The field of the disclosure relates generally to cavities in musical instrument bodies for transducers or pickup units. When placed in the cavities, these transducers convert the vibration of the strings of electrical musical instruments into a measurable voltage. More particularly, the disclosure relates to one or more cavities in an electric stringed musical instrument capable of accommodating various transducers, wherein the one or more cavities has a particular depth within a housing attached to an electric stringed musical instrument body or a particular depth directly in the electric stringed musical instrument body.
Electromagnetic pickup devices are used in conjunction with electric stringed musical instruments such as electric guitars and basses to convert the vibrations resulting from the movement or “picking” of the strings into electrical signals, for subsequent transmission to amplification devices to produce a desired sound. The pickup is generally positioned under the strings of the instrument on the base surface and the signal transmitted by an electromagnetic pickup is dependent upon the motions of each string.
Pickup devices are commonly fit into cavities within housings that are attached to the musical instrument body or directly into cavities within the body of the musical instrument. In the past, the depth of these cavities was determined by how much depth was needed to adjust particular components of the pickup up or down. For example, the pickup cavity in a Les Paul electric guitar is approximately ⅞th inch. However, conventional wisdom holds that the shallower the pickup cavity, the better the tone because of a reduction in the amount of material removed from the cavity.
The most essential components of a pickup are a permanent magnet and a coil of wire. There are several types of pickups with varying coil configurations known in the art. One type of electromagnetic pickup device is a single coil pickup. In a single coil pickup, a single coil portion has a plurality of magnetic pole pieces, with each pole piece associated with a string of the instrument. The pole pieces lie in a place spaced from the common plane of the strings, with each string disposed in a play extending through a space between two adjacent pole pieces, so that a given string at rest is located above and between two adjacent pole pieces. Another type of pickup is a dual coil pickup or a humbucking pickup. In a humbucking pickup, two coils are associated or connected in a manner so as to reduce hum. Dual Coil pickups may also have pole pieces.
There is significant value in a cavity design for a pickup which allows for the least amount of material to be removed from cavity while still allowing the pickup to work for its intended purpose. In many cases, it is also valuable for the cavity design to allow the pickup to be placed on the musical instrument body in an esthetically pleasing manner.
In one aspect, the present disclosure is directed toward a pickup unit cavity wherein the cavity has a bottom, at least one side, and at least one aperture in the cavity bottom, wherein the depth of the aperture allows for adjustment of a pole piece of a pickup unit. In certain embodiments, the cavity is directly in the body of an electric stringed musical instrument. In other embodiments, the cavity is in a housing which is then connected with the body of a stringed musical instrument. In embodiments utilizing a housing, the housing may be placed in a void such as a standard pickup cavity in the electrical stringed musical instrument body.
In certain aspects, the depth of the pickup unit cavity from the opening of the cavity to the bottom, as well as the depth of the apertures in the cavity bottoms are about ½ inch.
Consistent with yet a further aspect of the disclosure, a guitar with a disclosed pickup unit cavity is claimed.
Before describing the exemplary embodiments in detail, it is to be understood that the embodiments are not limited to particular apparatuses or methods, as the apparatuses and methods can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which an embodiment pertains. Many methods and materials similar, modified, or equivalent to those described herein can be used in the practice of the current embodiments without undue experimentation.
As used in this specification and the appended claims, the singular forms “a”, “an” and “the” can include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a component” can include a combination of two or more components.
Pickup, pickup unit and transducer are used interchangeably throughout this disclosure.
Exemplary embodiments of the pickup cavity will now be explained with reference to the figures. This description is provided in order to assist in the understanding of the invention and is not intended to limit the scope of the invention to the embodiments shown in the figures or described below.
The angle of cavity 106 in respect to the plane 109 of the strings 103 of the musical instrument can vary. In many embodiments, length 113 cavity 106 will generally be perpendicular to plane 109. In other embodiments, the cavity 106 will be at an angle that is not perpendicular to plane 109 of strings 103.
