controller, 36, via the internet or other suitable means (see FIG. 16).
This same embodiment is a business system that benefits all stakeholders, the content providers, the owner of the peer-to-peer distribution system, the owner of the blanket broadcasting system, and the user by providing advertising of music that can be provided in high-quality, fully-legal digital form to customers by a convenient method, while reimbursing content providers for copies of their music that are distributed to customers. This embodiment may provide for payments to the peer-to-peer music system operator receives revenues for advertising and making music available for purchase. Customers may also perceive benefit from the having the payment for the music made through a secure, familiar and simple process offered by the music distribution system operator.
Over time it is likely that peer-to-peer sharing of music over the internet will change as the capacity of digital mass storage increases. If the trend of hard disk capacity continues as it has recently (130% increase in capacity per year), it is likely that in three years 400 gigabyte hard drives will be available for less than $100. This capacity allows compressed storage of approximately 1000 hours of music or about 1000 CD's so that a much greater range of music can be cached on a customer's hard drive for the customer's later trial, selection and playing on a pay-to-own, pay-per-play or subscription basis. Information about prior selection and purchase of music may be used to profile the customer and place music that is most likely to appeal to them on their storage system, as described elsewhere herein. In this situation, the peer-to-peer music sharing system might provide customer preference information to the system operator to allow customer demographics and profiles to be estimated.
In a modified embodiment, the music distribution system provider may broadcast the catalog of music that is scheduled for blanket broadcasting (the “carousel album content”) to cell phones, Palm Pilots and other PDA/wireless devices in a real time environment using WAP (wireless application protocol), internet protocols or other real time communications. Customers using these devices may request the download of music content through the approximate blanket transmission medium, e.g., direct broadcast satellite, cable, DSL or internet.
12. Ensuring Flawless CD's Using Checksums and Multiple Downloads
Satellite receivers do not have perfect reception due to the tradeoff between electrical power and bandwidth of the satellite. Weather conditions, motion of atmosphere layers or obstructions between the dish and the satellite may interrupt the signal. A momentary loss of bits will cause a TV image to freeze for a frame or two, while longer interruptions will cause reception to blank. Whereas a short loss in video is a couple of frozen frames, data loss in audio may leave a glaring blank in the music. Therefore, a satellite system for transmission of audio or software (or video) CD's requires a method to detect and fix data losses at the receiver.
Patching data “potholes” requires a method for sensing potholes and another for placing asphalt to fill them. Typically, digital data is sent in packets of bits (perhaps one thousand bits at a time with each packet containing 1/40 second of music). Loss of bits within a packet can be detected by error codes or merely a “checksum” at the end of the packet which indicates the sum of all the sent bits. Each packet may have an identifying number so that loss of an entire packet is noticed. This is all conventional Internet technology.
Repairing data loss might be accomplished by replacing an occasional packet by the receiver asking for a copy of the packet via an Internet or modem phone connection. However, the frequency of data loss and amount of contiguous data might be lost (for instance, during a rainstorm), requires a wider bandwidth, like the satellite, to provide the material to repair data loss.
Therefore, in certain embodiments, the present invention provides the capability in the system to detect bit losses and receive a second copy of the selection and use all or part of that copy to patch the missing or corrupted bits or packets in the original download. This would require storing a requested download on the storage medium (e.g., hard drive), checking for missing data, informing the customer that the download was imperfect (allowing the customer to burn a CD, listen to a preview or wait for a second transmission), then receiving and storing all or part of a second (or rarely a third) transmission, and then selecting good packets of bits to make up the final copy.
In practice, a customer selects a CD via the TV-remote interface and the TV screen notes a download, say, 45 minutes later. As soon as the download is completed, the customer is informed of the quality of the download (A, B, C, D) and informed of the time of the next transmission of the material. The customer is then allowed to preview the corrupted version, or even burn a CD if they wished.
13. Distributing Low Request CD's Via an Automated CD Production Facility
In conjunction with blanket transmission of more popular music, a central facility (
The threat of piracy can be controlled through a music distribution system that uniquely labels every legal CD copy of music (or video) with an “ID tag”. Thus, if a customer sells copies of a CD that he purchased, that copy and any copies of it can be traced to his original purchase. Such identification serves as the basis of a legal deterrent for large or small-scale piracy. Furthermore, the ID tag may be contained in each song of a CD protecting each complete piece of artistic material. The ID tag may be as simple as an inaudible millisecond blip at the start of each selection or may be “woven” into the music so that it survives re-recording and compression schemes by being integral to the music, but not noticeable to the listener or easily discovered and removed by potential pirates. Multiple hidden tags may be used to discourage attempts to remove the code by comparing multiple legal copies of the music. Similarly, multiple tags also provide the advantage of identifying illegal copies in those cases where a pirate successfully removes some, but not all, of the tags. At worst, a pirate may successtully remove part of the tags making it possible to determine that the music copy is illegal, but without identifying the original purchaser.
