1. Field of the Invention
This invention relates to musical tone control apparatuses using piezoelectric sensors and sensing devices having pressure sensibility used for electronic musical instruments.
This application is based on Patent Application No. Hei 10-184437 and Patent Application No. Hei 10-217146 both filed in Japan, the contents of which are incorporated herein by reference.
2. Description of the Related Art
Conventionally, there are provided a variety of technologies for musical tone controls using pressure sensitivity. For example, the paper of U.S. Pat. No. 4,043,241 (which corresponds to Japanese Patent Publication No. Sho 54-19338) discloses a musical shoe, i.e., a shoe-type musical instrument that generates musical tones in response to motion of a foot or leg of a human operator (or performer). Herein, electronic circuits and a speaker are stored inside of a case body having a ship-like shape. In addition, multiple switches are arranged on a lower side surface of the case in connection with names of musical tones respectively. The performer puts the case body on his or her foot. So, the performer is capable of playing melody sounds by turning on the switches with his or her foot steps.
The aforementioned shoe-type musical instrument is conventionally designed to have a capability of merely changing over the names of the musical tones to be produced. There is provided another conventional technology which performs musical tone controls in response to foot motions, which is designed for the system of electronic musical instruments which are generally capable of performing the musical tone controls with respect to multiple music elements such as tone volumes and tone colors. For example, the paper of U.S. Pat. No. 5,714,706 (which corresponds to Japanese Patent Application, Publication No. Hei 9-68973) discloses a musical tone control apparatus using a foot sensor of a shoe insole type, which is equipped with piezoelectric sensors. Herein, the musical tone control apparatus controls musical tones by detecting pressures that a performer applies to the piezoelectric sensors with a toe and a heel respectively.
In addition, some musical tone control apparatuses are designed like percussion instruments by employing pad units that are beaten by sticks or else. Herein, the pad unit is constructed using a sensing unit which is coupled to a pad skin to be beaten and which has a sensitivity in sensing beats applied to the pad skin. So, the musical tone control apparatus generates musical tone control signals in response to outputs of the sensing unit. For example, the paper of Japanese Patent Application, Publication No. Hei 9-297576 discloses an electronic drum device which is an example of the aforementioned musical tone control apparatus. In addition, the paper of Japanese Patent Application, Publication No. Hei 6-175651 discloses an electronic drum, wherein a piezoelectric sensor is securely attached to a pad plate that is fit into a pad rubber (i.e., pad skin). Herein, the pad plate is connected together with a base plate at the periphery thereof by means of cushion members. Thus, the piezoelectric sensor detects vibrations of the pad plate which vibrates when the pad rubber is beaten.
By the way, the conventional musical tone control apparatus of the shoe type employs a sensor unit which is shown in
A piezoelectric sensor “a” is securely attached to a displacement disc face plate “b”, which is arranged to face with a reference disc face plate “c” via a spacer “d”. Herein, the reference disc face plate c is brought into contact with a contact surface of a shoe that a sole of a foot of a person comes in contact with. The spacer d is formed with regard to a part of an area by which the displacement disc face plate b faces with the reference disc face plate c. That is, the sensor unit has a structure in which the displacement disc face plate b is subjected to cantilever support. For this reason, the sensor unit has specificity in a direction that external force is applied. In a situation where force is selectively applied to the spacer d, a dead zone (or insensitive area) occurs around the spacer d. Therefore, an output level of the sensor unit differs in response to a direction and a position to step a foot, regardless of an amount of force to step a foot. Namely, the conventional musical tone control apparatus of the shoe type has somewhat a peculiarity in sensing the pressure that the performer's foot applies to the sensor unit.
In addition, the conventional musical tone control apparatus employs an insole-type foot sensor, so it suffers from a problem as follows:
Suppose a situation that the performer steps his or her foot constantly to operate the foot sensor at a portion where the performer intends to touch with a sole of the foot. In such a situation, however, a position of a toe and a position of a heel are slightly shifted from intended positions on the piezoelectric sensor in response to an angle and a direction to step the foot. For this reason, the conventional apparatus must perform “unintended” musical tone control. In other words, the conventional apparatus lacks fidelity as an input device (or input interface) of the foot motion.
It is an object of the invention to provide a sensing device for an electronic musical instrument that is capable of constantly producing a same output in response to an amount of force applied thereto, regardless of a direction to apply the force from the external.
It is another object of the invention to provide a musical tone control apparatus of a shoe type, which has a high fidelity as an input interface for inputting foot pressure.
It is a further object of the invention to provide a musical tone control apparatus of a percussion instrument type which is capable of producing a same sensor output in response to same beat force applied to a pad skin surface, regardless of directions of applying the beat force.
It is a still further object of the invention to provide a musical tone control apparatus of a percussion instrument type which is capable of providing visual information in response to a manner to beat a pad skin surface.
