The present invention relates to musical instruments (e.g., pianos) equipped with pedals, such as a damper pedal, for controlling sounding members (strings), and techniques and methods for processing data related to performance operation of the pedal.
Apparatus for recording positions of a damper pedal of a piano and automatically controlling the position of the damper pedal on the basis of the thus-recorded pedal positions have been known, one example of which is a pedal position recording/reproduction apparatus disclosed in. U.S. Pat. No. 5,714,702 corresponding to Japanese Patent No, 2,993,424. The pedal position recording/reproduction apparatus disclosed in the No. 2,993,424 patent detects positions of the pedal (pedal positions) by a sensor and converts the detected pedal positions into pedal positions in an ordinary piano to record the thus-converted pedal positions. Further, the pedal position recording/reproduction apparatus disclosed in U.S. Pat. No. 5,714,702 patent converts the recorded pedal positions into pedal positions corresponding to inherent characteristics of the piano and controls the pedal to take the converted pedal positions.
In pianos, as generally known, a plurality of component parts are disposed between the damper pedal and the dampers, and the dampers are ultimately displaced or moved by a force transmitting direction and amount of displacement, corresponding to operation of the damper pedal, being changed via such a plurality of component parts. However, with the apparatus disclosed in the U.S. Pat. No. 5,714,702 patent (No. 2,993,424 Japanese Patent), which detects and records positions of the damper piano, it is difficult to acutely record and reproduce positions of the dampers because displacement amounts of the damper pedal and the dampers differ from each other.
In view of the foregoing prior art problems, it is an object of the present invention to provide a technique for permitting accurate recording and/or reproduction of positions of a control member that varies in position relative to a sounding member in response to operation of a pedal.
In order to accomplish the above-mentioned object, the present invention provides an improved musical instrument, which comprises: a pedal configured to be displaceable in response to user's operation; a driven member configured to be displaceable in interlocked relation to displacement of the pedal; a control member configured to vary in its position relative to a sounding member, in response to displacement of the driven member, to thereby control the sounding member; a drive section configured to drive the driven member; a sensor configured to detect a position of the driven member; a first database storing therein correspondency relationship between positions of the pedal and positions of the driven member; a second database storing therein correspondency relationship between the positions of the pedal and control values; and a first output section configured to: acquire, from the first database, a position of the pedal corresponding to a position of the driven member detected by the sensor; acquire, from the second database, a control value corresponding to the acquired position of the pedal; and output the acquired control value as pedal operation information.
According to the present invention arranged in the aforementioned manner, a position of the control member (e.g., damper), whose relative position to the sounding member varies in response to user's operation of the pedal (e.g., damper pedal), can be detected with a high accuracy on the basis of position detection of the driven member (e.g., lifting rail) nearer to the control member. Further, because the detected position data is converted into a control value corresponding to a position of the pedal (pedal position) and such a control value is output as performance information, the present invention can provide highly versatile performance information based on the pedal position.
In an embodiment, the musical instrument may further comprise: a third database storing therein correspondency relationship between the positions of the pedal and positions of the control member; a fourth database storing therein correspondency relationship between the positions of the control member and the positions of the driven member; a second output section configured to acquire, from the second database, a position of the pedal corresponding to an input control value; acquire, from the third database, a position of the control member corresponding to the acquired position of the pedal; acquire, from the fourth database, a position of the driven member corresponding to the acquired position of the control member; and output, as an instructed position, the position of the driven member acquired from the fourth database; and a control section configured to control the drive section to position the driven member at the instructed position output by the second output section. With such arrangements, the driven member (e.g., lifting rail) disposed nearer to the control member (e.g., damper) is positioned in accordance with the control value corresponding to the pedal position, and thus, it is possible to automatically reproduce, with a high accuracy, the position of the control member (e.g., damper) based on the control value.
In an embodiment, the control value output by the first output section may be recorded into a recording medium. In an embodiment, the control value recorded in the recording medium may be input to the second output section. In an embodiment, the third database may store therein a first virtual position of the control member in association with a position of the pedal in a range where the control member is not displaced even when the pedal is displaced, and the fourth database may store therein a second virtual position of the control member in association with a position of the driven member in a range where the control member is not displaced even when the driven member is displaced.
Further, in an embodiment, the control values stored in the second database may each be a value obtained by normalizing a position of the pedal. In an embodiment, the pedal may he a damper pedal, and the control member may be a damper for damping vibration of the sounding member.
According to another aspect of the present invention, there is provided an improved musical instrument, which comprises: a pedal configured to be displaceable in response to user's operation; a driven member configured to be displaceable in interlocked relation to displacement of the pedal; a control member configured to vary in its position relative to a sounding member, in response to displacement of the driven member, to thereby control the sounding member; a drive section configured to drive the driven member; a sensor configured to detect a position of the driven member; a first database storing therein correspondency relationship between positions of the pedal and control values; a second database storing therein correspondency relationship between the positions of the pedal and positions of the control member; a third database storing therein correspondency relationship between the positions of the control member and positions of the driven member; an output section configured to: acquire, from the first database, a position of the pedal corresponding to an input control value; acquire, from the second database, a position of the control member corresponding to the acquired position of the pedal; acquire, from the third database, a position of the driven member corresponding to the acquired position of the control member; and output, as an instructed position, the position of the driven member acquired from the third database; and a control section configured to control the drive section to position the driven member at the instructed position output by the output section. With such arrangements, the driven member (e.g., lifting rail) disposed nearer to the control member (e.g., damper) is positioned in accordance with the control value corresponding to the pedal position, and thus, it is possible to automatically reproduce, with a high accuracy, the position of the control member (e.g., damper) based on the control value.
The following will describe embodiments of the present invention, but it should be appreciated that the present invention is not limited to the described embodiments and various modifications of the invention are possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.
Certain preferred embodiments of the present invention will hereinafter be described in detail, by way of example only, with reference to the accompanying drawings, in which:
[First Embodiment]
As well known, each of the keys 1 is pivotably supported for depressing operation by the human player. Each of the hammer action mechanisms 3 having hammers 2 is a mechanism for hitting strings (i.e., sounding members) 4 provided in corresponding relation to the key 1. As the key 1 is depressed by the human player, the hammer 2 hits the strings 4 in response to motion of the key 1. In an automatic performance, each of the solenoids 50 is used for automatically driving the corresponding key 1. The solenoid 50 is accommodated in a case 51 that is provided in a hole formed in a keybed 5 of the piano 100. The hole formed in the keybed 5 is covered with a cover 52. Once a solenoid-driving signal is supplied to the solenoid 50, the plunger of the solenoid 50 is displaced. As the plunger is displaced to push the key 1 upwardly, the hammer 2 hits the strings 4 in response to the motion of the key 1. The key sensor 26 is provided below a front (right in
The damper pedal 110 is a pedal for moving the dampers 6. In
The spring 114, which is for example a metal coil spring, has an upper end contacting the cover 52. The spring 114 normally urges the damper pedal lever 117 in such a direction as to pivot clockwise (downward) about the pin 113. Note that any other resilient member, such as rubber, may replace the metal spring 114 as long as it imparts the damper pedal lever 117 with biasing force that causes the damper pedal lever 117 to pivot clockwise about the pin 113. The lifting rod 115 has an upper end contacting the lower surface of a lifting rail 8 that is an elongated member extending horizontally along the row of the keys 1 through holes formed in the cover 52, case 51 and keybed 5. The lifting rail (driven member) 8 is provided for moving the damper mechanisms 9. More specifically, the lifting rail 8 is disposed underneath the damper mechanisms 9 corresponding to the individual keys 1, and it is a bar-shaped component part extending in the left-right direction as viewed from the human player.