Distributing music that contains unique ID tags limits piracy by making it possible to prove that a CD is an illegal copy and makes the legal source of the copy identifiable. This technology makes it financially feasible to distribute full-quality CD music (or video) to consumers via direct satellite connections in the manner described above in connection with
Two major venues contemplated for distribution of protected CD's are the Internet and satellite. In the Internet case, a customer contacts an Internet site where they purchase the CD. The site places ID Tags in the music or video selected, then compresses the selection and sends it to the purchaser. The purchaser then de-compresses (inflates) the selection and stores it on his hard drive or writes it to a blank CD for later playing. In the case of satellite distribution, a customer contracts over a phone or Internet connection to purchase a particular CD. At scheduled times, perhaps once a day, the satellite company compresses this CD, encrypts it and then blanket broadcasts it. The customer's receiver (e.g., user station 28, above) stores the transmission and then de-encrypts it using a system and key supplied by the satellite company ,and then that same system encodes an ID tag in the music (or soundtrack) using a tag number downloaded from the satellite company during the purchasing transaction. Both the Internet delivery system and the satellite delivery system create a customer CD that may be played on any conventional CD player. Both the Internet and satellite distribution systems archive the ID tag information with the customer's identity and perhaps other aspects of the transaction. This data may be sent back to the original content provider or to another company specializing in detecting and prosecuting pirates.
The above scheme may also be applied to CD's sold in stores. In this case, each CD has a unique ID tag encoded before it is distributed to the store. The CD case has a bar code associated with the ID Tag. At the time of purchase the bar code is associated with a customer's charge card or identity. This information is then sent back to the CD manufacturer.
It will be appreciated that it is possible to encode an ID tag into a music selection so that it will not be heard during normal playback, but could remain and be detectable in a recording made from a selection played over the radio.
The description will now turn to a detailed discussion of representative ID tags. As stated above, an ID tag uniquely identifies each copy of music or video. In its most simple form, a 10 digit (37 bit) tag may be stored in three 16-bit samples ( 1/12,000 of a second long) on a CD. A three-byte tag number equivalent to full volume is a barely perceptible pop to young, sensitive ears and is completely inaudible to the majority of the population. In a more complex form, the tag may be woven into the frequency or time spectrum of the music, where it is both inaudible and survives compression and transmission, or even serious attempts by hackers to remove the tag. While the simple tag may be appropriate for certain applications, more complex tags may be desired for other applications, especially for high-profit, piracy-prone contemporary music (or video).
A simple tag, as discussed immediately above, may consist of three 16-bit numbers placed at the start and/or end instant of a CD or each of its songs. To limit audibility, the 37 bits may be carried by the 64 bits of the first four samples at the beginning of the CD and encoded to have low amplitude or alternating polarity to further hide its audible presence from consumers. Such a tag may be easily read by a computer and is not difficult to eliminate when making copies. However, the technical nature of tag removal coupled with the legal implications of distributing software capable of destroying the tag serves as a significant deterrent to general piracy.
The complex ID tag is inaudible by humans, yet is sufficiently integral to the music (or video) that it remains during simple filtering or compression operations. The ID tag may be a multidigit number (or collection of bits) that can be read or recovered from the CD by those who originally placed the tag. Examples of tags are low bit-rate encoding in low amplitude, increase or reduction of high frequency music content, short-duration ratios of harmonic components, background sounds, slight shortening or lengthening of sustained sounds, or even localization cues or echoes for a sound object. Key to “hiding” the sounds is to encode the bits as short duration shifts in the sounds, shifts that are preserved during compression but that are not detectable by normal human hearing or attention. In other words, it is desirable to take advantage of the parts of the music that have “excess information” coded during sound compression that is not noticed by humans.
