The present application is a non-provisional application of U.S. Provisional Application No. 62/586,365, filed Nov. 15, 2017.
The present invention relates to a musical instrument and, more particularly to a musical instrument having a carbon fiber body joined with a wooden core.
Musical instruments have been in the art for many years and are typically formed of wood. The clarinet, for example, is a musical-instrument family belonging to the group known as the woodwind instruments. As illustrated in
Thus, a continuing need exists for a musical instrument having a body portion formed of a material that addresses the issue of warpage and, in doing so, increases the strength, durability and musical/tonal characteristics of the instrument.
This disclosure is directed to a musical instrument having a carbon fiber body joined with a wooden core. Specifically, the musical instrument includes a body portion having carbon fiber wrapped around and adhered to a wooden core. The wooden core includes a bore therethrough to define a flow path through which air travels in the musical instrument through the body portion. Additionally, a plurality of tone holes are formed through the carbon fiber and wooden core and into the bore.
In another aspect, the body portion includes at least two tenons, each tenon having a wooden core inner diameter and a carbon fiber outer diameter.
In yet another aspect, both a mouthpiece and bell affixed with the tenons.
In another aspect, this disclosure is directed to a method for forming a musical instrument. The method includes several acts, including forming a body portion such that the body portion includes carbon fiber wrapped around and adhered to a wooden core, wherein the wooden core includes a bore therethrough and a plurality of tone holes formed through the carbon fiber and wooden core and into the bore.
Additionally, forming the body portion further comprises acts of adhering a carbon fiber sheet to the wooden core; and forming the one or more tone holes through the carbon fiber sheet and wooden core.
In yet another aspect, adhering the carbon fiber sheet to the wooden core further comprises acts of:
In yet another aspect, the method further comprises acts of:
In another aspect, in turning down the outer diameter of the wooden blank to form the wooden core, an outer surface of the wooden core includes smooth flat rings wrapping around the wooden core, with a low helix thread formed between the smooth flat rings.
Further, the carbon fiber sheet is maintained under tension by feeding the carbon fiber sheet up a ramp toward the wooden core while a free end of the carbon fiber sheet is affixed with a weight block.
In another aspect, the method includes an act of applying hot air to the adhesive and carbon fiber sheet when wrapping the carbon fiber sheet around the wooden core.
Additionally, the securement layer is wax paper, with the wax paper being secured around the carbon fiber wrapped body using a helix of tape.
Finally, as can be appreciated by one in the art, the present invention also comprises a musical instrument formed according to the process as described herein.
The objects, features and advantages of the present invention will be apparent from the following detailed descriptions of the various aspects of the invention in conjunction with reference to the following drawings, where:
The present invention relates to a musical instrument and, more particularly to a musical instrument having a carbon fiber body joined with a wooden core. The following description is presented to enable one of ordinary skill in the art to make and use the invention and to incorporate it in the context of particular applications. Various modifications, as well as a variety of uses in different applications will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of embodiments. Thus, the present invention is not intended to be limited to the embodiments presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
In the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without necessarily being limited to these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.
The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All the features disclosed in this specification, (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is only one example of a generic series of equivalent or similar features.
Furthermore, any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6. In particular, the use of “step of” or “act of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. 112, Paragraph 6.
Please note, if used, the labels left, right, front, back, top, bottom, forward, reverse, clockwise and counter clockwise have been used for convenience purposes only and are not intended to imply any particular fixed direction. Instead, they are used to reflect relative locations and/or directions between various portions of an object.
(1) Description
As noted above and as depicted in
Thus, this disclosure provides the first instrument and process of its kind that fuses a carbon fiber body 204 or synthetic materials to a wooden core 206, including the wooden tone holes, which are integral to the body of the wooden instrument. The invention of disclosure has applications outside of just clarinet and clarinet accessories, such as wooden flutes and piccolos, bassoons, oboes and English horns, all of which suffer from the variability of wood, which is neither reliable now or stable post manufacturing.