In most embodiments, cavity 106 is designed to accommodate a pickup unit with at least one permanent magnet, and a coil. The pickup unit will commonly have pole pieces. In certain embodiments, the pole pieces are the permanent magnet, whereas in other embodiments, the pole pieces are magnatizeable material in contact with the permanent magnet. Generally, any type of pickup unit containing a permanent magnet and a coil is contemplated for use in cavity 106. Cavity 106 may be further designed to accommodate different types, as well as numbers and shapes of magnets.
Although cavity 106 may be designed for pickup units without pole pieces, exemplary cavities designed for pickup units with pole pieces are particularly useful, such as the cavities shown in
The general shape (versus the depth or apertures) of cavity 106 is not limiting. As demonstrated best in the illustrative embodiment of
In certain embodiments, a housing containing cavity 106 is the shape of a block. This block can be placed into a pickup unit cavity using any method known in the art. In many embodiments, the pickup unit cavity will be a standard pickup unit cavity. The resulting depth of the pickup unit cavity is reduced by the block while apertures 114 in the block still allow for adjustment of a pickup unit. Similarly to disclosed cavities 106 directly in body 102, the shape versus depth of cavities having housings with apertures 114 is not limiting and may be any shape known in the art.
The number of apertures 114 is not meant to be limiting. In many embodiments, the number of apertures 114 will be equal to the number of pole pieces of the desired pickup unit plus connector apertures 122 for assisting in attachment of the pickup unit to the musical instrument body. Connector apertures 122 are commonly shallower than apertures 114, which accept the pole pieces. In most embodiments, connector apertures 122 will be sized to accept connectors such as screws. In some embodiments, connector apertures 122 have a depth capable of allowing adjustment of the entire pickup unit. In exemplary embodiments, such as those demonstrated in
The position of apertures 114 may also vary. In many embodiments, all of apertures 114 will be linear in relation to each other. In other embodiments, some of apertures 114 will be linear in relation to each other while other of apertures 114 will be in different configurations.
In musical instruments having more than a single pickup unit cavity 106, depth 116 and depth 118 may be either the same or different in different cavities 106. For example, in a musical instrument having two cavities 106, the first cavity may have a depth 116 of ½ inch, whereas the second cavity may have a depth 116 of ¾ inch. In these cavities, aperture depth 118 may also be the same or different.
In many embodiments, apertures 114 are generally the same shape as the pole piece such that the pole piece is surrounded by the body 102 of musical instrument 100 when a pickup unit is placed in cavity 106. In these embodiments, aperture 114 is slightly larger than the size of the pole piece of the pickup unit. In other embodiments, such as those demonstrated by
Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Exemplary embodiments may be implemented as a method, apparatus, or article of manufacture. The word “exemplary” is used herein to mean serving as an example, instance, or illustration.
From the above discussion, one skilled in the art can ascertain the essential characteristics of the invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the embodiments to adapt to various uses and conditions. Thus, various modifications of the embodiments, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
This Application claims priority to U.S. Provisional Patent Application Ser. No. 61/588,182, filed Jan. 19, 2012, and PCT Application No. PCT/US13/22333, filed Jan. 20, 2013, both of which are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/022333 | 1/20/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/110012 | 7/25/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3236930 | Fender | Feb 1966 | A |
4535668 | Schaller | Aug 1985 | A |
4869144 | Lieber | Sep 1989 | A |
6255567 | Minakuchi | Jul 2001 | B1 |
7002065 | Petersen | Feb 2006 | B2 |
7145063 | Redard | Dec 2006 | B2 |
8829318 | DeLaFrance | Sep 2014 | B1 |
20050211052 | Gigliotti | Sep 2005 | A1 |
20090249946 | Hunter | Oct 2009 | A1 |
20100031807 | Fiocco | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
2006-251244 | Sep 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20140373703 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61588182 | Jan 2012 | US |