To make the complex tag hidden and recoverable additional information may be used in reading the tag that is not contained in the CD. This information describes where the real (or perhaps false) ID tags are to be placed, and what the nature of the bit encoding is at that location. The simplest form of location would be milliseconds from the start or end of the song for each bit. Similarly, time from a particular feature in a song, like milliseconds after the attack greater than 20 dB about 23 seconds into the song, could be used to identify the location of one bit of an ID tag. obviously many bits are also encoded that obscure the actual tag bits. Real and actual bits may be different or interchanged among different legal copies of a song.
It should be expected that as music (or video) compression techniques evolve, methods for placing and retrieving ID tags will also evolve.
In its simplest form, the ID tag is a unique identifying number, ID number, that is placed at the start, end or between selections on a copy of the CD when it is produced for the consumer. As stated above, a unique ID number might be placed on each CD as it is manufactured and later associated with a customer name or credit card during a store purchase. Or, in one preferred manner of carrying out the inventions, the ID chamber might be inserted during the process of writing a CD with music that is downloaded from a satellite or the Internet. In this case, the software accomplishing the transaction to purchase the music also sees that the ID number is obtained from the seller and places this ID number at appropriate places in the CD during the recording process.
Looking at a more complex form of the ID tag, when a legal CD is distributed over the Internet, via direct satellite transmission or even CD's that are manufactured for sale in CD stores, preferably two blocks of information are involved. The first block, called the “location data”, is an encrypted description of all the locations in the music to contain the entire or part of the ID tag, and the encoding techniques used for each location in which false or real bits of the ID tag will be placed. The location data is used in creating or reading the ID number but is not stored on the CD. The second block of information, called the ID number, is a unique number identifying the legal transaction. The ID number may be a customer identification number, like a credit card or phone number, or customer purchasing account number, or may be a seller generated transaction number. There are many different schemes for filling redundant ID tags encoded on a CD so that tampering or removal of any tag or part of a tag is noticed.
Some types of tags may be placed in the time domain and others in the frequency domain. Time domain tags may involve changing an aspect of a time-domain feature like the decay time for a note, whereas frequency domain features such as amplitude of an overtone would be better inserted in a frequency domain transform like the fast Fourier transform used to do MPEG compression. The amount of computer speed needed to insert frequency domain tags has only been recently available in consumer computers.
Location data is communicated to a “home music factory” (e.g., user station 28) as encrypted information sent fifth the compressed music. If an ID number were 10 digits (about 33 bits) long then perhaps just 33 or several hundred locations would be contained in the location data. Software may accomplish this task at the site of music distribution, picking regions of the sound that are suitable for hiding bits within, or trial bits may be encoded by software with trained observers, perhaps the person who mixed or originated the music confirming that the music was not degraded by the inclusion of the bits.
ID numbers would be contained in the music factory as a standard ID number or as a number securely given to the purchaser during the purchase transaction. One number might be given for a whole CD or individual numbers for each song on the CD might be given.
The customer's security information should not only contain the location data and ID tag but instructions for creating each type of encoding of a bit in the fabric of the music. Types and encoding of bits may be kept secret so that the search and removal of encoded ID's will be more difficult. It is also likely that types of encoded cues will evolve over time.
Note that a unique ID tag can be encoded in the manufacture of a CD for sales in a store as well as a bar coded copy on the CD box allowing association of a purchaser's identity (or credit card number) with that legal copy. Similarly CD's delivered in compressed form over the Internet can have the complex tags woven into the audio at the delivery end. Complex tags can be designed that are not affected by the compression-decompression process.
A simple ID tag consisting of three two-byte samples could easily, but illegally, be eliminated during a piracy operation with the proper software. However the more complex encoding schemes are very difficult to find in order to eliminate or change it.
To be immune from destruction the encoded bits need not affect a person's perception of the music. This is not difficult since the information content of even compressed music is orders of magnitude beyond the capacity of humans to take in information. However, since humans attend to different aspects of music at different times, encoding must be carefully done.
Hints of types of acceptable encoding come from knowledge of what aspects of sound are most carefully attended by humans. For example, quick rise-times or strong attacks are carefully processed for localization cues, and frequency or pitch can be sensed with great accuracy by some persons. The literature on the development of music compression algorithms contains discussions of what aspects of music must be carefully preserved and what is less noticed but nevertheless kept due to the need to preserve other, similar, features in the encoding.
It will be appreciated that it is possible to place both a simple and a complex ID number on a CD as a method to determine the purchaser of a CD that was subsequently altered and copied.
