The present application claims priority from Japanese Patent Application No. 2015-033094, which was filed on Feb. 23, 2015, the disclosure of which is herein incorporated by reference in its entirety.
Technical Field
The following disclosure relates to a musical bar for a musical instrument which is vibrated, when a striking surface of the musical bar is struck, to produce a musical tone with its unique pitch.
Description of the Related Art
There are known conventional musical bars for musical instruments such as marimbas. When a front striking surface of the musical bar is struck, the musical bar is vibrated to produce a musical tone with its unique pitch. The musical bar is in most cases supported by the musical instrument so as to efficiently produce a pitch of a fundamental tone.
For example, Patent Document 1 (Japanese Patent Application Publication No. 2007-163782) and Patent Document 2 (Japanese Patent Application Publication No. 2007-163784) disclose musical bars constructed such that the musical bar has a support hole extending substantially in a widthwise direction of the musical bar, and the support hole is formed at a position of a node of vibration of the musical bar at which there is no motion during the vibration. The musical bar is supported by the musical instrument via a connecting string inserted in the support hole. Patent Document 3 (Japanese Patent No. 2570511) discloses a musical bar having a through hole near a node of vibration of the musical bar. The through hole is formed through the musical bar in its thickness direction. The diameter of the through hole is larger than that of a pin which is provided in a base so as to extend through the through hole. The pin restricts horizontal movement of the musical bar. The musical bar is vibrated on a string near the through hole.
Incidentally, the musical bar is conventionally tuned by adjusting the entire length of the musical bar and adjusting an amount of cutting for forming a recess in a back portion of the musical bar, for example. In general, the longer the entire length, the lower the pitch is. Also, the larger the amount of cutting for the recess, the lower the pitch is. Adjustment of overtones, especially amplitudes of the overtones, is also important in tuning for adjusting tone color. Changes in amount of cutting for the recess can raise and lower frequencies of the overtones but cannot change the amplitudes of the overtones. The amplitudes of the overtones can be changed by changing the material, dimensions, and/or shape of the musical bar, but it is difficult to obtain desired amplitudes. Thus, it is difficult to adjust tone color while adjusting pitches.
Accordingly, an aspect of the disclosure relates to a musical bar for a musical instrument which enables easy adjustment of tone color without greatly affecting a unique pitch.
In one aspect of the disclosure, a musical bar for a musical instrument includes: a striking surface; and a back surface which is a back side of the musical bar from the striking surface. When the striking surface is struck, the musical bar is vibrated to produce a musical tone with a unique pitch as a pitch of a fundamental tone. A recess is formed in the musical bar so as to be recessed from the back surface toward the striking surface. A position of a node of vibration of the fundamental tone for the musical bar is substantially aligned with an imaginary center of gravity of the recess in a longitudinal direction of the musical bar.
In another aspect of the disclosure, a musical bar for a musical instrument includes: a striking surface; and a back surface which is a back side of the musical bar from the striking surface. When the striking surface is struck, the musical bar is vibrated to produce a musical tone with a unique pitch as a pitch of a fundamental tone. An insertion hole is formed in the musical bar so as to extend substantially in a widthwise direction thereof, and a supporter via which the musical bar is supported by the musical instrument is inserted in the insertion hole. In addition to the insertion hole, a recess is formed, in the longitudinal direction, in an area including a node of vibration of the fundamental tone.
The objects, features, advantages, and technical and industrial significance of the present disclosure will be better understood by reading the following detailed description of the embodiment, when considered in connection with the accompanying drawings, in which:
Hereinafter, there will be described one embodiment by reference to the drawings.
The musical bar 10 has insertion holes 17, 18 spaced apart from each other substantially in the widthwise direction. Each of the insertion holes 17, 18 extends through the musical bar 10 from the first side surface 15 to the second side surface 16. The insertion hole 17 extends in a direction substantially perpendicular to the first side surface 15 and the second side surface 16, but the insertion hole 18 is inclined so as to be nearer to the other end 12 at a portion of the insertion hole 18 which is near the first side surface 15 than at a portion of the insertion hole 18 which is far from the first side surface 15. As illustrated in
As illustrated in
The center of each of the insertion holes 17, 18 in its axial direction is spaced apart from a corresponding one of the one end 11 and the other end 12 at a distance L in the longitudinal direction of the musical bar 10 and substantially aligned with a corresponding one of the nodes N. The distance L is 22.4% of the entire length of the musical bar 10.