As noted above, the present invention relates to a wooden musical instrument that is fused with carbon fiber and a method for forming such an instrument. While one method for forming such an instrument is provided below, it should be understood that the invention is not intended to be limited thereto as there may be other methods that arrive at that instrument having a carbon fiber body joined to a wooden core. Further, additional or less steps may be performed (and in other ordering if appropriate) to form the instrument and/or body portion. Thus, specific details regarding one non-limiting example of forming the body portion (i.e., the carbon fiber body joined with the wooden core) are provided below.
As shown in
The cured wooden blank is then held by its internal diameters on a lathe machine and turned down to size. A CNC lathe is desirably used for accuracy. The outer diameters of the wooden blank are then turned down to accommodate the carbon fiber wrapping process and form the resulting wooden core 206. Two important features of the wooden core 206 are the smooth flat rings 304 machined in at opposing ends and a captive low helix thread 306 that is aggressively machined in between them. This allows better glue adhesion for the carbon fiber to the wood.
As shown in
Through use of the lathe 500, one or more carbon fiber sheets can be easily applied and wrapped tightly around the wooden core 206. The carbon fiber sheets can be applied to the wooden core 206 using any suitable method or technique. As a non-limiting example and as shown in
A custom cut carbon fiber sheet 602 is placed on the feeder 600 with one end being attached to the wooden core 206 with a suitable adhesive (e.g., a mildly acidic epoxy glue). This set up is now ready for the carbon fiber wrapping process.
In the wrapping process, the lathe 500 is turned on at a predetermined speed (e.g., low RPM) to start feeding the carbon fiber sheet 602 onto the wooden core 206 at a controlled rate. From this point there is an application of more epoxy followed by a controlled hot air blast which is continued until the sheet has been fully wrapped. Epoxy is applied 604 as needed to the rotating wood body, followed repeatedly by a controlled blast of hot air from an air dryer 606 (e.g., hot air blower such as a hair blow dryer, etc.) until the sheet 602 has been fully wrapped. In various aspects, the epoxy is applied 604 liberally and at the discretion of the operator.
During the entire wrapping process, tension is continuously applied on the carbon fiber sheet 602 to prevent the occurrence of any air pockets in the carbon fiber body. This can be easily achieved by clamping 608 the free end of the carbon fiber sheet 602 between two appropriate size weight blocks 610 (e.g., wooden blocks). The weight of these blocks 610 on the ramp ensures smooth and straight feeding of the carbon fiber sheet 602.
As shown in
Once cured, the wax paper and mandrel are removed (e.g., removed with a hammer, etc.). If desired and as shown in
After the tube is made concentric and as shown in
The outer diameter surfaces of the tenons 900 are then reinforced with cyanoacrylate (CA) glue (or any other suitable material) and the item is machined again. For example, the part is transferred to another lathe where the outer body diameter shape (of the main body or barrel) is turned down to the appropriate diameter for the next CA glue process.
As shown in
As shown in
The outer diameter is then desirably coated to have an external shell coating. For example, the outer diameter is coated in CA glue or other suitable material and once cured is machined to final size. The outer diameter is then polished to a desired gloss.
As shown in
Once cured and as shown in
For further understanding,
Finally, while this invention has been described in terms of several embodiments, one of ordinary skill in the art will readily recognize that the invention may have other applications in other environments. It should be noted that many embodiments and implementations are possible. Further, the following claims are in no way intended to limit the scope of the present invention to the specific embodiments described above. In addition, any recitation of “means for” is intended to evoke a means-plus-function reading of an element and a claim, whereas, any elements that do not specifically use the recitation “means for”, are not intended to be read as means-plus-function elements, even if the claim otherwise includes the word “means”. Further, while particular method steps have been recited in a particular order, the method steps may occur in any desired order and fall within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2301184 | Arnold | Nov 1942 | A |
20030070530 | McAleenan | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
62586365 | Nov 2017 | US |