A final matter with respect to antipiracy protection is that the “hidden” ID tag data in the music should survive compression. By way of background, music (or audio) is typically made digital by sampling the music 44,000 times a second with a resolution of 16 to 20 bits. The number of samples is necessary to record the highest frequencies, the resolution allows 90 to 120 db of dynamic range above noise. All compression techniques reduce the information necessary to digitally communicate the music. The primary basis of commercial compression techniques is to reduce resolution in frequency bands that will be least noticed by the human ear. This is true for ISO/MPEG, Sony ATRAC and Phillips PASC. To achieve the five or ten fold compression, all these techniques work with 500 to 1000 point blocks of samples (10 to 20 milliseconds), establish a realistic resolution for each of 30 to 50 frequency bands based upon the threshold of human hearing and masking by sounds of similar pitch, and then represent the various spectral components of the sound with as few bits as possible. For example, ATRAC averages 2.8 bits per sample to get the equivalent of 20 bits pre sample of resolution. Some compression techniques also make use of redundancy between stereo channels. Thus, all common compression techniques focus a minimum number of bits to represent each 10 to 20 milliseconds of sound, and trying to place an ID tag or “watermark” in this texture will likely affect the sound. Compression methods Corke with small chunks of sonard because computation required for spectral filtering techniques (like the FFT) increases drastically as samples lengthen, and because this sort of compression represents the “low hanging fruit” in reducing the data needed to convey sounds. With compression focused on the information in short blocks of sound it is a good strategy to look for ID tag/watermarking methods that are inaudible features that extend across blocks and are therefore to be unaffected by compression. Current audio watermarking techniques convey information by putting notches in high frequency sounds, low amplitude sounds spectrally adjacent to louder tones, influencing least significant bits of encoding and short echoes. Known watermarking techniques place marks within the single blocks of sound to be compressed. Several aspects of the ID tag/watermarking aspect of the present invention differ from conventional watermarking:
It will be appreciated that security of the music may be enhanced by periodically changing the encryption keys. For example, when using satellite as the blanket transmission means, 1024 bit RSA encryption keys may be used and changed periodically, with the changes being downloaded to the satellite receivers of the customers.
15. Business Models
The present invention provides significant flexibility with respect to the business model to be used to commercialize the invention. In one simplified embodiment, shown in block diagram form in
While the present invention has been described in connection with certain illustrated embodiments, it will be appreciated that modifications may be made without departing from the true spirit and scope of the invention.