Each of the damper mechanisms 9, provided for moving the dampers (control members) 6, includes a damper lever 91 and a damper wire 92. The damper lever 91 is pivotably supported at one end by a pin 93, and the damper wire 92 is connected at one end (lower end in
When the human player is not touching the damper pedal 110, the damper pedal lever 117 and the damper pedal rod 116 are kept depressed downward by the spring 114, so that a front end portion of the damper pedal 110 is located at a predetermined position. As the human player steps on the front end portion of the damper pedal 110 against the biasing force of the spring 114, a rear end portion of the damper pedal 110 moves upward to cause the damper pedal rod. 116 to move up. By such upward motion of the damper pedal rod 116, the front end portion of the damper pedal lever 117 is pushed upward so that the damper pedal lever 117 pivots counterclockwise, so that the lifting rod 115 is pushed upward. As the lifting rod 115 is pushed upward like this, the lifting rail (elongated member) 8 is pushed upward. The lifting rail (driven member) 8 pushed upward like this abuts against the plurality of damper levers 91 to collectively pivot the damper levers 91. As the damper levers 91 pivot like this, each of the damper wire 92 is pushed upward, so that each of the dampers 6 moves away from the contact with the corresponding strings 4. Namely, a relative position of the dampers 6 to the strings 4 varies in response to displacement of the lifting rail (driven member) 8. Namely, the lifting rail (driven member) 8 is constructed to be displaceable for collectively pivot the plurality of damper levers 91.
Further, as the human player releases the foot from the damper pedal 110, the front end portion of the damper pedal lever 117 moves downward by the biasing force of the spring 114, thereby depressing the damper pedal rod 116. In response to the depression of the damper pedal rod 116, the rear end portion of the damper pedal 110 moves downward, so that the front end portion of the damper pedal 110 returns to the original position. Also, as the front end portion of the damper pedal lever 117 moves down, the lifting rod 115 moves downward, so that the lifting rail 8 also moves downward. Then, the plurality of damper levers 91 pivot downward together, in response to which the corresponding damper wires 92 move downward so that each of the dampers 6 holds the corresponding strings 4.
The following describe a construction for driving the lifting rail (driven member) 8 by use of an actuator.
The connection member 550, which is a transmission member for transmitting motion of the actuator (solenoid) 552 to the lifting rail (driven member) 8, is provided on a front-side longitudinal edge portion of the lifting rail 8 and projects substantially laterally from the right end of the lifting rail 8. More specifically, the connection member 550 is formed in a stepwise shape by bending a flat metal piece vertically upward at one position a predetermined distance from one end thereof and then bending the metal piece horizontally at another position a predetermined distance from the one position, as shown in
The frame 551, which is a member for fixedly positioning the electromagnetic solenoid (actuator) 552, is fixed to the upper surface of the keybed 5 laterally beside a right end portion of the lifting rail (driven member) 8. The frame 551 had a hole formed therein for passage therethrough of the plunger 552a of the solenoid (actuator) 552. With the solenoid 552 fixed to the frame 551, the solenoid 552 is located at a distance above the keybed 5 as shown in
The solenoid 552 includes the plunger 552a and a spring 552b. The plunger 552a extends through a frame of the solenoid 552a and has the one end contacting the underside of an upper portion of the stepwise-shaped connection member 550. While no electric current is flowing through the solenoid 552, the plunger 552a is held in contact with the connection member 550 by the biasing force of the spring 552b. Once an electric current flows through the solenoid 552, the plunger 552a moves upwardly to push upwardly the connection member 550, in response to which the lifting rail 8 having the connection member 550 fixed thereto moves upwardly. Specifically, a front-side longitudinal edge portion of the lifting rail 8 moves upwardly so that the lifting rail 8 pivots about its imaginary longitudinal axis. Namely, the actuator (solenoid) 552 is arranged to apply its driving force to the front-side longitudinal edge portion of the lifting rail 8 in such a manner that the lifting rail 8 pivots about its imaginary longitudinal axis of the lifting rail 8. More specifically, in order to transmit the motion of the actuator (solenoid) 552 to the lifting rail (driven member) 8, the connection member 550 is fixed to the lifting rail 8 in such a manner as to project generally laterally beyond one end of the longitudinal edge portion of the lifting rail 8, and the connection member 550 is driven by the actuator (solenoid) 552 so that the driving force of the actuator (solenoid) 552 acts on the lifting rail (driven member) 8 via the connection member 550. Note that the solenoid 552 may alternatively be a push-type solenoid that does not have the spring 552b.
A position sensor 555 is provided in association with the frame 551. The position sensor 555 includes a transparent or light-permeable plate 555a and a detection section 555b so that it functions as a sensor for detecting a displaced position of the lifting rail (driven member) 8. The light-permeable plate 555a is a plate-shaped member formed of light-permeable synthetic resin. The light-permeable plate 555a is made in such a manner that an amount of light permeable therethrough differs depending on a position of the light-permeable plate 555a, i.e. in such a manner that the amount of light permeable through the light-permeable plate 555a increases as the light-permeable plate 555a gets farther from the connection member 550. The detection section 555b is a photo sensor comprising a combination of a light emitting portion and a light receiving portion. Light emitted from the light emitting portion transmits through the light-permeable plate 555a and is received by the light receiving portion. The detection section 555b outputs an analog signal ya corresponding to an amount of the light received by the light receiving portion. With such arrangements, the amount of light transmitted through the light-permeable plate 555a and reaching the light receiving portion varies as the position of the lifting rail 8 varies in the vertical (or up-down) direction. Thus, the analog signal ya output from the detection section 555b varies in response to a variation of the vertical position (i.e., position in the up-down direction) of the lifting rail 8 and indicates a current vertical position of the lifting rail 8.
Next, with reference to
The A/D conversion section 141a converts an analog signal output from any one of the key sensors 26 to a digital signal and outputs the converted digital signal to a motion controller 1000a. The digital signal is indicative of a vertical position of the corresponding key 1 that varies in response to a performance operation.
The A/D conversion section 141b converts an analog signal output from the position sensor 555 to a digital signal and outputs the converted digital signal to a motion controller (control section) 1000b. Because the signal output from the position sensor 555 is indicative of a vertical position of the lifting rail 8 as noted above, the converted digital signal yd too is indicative of the vertical position of the lifting rail 8.