According to a first aspect of the invention, there is provided a sensing device for an electronic musical instrument, which is constructed by a sensor case containing a piezoelectric sensor, a sensor fixing member, a disc plate pressure member and an annular elastic member.
The sensor case made of ABS resin is attached to a bottom surface of a footwear, e.g., a sole of a shoe. The sensor fixing member is securely mounted on the disc plate pressure member in such a way that a center part of the sensor fixing member securely engages with a center part of the disc plate pressure member. Herein, both of the sensor fixing member and disc plate pressure member are formed in thin-disc-like shapes made of stainless steel having springiness. The piezoelectric sensor is securely mounted on the sensor fixing member so as to have a sensitivity responsive to pressure, which is applied to a bottom surface of the disc plate pressure member from the external and which is transmitted thereto via the disc plate pressure member and the sensor fixing member. The annular elastic member elastically supports the sensor fixing member within the sensor case.
The sensor fixing member has elastic deformability so that the sensor fixing member is located to face with the disc plate pressure member with an air gap in which the sensor fixing member is capable of deforming within a limit of elasticity thereof. Thus, the electronic musical instrument performs musical tone control in response to an output of the piezoelectric sensor which responds to a foot motion applied to the footwear.
Incidentally, a cover made of stainless steel and a damp cover made of rubber are attached to a bottom surface of the sensor case.
According to a second aspect of the invention, there is provided a shoe-type musical tone control apparatus which is put on a footwear such as a shoe.
The shoe-type musical tone control apparatus is constructed using at least one sensing unit, which is designed like the aforementioned sensing device. Herein, the sensing unit containing a piezoelectric sensor is put into an opening hole of a surface layer member, which is attached to a toe portion or heel portion of the sole of the shoe. Thus, it is possible to perform musical tone control in response to foot motion (such as step motion) which is applied to the shoe and is detected by the sensing unit. Incidentally, it is possible to further provide a pendulum-type sensor which is attached to an instep portion of the shoe to detect vibrations applied thereto in response to the foot motion of the shoe.
According to a third aspect of the invention, there is provided a musical tone control apparatus of a percussion instrument, which is basically constructed using a pad unit stored in a pad storage portion of an upper case made of ABS resin. Herein, the pad unit is constructed by a pad skin unit made of rubber material and a sensing unit, which are assembled together. The pad skin unit has a beat surface to be beaten, while the sensing unit contains a piezoelectric sensor, which is attached to an assembly of a sensor fixing member and a radial pressure member both of which are formed in circular-disc-like shapes made of stainless steel, for example. A center part of the sensor fixing member having elasticity in deformation is securely fixed to a center part of the radial pressure member, while the piezoelectric sensor is attached approximately to a center of a back of the sensor fixing member. Thus, when a beat is applied to the beat surface of the pad skin unit so that corresponding pressure is transmitted to the piezoelectric sensor via the radial pressure member and sensor fixing member, the sensing unit produces a signal in response to beat force, by which a musical tone control is performed with respect to tone volume, for example.
In addition, switches are arranged in connection with an outer periphery of the pad storage portion corresponding to a hollow formed at a prescribed position of the upper case. By detecting on/off states of the switches, a musical tone control is performed with respect to tone color, for example.
Further, light emitters are arranged on a periphery of the beat surface of the pad skin unit. Herein, each of the light emitters is constructed using a LED, luminance of which is controlled in response to switches which are located in connection with the outer periphery of the pad storage portion. Thus, it is possible to provide visual information using the light emitters, each of which is righted when a beat is applied to its surrounding area.
These and other objects, aspects and embodiments of the present invention will be described in more detail with reference to the following drawing figures, of which:
This invention will be described in further detail by way of examples with reference to the accompanying drawings.
[A] Embodiment 1
As shown in
Three tapped holes each designated by a same reference symbol of “112a” are formed at three positions of the sensor support portion 112 to fix a sensor fixing member 112, which will be described later. In addition, three tapped holes each designated by a same reference symbol of “112b” are formed at three positions of the sensor support portion 112 to fix the sensor case 11 to the aforementioned floor facing portion 10 (e.g., a sole of the shoe). A rim 112c is formed as an periphery edge portion of the sensor support portion 112. So, the sensor fixing member 12 is located to engage with an inside of the rim 112c.