This application is a continuation in part of Ser. No. 09/385,671, filed Aug. 27, 1999; Ser. No. 09/436,281, filed Nov. 8, 1999; Ser No. 09/476,078, filed Dec. 30, 1999; Ser. No. 09/487,978, filed Jan. 20, 2000; Ser. No. 09/493,854, filed Jan. 28, 2000; Ser. No. 09/502,069, filed Feb. 10, 2000, now U.S. Pat. No. 6,647,471B1 issued Nov. 11, 2003; Ser. No. 09/684,442, filed Oct. 6, 2000; and Ser. No. 09/707,273, filed Nov. 6, 2000, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3373517 | Halperin | Mar 1968 | A |
3376465 | Corpew | Apr 1968 | A |
3848193 | Martin et al. | Nov 1974 | A |
3941926 | Slobodzian et al. | Mar 1976 | A |
3983317 | Glorioso | Sep 1976 | A |
3993955 | Belcher et al. | Nov 1976 | A |
4094010 | Pepperl et al. | Jun 1978 | A |
4155042 | Permut et al. | May 1979 | A |
4332022 | Ceshkovsky et al. | May 1982 | A |
4368485 | Midland | Jan 1983 | A |
4476488 | Merrell | Oct 1984 | A |
4536791 | Campbell et al. | Aug 1985 | A |
4559480 | Nobs | Dec 1985 | A |
4575750 | Callahan | Mar 1986 | A |
4595950 | Lofberg | Jun 1986 | A |
4654482 | DeAngelis | Mar 1987 | A |
4716410 | Nozaki | Dec 1987 | A |
4734779 | Levis et al. | Mar 1988 | A |
4734858 | Schlafly | Mar 1988 | A |
4761641 | Schreiber | Aug 1988 | A |
4789863 | Bush | Dec 1988 | A |
4794465 | Van Luyt et al. | Dec 1988 | A |
4797913 | Kaplan et al. | Jan 1989 | A |
4809325 | Hayashi et al. | Feb 1989 | A |
4812843 | Champion, III et al. | Mar 1989 | A |
4829569 | Seth-Smith et al. | May 1989 | A |
4847825 | Levine | Jul 1989 | A |
4862268 | Campbell et al. | Aug 1989 | A |
4908713 | Levine | Mar 1990 | A |
4949187 | Cohen | Aug 1990 | A |
5046090 | Walker et al. | Sep 1991 | A |
5051822 | Rhoades | Sep 1991 | A |
5073925 | Nagata et al. | Dec 1991 | A |
5107107 | Osborne | Apr 1992 | A |
5121430 | Ganzer et al. | Jun 1992 | A |
5123046 | Levine | Jun 1992 | A |
5133079 | Ballantyne et al. | Jul 1992 | A |
5182669 | Chikuma et al. | Jan 1993 | A |
5191573 | Hair | Mar 1993 | A |
5214793 | Conway et al. | May 1993 | A |
5233423 | Jernigan et al. | Aug 1993 | A |
5235587 | Bearden et al. | Aug 1993 | A |
5251193 | Nelson et al. | Oct 1993 | A |
5257017 | Jones et al. | Oct 1993 | A |
5260778 | Kauffman et al. | Nov 1993 | A |
5274762 | Peterson et al. | Dec 1993 | A |
5283731 | Lalonde et al. | Feb 1994 | A |
5297204 | Levine | Mar 1994 | A |
5311423 | Clark | May 1994 | A |
5319735 | Preuss et al. | Jun 1994 | A |
5355302 | Martin et al. | Oct 1994 | A |
5365282 | Levine | Nov 1994 | A |
5373330 | Levine | Dec 1994 | A |
5414756 | Levine | May 1995 | A |
5418713 | Allen | May 1995 | A |
5420647 | Levine | May 1995 | A |
5420923 | Beyers, II et al. | May 1995 | A |
5428606 | Moskowitz | Jun 1995 | A |
5438355 | Palmer | Aug 1995 | A |
5440334 | Walters et al. | Aug 1995 | A |
5465291 | Barrus et al. | Nov 1995 | A |
5469020 | Herrick | Nov 1995 | A |
5469206 | Strubbe et al. | Nov 1995 | A |
5473584 | Oshima | Dec 1995 | A |
5483278 | Strubbe et al. | Jan 1996 | A |
5483535 | McMillen et al. | Jan 1996 | A |
5486819 | Horie | Jan 1996 | A |
5495283 | Cowe | Feb 1996 | A |
5497186 | Kawasaki | Mar 1996 | A |
5497479 | Hornbuckle | Mar 1996 | A |
5508815 | Levine | Apr 1996 | A |
5512935 | Majeti et al. | Apr 1996 | A |
5513260 | Ryan | Apr 1996 | A |
5530751 | Morris | Jun 1996 | A |
5532920 | Hartrick et al. | Jul 1996 | A |
5543856 | Rosser et al. | Aug 1996 | A |
5550863 | Yurt et al. | Aug 1996 | A |
5557541 | Schulhof et al. | Sep 1996 | A |
5559549 | Hendricks et al. | Sep 1996 | A |