The CPU 102 executes a control program, stored in the ROM 103, using the RAM 104 as a working area. By the execution of the control program stored in the ROM 103, the automatic performance function is implemented in which the solenoids are driven in accordance with performance data read out from a recording medium inserted in the access section 120.
From a result of such calculation, the motion controller 1000a identifies the vertical position of the key 1 corresponding to the passage of time. Further, the motion controller 1000a acquires a signal supplied from the A/D conversion section 141a and calculates a position deviation that is a difference between a vertical position of the key 1 indicated by the signal acquired from the A/D conversion section 141a and the identified vertical position of the key 1. Then, the motion controller 1000a multiplies the calculated position deviation by a predetermined amplification factor to thereby convert a position-component control amount represented by the position deviation ex into a value corresponding to a duty ratio to be used in the PWM signal generation section 142a, and outputs the converted value as a control value for controlling the vertical position of the key 1. The motion controller 1000a also outputs a key number of the key 1 to be driven.
The PWM signal generation section 142a acquires the key number and control value output from the motion controller 1000a, converts the control value into a PWM signal and outputs the PWM signal to the solenoid 50 corresponding to the key 1 indicated by the acquired key number. Upon receipt of the PWM signal, the solenoid 50 displaces the plunger in accordance with the PWM signal to thereby drive the key 1.
The motion controller 1000a further includes a function for outputting, in response to a performance executed by the user, performance data of the MIDI format indicative of the performance. More specifically, once the user operates a key 1, an analog signal output from the corresponding key sensor 26 is converted into a digital signal via the A/D conversion section 141a, so that a signal indicative of a vertical position of the key us supplied to the motion controller 1000a.
On the basis of the digital signal, the motion controller 1000a identifies a vertical position of the key 1 varying in accordance with the passage of time, determines an operating velocity of the key 1 on the basis of relationship between a time variation and the identified vertical position of the key 1, and generates velocity data of the MIDI format from the thus-determined operating velocity. Further, the motion controller 1000a identifies the operated key 1 and converts the key number of the operated key 1 into a note number of the MIDI format.
Furthermore, the motion controller 1000a generates a note-on/off message using the generated velocity data and note number data and outputs the generated note-on/off message and time information indicative of a time at which the key 1 has been operated. Then, performance data of the MIDI format is generated on the basis of the note-on/off message and time information and recorded into a recording medium by the access section 120.
The following describe the motion controller (control section) 1000b.
In
A velocity value generation section 1037 generates a velocity value yv indicative of a moving velocity of the lifting rail 8. More specifically, the velocity value generation section 1037 calculates a moving velocity of the lifting rail 8 by performing a temporal differentiation process on sequentially supplied digital signals yd and outputs a velocity value yv indicative of the moving velocity of the lifting rail 8.
In
A second database 1002 is a database having prestored therein correspondency relationship between various values control change messages of the damper pedal can take in performance data of the MIDI format (hereinafter referred to as “MIDI values”) and various possible vertical positions of the damper pedal rod 116. Namely, the second database 1002 has prestored therein correspondency relationship between various possible damper pedal positions and control values of the damper pedal. Because a variation in vertical position of the damper pedal rod 116 corresponds to a variation in vertical position of a rear end portion of the damper pedal 110, it can be said that a vertical position of the damper pedal rod 116 represents a vertical position of the rear end portion of the damper pedal 110. Namely, the second database 1002 has prestored therein, per vertical position of the damper pedal rod 116, a MIDI value in association with the vertical position of the damper pedal rod 116. Namely, the MIDI values stored in the second database 1002 are each a value obtained by normalizing the vertical position of the damper pedal rod 116. For example, in the second database 1002, MIDI value “0” indicating that the dampers 6 are in an OFF state (i.e., the dampers 6 are in a state contacting the strings 4) is associated with a vertical position of the damper pedal rod 116 when the damper pedal rod 116 is in its lowermost position (i.e., when the damper pedal 110 is in an non-operated or non-depressed position), MIDI value “64” is associated with a vertical position of the damper pedal rod 116 when the damper pedal 110 is in a half-depressed or half-pedal position. MIDI value “127” is associated with a vertical position of the damper pedal rod 116 when the damper pedal rod 116 is in its uppermost position (i.e., when the damper pedal 110 is in a fully-depressed or most-deeply-depressed position).
A third database 1003 is a database having prestored therein correspondency relationship between various possible vertical positions of the damper pedal rod 116 and various possible vertical positions of the dampers 6. Namely, the third database 1003 has prestored therein correspondency relationship between damper pedal positions and positions of the dampers (control members) 6. As the damper pedal rod 116 ascends, the dampers (control members) 6 ascend, as noted above. Thus, the correspondency relationship between the vertical positions of the damper pedal rod 116 and the vertical positions of the dampers 6 is set such that, as the position of the damper pedal rod 116 rises, the position of the lifting rail 8 and hence the dampers 6 rises. However, the dampers 6 do not ascend immediately in response to the start of ascending movement of the damper pedal rod 116, and thus, actually, there would occur a section or range where the dampers 6 do not vary in position (i.e., are not displaced) in response to the start of ascending movement of the damper pedal rod 116, as indicated by a broken line in
Further, in
Note that in each of the graphs of
Further, in
The first conversion section (first output section) 1021 references the first database 1001 to acquire a vertical position of the damper pedal rod 116 associated with (or corresponding to) the position value yx of the lifting rail 8 stored in the first buffer 1023. Further, the first conversion section 1021 references the second database 1002 to acquire a MIDI value (control value) associated with (or corresponding to) the vertical position of the damper pedal rod 116 acquired from the first database 1001. Namely, by referencing the first and second databases 1001 and 1002, the first conversion section 1021 converts the position value yx into a dimensionless MIDI value (control value or pedal operation information). Then, the first conversion section 1021 outputs performance data of the MIDI format including the acquired MIDI value (control value or pedal operation information). Such performance data output from the first conversion section 1021 becomes a control change message pertaining to the driving of the dampers 6. The thus-output control change message is recorded into a suitable recording medium, such as a recording medium inserted in or attached to the access section 120, or the RAM 104, so that it can be used later an automatic performance. Alternatively, the control change message may be output in real time via a communication line and stored into a remote memory, or used to remotely control a pedal of another music instrument.
Further, in
The second buffer 1013 is a buffer for temporarily storing the position instruction value rx. For example, if the MIDI value differs among the sequentially-supplied performance data, and if the MIDI value at time point t1 is “0”, the MIDI value at time point t2 is “64” and the MIDI value at time point t3 is “127”, then a set of time point t1 and the position instruction value rx at time point t1, a set of time point t2 and the position instruction value rx at time point t2 and a set of time point t3 and the position instruction value rx at time point 13 are sequentially stored into the second buffer 1013 in the order of the time points.