As shown in
The sensor fixing member 12 and the disc plate pressure member 13 are assembled together and securely fixed to each other, as follows:
The swelling portion 132 of the disc plate pressure member 13 is brought into contact with the sensor fixing member 12. Herein, the positioning projection 122 engages with the positioning hole 133. Then, spot welding is effected with respect to the swelling portion 132 at three positions (shown by circles of dashed lines in
Next, a description will be given with respect to procedures to assemble parts of the sensing device described above. At first, the sensor fixing member 12 and the disc plate pressure member 13 are put together in such a way that the screw holes 121 conform with the through holes 131 in positions. Then, spot welding is effected with respect to the sensor fixing member 12 and the disc plate pressure member 13 which are placed to face with each other, so that those members are securely fixed to each other. In addition, a metal surface of the piezoelectric sensor 14 is adhered to the sensor fixing member 12. Thus, it is possible to manufacture an assembly consisting of the piezoelectric sensor 14, the sensor fixing member 12 and the disc plate pressure member 13. Then, a lead (or wire) 141 of the piezoelectric sensor 14 is extended and secured from the assembly. An annular elastic member 15, which is made of urethane rubber, is adhered to periphery of the disc plate pressure member 13 by use of a both-sides adhesive tape, for example. Herein, the annular elastic member 15 are adhered to one side of the disc plate pressure member 13 which meets the sensor fixing member 12. Incidentally, a part of the annular elastic member 15 which matches with location of the lead 141 is arranged between the lead 141 and the disc plate pressure member 13. Next, the positioning is made with respect to the disc plate pressure member 13 and the cover 17 in such a way that the through holes 131 conform with the through holes 171 in positions. Under such positioning, the cover 17 is adhered to the disc plate pressure member 13 by use of a both-sides adhesive tape, for example, in such a way that the disc plate pressure member 13 is covered with the cover 17. The sensor fixing member 12 is placed to engage with the inside of the rim 112c of the sensor support portion 112 of the sensor case 11. In addition, the screws 16 (see
As described above, it is possible to manufacture the sensing device which is constructed by assembling the sensor case 11, sensor fixing member 12, disc plate pressure member 13, piezoelectric sensor 14, annular elastic member 15 and cover 17. Such sensing device is attached to aforementioned the floor facing portion 10 (e.g., sole of the shoe). It is possible to propose a variety of methods for attaching the sensing device to the floor facing portion 10. According to the embodiment of this invention, details of which will be described later, there are provided two methods as follows:
As described above, the piezoelectric sensor 14 is fixed to the sensor fixing member 12, which has a capability of elastic deformation with respect to the sensor case 11 fixed to the floor facing portion 10. Both of the disc plate pressure member 13 and the sensor fixing member 12 are formed in disc-like shapes and in radial patterns, wherein their center parts are securely fixed to each other. Due to the swelling portion 132 of the disc plate pressure member 13, the disc plate pressure member 13 and the sensor fixing member 12 are placed to face with each other with a gap (or air gap) “S”, in which a peripheral portion 13A of the disc plate pressure member 13 and a peripheral portion 12A of the sensor fixing member 12 can be deformed within a range of the capability of elastic deformation of the sensor fixing member 12.
The sensing device is capable of performing the aforementioned operations similarly in response to the external force which is applied to any part of the periphery of the cover 17. In other words, even if the external force is applied to any part of the periphery of the cover 17, the same pressure is applied to the center area of the sensor fixing member 12. So, the sensing device is capable of outputting a same amount of piezoelectricity as long as a same amount of external force is applied to the peripheral part of the cover 17, regardless of positions at which the external force is applied.
The aforementioned sensing device of the present embodiment is attached to the floor facing portion 10 of the shoe, for example. So, when a human operator steps his or her foot lightly with a tap on the floor so as to input foot motion (due to external force) to the sensing device, deformation of the sensing device progresses from the state of
For example, the electronic musical instrument detects an envelope of the output signal of the piezoelectric sensor 14. From such an envelope, it detects a trigger signal and/or a level signal to perform musical tone generation control.
According to the present embodiment, both of the disc plate pressure member 13 and the sensor fixing member 12 are formed in radial patterns (e.g., disc-like shapes), wherein both of them are securely fixed to each other at the center parts thereof. For this reason, the external force applied to any part of the cover 17 (and the disc plate pressure member 13) is normally transmitted from the center area of the disc plate pressure member 13 to the center area of the sensor fixing member 12. Thus, the sensor fixing member 12 deforms about the center area thereof together with the piezoelectric sensor 14. Therefore, the piezoelectric sensor 14 is capable of outputting a same signal in response to a same amount of external force which is applied to any part of the cover 17. Thus, it is possible to secure a same manner of musical tone control in response to a same manner of operation applied to the sensing device. Namely, the present embodiment offers the sensing device for the electronic musical instrument with good performability and without specific peculiarity.
Incidentally, the annular elastic member 15 is narrowly held between the flange portion 113 of the sensor case 11 and the peripheral end portion 13A of the disc plate pressure member 13. Thus, it is possible to avoid an event that dust and foreign matter enters into the gap S between the disc plate pressure member 13 and the sensor fixing member 12. In addition, during the elastic deformation of the annular elastic member 15, a part of the annular elastic member 15 which is located in connection with the lead extension groove 14 are stuck to the lead 141 of the piezoelectric sensor 14 to fix the lead 141 in position. So, it is possible to avoid movement of the lead 141.
