Mutant of homoserine dehydrogenase from Corynebacterium and DNA encoding thereof

Information

  • Patent Grant
  • 7332310
  • Patent Number
    7,332,310
  • Date Filed
    Monday, March 22, 2004
    20 years ago
  • Date Issued
    Tuesday, February 19, 2008
    16 years ago
Abstract
Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.
Description

The present application claims benefit of Japanese Patent Application Nos. Hei. 11-377484 (filed Dec. 16, 1999), 2000-159162 (filed Apr. 7, 2000) and 2000-280988 (filed Aug. 3, 2000), the entire contents of each of which is incorporated herein by reference.


The contents of the attached 3 CD-R compact discs (COPY 1 REPLACEMENT Jun. 12, 2006, COPY 2 REPLACEMENT Jun. 21, 2006 and COPY 3 REPLACEMENT Jun. 12, 2006) are incorporated herein by reference in their entirety. The attached discs contain an identical copy of a file “249-125.txt” which were created Jun. 8, 2001, and are each 25904 KB. The Sequence Listings filed in the parent application Ser. No. 09/738,626 on Dec. 18, 2000 and Jun. 29, 2001, are incorporated herein by reference. The Sequence Listing contained on the attached discs are the same as the “paper” and computer readable copies of the Sequence Listing filed in the parent application Ser. No. 09/738,626 on Dec. 18, 2000 and Jun. 29, 2001.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucteotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.


2. Brief Description of the Background Art


Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.


For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).


The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by, repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.


However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with Escherichia coli, Bacillus subtilis, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.


A chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.


In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.


In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, Mycobacterium tuberculosis, Mycobacterium bovis used in BCG vaccines, and the like (Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).


SUMMARY OF THE INVENTION

An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.


The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a map showing the positions of typical genes on the genome of Corynebacterium glutamicum ATCC 13032.



FIG. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Corynebacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.



FIG. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.



FIG. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

This application is based on Japanese applications No. Hei. 11-377484 filed on Dec. 16, 1999, No. 2000-159162 filed on Apr. 7, 2000 and No. 2000-280988 filed on Aug. 3, 2000, the entire contents of which are incorporated hereinto by reference.


From the viewpoint that the determination of the full nucleotide sequence of Corynebacterium glutamicum would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of Corynebacterium glutamicum can be determined by applying the whole genome shotgun method.


Specifically, the present invention relates to the following (1) to (65):

  • (1) A method for at least one of the following:
  • (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
  • (B) measuring an expression amount of a gene derived from a coryneform bacterium,
  • (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
  • (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
  • (E) identifying a gene homologous to a gene derived from a coryneform bacterium,
    • said method comprising:
  • (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
  • (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
  • (c) detecting any hybridization, and
  • (d) analyzing the result of the hybridization.


As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

  • (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
  • (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  • (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
  • (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
  • (6) A polynucleotide array, comprising:
    • at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and
    • a solid support adhered thereto.


As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

  • (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.