Two recesses H are formed in the back surface 14 of the musical bar 10 so as to be recessed toward the striking surface 13. One of the recesses H is a recess H1 located near the one end 11, and the other recess is a recess H2 located near the other end 12. The recesses H1, H2 have the same shape, and each of the recesses H1, H2 will be referred to as “recess H” in the case where these recesses need not be distinguished. In the present embodiment, each recess H is a blind hole having a substantially flat bottom and having a round shape in cross section taken along a direction perpendicular to the thickness direction of the musical bar 10. The recess H is what is called a countersunk hole. The recess H extends toward the striking surface 13 so as to communicate with a corresponding one of the insertion holes 17, 18. In the case of an imaginary object having the same shape as that of the recess H, the object has a substantially circular cylindrical shape.
The musical bar 10 is formed in one piece and formed of a material such as wood or alloy. The musical bar 10 is manufactured, for example, by cutting and/or grinding an elongated member, which is formed of a single material and having a rectangular shape in cross section, to remove the area 23 from the back surface of the musical bar 10, i.e., the lower surface of the musical bar 10 in
In vibration of the musical bar 10, loops of all the vibrating modes are generally located at open ends, i.e., the one end 11 and the other end 12. In other words, the nodes N are not located at the open ends. Vibration in the first vibrating mode is also vibration of the fundamental tone. The fundamental tone is a tone with a fundamental pitch. When struck and vibrated, the musical bar 10 produces a musical tone with the pitch of the fundamental tone as the unique pitch of the musical bar 10. Vibration of the musical bar 10 includes not only the vibration of the fundamental tone but also vibration of overtones which contains narrower waves. The overtones are produced simultaneously with the fundamental tone. The frequencies of the overtones are integer multiples of the frequency of the fundamental tone. The overtones are produced simultaneously and serve as elements which create tone color. Accordingly, the amplitudes of the overtones greatly affect the tone color.
Marimbas are tuned such that the fourth overtone is produced in the second vibrating mode subsequent to the first vibrating mode, and the tenth overtone is produced in the third vibrating mode subsequent to the second vibrating mode. The fourth overtone and the tenth overtone are respectively four times and ten times the frequency of the fundamental tone. The frequencies in
As illustrated in
The musical bar 10 has the recesses H, resulting in the mass of the musical bar 10 being reduced by an amount corresponding to the volume of the recesses H. The imaginary center of gravity G of each recess H and the corresponding node N of the vibration of the fundamental tone are substantially aligned with each other in the longitudinal direction of the musical bar 10 (see
Thus, the lowered logarithmic decrement makes it easy for the musical bar 10 to produce the fundamental tone and the tenth overtone. Also, the logarithmic decrement of the fourth overtone does not change greatly. Accordingly, the tone color changes relatively. The change in tone color also depends upon the position of the imaginary center of gravity G and the volume of the recesses H.
The musical bar 10 according to the present embodiment and the comparative example illustrated in
In view of the above, the imaginary center of gravity G of each recess H and the corresponding node N1 of vibration in the first vibrating mode (the fundamental tone) are preferably aligned substantially with each other in the longitudinal direction of the musical bar 10 to easily adjust tone color without greatly affecting the unique pitch. In other words, it is preferable that the imaginary center of gravity G of the recess H is aligned with the node N1 in the first vibrating mode as much as possible, and the recess H is formed in an area not containing the position of the nodes N2 in the second vibrating mode or the position of the nodes N3 in the third vibrating mode.
This condition is satisfied when the recesses H are respectively formed in areas 21 in the longitudinal direction in the case of the construction illustrated in
It is noted that the positions of the respective nodes N1 are not always determined accurately, and accordingly even when the imaginary center of gravity G and the node N1 are misaligned slightly, the recess H is preferably formed within an area including the node N1. When the imaginary center of gravity G and the node N1 are substantially aligned with each other at the very least, the tone color is changed effectively in some degree even in the case where the area in which the recess H is formed includes any of the node N2 or the node N3. The same effects occur also in the fourth and subsequent vibrating modes. Thus, the musical bar 10 is preferably constructed in consideration of a relationship between the area in which the recess H is formed and the nodes in the fourth and subsequent vibrating modes, but the relationship affects the tone color in smaller degree in the fourth and subsequent vibrating modes than in the second and third vibrating modes.