In the present embodiment, both of the sensor fixing member 12 and the disc plate pressure member 13 are formed to have circular shapes respectively. However, the shapes of those members are not limited to such circular shapes. In other words, the present embodiment requires the members to have any shapes which are symmetric with respect to rotation. For example, it is possible to employ other shapes such as the triangle shape, square shape, polygon shape, circle shape, Y-letter shape and star shape.
The present embodiment is designed such that pressure is applied to the sensor fixing member 12 having the disc-like shape by means of the disc plate pressure member 13. However, it is possible to modify the present embodiment of
[B] Embodiment 2
Next, a description will be given with respect to shoe-type musical tone control apparatuses in accordance with embodiment 2 of the invention. Herein, the shoe-type musical tone control apparatus is designed to be attached to a footwear like a shoe.
Each of the sensing units 21 and 22 corresponds to the foregoing sensing device for the electronic musical instrument. Herein, a vibration input is applied to the sensing units 21 and 22 in any directions except attaching directions regarding attaching surfaces 21A and 21B. So, a piezoelectric sensor is arranged at a center part of a radial pressure member of the sensing unit in such a way that the sensing unit has a sensitivity to respond to level of the vibration input even if the vibration input is applied to the sensing unit in any directions except the attaching directions. Herein, the piezoelectric sensor is arranged in a somewhat floated state by using elastic body with respect to the shoe 100. Incidentally, the aforementioned radial pressure member corresponds to the disc plate pressure member 13 and the sensor fixing member 12, while the piezoelectric sensor contained in the sensing unit corresponds to the aforementioned piezoelectric sensor 14. Due to the sensor fixing member 12 and the annular elastic member 15 which act as a role of the elastic body, the piezoelectric sensor 14 is arranged in a floated state with respect to the shoe 100.
In
A lead cover 51 covering leads 21a and 22a of the sensing units 21 and 22 is attached to a waist portion of the floor facing portion 10 of the shoe 100 which corresponds to an arch of the foot. The lead cover 51 has roughly a same height of the foregoing surface layer portions 31 and 32. The lead cover 51 is made of flexible material and is equipped with a connector member 51, which is folded vertically along a side face of the shoe 100.
A concave 51b is formed through a part of the lead cover 51 near the floor facing portion 10. The concave 51b communicates with the surface layer members 31 and 32 as well as the connector member 51a. The concave 51b stores the leads 21a, 22a of the sensing units 21, 22. A frame 31c is formed to communicate with the surface layer member 31 located at the toe portion of the shoe 100. In the frame 31c, the lead 21a of the sensing unit 21 extends toward the lead cover 51. One end of the frame 31c engages with an opening of the concave 51b of the lead cover 51.
When attaching the surface layer member 31 and the lead cover 51 to the floor facing portion 10, they can be slid mutually in directions shown by arrows in
As described above, the sensing units 21 and 22 having circular shapes are securely fixed to the floor facing portion 10 of the shoe 100. If any parts of the sensing units 21, 22 (and/or damp covers 41, 42), which are centers, peripheral ends or else of the circular shapes, are brought into contact with the floor, each of the sensing units 21, 22 is capable of providing a same output in response to a same amount of force (or pressure) applied thereto. Therefore, the shoe-type musical tone control apparatus as a whole is capable of acting as an input interface having a high fidelity.
The shoe-type musical tone control apparatus shown in
The toe portion of the shoe 100 is slip into the slip-on portion 71. Then, bands 72 and 73 are respectively put on a lower surface and a backside of the heel portion of the shoe 100, while a band 74 is put on an instep of the shoe 100. Thus, it is possible to equip the shoe 100 with the sensing units 21, 22 by means of the shoe attachment. Incidentally, the slip-on portion 71 and the bands 72, 73, 74 are made of artificial leather or thick cloth. They are interconnected together using a band metal part 75 and a band 76.
The sensing unit 21 located at the toe portion of the shoe 100 is attached to a lower surface of the slip-on portion 71. A bottom band 72a is attached to the band 72 located at the lower surface of the heel portion of the shoe 100. Herein, the bottom band 72a, which extends in a direction toward the backside of the heel portion, is made of artificial leather or thick cloth. A back end portion of the bottom band 72a is fixed to a L-shaped metal part 78, which is attached to the band 73 located at the backside of the heel portion. The band 72 is securely fixed to the foregoing bottom plate 77 by screws to locate the sensing unit 22. The leads 21a, 22a of the sensing units 21, 22 extend to a connector member 79 attached to the band metal part 75. So, the leads 21a, 22a are connected to a connector 61a of the connector member 79, which is connected with the cord 61.