The management section 1030 acquires the time points and position instruction values rx stored in the second buffer 1013 and outputs the acquired position instruction values rx. Further, the management section 1030 acquires the sets of time points and position instruction values rx stored in the second buffer 1013 to perform a temporal differentiation process on the acquired sets of time points and position instruction values rx to thereby calculate a moving velocity of the lifting rail 8 and outputs a velocity instruction value ry indicative of the moving velocity of the lifting rail 8. Also, the management section 1030 outputs a predetermined fixed value uf. Furthermore, in
A second subtractor 1032 acquires the velocity instruction value ry output from the management section 1030 and the velocity value yv output from the velocity value generation section 1037. Then, the second subtractor 1032 performs an arithmetic operation of “velocity instruction value rv−velocity value yv” and outputs a velocity deviation ev, which is a result of the arithmetic operation, to a second amplification section 1035.
The first amplification section 1034 acquires the position deviation ex and multiplies the acquired position deviation ex by a predetermined amplification factor and outputs a result of the multiplication as a position control value ux. Namely, here, the first amplification section 1034 performs unit conversion for converting a position-component control amount represented by the position deviation ex into a value corresponding to a duty ratio to be used in the PWM signal generation section 142b provided at the following stage.
The second amplification section 1035 acquires the velocity deviation ev and multiplies the acquired velocity deviation ev by a predetermined amplification factor and outputs a result of the multiplication as a velocity control value uv. Namely, here, the second amplification section 1035 performs unit conversion for converting, a velocity-component control amount represented by the velocity deviation ev into a value corresponding to a duty ratio to be used in the PWM signal generation section 142b provided at the following stage.
An adder 1033 adds together the fixed value uf, position control value ux and velocity control value uv and outputs a result of the addition (i.e., sum) of these values as a control value u. The control value u is a value indicative of an electric current to be supplied to the solenoid 552 (in other words, a duty ratio to be used in the PWM signal generation section 142b).
The PWM signal generation section 142b outputs a PWM signal for driving the solenoid 552. More specifically, the PWM signal generation section 142b generates a PWM signal ui corresponding to the above-mentioned control value u and outputs the thus-generated PWM signal ui to the solenoid 552, so that the solenoid 552 having received the PWM signal ui displaces the plunger in accordance with the PWM signal ui.
[Behavior of the First Embodiment]
The following describe example behavior of the player piano 100. Particularly, the following describe behavior of the player piano 100 when motion of the dampers 6 responsive to a user's performance is to be stored as performance data, and behavior when the dampers 6 are to he driven on the basis of performance data stored in a recording medium.
[Behavior when Motion of the Dampers 6 Responsive to a User's Performance is to be Stored as Performance Data]
If the user performs, on the operation panel 130, operation for instructing storage of performance data, performance data representative of a performance executed by the user will be recorded into a recording medium inserted in the access section 120. For example, as the user steps on or depresses a front end portion of the damper pedal 110, a rear end portion of the damper pedal 110 moves upward, causing the damper pedal rod 116 to move upward. By the upward movement of the damper pedal rod 116, a front end portion of the damper pedal lever 117 is pushed upward so that the lever 117 pivots to thereby push up the lifting rod 115. As the lifting rod 115 is pushed upward like this, the lifting rail 8 is pushed upward.
As the vertical position of the lifting rail 8 varies in the aforementioned manner, the light-permeable plate 555a varies in position, so that the analog signal ya output from the detection section 555b varies. Such an analog signal ya is sampled and sequentially converted into digital signals yd by the A/D conversion section 141b. The digital signals yd obtained by the A/D conversion section 141b are sequentially output to the position value generation section 1036. The position value generation section 1036 performs the smoothing process on the sequentially-supplied digital signals yd and thereby outputs a position value yx indicative of a position of the lifting rail 8. Because the position of the lifting rail 8 varies in response to the operation of the damper pedal 110, such a position value yx too varies in response to the operation of the damper pedal 110.
The position value yx output from the position value generation section 1036 is supplied via the management section 1030 to the first buffer 1023 for storage therein. The first conversion section 1021 acquires, from the first database 1001, a vertical position of the damper pedal rod 116 associated with (corresponding to) the position value yx stored in the first buffer 102.3 and acquires, from the second database 1002, a MIDI value associated with the vertical position of the damper pedal rod 116 acquired from the first database 1001. Once the first conversion section 1021 acquires the. MIDI value, it outputs performance data of the MIDI format including the acquired MIDI value. Such performance data output from the first conversion section 1021 becomes a control change message pertaining to the driving of the damper pedal 110. The CPU 102 controls the access section 120 to store, into the recording medium, the performance data together with information indicative of a performance time.
[Behavior when the Dampers 6 are to be Driven on the Basis of Performance Data]
The following describe behavior of the player piano 100 when the dampers 6 are to be driven on the basis of performance data stored in a recording medium. First, once a recording medium having stored therein performance data of the MIDI format is inserted into the access section 120 and user's operation for reproducing the performance data from the recording medium is performed on the operation panel 130, the CPU 102 reads out the performance data from the recording medium. If, at that time, a control change message pertaining to the driving of the dampers 6 is read out as performance data, that performance data is supplied to the second conversion section 1011.
Once the second conversion section 1011 extracts a MIDI value from the acquired performance data, it references the second database 1002 to acquire a vertical position of the damper pedal rod 116 associated with the extracted MIDI value. Then, the second conversion section 1011 references the third database 1003 to acquire a vertical position of the dampers 6 associated with the acquired vertical position of the damper pedal rod 116. Then, the second conversion section 1011 acquires, from the fourth database 1004, a vertical position of the lifting rail 8 associated with the acquired vertical position of the dampers 6. After that, the second conversion section 1011 outputs the acquired vertical position of the lifting rail 8 to the second buffer 1013 as a position instruction value rx.
For example, if the MIDI value at time point t1 is “0”, the MIDI value at time point t2 is “64” and the MIDI at time point t3 is “127”, then a set of time point t1 and the position instruction value rx at time point t1, a set of time point t2 and the position instruction value rx at time point t2 and a set of time point t3 and the position instruction value rx at time point t3 are sequentially stored into the second buffer 1013 in the order of the time points.
Once the position instruction value rx is stored into the second buffer 1013, the management section 1030 acquires the time and position instruction value rx stored in the management section 1030 and outputs the acquired position instruction value rx. Further, the management section 1030 sequentially acquires the sets of the times and position instruction values rx stored in the second buffer 1013, performs temporal differentiation thereon to calculate a moving velocity of the lifting rail 8 and outputs a velocity instruction value ry indicative of the moving velocity.
The position sensor 555 outputs an analog signal ya indicative of a vertical position of the lifting rail 8, and such an analog signal ya is sequentially converted by the. A/D conversion section 141b into digital signals yd, on the basis of which the position value generation section 1036 outputs a position value yx indicative of the position of the lifting rail 8. The velocity value generation section 1037 calculates a moving velocity of the lifting rail 8 by performing a temporal differentiation process on the digital signals yd, and then, it outputs a velocity value yv indicative of the calculated moving velocity of the lifting rail 8.