(8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

  • (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
  • (10) A polynucleotide which is present in the 5′ upstream or 3′ downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 on 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
  • (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to tie polynucleotide comprising 10 to 200 continuous based.
  • (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
  • (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
  • (14) A method for producing a polypeptide, comprising:
    • culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and
    • recovering the polypeptide from the medium.
  • (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
    • culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and
    • recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
  • (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
  • (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
  • (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
  • (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
  • (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
  • (21) A polypeptide array, comprising:
    • at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and
    • a solid support adhered thereto.
  • (22) A polypeptide array, comprising:
    • at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and
    • a solid support adhered thereto.
  • (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  • (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
  • (ii) a data storage device for at least temporarily storing the input information;
  • (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
  • (iv) an output device that shows a screening or analyzing result obtained by the comparator.
  • (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  • (i) inputting at least one nucleotide sequence, information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
  • (ii) at least temporarily storing said information;
  • (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
  • (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
  • (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  • (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence or target structure motif information;
  • (ii) a data storage device for at least temporarily storing the input information;
  • (iii) a comparator that compares the at least one amine acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
  • (iv) an output device that shows a screening or analyzing result obtained by the comparator.
  • (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  • (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
  • (ii) at least temporarily storing said information;
  • (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
  • (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
  • (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
  • (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
  • (ii) a data storage device for at least temporarily storing the input information;
  • (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
  • (iv) an output devices that shows a function obtained by the comparator.
  • (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
  • (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
  • (ii) at least temporarily storing said information;
  • (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
  • (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
  • (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
  • (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
  • (ii) a data storing device for at least temporarily storing the input information;
  • (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS: 3502 to 7001; and
  • (iv) an output device that shows a function obtained by the comparator.
  • (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
  • (i) inputting at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
  • (ii) at least temporarily storing said information;
  • (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
  • (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
  • (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterinum
  • (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterinum.
  • (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  • (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the grow consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  • (35) A recording medium or storage device which is readable by a computer is which at least one nucleotide sequence information or selected from SEQ ID NOS:1 to 3501 or function information based or the nucleotide sequence is recorded, and is usuable in the system of (23) or (27) or the method of (24) or (28)
  • (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
  • (37) The recording medium or storage device according to (35) or (36), wherein is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
  • (38) A polypepide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the sequence in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with amino acid residue other than a Val residue.
  • (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position at the amino acid sequence as represented by SEQ ID NO:6952 is replaced with amino acid residue other than a Val residue.
  • (40) The polypeptide according to (38) or (39) wherein the Val residue at the 59th position is replaced with an Ala residue.
  • (41) A polypeptide having private carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of private carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
  • (42) A polypeptide cruising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
  • (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
  • (44) The polypeptide recording to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
  • (45) A DNA encoding the polypeptide of any one of (38) to (44).
  • (46) A recombinant DNA comprising the DNA of (45).
  • (47) A transformant comprising the recombinant DNA of (46).
  • (48) A transformant comprising in its chromosome the DNA of (45).
  • (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
  • (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
  • (51) A method for producing L-lysine, comprising:
  • culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.
  • (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
  • (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding 50 as the produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
  • (ii) identifying a mutation point present in the production strain based on a result obtained by the
  • (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
  • (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii)
  • (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthesis pathway or a signal transmission pathway.
  • (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
  • (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
  • (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleon of sequence in SEQ ID NOS:1 to 3431;
  • (ii) identifying a mutation point present in the production strain based on the result obtain by (i);
  • (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
  • (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
  • (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthesis pathway or a signal transmission pathway.
  • (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
  • (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
  • (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
  • (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
  • (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
  • (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transforms with the gene obtained in (iii)
  • (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
  • (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
  • (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
  • (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
  • (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
  • (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
  • (60) A coryneform bacterium, bread by the method of any one of (52) to (59).
  • (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
  • (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  • (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
    • culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;
    • recovering the compound from the culture.
  • (64) The method according to (63), wherein the compound is L-lysine.
  • (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
  • (i) preparing
    • a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and
    • a protein derived from a bacterium of a parent strain of the production strain;
  • (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
  • (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
  • (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
  • (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
  • (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.


As used herein, the term “proteome”, which is a coined word by combining “protein” with “genome”, refers to a method for examining of a gene at the polypeptide level.

  • (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
  • (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  • (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERN BP-7382).


The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.


1. Determination of Full Nucleotide Sequence of Coryneform Bacteria


The term “coryneform bacteria” as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).


Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.


Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum) Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 4066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.


(1) Preparation of Genome DNA of Coryneform Bacteria


Coryneform bacteria can be cultured by a conventional method.


Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.


In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35° C. overnight.


After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.


Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as “EDTA”), pH 8.0), and the like.


Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.


The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40° C. for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70° C. for 5 to 15 minutes for the lysis.


After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.


After shaking, centrifugation (15,000×g, 20 minutes, 20° C.) is carried out to fractionate the aqueous layer.


After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.


The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40° C. for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.


After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.


(2) Production of Shotgun Library


A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinafter referred to as “Molecular Cloning, 2nd ed.”). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.


To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1) a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output off 20 continuously for 5 seconds.


The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.


The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are Cut out from the gel.


To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40° C. overnight to elute DNA.


The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.


This insert is ligated into a suitable vector, such as pUC18 SmaI/BAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20° C. for 20 to 50 hours.


The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μl of TE buffer.



Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DH10B (manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carved out under the conditions as described in the manufacturer's instructions.


The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.


The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.


The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at −80° C. by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.


(3) Production of Cosmid Library


The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20° C.) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).


After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.


The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.


The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.


The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.


The transformant can be obtained as colonies formed on the plate medium.


The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.


The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at −80° C. by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.


(4) Determination of Nucleotide Sequence


(4-1) Preparation of Template


The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995) ).


The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).


Specifically, the template can be prepared as follows.


The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37° C. overnight.


Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.


The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.


It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.


The double-stranded DNA plasmid used as the template can be obtained by the following method.


The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2×YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37° C. overnight.


The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.


To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.


The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.


(4-2) Sequencing Reaction


The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.


To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing, Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.


A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and Gene PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.


The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.


The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at −30° C. and the stored reaction product can be used at any time.


The dried reaction product can be analyzed using a commercially available sequencer and an analyze according to the manufacture's instructions.


Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems) Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).


(5) Assembly


A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mass the vector sequence information.


For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.


In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.


Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.


It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.


As used herein, software will be understood to also be referred to as a comparator.