5565909 | Thibadeau et al. | Oct 1996 | A |
5566315 | Milillo et al. | Oct 1996 | A |
5568272 | Levine | Oct 1996 | A |
5572442 | Schulhof et al. | Nov 1996 | A |
5592511 | Schoen et al. | Jan 1997 | A |
5592551 | Lett et al. | Jan 1997 | A |
5592626 | Papadimitriou et al. | Jan 1997 | A |
5600839 | MacDonald | Feb 1997 | A |
5610653 | Abecassis | Mar 1997 | A |
5612741 | Loban et al. | Mar 1997 | A |
5619247 | Russo | Apr 1997 | A |
5621840 | Kawamura et al. | Apr 1997 | A |
5621863 | Boulet et al. | Apr 1997 | A |
5627895 | Owaki | May 1997 | A |
5628050 | McGraw et al. | May 1997 | A |
5630067 | Kindell et al. | May 1997 | A |
5638113 | Lappington et al. | Jun 1997 | A |
5640453 | Schuchman et al. | Jun 1997 | A |
5644859 | Hsu | Jul 1997 | A |
5646603 | Nagata et al. | Jul 1997 | A |
5646997 | Barton | Jul 1997 | A |
5654747 | Ottesen et al. | Aug 1997 | A |
5659366 | Kerman | Aug 1997 | A |
5659613 | Copeland et al. | Aug 1997 | A |
5661516 | Carles | Aug 1997 | A |
5664018 | Leighton | Sep 1997 | A |
5675734 | Hair | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5684918 | Abecassis | Nov 1997 | A |
5686954 | Yoshinobu et al. | Nov 1997 | A |
5689799 | Dougherty et al. | Nov 1997 | A |
5692214 | Levine | Nov 1997 | A |
5701161 | Williams et al. | Dec 1997 | A |
5701383 | Russo et al. | Dec 1997 | A |
5701397 | Steimle et al. | Dec 1997 | A |
5710869 | Godefray et al. | Jan 1998 | A |
5717814 | Abecassis | Feb 1998 | A |
5717832 | Steimle et al. | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721951 | DorEl | Feb 1998 | A |
5724062 | Hunter | Mar 1998 | A |
5724091 | Freeman et al. | Mar 1998 | A |
5724525 | Beyers, II et al. | Mar 1998 | A |
5729214 | Moore | Mar 1998 | A |
5734413 | Lappington et al. | Mar 1998 | A |
5734720 | Salganicoff | Mar 1998 | A |
5740326 | Boulet et al. | Apr 1998 | A |
5748716 | Levine | May 1998 | A |
5758257 | Herz et al. | May 1998 | A |
5760820 | Eda et al. | Jun 1998 | A |
5761606 | Wolzien | Jun 1998 | A |
5761721 | Baldus et al. | Jun 1998 | A |
5781734 | Ohno et al. | Jul 1998 | A |
5790202 | Kummer et al. | Aug 1998 | A |
5790935 | Payton | Aug 1998 | A |
5790937 | Gutle | Aug 1998 | A |
5799285 | Klingman | Aug 1998 | A |
5805154 | Brown | Sep 1998 | A |
5805763 | Lawler et al. | Sep 1998 | A |
5809139 | Girod et al. | Sep 1998 | A |
5815662 | Ong | Sep 1998 | A |
5818806 | Wong et al. | Oct 1998 | A |
5822432 | Moskowitz et al. | Oct 1998 | A |
5825407 | Cowe et al. | Oct 1998 | A |
5826123 | Lai | Oct 1998 | A |
RE35954 | Levine | Nov 1998 | E |
5832287 | Atalla | Nov 1998 | A |
5835896 | Fisher et al. | Nov 1998 | A |
5841979 | Schulhof et al. | Nov 1998 | A |
5845083 | Hamadani et al. | Dec 1998 | A |
5848129 | Baker | Dec 1998 | A |
5848155 | Cox | Dec 1998 | A |
5848352 | Dougherty et al. | Dec 1998 | A |
5854779 | Johnson et al. | Dec 1998 | A |
5857020 | Peterson, Jr. | Jan 1999 | A |
5860068 | Cook | Jan 1999 | A |
5862260 | Rhoads | Jan 1999 | A |
5870717 | Wiecha | Feb 1999 | A |
5874985 | Matthews, III | Feb 1999 | A |
5889868 | Moskowitz et al. | Mar 1999 | A |
5890136 | Kipp | Mar 1999 | A |
5897622 | Blinn et al. | Apr 1999 | A |
5898384 | Alt et al. | Apr 1999 | A |
5899980 | Wilf et al. | May 1999 | A |
5903878 | Talati | May 1999 | A |
5905713 | Anderson et al. | May 1999 | A |
5905800 | Moskowitz et al. | May 1999 | A |
5909492 | Payne et al. | Jun 1999 | A |