The first subtractor 1031 acquires the position instruction value rx output from the management section 1030 and the position value yx output from the position value generation section 1036 and performs an arithmetic operation of “position instruction value rx−position value yx” to thereby output a position deviation ex, which is a result of the arithmetic operation, to the first amplification section 1034. The second subtractor 1032 acquires the velocity instruction value ry output from the management section 1030 and the velocity value yv output from the velocity value generation section 1037. Then, the second subtractor 1032 performs an arithmetic operation of “velocity instruction value rv−velocity value yv” to thereby output a velocity deviation ev, which is a result of the arithmetic operation, to the second amplification section 1035.
The first amplification section 1034 acquires the position deviation ex and multiplies the acquired position deviation ex by a predetermined amplification factor and outputs a result of the multiplication as a position control value ux. Further, the second amplification section 1035 acquires the velocity deviation ev and multiplies the acquired velocity deviation ev by a predetermined amplification factor and outputs a result of the multiplication as a velocity control value uv. The adder 1033 adds together the fixed value uf, position control value ux and velocity control value uv and outputs a result of the addition (i.e., sum) of these values as a control value u to the PWM signal generation section 142b. The PWM signal generation section 142b outputs a PWM signal ui corresponding to the above-mentioned control value u and outputs the thus-generated PWM signal ui to the solenoid 552, so that the solenoid 552 displaces the plunger in accordance with the PWM signal ui.
As the plunger 552a is displaced, the light-permeable plate 555a and the lifting rail 8 are displaced with the connection member 550. In response to the displacement (positional variation) of the light-permeable plate 555a, the analog signal ya output from the detection section 555b varies. This analog signal ya is converted into a digital signal yd and output to the position value generation section 1036 and the velocity value generation section 1037. The position value yx is fed back to the first subtractor 1031 while the velocity value yx is fed back to the second subtractor 1032, so that a control value u is output such that the position deviation ex and the velocity deviation ev decrease.
In the instant embodiment, when an automatic performance is to be executed on the basis of performance data, the dampers 6 are driven by the lifting rail 8 being driven or moved by the solenoid 552. As compared to the prior art construction where the damper pedal is driven by the solenoid to move the dampers, the instant embodiment of the present invention can move the dampers with an increased accuracy because there are fewer component parts between the component part driven by the solenoid and the dampers.
Further, in the instant embodiment, a position of the lifting rail 8 is converted into a vertical position of the damper pedal rod 116 by use of the first database 1001, and such a vertical position of the damper pedal rod 116 is recorded after being converted into a MIDI value. Because such a MIDI value is recorded on the basis of the position of the lifting rail 8 nearer to the dampers 6, a position of the dampers 6 can be recorded with an increased accuracy as compared to the prior art construction where a position of the damper pedal is detected and recorded.
[Second Embodiment]
The following describe a second embodiment of the player piano 100 of the present invention. The second embodiment of the player piano 100 is similar in construction to the above-described first embodiment, except that the construction of the motion controller 1000b in the second embodiment is different from that in the first embodiment. Thus, the following description focuses on differences of the second embodiment from the first embodiment.
The fifth conversion section 1039 includes a table in which various values of the digital signal yd and various vertical positions of the lifting rail 8 are prestored in association with each other. Let it be assumed here that a position of the lifting rail 8 when the lifting rail 8 is not being pushed upward by the lifting rod 115 and plunger 552a is set as a reference vertical position of the lifting rail 8 and that such a reference vertical position of the lifting rail 8 is “0 mm”, A predetermined value of the digital signal yd when the lifting rail 8 is in the “0 m” reference position is prestored in the table in association with the “0 mm” reference position. Let it also be assumed that the upwardmost or highest position of the lifting rail 8 moved by the lifting rod 115 and plunger 552a is 10 mm above the “0 mm” reference position, in which case a predetermined value of the digital signal yd when the lifting rail 8 is in the “10 mm” position is prestored in the fifth database 1039 in association with the “10 mm” position. For other positions between the “0 mm” reference position and the “10 mm” position as well, values of the digital signal yd and vertical positions of the lifting rail 8 are prestored in the table 1039 in association with each other.
The third conversion section 1038 references the fifth database 1039 to acquire a position value associated with the digital signal yd acquired from the A/D conversion section 141b. Namely, by referencing the fifth database 1039, the conversion section 1038 converts the digital signal yd into a physical amount indicating a position of the lifting rail 8 in millimeters (mm). The conversion section 1038 supplies the thus-acquired position value to the position value generation section 1036 and velocity value generation section 1037.
Because what is supplied to the position value generation section 1036 is a position value in mm (i.e., in the unit of mm), a position value yx supplied from the position value generation section 1036 to the second buffer and first subtractor 1031 too is in the unit of mm. Similarly, because what is supplied to the velocity value generation section 1037 is a position value in mm, a velocity value yv output from the velocity value generation section 1037 is a physical amount in the unit of mm/s.
The first database 1001a is a database having stored therein correspondency relationship between various possible vertical positions of the lifting rail 8 and various possible vertical positions of the damper pedal rod 116 (vertical positions of a rear end portion of the damper pedal 110). Note that the first database 1001a is different from the aforementioned first database 1001 in that the vertical positions of the lifting rail 8 stored in the first database 1001 a are physical amounts in mm (i.e., in the unit of mm).
The second database 1002a is a database having stored therein correspondency relationship between various values of control which change messages of the damper pedal can take in performance data of the MIDI format (hereinafter referred to as “MIDI values”) and various possible vertical positions of the damper pedal rod 116. Note that the second database 1002a is different from the aforementioned second database 1002 in that the vertical positions of the damper pedal rod 116 stored in the second database 1002a are physical amounts in mm.
The third database 1003a is a database having stored therein correspondency relationship between various possible vertical positions of the damper pedal rod 116 and various possible vertical positions of the dampers 6. Note that the third database 1003a is different from the aforementioned third database 1003 in that the vertical positions stored in the third database 1003a are physical amounts in mm.
The fourth database 1004a is a database having stored therein correspondency relationship between various possible vertical positions of the lifting rail 8 and various possible vertical positions of the dampers 6. Note that the fourth database 1004a is different from the aforementioned fourth database 1004 in that the vertical positions stored in the fourth database 1004a are physical amounts in mm.
Once the second conversion section 1011 extracts a MIDI value from among sequentially-acquired performance data, the second conversion section 1011 references the second database 1002a to acquire a value in mm, i.e. vertical position of the damper pedal rod 116, associated with (corresponding to) the extracted MIDI value. Then, the second conversion section 1011 references the third database 1003a to acquire a value in mm, i.e. a vertical position of the dampers 6, associated with the acquired vertical position of the damper pedal rod 116, after which the second conversion section 1011 acquires, from the fourth database 1004a, a value in mm, i.e. a vertical position of the lifting rail 8, associated with the acquired vertical position of the dampers 6. Then, the second conversion section 1011 outputs the acquired vertical position of the lifting rail 8 to the second buffer 1013 as a position instruction value rx. Because the position instruction value stored in the second buffer 1013 is a physical amount in mm, the position instruction value rx output from the management section 1030 too is a physical amount in mm, and the velocity instruction value ry output from the management section 1030 is a physical amount in the unit of minis.