(6) Determination of Nucleotide Sequence in Gap Part


Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.


About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.


The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.


Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.


A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.


According to this method, the nucleotide sequence of the gap part can be determined.


When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.


In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.


Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.


(7) Determination of Nucleotide Sequence of Microorganism Genome DNA Using the Nucleotide Sequence Represented by SEQ ID NO:1


A nucleotide sequence of a polynucleotide having a homology of 80% or more with. the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term “polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention” is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO:1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.


2. Identification of ORF (Open Reading Frame) and Expression Regulatory Fragment and Determination of the Function of ORF


Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.


The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.


The expression modulating fragment (hereinafter referred to as “EMF”) is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression “modulate the expression of a sequence ligated operatably” is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (Proc. Natl. Acad. Sci. USA, 85: 2444-48 (1988)), BLAST (J. Mol. Biol., 215: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).


The term “target sequence” is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.


The term “target structural motif” or “target motif” is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the three-dimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.


Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.


Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.


The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (Nuc. Acids. Res., 26: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.


In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.


Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of Corynebacterium glutamicum as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:3502 to 7001 are encoded.


The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (Meth. Enzym., 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.


Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.


With respect of the term “identity” used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.


As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.


Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.


Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.


Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in Molecular Cloning, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.


The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.


Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.


The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.


The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.


Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.


A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65° C. in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1× to 2×SSC solution (the composition of 1×SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65° C.


The hybridization can be carried out in accordance with known methods described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.


Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.


Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5′ upstream or 3′ downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an, expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.


The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (Tm) and the number of nucleotides are not significantly different from each other are preferred.


The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.


Also, analogues of these oligonucleotides (hereinafter also referred to as “analogous oligonucleotides”) are also provided by the present invention and are useful in the methods described herein.


Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3′-P5′ phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2′-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2′-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).


The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.


Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.


3. Determination of Isozymes


Many mutants of coryneform bacteria which are useful in th production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.


However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.


Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.


However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.


Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in Molecular Cloning, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.


4. Clarification or Determination of Biosynthesis Pathway and Signal Transmission Pathway


Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.


These unknown points can be clarified by the following method.


The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term “arranged” means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.


As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.


When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.


5. Clarification or Determination of Useful Mutation Point


Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.


However, mutation points contained in production strains can be identified by comparing desired sequences of the genome. DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them


Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.


When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.


For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6-strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.


Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.


In addition, a mutation Ala213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.


Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.


Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by hom of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.


Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.


6. Method of Breeding Industrially Advantageous Production Strain


It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.


In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, Amino Acids—Technical Production and Use. In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).


Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.


According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.


Specifically, a useful mutant can be constructed in the following manner.


One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.


By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.


For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34° C. but shows lowered growth and lysine productivity at a temperature exceeding 34° C. Therefore, the fermentation temperature should be maintained at 34° C. or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42° C. equal or superior to the result obtained by culturing at 30 to 34° C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.


When culture should be carried out at a high temperature exceeding 43° C., a production strain capable of conducting fermentation production at a high temperature exceeding 43° C. can be obtained by reconstituting useful mutations in a, microorganism belonging to the genus Corynebacterium which can grow at high temperature exceeding 43° C. Examples of the microorganism capable of growing at a high temperature exceeding 43° C. include Corynebacterium thermoaminogenes, such as Corynebacterium thermoaminogenes FERM 9244, FERM 9245, FERM 9246 and FERM 9247.


A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.


When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.


The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).


7. Production and Utilization of Polynucleotide Array


(1) Production of Polynucleotide Array


A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.


Examples include a polynucleotide array comprising a, solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.


Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.


Examples of the solid support include a glass plate, a nylon membrane, and the like.


The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (Nat. Genet., 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used, as the solid support of the polynucleotide array according to the present invention.


As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.


The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.


Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.


Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (Nat. Genet., 21: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.


(2) Use of Polynucleotide Array


The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).


(a) Identification of Mutation Point of Coryneform Bacterium Mutant and Analysis of Expression Amount and Expression Profile of Gene Encoded by Genome


By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

  • (i) producing a polynucleotide array by the method of the above (1);
  • (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
  • (iii) detecting the hybridization; and
  • (iv) analyzing the hybridization data.


The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.


The method will be described in detail.


A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (Science, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene expression amount and the expression profile thereof can be analyzed.


The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in Molecular Cloning, 2nd ed. or the like. mRNA derived from Corynebacterium glutamicum can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) or the like.


Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.


The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.


Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999)); and the like.


The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3′-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).


In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Biotechnol., 14: 1675-80 (1996), or the like).


Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.


The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.


A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.


The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).


A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.


The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.


(b) Confirmation of the Presence of Gene Homologous to Examined Gene in Coryneform Bacteria


Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).


This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).