5915018 | Aucsmith | Jun 1999 | A |
5915027 | Cox et al. | Jun 1999 | A |
5915068 | Levine | Jun 1999 | A |
5918213 | Bernard et al. | Jun 1999 | A |
5930369 | Cox et al. | Jul 1999 | A |
5931901 | Wolfe et al. | Aug 1999 | A |
5933798 | Linnartz | Aug 1999 | A |
5934795 | Rykowski et al. | Aug 1999 | A |
5940135 | Petrovic et al. | Aug 1999 | A |
5940807 | Purcell | Aug 1999 | A |
5943670 | Prager | Aug 1999 | A |
5946665 | Suzuki et al. | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5956716 | Kenner et al. | Sep 1999 | A |
5959885 | Kameswara | Sep 1999 | A |
5959945 | Kleiman | Sep 1999 | A |
5960081 | Vynne et al. | Sep 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
5963217 | Grayson et al. | Oct 1999 | A |
5963264 | Jackson | Oct 1999 | A |
5963915 | Kirsch | Oct 1999 | A |
5963917 | Ogram | Oct 1999 | A |
5966440 | Hair | Oct 1999 | A |
5966697 | Fergerson et al. | Oct 1999 | A |
5969283 | Looney et al. | Oct 1999 | A |
5969715 | Dougherty et al. | Oct 1999 | A |
5970471 | Hill | Oct 1999 | A |
5970472 | Allsop et al. | Oct 1999 | A |
5970473 | Gerszberg et al. | Oct 1999 | A |
5970474 | LeRoy et al. | Oct 1999 | A |
5970475 | Barnes et al. | Oct 1999 | A |
5974396 | Anderson et al. | Oct 1999 | A |
5978775 | Chen | Nov 1999 | A |
5983199 | Kaneko | Nov 1999 | A |
5983200 | Slotznick | Nov 1999 | A |
5983201 | Fay | Nov 1999 | A |
5988078 | Levine | Nov 1999 | A |
5992888 | North et al. | Nov 1999 | A |
6002772 | Saito | Dec 1999 | A |
6005938 | Banker et al. | Dec 1999 | A |
6006332 | Rabne et al. | Dec 1999 | A |
6012086 | Lowell | Jan 2000 | A |
6013007 | Root et al. | Jan 2000 | A |
6014491 | Hair | Jan 2000 | A |
6025868 | Russo | Feb 2000 | A |
6029141 | Bezos et al. | Feb 2000 | A |
6032130 | Alloul et al. | Feb 2000 | A |
6044047 | Kulas | Mar 2000 | A |
6052554 | Hendricks et al. | Apr 2000 | A |
6061440 | Delaney et al. | May 2000 | A |
6064980 | Jacobi et al. | May 2000 | A |
6067107 | Travaille et al. | May 2000 | A |
6067532 | Gebb | May 2000 | A |
6069868 | Kashiwagi | May 2000 | A |
6073372 | Davis | Jun 2000 | A |
6081785 | Oshima et al. | Jun 2000 | A |
6088455 | Logan et al. | Jul 2000 | A |
6088722 | Herz et al. | Jul 2000 | A |
6091883 | Artigalas et al. | Jul 2000 | A |
6115348 | Guerra | Sep 2000 | A |
6119096 | Mann et al. | Sep 2000 | A |
6141530 | Rabowsky | Oct 2000 | A |
6148142 | Anderson | Nov 2000 | A |
6148428 | Welch et al. | Nov 2000 | A |
6150964 | McLaughlin | Nov 2000 | A |
6151600 | Dedrick | Nov 2000 | A |
6175840 | Chen et al. | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6229453 | Gardner et al. | May 2001 | B1 |
6233389 | Barton et al. | May 2001 | B1 |
6233682 | Fritsch | May 2001 | B1 |
6240401 | Oren et al. | May 2001 | B1 |
6247130 | Fritsch | Jun 2001 | B1 |
6249532 | Yoshikawa et al. | Jun 2001 | B1 |
6269394 | Kenner et al. | Jul 2001 | B1 |
6272636 | Neville et al. | Aug 2001 | B1 |
6385596 | Wiser et al. | May 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6408313 | Campbell et al. | Jun 2002 | B1 |
6424998 | Hunter | Jul 2002 | B2 |
6430603 | Hunter | Aug 2002 | B2 |
6430605 | Hunter | Aug 2002 | B2 |
6438579 | Hosken | Aug 2002 | B1 |
6463467 | Mages et al. | Oct 2002 | B1 |
6496822 | Rosenfelt et al. | Dec 2002 | B2 |
6522769 | Rhoads et al. | Feb 2003 | B1 |
6611820 | Oshima et al. | Aug 2003 | B2 |