Further, the first conversion section 1021 references the first database 1001a to acquire a value in mm, i.e. a vertical position of the damper pedal rod 116, associated with the position value yx stored in the first buffer 1023. Then, the first conversion section 1021 references the second database 1002a to acquire a MUM value associated with the extracted vertical position of the damper pedal rod 116. Namely, by referencing the first and second databases 1001a and 1002a, the first conversion section 1021 converts the position value yx, which is a physical amount in mm, into a dimensionless MIDI value. Then, the second conversion section 1021 outputs performance data of the MIDI format including the acquired MIDI value, and such performance data output from the second conversion section 1021 becomes a control change message pertaining to the driving of the dampers 6.
The second embodiment is different from the first embodiment in that, whereas the position value yx, position instruction value rx, velocity value yv and velocity instruction value ry are dimensionless values in the first embodiment, such values are physical amounts in mm or minis in the second embodiment. Note that behavior of the servo control in the second embodiment is the same as in the first embodiment and thus will not be described here to avoid unnecessary duplication.
[Third Embodiment]
The following describe a third embodiment of the player piano 100 of the present invention. The third embodiment has, in addition to the functions of the first embodiment, a function for operating the soft pedal 112 on the basis of performance data, and a function for generating performance data representative of user's operation of the soft pedal 112. Namely, the third embodiment is constructed to apply the basic principles of the present invention to the soft pedal 112 as well as the damper pedal 110. Namely, the basic principles of the present invention are applicable in association with not only the damper pedal but also any other desired pedal employed in a musical instrument.
In
An A/D conversion section 141c converts an analog signal output from the position sensor 600 to a digital signal yd and outputs the converted digital signal to a motion controller 1000c. The analog signal output from the position sensor 600 is indicative of a position, in the left-right direction, of the keyframe 7 (hereinafter referred to as “left-right position of the keyframe 7”), and thus, the converted digital signal too is indicative of the left-right position of the keyframe 7.
In
A velocity value generation section 1037 generates a velocity value yv indicative of a moving velocity of the keyframe 7. More specifically, the velocity value generation section 1067 calculates a moving velocity of the keyframe 7 by performing a temporal differentiation process on sequentially supplied digital signals yd and outputs a velocity value yv indicative of the moving velocity of the keyframe 7.
Further, in
A seventh database 1007 is a database having prestored therein correspondency relationship between various values of control change messages of the soft pedal can take in performance data of the MIDI format (hereinafter referred to as “MIDI values”) and various possible vertical positions of the soft pedal rod connected to the soft pedal 112. Namely, the seventh database 1007 has prestored therein MIDI values obtained by normalizing vertical positions of the soft pedal rod. Because a variation in vertical position of the soft pedal rod corresponds to a variation in vertical position of a rear end portion of the soft pedal 112, it can be said that a vertical position of the soft pedal rod represents a vertical position of the rear end portion of the soft pedal 112. Namely, the seventh database 1007 has prestored therein, per vertical position of the soft pedal rod, a MIDI value in association with the vertical position of the soft pedal rod. For example, in the seventh database 1007. MIDI value “0” indicating that a mute function is currently OFF (i.e., the hammers 2 are in their initial position) is associated with the lowest position of the soft pedal rod (i.e., non-operated position of the soft pedal 112). MIDI value “64” is associated with a vertical position of the soft pedal rod when the soft pedal 112 is in a half-depressed or half-pedal position, and MIDI value “127” is associated with the highest vertical position of the soft pedal rod (i.e., position of the soft pedal rod when the hammers 2 have moved the greatest distance from the initial position).
Further, in
Further, in
Further, in
The fourth conversion section 1051 references the sixth database 1006 to acquire a vertical position of the soft pedal rod associated with the position value yx stored in the third buffer 1053. Further, the fourth conversion section 1051 references the seventh database 1007 to acquire a MIDI value associated with the vertical position of the soft pedal rod acquired from the sixth database 1006. Namely, by referencing the sixth and seventh databases 1006 and 1007, the fourth conversion section 1051 converts the position value yx into a dimensionless MIDI value. Then, the fourth conversion section 1051 outputs performance data of the MIDI format including the acquired MIDI value. Such performance data output from the fourth conversion section 1051 becomes a control change message pertaining to the soft pedal 112.
Further, in
The fourth buffer 1043 is a buffer for temporarily storing the position instruction value rx. For example, if the MIDI value differs among the sequentially-supplied performance data, and if the MIDI value at time point t1 is “0”, the MIDI value at time point t2 is “64” and the MIDI value at time point t3 is “127”, then a set of time point t1 and the position instruction value rx at time point t1, a set of time point t2 and the position instruction value rx at time point t2 and a set of time point t3 and the position instruction value rx at time point t3 arc sequentially stored into the fourth buffer 1043 in the order of the time points.
The management section 1060 acquires the time points and position instruction values rx stored in the fourth buffer 1043 and outputs the acquired position instruction values rx. Further, the management section 1060 acquires the sets of time points and position instruction values rx stored in the fourth buffer 1043 to perform a temporal differentiation process on the acquired sets of time points and position instruction values rx to thereby calculate a moving velocity of the keyframe 7 and outputs a velocity instruction value ry indicative of the moving velocity of the keyframe 7. Also, the management section 1060 outputs a predetermined fixed value uf.
Furthermore, in
A fourth subtractor 1062 acquires the velocity instruction value ry output from the management section 1060 and the velocity value yv output from the velocity value generation section 1067. Then, the fourth subtractor 1062 performs an arithmetic operation of “velocity instruction value ry−velocity value yv” and outputs a velocity deviation ev, which is a result of the arithmetic operation, to a fourth amplification section 1065.
The third amplification section 1064 acquires the position deviation ex and multiplies the acquired position deviation ex by a predetermined amplification factor and outputs a result of the multiplication as a position control value ux. Namely, here, the third amplification section 1064 performs unit conversion for converting a position-component control amount represented by the position deviation ex into a value corresponding to a duty ratio to be used in a PWM signal generation section 142c provided at the following stage.
The fourth amplification section 1065 acquires the velocity deviation ev and multiplies the acquired velocity deviation ev by a predetermined amplification factor and outputs a result of the multiplication as a velocity control value uv. Namely, here, the fourth amplification section 1065 performs unit conversion for converting a velocity-component control amount represented by the velocity deviation ev into a value corresponding to a duty ratio to be used in the PWM signal generation section 142c.
Furthermore, in
The PWM signal generation section 142c outputs a PWM signal for driving the actuator 601. More specifically, the. PWM signal generation section 142c generates a PWM signal ui corresponding to the above-mentioned control value u and outputs the thus-generated PWM signal ui to the actuator 601, so that the actuator 601 having received the PWM signal ui displaces the key frame 7 in accordance with the PWM signal
[Behavior of the Third Embodiment]
[Behavior When User's Performance is to be Stored as Performance Data]
If the user performs, on the operation panel 130, operation for instructing storage of performance data, performance data representative of a performance executed by the user will be recorded into a recording medium inserted in the access section 120. For example, as the user steps on or depresses a front end portion of the soft pedal 120, a rear end portion of the soft pedal 112 moves upward, causing the soft pedal rod to move upward. By the upward movement of the soft pedal rod, the keyframe 7 moves so that the hammers 2 move relative to the strings 4.