8. Recording Medium Storing Full Genome Nucleotide Sequence and ORF Data and Being Readable by a Computer and Methods for Using the Same


The term “recording medium or storage device which is readable by a computer” means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).


Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.


Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.


The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.


9. System Based on a Computer Using the Recording Medium of the Present Invention which is Readable by a Computer


The term “system based on a computer” as used herein refers a system composed of hardware device(s) software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.


The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.


By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device(s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.


Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.


Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.


Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.


The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.


Namely, the system based on a computer according to the present invention comprises the following:

  • (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
  • (ii) a data storage device for at least temporarily storing the input information;
  • (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
  • (iv) an output device that shows a screening or analyzing result obtained by the comparator.


This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term “homologs” as used herein includes both of orthologs and paralogs.


10. Production of Polypeptide Using ORF Derived from Coryneform Bacteria


The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, and the like, for example, according to the following method.


A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.


Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.


A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.


The recombinant vector is introduced to a host cell suitable for the expression vector.


Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.


Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.


When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.


Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCG1 (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(−) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Pat. Nos. 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.


Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from Escherichia coli, phage and the like, such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two Ptrp are linked in series (Ptrp×2), tac promoter, lacT7 promoter letI promoter and the like, can be used.


It is preferred to use a plasmid in which the space between Shine-Dalgarno sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).


The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.


One of ordinary skill in the art will appreciate that the codons of the above-described elements may be optimized, in a known manner, depending on the host cells and environmental conditions utilized.


Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485; Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli G1698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.


When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).


With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in Gene, 17: 107 (1982) and Molecular & General Genetics, 168: 111 (1979) and the like, can be used.


When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.


Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF α1 promoter, CUP 1 promoter, and the like.


Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.


With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (Methods. Enzymol., 194: 182 (1990)), a spheroplast method (Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), a lithium acetate method (J. Bacteriol., 153: 163 (1983)), a method described in Proc. Natl. Acad. Sci. USA, 75: 1929 (1978) and the like, can be used.


When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.


Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.


Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.


The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973), and the like.


When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992), Bio/Technology, 6: 47 (1988), or the like.


Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.


Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.


Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.


Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.


The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (Proc. Natl. Acad. Sci. USA, 84: 7413 (1987)) and the like.


When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.


Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.


Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.


The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the Agrobacterium method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application, No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.


The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.


When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.


The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.


Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.


When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.


Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.


Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).


Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.


Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.


The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40° C., and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.


Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.


When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured, an inducer can be added to the medium, if necessary.


For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing lac promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing trp promoter is cultured.


Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (The Journal of the American Medical Association, 199: 519 (1967)), Eagle's MEM medium (Science, 122: 501 (1952)), Dulbecco's modified MEM medium (Virology, 8, 396 (1959)), 199 Medium (Proceeding of the Society for the Biological Medicine, 73:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.


The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40° C. in the presence of 5% CO2 for 1 to 7 days.


Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.


Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.


The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30° C. for 1 to 5 days.


Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.


A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.


The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40° C. for 3 to 60 days.


Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.


As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.


The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in Molecular Cloning, 2nd ed., in addition to direct expression.


The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.


When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.


Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.


Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.


Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).


When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.


Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).


In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α-casein promoter, a β-casein promoter, a β-lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.


Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (Tissue Culture, 20 (1994), Tissue Culture, 21 (1994), Trends in Biotechnology, 15: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.


The polypeptide according to the present invention can also be obtained by translation in vitro.


The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.


Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an in vitro transcription/translation system E. coli T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as lacUV5, tac, λPL(con), λPL, or the like, can be carried out using an in vitro transcription/translation system E. coli S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an in vitro transcriptional RNA, a prokaryotic RNA, and the like.


In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.


The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.


When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.


When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.


The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention, and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.


Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term “substantially the same activity as that of the polypeptide” means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982), Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.


The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.


Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.


Group A:


leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;


Group B:


asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;


Group C:


asparagine, glutamine;


Group D:


lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;


Group E:


proline, 3-hydroxyproline, 4-hydroxyproline;


Group F:


serine, threonine, homoserine;


Group G:


phenylalanine, tyrosine.


Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.


Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.


The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.


Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.


The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).


To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods.


Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (Molecular Cloning, 2nd. ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.


11. Preparation of Antibody Recognizing the Polypeptide of the Present Invention


An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.


(1) Production of Polyclonal Antibody


A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.


Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.


A dosage of the antigen is preferably 50 to 100 μg per animal.


When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.


The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies—A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.


Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.


Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.


(2) Production of Monoclonal Antibody


(a) Preparation of Antibody-Producing Cell


A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.


On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.


The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.


The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.