6625333 | Wang et al. | Sep 2003 | B1 |
20010002852 | Kwoh | Jun 2001 | A1 |
20010003846 | Rowe et al. | Jun 2001 | A1 |
20010005906 | Humpleman | Jun 2001 | A1 |
20010010045 | Stefik et al. | Jul 2001 | A1 |
20010010095 | Ellis et al. | Jul 2001 | A1 |
20010013037 | Matsumoto | Aug 2001 | A1 |
20010013120 | Tsukamoto | Aug 2001 | A1 |
20010014882 | Stefik et al. | Aug 2001 | A1 |
20010016836 | Boccon-Gibod et al. | Aug 2001 | A1 |
20010017920 | Son et al. | Aug 2001 | A1 |
20010018742 | Hirai | Aug 2001 | A1 |
20010018858 | Dwek | Sep 2001 | A1 |
20010023416 | Hosokawa | Sep 2001 | A1 |
20010023417 | Stefik et al. | Sep 2001 | A1 |
20010023428 | Miyazaki et al. | Sep 2001 | A1 |
20010024425 | Tsunoda et al. | Sep 2001 | A1 |
20010024566 | Mankovitz | Sep 2001 | A1 |
20010025259 | Rouchon | Sep 2001 | A1 |
20010025269 | Otsuka | Sep 2001 | A1 |
20010025316 | Oh | Sep 2001 | A1 |
20010027561 | White et al. | Oct 2001 | A1 |
20010027563 | White et al. | Oct 2001 | A1 |
20010029491 | Yoneta et al. | Oct 2001 | A1 |
20010029538 | Blockton et al. | Oct 2001 | A1 |
20010029583 | Palatov et al. | Oct 2001 | A1 |
20010030660 | Zainoulline | Oct 2001 | A1 |
20010031066 | Meyer et al. | Oct 2001 | A1 |
20010032131 | Mowry | Oct 2001 | A1 |
20010032132 | Moran | Oct 2001 | A1 |
20010032133 | Moran | Oct 2001 | A1 |
20010032187 | Nuttall | Oct 2001 | A1 |
20010032312 | Runje et al. | Oct 2001 | A1 |
20010034635 | Winters | Oct 2001 | A1 |
20010034714 | Terao et al. | Oct 2001 | A1 |
20010034883 | Zigmond | Oct 2001 | A1 |
20020056112 | Dureau et al. | May 2002 | A1 |
20020056118 | Hunter et al. | May 2002 | A1 |
20020057799 | Kohno | May 2002 | A1 |
20020062261 | Mukai | May 2002 | A1 |
20020066025 | Sato et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
0 683 943 | Nov 1993 | EP |
0 756 423 | Jan 1997 | EP |
097511 | Jul 1999 | EP |
0 954 176 | Nov 1999 | EP |
0 954 179 | Nov 1999 | EP |
0 975 111 | Jan 2000 | EP |
0 977 389 | Feb 2000 | EP |
0 984 631 | Mar 2000 | EP |
0 994 470 | Apr 2000 | EP |
1 104 195 | May 2001 | EP |
1 143 721 | Oct 2001 | EP |
360253082 | Dec 1985 | JP |
410290441 | Oct 1998 | JP |
2002015333 | Jan 2002 | JP |
2002099283 | Apr 2002 | JP |
2002156979 | May 2002 | JP |
503657 | Aug 2000 | TW |
90101479 | Jan 2001 | TW |
527835 | Mar 2001 | TW |
WO 9103112 | Mar 1991 | WO |
WO 9222983 | Dec 1992 | WO |
WO 9413107 | Jun 1994 | WO |
WO 9626605 | Aug 1996 | WO |
WO 9634467 | Oct 1996 | WO |
WO 9634494 | Oct 1996 | WO |
WO 9918727 | Apr 1999 | WO |
WO 0101677 | Jan 2000 | WO |
WO 0005886 | Feb 2000 | WO |
WO 0007368 | Feb 2000 | WO |
WO 0014965 | Mar 2000 | WO |
WO 0117242 | Mar 2001 | WO |
WO 0141013 | Jun 2001 | WO |
WO 0147249 | Jun 2001 | WO |
WO 0154324 | Jul 2001 | WO |
WO 0174050 | Oct 2001 | WO |
WO 0182625 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020111912 A1 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09707273 | Nov 2000 | US |
Child | 09855992 | US | |
Parent | 09684442 | Oct 2000 | US |
Child | 09707273 | US | |
Parent | 09502169 | Feb 2000 | US |
Child | 09684442 | US | |
Parent | 09493854 | Jan 2000 | US |
Child | 09502169 | US | |
Parent | 09487978 | Jan 2000 | US |
Child | 09493854 | US | |
Parent | 09476078 | Dec 1999 | US |
Child | 09487978 | US | |
Parent | 09436281 | Nov 1999 | US |
Child | 09476078 | US | |
Parent | 09385671 | Aug 1999 | US |
Child | 09436281 | US |