As the left-right position of the keyframe 7 varies in the aforementioned manner, the analog signal ya output from the position sensor 600 varies. Such an analog signals ya is sampled and sequentially converted into digital signals yd by the A/D conversion section 141c. The digital signals yd obtained by the A/D conversion section 141c are sequentially output to the position value generation section 1066. The position value generation section 1066 performs the smoothing process on the sequentially-supplied digital signals yd and thereby outputs a position value yx indicative of a position of the keyframe 7. Because the position of the keyframe 7 varies in response to the operation of the soft pedal 112, such a position value yx too varies in response to the operation of the soft pedal 112.
The position value yx output from the position value generation section 1066 is supplied via the management section 1060 to the third buffer 1053 for storage therein. The fourth conversion section 1051 acquires, from the sixth database 1006, a vertical position of the soft pedal rod associated with the position value yx stored in the third buffer 1053 and acquires, from the seventh database 1007, a MIDI value associated with the vertical position of the soft pedal rod acquired from the sixth database 1006. Once the fourth conversion section 1051 acquires the MIDI value, it outputs performance data of the MIDI format including the acquired MIDI value. Such performance data output from the fourth conversion section 1051 becomes a control change message pertaining to the soft pedal 112. The CPU 102 controls the access section 120 to store, into the recording medium, the performance data together with information indicative of a performance time.
[Behavior when Performance Data of the Soft Pedal are Reproduced]
The following describe behavior of the piano 100 when the keyframe 7 is to be driven on the basis of performance data stored in a recording medium. First, once a recording medium having stored therein performance data of the MEN format is inserted into the access section 120 and user's operation for reproducing the performance data from the recording medium is performed on the operation panel 130, the CPU 102 reads out the performance data from the recording medium. If, at that time, a control change message pertaining to the soft pedal 112 is read out as the performance data, that performance data is supplied to the fifth conversion section 1041.
Once the fifth conversion section 1041 extracts a MIDI value from the acquired performance data, it references the seventh database 1007 to acquire a vertical position of the soft pedal rod associated with the extracted MIDI value. Then, the fifth conversion section 1041 references the eighth database 1008 to acquire a left-right position of the hammers 2 associated with the acquired vertical position of the soft pedal rod. Then, the fifth conversion section 1041 acquires, from the ninth database 1009, a left-right position of the keyframe 7 associated with the acquired left-right position of the hammers 2. After that, the fifth conversion section 1041 outputs the acquired left-right position of the keyframe 7 to the fourth buffer 1043 as a position instruction value rx. For example, if the MIDI value at time point t1 is “0”, the MIDI value at time point t2 is “64” and the MIDI value at time point t3 is “127”, then a set of time point ti and the position instruction value rx at time point t1, a set of time point t2 and the position instruction value rx at time point t2 and a set of time point t3 and the position instruction value rx at time point t3 are sequentially stored into the fourth buffer 1043 in the order of the time points.
The management section 1060 acquires the time points and position instruction values rx stored in the fourth buffer 1043 and outputs the acquired position instruction values rx. Further, the management section 1060 sequentially acquires the sets of time points and position instruction values rx stored in the fourth buffer 1043 to perform a temporal differentiation process on the acquired sets of time points and position instruction values rx to thereby calculate a moving velocity of the keyframe 7 and outputs a velocity instruction value ry indicative of the moving velocity of the keyframe 7.
An analog signal ya indicative of a left-right position of the keyframe 7 is output from the position sensor 600, and such an analog signal ya is sequentially converted into digital signals yd by the A/D conversion section 141c. The position value generation section 1066 outputs, on the basis of the digital signals yd, a position value yx indicative of a position of the keyframe 7, and the velocity value generation section 1067 performs a temporal differentiation process on the digital signals yd to calculate a moving velocity of the keyframe 7 and outputs a velocity value yv indicative of the moving velocity of the keyframe 7.
The third subtractor 1061 acquires the position instruction value rx output from the management section 1060 and the position value yx output from the position value generation section 1066 and performs an arithmetic operation of “position instruction value rx−position value yx” to thereby output a position deviation ex, which is a result of the arithmetic operation, to the third amplification section 1064. The fourth subtractor 1062 acquires the velocity instruction value ry output from the management section 1060 and the velocity value yv output from the velocity value generation section 1067. The fourth subtractor 1062 performs an arithmetic operation of “velocity instruction value ry−velocity value yv” to thereby output a velocity deviation ev, which is a result of the arithmetic operation, to the fourth amplification section 1065.
The third amplification section 1064 acquires the position deviation ex and multiplies the acquired position deviation ex by a predetermined amplification factor and outputs a result of the multiplication as a position control value ux. Further, the fourth amplification section 1065 acquires the velocity deviation ev and multiplies the acquired velocity deviation ev by a predetermined amplification factor and outputs a result of the multiplication as a velocity control value uv. The adder 1063 adds together the fixed value uf, position control value ux and velocity control value uv and outputs a result of the addition (i.e., sum) of these values as a control value u to the. PWM signal generation section 142c. The PWM signal generation section 142c outputs a PWM signal ui corresponding to the above-mentioned control value u and outputs the thus-generated PWM signal ui to the actuator 601, so that the actuator 601 displaces the keyframe 7 in accordance with the PWM signal ui.
As the keyframe 7 is displaced, the analog signal ya output from the position sensor 600 varies. This analog signal ya is converted into a digital signal yd and output to the position value generation section 1066 and the velocity value generation section 1067. The position value yx is fed back to the third subtractor 1061 and the velocity value yv is fed back to the fourth subtractor 1062, so that a control value u is output such that the position deviation ex and the velocity deviation ev decrease.
In the motion controller 1000b in the instant embodiment too, the digital signal yd may be may he converted into a value in the unit of mm by a conversion section and a database, and arithmetic operations pertaining to the feedback control may be performed in the unit of mm, as in the motion controller 1000b in the above-described second embodiment. Further, values of positions may be handled in mm in the sixth to ninth databases 1006 to 1009.
[Modifications]
Whereas the present invention has been described above in relation to various embodiments, the present invention is not limited to the above-described embodiments, and such embodiments may be modified as follows. The above-described embodiments and modifications to be described below may also be combined as necessary.
The first and second embodiments have been described above as constructed to acquire a position of the damper pedal rod 116 from a MIDI value, acquire a position of the dampers 6 from the position of the damper pedal rod 116 and acquire a position of the lifting rail 8 from the position of the dampers 6. Alternatively, there may be provided another database having stored therein correspondency relationship between various possible positions of the damper pedal rod 116 and various possible positions of the lifting rail 8, so that after a position of the damper pedal rod 116 is acquired by reference to the second database 1002, a position of the lifting rail 8 can be acquired from the position of the damper pedal rod 116 by reference to the other database.