(b) Preparation of Myeloma Cells


As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as “UP3-U1”) (Curr. Topics in Microbiol. Immunol., 81: 1 (1978); Europ. J. Immunol., 6: 511 (1976)); SP2/O-Ag14 (SP-2) (Nature, 276: 269 (1978)): P3-X63-Ag8653 (653) (J. Immunol, 123: 1548 (1979)); P3-X63-Ag8 (X63) cell line (Nature, 256: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding. 1.5 mmol/l glutamine, 5×10−5 mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the “normal medium”), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×107 or more of the cells are used for the fusion.


(c) Production of Hybridoma


The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells:myeloma cells=5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.


The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 108 antibody-producing cells is added to the cells under stirring at 37° C., and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.


After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10−4 mol/l hypoxanthine, 1.5×10−5 mol/l thymidine and 4×10−7 mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.


The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37° C. for 7 to 14 days in a 5% CO2 incubator.


After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.


A specific example of the enzyme immunoassay is described below.


The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.


Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.


(d) Preparation of Monoclonal Antibody


The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane) followed by 2 weeks of feeding) at 5×106 to 20×106 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.


The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.


A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.


The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.


The antibody obtained in the above is within the scope of the antibody of the present invention.


The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies—A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).


The antibody of the present invention can be used as it is or after being labeled with a label.


Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.


Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.


Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.


12. Production and Use of Polypeptide Array


(1) Production of Polypeptide Array


A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.


The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.


Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.


The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999); Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Pat. No. 4,681,870; U.S. Pat. No. 4,282,287; U.S. Pat. No. 4,762,881, or the like.


The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.


(2) Use of Polypeptide Array


A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).


Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

  • (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
  • (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
  • (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
  • (iv) analyzing the detection data.


Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.


The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).


Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

  • (i) preparing a polypeptide array by the method of the above (1);
  • (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
  • (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
  • (iv) analyzing the detection data.


Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.


A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.


When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.


13. Identification of Useful Mutation in Mutant by Proteome Analysis


Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by two-dimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.


The two dimensional electrophoresis means an electrophoretic method which is performed by combining two electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).


In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.


The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.


The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.


Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO:3785 is increased in the lysine-producing mutant.


As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.


In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.


Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.


The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.


EXAMPLE 1

Determination of the Full Nucleotide Sequence of Genome of Corynebacterium glutamicum


The full nucleotide sequence of the genome of Corynebacterium glutamicum was determined based on the whole genome shotgun method (Science, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.


(1) Preparation of Genome DNA of Corynebacterium glutamicum ATCC 13032



Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30° C. overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37° C. for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65° C. for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000×g, 20 minutes, 20° C.). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37° C. for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to isopropanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).


(2) Construction of a Shotgun Library


TE buffer was added to 0.01 mg of the thus prepared genome DNA of Corynebacterium glutamicum ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37° C. overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 SmaI/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16° C. for 40 hours.


The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of E. coli ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37° C. overnight.


The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37° C. overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.


(3) Construction of Cosmid Library


About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3AI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20° C.) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.


The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37° C. overnight to isolate colonies. The resulting colonies were stationarily cultured at 37° C. overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.


(4) Determination of Nucleotide Sequence


(4-1) Preparation of Template


The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR-method using the library prepared in the above (2).


Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37° C. overnight.


Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et. al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.


The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.


Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.


The double-stranded DNA plasmid as the template was obtained by the following method.


The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37° C. overnight.


The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.


To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.


The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.


(4-2) Sequencing Reaction


To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.


Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at −30° C.


The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.


The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.


(5) Assembly


All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.


(6) Determination of Nucleotide Sequence in Gap Part


Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.


About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.


The sequence in the region which was not covered with the contigs was determined by the following method.


Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.


In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.


(7) Identification of ORF and Presumption of its Function


ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.


Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.


The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.


In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.


Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3957 to 7001


Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on, the genome were determined.



FIG. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.



















TABLE 1








Terminal



Identity
Similarity
Matched length



SEQ NO. (DNA)
SEQ NO. (a.a.)
Initial (nt)
(nt)
ORF (bp)
db Match
Homologous gene
(%)
(%)
(a.a.)
Function

























2
3502
1
1572
1572
gsp: R98523

Brevibacterium flavum dnaA

99.8
99.8
524
replication initiation protein DnaA


3
3503
1920
1597
324


4
3504
2292
3473
1182
sp: DP3B_MYCSM

Mycobacterium smegmatis dnaN

50.5
81.8
390
DNA polymerase III beta chain


5
3505
3585
4766
1182
sp: RECF_MYCSM

Mycobacterium smegmatis recF

53.3
79.9
392
DNA replication protein (recF












protein)


6
3506
4766
5299
534
sp: YREG_STRCO

Streptomyces coelicolor yreG

35.1
58.1
174
hypothetical protein


7
3507
5354
7486
2133
pir: S44198

Mycobacterium tuberculosis

71.9
88.9
704
DNA topoisomerase (ATP-








H37Rv gyrB



hydrolyzing)