The pendulum-type sensor 82 is constructed as follows:
In a case 82a, a spring 82b is subjected to cantilever support. A deadweight 82c is attached to a free end of the spring 82b. In addition, a piezoelectric sensor 82d is attached to an upper surface of the case 82a. Further, a sponge 82e is arranged under the deadweight 82c.
When vibrations are applied to the pendulum-type sensor 82, the deadweight 82c moves up and down to beat the upper surface of the case 82a. So, impacts are applied to the case 82 and are detected by the piezoelectric sensor 82d. Thus, the piezoelectric sensor 82d outputs signals onto a lead 82f in response to the vibrations (or impacts). Thus, it is possible to obtain signals in response to step motions of the toe portion of the shoe 100.
Incidentally, the second and third examples are designed such that the sensing units (or sensing unit and pendulum-type sensor) are freely and detachably attached to the shoe. Herein, at a performance operation mode, the sensing units are securely fixed to the shoe, so those examples are capable of acting as an input interface having a high fidelity to the pressure.
[C] Embodiment 3
The musical tone control apparatus of
In the description of the embodiment 3, the pad unit 220 is exclusively used to explain construction and operation of the musical tone control apparatus of the percussion instrument type. Incidentally, all of the pad units 220 and 220′ can be constructed in a same manner, or they are actualized by combination of multiple pad constructions which will be described later.
The upper case 210 is made of ABS resin, wherein a pad storage portion 201 is formed to store a pad unit 220. Herein, the pad storage portion 201 corresponds to a hollow which has a circular shape and whose depth is shallow. In the pad storage portion 201, there are formed a sensor positioning portion 211, an annular projection portion 212 and a annular flat plane portion 213. Herein, the sensor positioning portion 211 is formed as a center area of the pad storage portion 201 to have a thin-disc-like shape. The annular projection portion 212 is formed as an outer periphery which annually projects from the sensor positioning portion 211. In addition, the annular flat plane portion 213 extends as an outer periphery of the annular projection portion 212. Three tapped holes 214 are respectively formed at three positions between the sensor positioning portion 211 and the annular projection portion 212. Thus, a sensor fixing member 231 is fixed inside of the pad storage portion 201 by screws put into the tapped holes 214. Further, an opening hole 215 is formed at a selected position of the sensor positioning portion 211 to extend a lead 233a of a piezoelectric sensor 233.
As shown in
The pad skin unit 202 is made of elastic material such as rubber. The pad skin unit 202 is formed approximately like a disc-like shape having a beat surface 221 to be beaten. The beat surface 221 is formed to be slightly swelled upwardly about a center area thereof. At a periphery end portion of the pad skin unit 202, an annular rim 222 extends in a backside direction. A projecting portion 223 is formed around an overall circumference of an outer periphery of the rim 222, which is shown in
As shown in
The sensor fixing member 231 and the radial pressure member 232 are securely fixed to each other, as follows:
The swelling portion 232c of the radial pressure member 232 is brought into contact with the sensor fixing member 231. The positioning projection 231b is placed to engage with the positioning hole 232d. Then, as shown by the circles of dotted lines in
Next, a description will be given with respect to operations to assemble the pad unit 220.
First, the sensor fixing member 231 and the radial pressure member 232 are operated such that the positions of the screw holes 231a conform with the positions of the through holes 232a. Then, spot welding is effected on the sensor fixing member 231 and the radial pressure member 232 which are placed to face with each other. Thus, those members are assembled together. A metal surface of the piezoelectric sensor 233 is attached to the sensor fixing member 231. Thus, it is possible to manufacture an assembly consisting of the sensor fixing member 231, the radial pressure member 232 and the piezoelectric sensor 233. Thereafter, a lead 233a of the piezoelectric sensor 233 is attached to the above assembly.
Next, the lead 233a is pulled out from the opening hole 215 toward an inside of a main body (not shown). The sensor fixing member 231 is placed to engage with the inside of the annular projection portion 212 of the pad storage portion 201. Then, the three screws 217 are put into the tapped holes 214 of the pad storage portion 201 via the through holes 232a of the radial pressure member 232 and the screw holes 231a of the sensor fixing member 231 respectively. Thus, it is possible to fix the sensor fixing member 231 to the pad storage portion 201. Next, the radial pressure member 232 is covered with the pad skin unit 202 such that the elastic projections 225 of the pad skin unit 202 are placed to conform with the holes 232b of the radial pressure member 232. Then, pressure is applied to the beat surface 221 of the pad skin unit 202, so that the elastic projections 225 are put into the holes 232b respectively under pressure. Thus, as shown in
Incidentally, a number of the aforementioned small projections 224, which are formed at the back of the pad skin unit 202, are provided to actualize functions as follows:
Due to the operation that the elastic projections 225 are put into the holes 232b of the radial pressure member 232 under pressure, the radial pressure member 232 is fixed with the pad skin unit 202. At this time, each of the small projections 224 is normally pressed to be brought into contact with an upper surface of the radial pressure member 232. Due to elasticity of the small projections 224, it is possible to certainly combine the pad skin unit 202 and the radial pressure member 232 together. When the beat surface 221 of the pad skin unit 202 is beaten intensely, the radial pressure member 232 is subjected to small deformation. However, the small projections 224 function to absorb such deformation of the radial pressure member 232. Thus, it is possible to transmit beat force applied to the pad skin unit 202 to the radial pressure member 232 with fidelity.