In the third embodiment too, there may be provided another database having stored therein correspondency relationship between various possible positions of the damper pedal rod 116 and various possible positions of the keyframe 7, so that, after a position of the soft pedal rod connected to the soft pedal 112 is acquired by reference to the seventh database 1007, a position of the keyframe 7 can be acquired from the position of the soft pedal rod by reference to the other database.
Whereas, in the above-described embodiments, the position sensor 555 is constructed to detect a vertical position of a right end portion (as viewed from the human player) of opposite longitudinal end portions of the lifting rail 8, the position sensor 555 mat detect a vertical position of a left end portion (as viewed from the human player) of the lifting rail 8. Alternatively, such position sensors 555 may be provided on both of the opposite longitudinal end portions of the lifting rail 8 for detecting vertical positions of the opposite end portions of the lifting rail 8. In such a case, the position value generation section 1036 may calculate an average value of digital signals yd obtained by digital conversion of analog signals output from the two position sensors 555 and determine a position value yx based on the calculated average value. Alternatively, the position sensor 555 may be provided on a longitudinally middle portion of the lifting rail 8. As another alternative, the position sensor 555 may be provided on middle and left end portions, or middle and right end portions, or middle, left and right end portions of the lifting rail 8. Further, in the case where a plurality of the position sensors 555 are provided, the number of the position sensors 555 is not limited to two or three, and four or more position sensors 555 may be provided on not only opposite longitudinal end portions and middle portion of the lifting rail 8 but also one or more other portions of the lifting rail 8. Further, instead of the position sensor 555 being disposed on the frame 551, the light-permeable plate 555a of the position sensor 555 may be disposed on the upper surface of the lifting rail 8 and the detection section 555b of the position sensor 555 may be disposed over the lifting rail 8.
Further, whereas, in the above-described embodiments, the position sensor is constructed to detect a position by use of light, the present invention is not so limited, and the position sensor may be constructed to detect a position by use of a linear potentiometer detecting a linear position, or by use of magnetism, or otherwise.
Furthermore, in the above-described embodiments, where the position sensor 555 is constructed to detect a vertical position of the lifting rail 8, the transparent or light-permeable plate 555a of the position sensor 555 may be provided on the outer peripheral surface of the lifting rod 115 along the longitudinal direction of the lifting rod 115 in such a manner that a vertical position of the lifting rod 115 can be detected by the light-permeable plate 555a passing between the light emitting portion and the light receiving portion of the position sensor 555. Because the lifting rod 115 is displaced together with the lifting rail 8, it may be said that this modified arrangement indirectly detects a position of the lifting rail 8, although the modified arrangement actually detects a position of the lifting rod 115.
Furthermore, whereas the above-described embodiments are constructed in such a manner that performance data output from the individual motion controllers are stored into a recording medium inserted in the access section 120, an interface for performing communication with another external device may be provided in the controller 10 in such a manner that performance data can be output to the other external device via the interface. Further, in such a case, performance data may be acquired from the other external device via the interface and supplied to the individual motion controllers.
Whereas, in the above-described embodiments, the lifting rail (driven member) 8 is driven by the solenoid 552 via the connection member 550, the construction for driving the lifting rail (driven member) 8 is not so limited.
In the construction of
Once the solenoid 552 is driven (or energized), the plunger 552a moves upward to push upward the upper lifting rod 115b, which in turn pushes upward the lifting rail 8. When the lifting rail 8 is driven via the solenoid 552 like this, the driving force of the solenoid 552 does not act on the spring 114. Thus, with this modification too, the dampers 6 can be moved without requiring a great force.
Namely, in the modified construction of
Further, in the case where the solenoid for driving the lifting rail 8 is accommodated within the case 51, a modified construction of
Namely, in the construction of
Further, in the player piano 100, another or second lifting rod (or transmission rod) separate from the lifting rod 115 may be provided, and this second lifting rod may be driven by the solenoid 552 without the lifting rod 115 being driven by the solenoid 552.
Namely, in the construction of
In the case where the second lifting rod (transmission rod) 115d is provided like this, the second lifting rod 115d may extend through the case 51 and the cover 52, and the solenoid 552 may be disposed underneath the cover 52 so that the second lifting rod 115d is driven by the solenoid 552. Further, in the construction where the second lifting rod 115d extending through the case 51 and the cover 52 is driven by the solenoid 552, a lever contacting the lower end of the lifting rod 115d and pivotable about a pin may be provided to be driven by the solenoid.
Whereas the above-described embodiments and modifications are constructed to drive the lifting rail 8 or the lifting rod 115 by means of the solenoid, the actuator for driving the lifting rail 8 or lifting rod 115 is not limited to a linear actuator, such as a solenoid. For example, rotary motion of a rotary actuator, such as a motor, may be converted into linear motion so that the lifting rail 8 or the lifting rod 115 is driven by such converted linear motion.
Whereas the above-described embodiments are constructed to perform servo control using a velocity instruction value and a velocity value, the present invention may be constructed to perform the servo control using a position instruction value and a position value rather than a velocity instruction value and a velocity value.
Furthermore, whereas the embodiments have been described above as applied to a grand piano as a musical instrument provided with damper mechanisms, the present invention is also applicable to an upright piano. Alternatively, the present invention may be applied to other musical instruments than pianos, such as a celesta and glockenspiel, having sounding members; in such a case too, motions of the dampers may be stored as performance data so that the dampers are driven on the basis of the performance data, as in the above-described embodiments of the piano.
This application is based on, and claims priority to, Japanese patent application No. 2012-008404 filed on 18 Jan. 2012. The disclosure of the priority application, in its entirety, including the drawings, claims, and the specification thereof, are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2012-008404 | Jan 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5131306 | Yamamoto | Jul 1992 | A |
5247129 | Nozaki et al. | Sep 1993 | A |
5714702 | Ishii | Feb 1998 | A |
7851690 | Stahnke | Dec 2010 | B1 |
20050235808 | Ishii et al. | Oct 2005 | A1 |
20060156905 | Sant | Jul 2006 | A1 |
20090235803 | Iwamoto et al. | Sep 2009 | A1 |
20090314156 | Komatsu | Dec 2009 | A1 |
20110185876 | Fujiwara et al. | Aug 2011 | A1 |
20130061733 | Ohnishi et al. | Mar 2013 | A1 |
20130180376 | Matsuo et al. | Jul 2013 | A1 |
20130180377 | Oba et al. | Jul 2013 | A1 |
20140305285 | Oba et al. | Oct 2014 | A1 |
20140305286 | Fujiwara et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1837853 | Sep 2007 | EP |
2993424 | Dec 1999 | JP |
2007256360 | Oct 2007 | JP |
2009230001 | Oct 2009 | JP |
Entry |
---|
Korean Office Action cited in Korean counterpart application No. KR10-2013-5208, dated Mar. 4, 2014. English translation provided. |
Extended European Search Report dated Jun. 26, 2014, issued in corresponding European Patent Application No. 13012002.5. |
Number | Date | Country | |
---|---|---|---|
20130180377 A1 | Jul 2013 | US |