8
3508
7830
8795
966


9
3509
9466
8798
669


10
3510
9562
10071
510


11
3511
9914
9474
441


12
3512
11177
10107
1071
sp: YV11_MYCTU

Mycobacterium tuberculosis

29.4
50.7
422
NAGC/XYLR repressor








H37Rv


13
3513
11523
11263
261


14
3514
11768
11523
246


15
3515
11831
14398
2568
sp: GYRA_MYCTU

Mycobacterium tuberculosis

70.4
88.1
854
DNA gyrase subunit A








H37Rv Rv0006 gyrA


16
3516
14405
14746
342
pir: E70698

Mycobacterium tuberculosis

29.5
69.6
112
hypothetical membrane protein








H37Rv Rv0007


17
3517
16243
15209
1035
sp: YEIH_ECOLI

Escherichia coli K12 yeiH

33.7
63.5
329
hypothetical protein


18
3518
16314
17207
894
gp: AB042619_1

Hydrogenophilus thermoluteolus

27.6
62.3
268
bacterial regulatory protein, LysR








TH-1 cbbR



type


19
3519
17251
17670
420


20
3520
18729
17860
870
gp: AF156103_2

Rhodobacter capsulatus ccdA

29.1
57.4
265
cytochrome c biogenesis protein


21
3521
19497
18736
762
pir: A49232

Coxiella burnetii com1

31.6
64.5
155
hypothetical protein


22
3522
19705
20073
369
pir: F70664

Mycobacterium tuberculosis

36.8
70.1
117
repressor








H37Rv Rv1846c


23
3523
20073
21065
993
gp: MLCB1788_6

Mycobacterium leprae

24.9
50.8
321
hypothetical membrane protein








MLCB1788.18


24
3524
21253
21074
180
pir: I40838

Corynebacterium sp. ATCC

65.4
88.5
26
2,5-diketo-D-gluconic acid reductase








31090


25
3525
21597
22124
528
sp: 5NTD_VIBPA

Vibrio parahaemolyticus nutA

27.0
56.1
196
5′-nucleotidase precursor


26
3526
22164
23399
1236
gp: AE001909_7

Deinococcus radiodurans

27.0
56.7
270
5′-nucleotidase family protein








DR0505


27
3527
23779
23615
165
prf: 2513302C

Corynebacterium striatum ORF1

52.9
72.6
51
transposase


28
3528
24295
24729
435
prf: 2413353A

Xanthomonas campestris

51.8
79.9
139
organic hydroperoxide detoxication








phaseoli ohr



enzyme


29
3529
26297
24885
1413
sp: RECG_THIFE

Thiobacillus ferrooxidans recG

32.7
60.8
217
ATP-dependent DNA helicase


30
3530
26338
26775
438


31
3531
28099
26822
1278
sp: AMYH_YEAST

Saccharomyces cerevisiae

26.7
54.1
449
glucan 1,4-alpha-glucosidase








S288C YIR019C sta1


32
3532
29117
28164
954
gp: ERU52850_1

Erysipelothrix rhusiopathiae

28.9
63.7
311
lipoprotein








ewlA


33
3533
29965
29117
849
gp: AF180520_3

Streptococcus pyogenes SF370

34.6
74.1
266
ABC 3 transport family or integral








mtsC



membrane protein


34
3534
29995
30651
657
sp: FECE_ECOLI

Escherichia coli K12 fecE

39.2
70.3
222
iron(III) dicitrate transport ATP-












biding protein


35
3535
30697
31677
981
pir: A72417

Thermotoga maritima MSB8

25.8
56.5
283
sugar ABC transporter, periplasmic








TM0114



sugar-binding protein


36
3536
31677
32699
1023
prf: 1207243B

Escherichia coli K12 rbsC

30.5
68.3
312
high affinity ribose transport protein


37
3537
32699
33457
759
sp: RBSA_BACSU

Bacillus subtilis 168 rbsA

32.2
76.7
236
ribose transport ATP-binding protein


38
3538
34280
33465
816
pir: I51116

Petromyzon marinus

23.6
44.4
347
neurofilament subunit NF-180


39
3539
34339
34899
561
sp: CYPA_MYCTU

Mycobacterium leprae H37RV

79.9
89.9
169
peptidyl-prolyl cls-trans Isomerase A








RV0009 ppiA


40
3540
34982
35668
687
sp: YQGP_BACSU

Bacillus subtilis 168 yqgP

29.2
53.1
226
hypothetical membrane protein


41
3541
37221
38198
978
sp: FEPG_ECOLI

Escherichia coli K12 fepG

40.4
70.5
332
ferric enterobactin transport system












permease protein


42
3542
37242
36247
996


43
3543
38202
38978
777
gp: VCU52150_9