As described above, the sensing unit 203 is interconnected with the pad skin unit 202 having the beat surface 221, so that the pad unit 220 is constructed. In addition, the sensing unit 203 of the pad unit 220 is put into the pad storage portion 201 of the upper case 210. The sensing unit 203 is constructed such that the piezoelectric sensor 233 is attached to a center in a radial direction of the radial pressure member 233. Herein, the piezoelectric sensor 233 is placed in a somewhat floated state in the pad storage portion 201 of the upper case 210 by means of the sensor fixing member 231. The radial pressure member 232 is securely fixed to the back of the pad skin unit 202 with the peripheral portion 232A thereof.
Incidentally, the pad unit 220 operates as similar to the aforementioned sensing device whose operations are shown in
The sensor fixing member 231 and the radial pressure member 232 are formed in radial circular shapes, whose center parts are fixed with each other. So, beat force applied to the beat surface 221 of the pad skin unit 202 concentrates at the center part of the radial pressure member 232, from which it is transmitted to the center part of the sensor fixing member 231. Thus, the sensor fixing member 231 is subjected to deformation about the center part thereof, so that the piezoelectric sensor 233 is similarly subjected to deformation. Therefore, it is possible to obtain a same output of the piezoelectric sensor 233 in response to a same amount of beat force which is applied to any parts of the beat surface 221 of the pad skin unit 202. In other words, the piezoelectric sensor 233 provides a sensitivity responding to an input level of a vibration input which is applied to the pad unit 220 in any directions except directions regarding the pad storage portion 201, in other words, directions regarding an attaching area at which a back of the pad unit 220 is attached to the pad storage portion 201.
To avoid an error event that a musical tone (e.g., percussion sound) is produced in response to a small output of the piezoelectric sensor 233 corresponding to noise, there is provided a threshold value for the output of the piezoelectric sensor 233. That is, the musical tone is produced when the output of the piezoelectric sensor 233 becomes greater than the threshold value.
In the first example of the musical tone control apparatus described above, both of the rim 222 and the elastic projections 225, which are formed on the back of the pad skin unit 202, function as lower-limit stoppers. However, it is possible to modify the example such that either the rim 222 or the elastic projections 225 function as the stopper(s).
As shown in
As shown in
In the aforementioned example, a single-stage switch is constructed using the movable contact 241 and the fixed contact 242. However, it is possible to modify the example such that double-stage switches are formed like concentric circles, for example.
A flexible plate 206 has a shape suited to the annular flat plane portion 213. So, the flexible plate 206 is arranged on the annular flat plane portion 213 of the pad storage portion 201. In connection with the light emitter 205, first and second fixed contacts 262 and 264 as well as a light source 265 (constructed by a light emitting diode, i.e., LED) are arranged on an upper surface of the flexible plate 206. Brightness (or luminance) of the LED 265 is controlled by a drive circuit (not shown). Thus, the LED 265 is capable of emitting light in a prescribed level of luminance.
Incidentally, it is not necessary to construct the light source 265 by the LED. That is, it is possible to employ an optical fiber, which transmits light from a single light source and eimits it at a position designated by the reference symbol “265”, for example. In this case, such an optical fiber can be commonly used for multiple light emitting portions and/or light emittable portions arranged to surround the pad.
There are provided eight light emitters 205 with respect to the periphery of the pad skin unit 202 such that each light emitter is located under the elastic projection 225. Incidentally, the light emitter 205 is made of specific rubber material having transparency and elasticity, by which light emitted by the LED 265 can transmit through. The light emitter 205 as a whole (except an upper end portion thereof) is shaped like a body of rotation which rotates about a vertical center line passing through a center of a cross section of the light emitter 205. The light emitter 205 is integrally constructed by a light transmission illuminator 251, a light converging portion 252 and legs 253. Herein, the light transmission illuminator 251 has an approximately cylindrical shape, while the light converging portion 252 has a diameter which is greater than a diameter of the light transmission illuminator 251. The legs 253 extend downwardly from the lower peripheral end of the light converging portion 252. The light emitter 205 is attached to the pad skin unit 202 by the adhesive such that the light transmission illuminator 251 penetrates through a hole 232e of the radial pressure member 232 and a hole 202e of the pad skin unit 202.