In the case where the musical bar 10 is employed for marimbas and vibraphones, in particular, each recess H is preferably formed in an area not including the nodes N2 of vibration of the fourth overtone or the nodes N3 of vibration of the tenth overtone, in the longitudinal direction of the musical bar 10. In the case where the recesses H are formed in this manner, the logarithmic decrements of the fundamental tone and the tenth overtone can be lowered effectively to change overall tone color appropriately for marimbas, for example.
It is noted that in the case where the musical bar 10 is employed for xylophones, the musical bar 10 is tuned such that the third overtone and the seventh overtone are to be produced in the respective second and third vibrating modes. In this case, accordingly, each recess H is preferably formed in an area not including the nodes of vibration of the third overtone and the seventh overtone, in the longitudinal direction of the musical bar 10. In the case where the recesses H are formed in this manner, the logarithmic decrements of the fundamental tone and the seventh overtone can be lowered effectively to change overall tone color appropriately for xylophones, for example. It is noted that the positions of the respective nodes of vibration of the third overtone and the seventh overtone differ from the respective nodes of vibration of the fourth overtone and the tenth overtone.
In the musical bar 10 according to the present embodiment, the imaginary center of gravity G of each recess H and the corresponding node N1 of vibration in the first vibrating mode (the fundamental tone) are substantially aligned with each other in the longitudinal direction of the musical bar 10. This construction enables easy adjustment of tone color without greatly affecting the unique pitch and can reduce the overall logarithmic decrement. Also, each recess H is formed in the area not including the nodes N2 or the nodes N3. Thus, the logarithmic decrements of the first and third vibrating modes to change the overall tone color.
The recesses H communicate with the respective insertion holes 17, 18. This construction allows the user to view the insertion holes 17, 18 from the respective recesses H, facilitating maintenance of the musical bar 10. Also, the recess H is a blind hole formed in the back surface 14, thereby not affecting the appearance of the musical bar 10 or a striking area.
It is noted that in the case where visual recognition of the insertion holes 17, 18 is not required, the recesses H need not be formed to such a depth that the recesses H communicate with the respective insertion holes 17, 18. In the case where the effects on the appearance of the musical bar 10 and the striking area are not taken into consideration, the recess H may extend to the striking surface 13.
While the recess H has the circular cylindrical shape in the above-described embodiment, the shape of the recess H is not limited. Also, the number of the recesses H is not limited.
The shapes of the recess H in horizontal cross section and vertical cross section are not limited. For example, as illustrated in
In the case where the centroid of the recess H in horizontal cross section is located at the same position at any horizontal cross section, that is, in the case where the recess H is shaped like a circular cylinder or a cone, for example, each recess H may be formed such that the centroid of the recess H and the node N are substantially aligned with each other when below from bottom, instead of the construction in which the imaginary center of gravity G of the recess H and the node N are aligned with each other.
While the embodiment has been described above, it is to be understood that the disclosure is not limited to the details of the illustrated embodiment, but may be embodied with various changes and modifications, which may occur to those skilled in the art, without departing from the spirit and scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2015-033094 | Feb 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1210950 | Kohler | Jan 1917 | A |
1291778 | Deagan | Jan 1919 | A |
1708495 | Claiborne | Apr 1929 | A |
3731580 | Suzuki | May 1973 | A |
4649791 | Sawada et al. | Mar 1987 | A |
5686679 | Nakano | Nov 1997 | A |
6245978 | Stevens | Jun 2001 | B1 |
8049089 | Stevens | Nov 2011 | B2 |
20160247493 | Abe | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
26-4236 | May 1951 | JP |
49-61521 | May 1974 | JP |
52-94827 | Jul 1977 | JP |
8-202351 | Aug 1996 | JP |
8-254976 | Oct 1996 | JP |
2570511 | Jan 1997 | JP |
2007-163782 | Jun 2007 | JP |
2007-163784 | Jun 2007 | JP |
Entry |
---|
European Search Report issued in counterpart European Application No. 16155089.2 dated Jul. 11, 2016 (seven pages). |
Japanese-language Office Action issued in counterpart Japanese Application No. 2015-033094 dated Dec. 6, 2016 with English translation (Five (5) pages). |
Number | Date | Country | |
---|---|---|---|
20160247493 A1 | Aug 2016 | US |