Vibrio cholerae viuC

51.8
81.8
253
ATPase


44
3544
38978
39799
822
sp: VIUB_VIBVU

Vibrio vulnificus MO6-24 viuB

26.2
52.7
260
vulnibactin utilization protein


45
3545
40458
40189
270
sp: YO11_MYCTU

Mycobacterium tuberculosis

40.0
72.6
95
hypothetical membrane protein








H37Rv Rv0011c


46
3546
42513
40576
1938
sp: PKNB_MYCLE

Mycobacterium leprae pknB

40.6
68.7
648
serine/threonine protein kinase


47
3547
43919
42513
1407
gp: AF094711_1

Streptomyces coelicolor pksC

31.7
59.1
486
serine/threonine protein kinase


48
3548
45347
43926
1422
gp: AF241575_1

Streptomyces griseus pbpA

33.5
66.7
492
penicillin-binding protein


49
3549
46489
45347
1143
sp: SP5E_BACSU

Bacillus subtilis 168 spoVE

31.2
65.6
375
stage V sporulation protein E


50
3550
48021
46669
1353
pir: H70699

Mycobacterium tuberculosis

44.1
70.8
469
phosphoprotein phosphatase








H37Rv ppp


51
3551
48485
48024
462
pir: A70700

Mycobacterium tuberculosis

38.7
66.5
155
hypothetical protein








H37Rv Rv0019c


52
3552
49368
48505
864
pir: B70700

Mycobacterium tuberculosis

23.6
38.8
526
hypothetical protein








H37Rv Rv0020c


53
3553
49601
49455
147


54
3554
50616
49897
720


55
3555
50972
50754
219


56
3556
51436
50966
471


57
3557
53055
54008
954
sp: PH2M_TRICU

Trichosporon cutaneum ATCC

29.9
63.3
117
phenol 2-monooxygenase








46490


58
3558
53095
51626
1470
sp: GABD_ECOLI

Escherichia coli K12 gabD

46.7
78.2
490
succinate-semialdehyde












dehydrogenase (NAD(P)+)


59
3559
54080
55546
1467
sp: YRKH_BACSU

Bacillus subtilis yrkH

27.3
57.0
242
hypothetical protein


60
3560
56417
55629
789
sp: Y441_METJA

Methanococcus jannaschii

29.0
64.1
262
hypothetical membrane protein








MJ0441


61
3561
56676
56386
291
sp: YRKF_BACSU

Bacillus subtilis yrkF

40.5
74.3
74
hypothetical protein


62
3562
57270
56680
591
sp: YC61_SYNY3

Synechocystis sp. PCC6803

36.3
70.4
179
hypothetical protein








slr1261


63
3563
57478
57651
174
pir: G70988

Mycobacterium tuberculosis

53.2
83.9
62
hypothetical protein








H37Rv Rv1766


64
3564
58087
58941
855


65
3565
59091
59930
840
gp: LMFL4768_11

Leishmania major L4768.11

26.8
50.7
310
hypothetical protein


66
3566
59952
60662
711


67
3567
60669
62321
1653


68
3568
63508
62390
1119
pir: F70952

Mycobacterium tuberculosis

29.5
59.5
390
magnesium and cobalt transport








H37Rv Rv1239c corA



protein


69
3569
64040
63594
447


70
3570
64190
65458
1269
gp: AF179611_12

Zymomonas mobilis ZM4 clcb

30.0
64.8
400
chloride channel protein


71
3571
66197
65508
690
sp: PNUC_SALTY

Salmonella typhimurium pnuC

24.1
53.1
241
required for NMN transport


72
3572
66851
67972
1122
sp: PHOL_MYCTU

Mycobacterium tuberculosis

29.1
60.0
340
phosphate starvation-induced








H37Rv RV2368C



protein-like protein


73
3573
68170
68301
132


74
3574
68634
68251
384


75
3575
69060
69824
765


76
3576
70186
68720
1467
sp: CITM_BACSU

Bacillus subtilis citM

42.3
68.8
497
Mg(2+)/citrate complex secondary












transporter


77
3577
70506
72158
1653
sp: DPIB_ECOLI

Escherichia coli K12 dpiB

27.2
60.6
563
two-component system sensor












histidine kinase


78
3578
72043
71474
570


79
3579
72161
72814
654
sp: DPIA_ECOLI

Escherichia coli K12 criR

33.2
63.3
229
transcriptional regulator


80
3580
73728
72817
912
gp: AF134895_1

Corynebacterium glutamicum

43.3
73.7
293
D-isomer specific 2-hydroxyacid








unkdh



dehydrogenase


81
3581
73844
74272
429
gp: SCM2_3

Streptomyces coelicolor A3(2)