A concave 252a having a reversed-dome-like shape is formed as a lower surface of the light converging portion 252. So, a hollow portion 252b is formed between the concave 252a and the LED 265. White paint is painted on a lower portion of the concave 252a. Each of the legs 253 is constructed by a first skirt 253a, a second skirt 253b and a third skirt 253c as well as a flange 253d. The light emitter 205 is arranged in such a way that the flanges 253d of the legs 253 are brought into contact with the upper surface of the flexible plate 206 while the fixed contacts 262, 264 and the LED 265 are covered with the light converging portion 252 and the legs 253.
A first movable contact 261 is formed on a back of the leg 253 at a position between the first skirt 253a and the second skirt 253b. So, the first movable contact 261 is arranged to face with the first fixed contact 262. In addition, a second movable contact 263 is formed on a back of the leg 253 at a position between the second skirt 253b and the third skirt 253c. So, the second movable contact 263 is arranged to face with the second fixed contact 264. Thus, a first switch SW1 is constructed by a pair of the first movable contact 261 and the first fixed contact 262, while a second switch SW2 is constructed by a pair of the second movable contact 263 and the second fixed contact 264.
In response to elastic deformation of the skirts 253a, 253b and 253c of the legs 253, the light transmission illuminator 251 and the light converging portion 252 move together with the pad skin unit 202 in a vertical direction in which beat force is applied to the beat surface 221 of the pad skin unit 202. When the beat surface 221 of the pad skin unit 202 is beaten, variations occur on a distance measured between the beat surface 221 of the pad skin unit 202 and the annular flat plane portion 213 of the pad storage portion 201. In other words, variations occur on a distance between the beat surface 221 and the upper case 210 which is fixed in position. Such variations are translated to variations of a distance between the light converging portion 252 and the LED 265. The variations of the distance cause variations of luminance intensity of the light transmission illuminator 251. In response to a “strong” beat applied to the beat surface 221 of the pad skin unit 202, the first movable contact 261 is brought into contact with the first fixed contact 262, so that the first switch SW1 is turned on. In response to a further strong beat, the second movable contact 263 is brought into contact with the fixed contact 264, so that the second switch SW2 is turned on together with the first switch SW1.
A part of the light emitted from the LED 265 is incident on the concave 252a of the light converging portion 252. Such incident light is transmitted to an upper portion of the light transmission illuminator 251, so it is output from an upper end surface 251a of the light transmission illuminator 251. Therefore, a performer can watch points of light which are produced by the light emitters 205 at the eight positions arranged on the periphery of the pad skin unit 202. When the beat surface 221 of the pad skin unit 202 is beaten, the LED 265 as a whole is completely covered with the hollow portion 252b, so the white paints 252c demonstrate reflection effects. Due to such reflection effects, light beams emitted by the LED 65 do not escape into the surrounding air. Thus, it is possible to improve a light convergence efficiency of the light converging portion 252 further more. This is because a solid angle of the light converging portion 252 about the LED 265 becomes large, which increases the beams incoming to the concave 252a from the LED 265. For this reason, as compared with a non-beat condition that the pad skin unit 202 is not beaten, luminance of the upper end surface 251a of the light transmission illuminator 251 becomes high in a beat condition that the pad skin unit 202 is beaten. In response to beat intensities, the luminance of the upper end portion 251a change. Therefore, this example is capable of providing a visual representation of the beat intensities. So, the performer is capable of visually recognizing the beat intensities. According to this example, variations of the luminance are actualized by using only the mechanical system having a simple construction.
Next, a description will be given with respect to a third example of the musical tone control apparatus of the percussion instrument type. Herein, parts identical to the foregoing first and second example will be designated by the same reference symbols, hence, the description thereof will be omitted. The third example is basically constructed similar to the second example of
Tone volume level is controlled in response to an output of the piezoelectric sensor 233 as similar to the aforementioned first and second examples. Incidentally, the third example does not use the switches SW1 and SW2 used by the second example, while the third example is designed such that the LED 265 normally emits light or the LED 265 normally flashes light. So, at a non-beat condition that the beat surface 221 is not beaten, the eight light emitters 205 arranged on the periphery of the pad skin unit 202 normally are lighted dimly. At a beat condition that the beat surface 221 is beaten, the light emitters 205 change in luminance in response to a beat position and beat intensity. This means that the pad skin unit 202 as a whole changes in a display manner in response to a performance manner.
Light intensity of the light emitter 205 changes in response to a distance between a position to arrange the light emitter 205 in connection with the beat surface 221 and the LED 265. That is, the light intensity becomes strong when the distance becomes small, while it becomes weak when the distance becomes large. By the aforementioned radial pressure member 232 and the sensor fixing member 231, a center part of the pad skin unit 202 is securely held with respect to the upper case 210. For this reason, the pad skin unit 202 as a whole may have a tendency that a deviation occurs in horizontal elevation thereof. That is, when one side of the peripheral portion of the pad skin unit. 202 is beaten, it sink in elevation, while another side is raised up slightly.
Incidentally, it is possible to modify the third example of the musical tone control apparatus such that the aforementioned switches SW1 and SW2 are used in addition to the light emitters. In this case, the musical tone control apparatus basically performs a series of four controls. Herein, a tone volume level (or musical tone level), which is one of the basic elements in music, is controlled in response to an output of the piezoelectric sensor 233. In addition, an electric circuit shown in
Now, a series of four controls actualized by a combination of the switches SW1 and SW2 will be described below.
(1) First Control
As described before, there are provided eight pairs of the switches SW1 and SW2 with respect to the pad skin unit 202. Within each pair of the switches SW1 and SW2, when the switch SW1 is turned on, the musical tone control apparatus controls the tone color to be more “bright”. In other words, the apparatus controls the tone color to contain a more number of higher harmonic components. Within the eight pairs of the switches SW1 and SW2, every time a number of “turned on” switches, which correspond to SW1 and/or SW2, is increased, the musical tone control apparatus performs musical tone control to simply increase a number of the higher harmonic components, for example. In this case, the apparatus is capable of using other switches in addition to the switches SW1 and/or SW2 to control the tone color to be “bright” or “dark”, which can be changed over arbitrarily.
(2) Second Control
In response to a number of “turned on” switches which correspond to SW1 and/or SW2, the musical tone control apparatus controls the tone volume level in a step-like manner. In this case, the apparatus is capable of using other switches in addition to the switches SW1 and/or SW2 to control the tone volume level to be gradually “increased” or “decreased”, which can be changed over arbitrarily.
(3) Third Control
In response to states of the switches SW1 and/or SW2 which are turned on within the eight pairs of the switches SW1 and SW2, the musical tone control apparatus performs panning control in production of sounds by speakers. Herein, the apparatus emphasizes directivity in production of sounds toward a direction corresponding to a pair of the switches SW1 and SW2 both of which are turned on.
(4) Fourth Control
If at least a pair of the switches SW1 and SW2 are both turned on within the eight pairs of the switches SW1 and SW2, the musical tone control apparatus performs musical tone control to produce “duplicate” sound, for example
As described heretofore, the present example is designed such that visual information can be obtained in response to a manner to beat the pad unit 220 on the basis of variations of the distance measured between the beat surface 221 of the pad skin unit 202 and the annular flat plane portion 213 of the pad storage portion 201. In addition, on/off events of the switches SW1 and SW2 corresponding to each light emitter 205 are caused to occur in response to information regarding the variations of the distance between the beat surface 221 and the annular flat plane portion 213. Based on such information, the musical tone control apparatus controls elements of musical tones other than the tone volume level which is one of the basic music elements.
Incidentally, all examples of the embodiment 3 are designed such that the sensor fixing member and radial pressure member are formed in circular shapes. However, those members do not necessarily employ such shapes. That is, an overall area of the back of the pad skin unit 202 is reinforced by a plate material having hardness, for example. In that case, it is possible to employ symmetric shapes of rotation for the sensor fixing member and radial pressure member. For example, it is possible to employ the triangle shape, square shape, polygon shape, circle shape, Y-letter shape, star shape and the like.
Lastly, effects of this invention can be summarized as follows:
As this invention may be embodied in several forms without departing from the spirit of essential characteristics thereof, the present embodiments are therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-184437 | Jun 1998 | JP | national |
10-217146 | Jul 1998 | JP | national |
This is a continuation of U.S. patent application Ser. No. 09/812,295, filed Mar. 20, 2001, now U.S. Pat. No. 6,639,140, which is a divisional of U.S. patent application Ser. No. 09/281,488 filed Mar. 30, 1999, now U.S. Pat. No. 6,326,539.
Number | Name | Date | Kind |
---|---|---|---|
4479412 | Klynas | Oct 1984 | A |
4679479 | Koyamato | Jul 1987 | A |
4741242 | Aronstein | May 1988 | A |
4753146 | Seiler | Jun 1988 | A |
5396024 | Noguchi et al. | Mar 1995 | A |
5461188 | Drago et al. | Oct 1995 | A |
5739457 | Devecka | Apr 1998 | A |
5913260 | Buchla | Jun 1999 | A |
6525259 | Sagastegui | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
S60-111280 | Jun 1985 | JP |
S60-113294 | Jun 1985 | JP |
H02-64980 | May 1990 | JP |
06-059674 | Mar 1994 | JP |
08-123408 | May 1996 | JP |
09-258031 | Oct 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20030209132 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09281488 | Mar 1999 | US |
Child | 09812295 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09812295 | Mar 2001 | US |
Child | 10454142 | US |