38.6
76.4
127
hypothetical protein








SCM2.03


82
3582
74490
75491
1002
sp: BIOB_CORGL

Corynebacterium glutamicum

99.4
99.7
334
biotin synthase








bioB


83
3583
75506
75742
237
pir: H70542

Mycobacterium tuberculosis

72.1
79.1
43
hypothetical protein








H37Rv Rv1590


84
3584
75697
76035
339
sp: YKI4_YEAST

Saccharomyces cerevisiae

34.1
63.5
85
hypothetical protein








YKL084w


85
3585
76353
76469
117


86
3586
80753
80613
141
PIR: F81737

Chlamydia muridarum Nigg

71.0
75.0
42
hypothetical protein








TC0129


87
3587
81274
81002
273
GSP: Y35814

Chlamydia pneumoniae

61.0
66.0
84
hypothetical protein


88
3588
83568
82120
1449
prf: 2512333A

Streptomyces virginiae varS

25.6
59.0
507
Integral membrane efflux protein


89
3589
84935
83691
1245
gp: D38505_1

Bacillus sp.

97.2
99.8
394
creatinine deaminase


90
3590
85403
85098
306


91
3591
86277
85663
615


92
3592
86318
87241
924
sp: HST2_YEAST

Saccharomyces cerevisiae hst2

26.2
50.2
279
SIR2 gene family (silent information












regulator)


93
3593
88532
87561
972
prf: 2316378A

Propionibacterium acnes

30.7
59.0
251
triacylglycerol lipase


94
3594
89444
88545
900
prf: 2316378A

Propionibacterium acnes

29.4
56.1
262
triacylglycerol lipase


95
3595
89558
90445
888


96
3596
90973
90461
513
gp: AB029154_1

Corynebacterium glutamicum

90.6
94.7
171
transcriptional regulator








ureR


97
3597
91174
91473
300
gp: AB029154_2

Corynebacterium glutamicum

100.0
100.0
100
urease gammma subunit or urease








ureA



structural protein


98
3598
91503
91988
486
gp: CGL251883_2

Corynebacterium glutamicum

100.0
100.0
162
urease beta subunit








ATCC 13032 ureB


99
3599
91992
93701
1710
gp: CGL251883_3

Corynebacterium glutamicum

100.0
100.0
570
urease alpha subunit








ATCC 13032 ureC


100
3600
93729
94199
471
gp: CGL251883_4

Corynebacterium glutamicum

100.0
100.0
157
urease accessory protein








ATCC 13032 ureE


101
3601
94202
94879
678
gp: CGL251883_5

Corynebacterium glutamicum

100.0
100.0
226
urease accessory protein








ATCC 13032 ureF


102
3602
94899
95513
615
gp: CGL251883_6

Corynebacterium glutamicum

100.0
100.0
205
urease accessory protein








ATCC 13032 ureG


103
3603
95517
96365
849
gp: CGL251883_7

Corynebacterium glutamicum

100.0
100.0
283
urease accessory protein








ATCC 13032 ureD


104
3604
97144
96368
777
prf: 2318326B

Agrobacterium radiobacter echA

21.2
48.4
279
epoxide hydrolase


105
3605
97521
98189
669


106
3606
98470
97319
1152
gp: AF148322_1

Streptomyces viridifaciens vlmF

26.5
59.7
347
valanimycin resistant protein


107
3607
99819
100493
675


108
3608
101582
98808
2775


109
3609
103435
101612
1824
sp: HTPG_ECOLI

Escherichia coli K12 htpG

23.8
52.7
668
heat shock protein (hsp90-family)


110
3610
103494
104909
1416
sp: AMN_ECOLI

Escherichia coli K12 amn

41.0
68.2
481
AMP nucleosidase


111
3611
105751
105173
579


112
3612
106392
105841
552
pir: E72483

Aeropyrum pernix K1 APE2509

29.6
58.7
196
acetolactate synthase large subunit


113
3613
107289
106630
660


114
3614
107435
110890
3456
sp: PUTA_SALTY

Salmonella typhimurium putA

25.8
50.4
1297
proline dehydrogenase/P5C












dehydrogenase


115
3615
111161
111274
114


116
3616
111374
112318
945
sp: AAD_PHACH

Phanerochaete chrysosporium

30.2
60.7
338
aryl-alcohol dehydrogenase








aad



(NADP+)


117
3617
112470
114083
1614
sp: YDAH_ECOLI

Escherichia coli K12 ydaH

36.5
71.4
513
pump protein (transport)


118
3618
114147
115478
1332
prf: 2422424A

Enterobacter agglomerans

23.0
49.2
352
Indole-3-acetyl-Asp hydrolase


119
3619
115262
114564
699


120
3620
115578
115943
366
sp: YIDH_ECOLI

Escherichia coli K12 yidH

35.9
70.8
106
hypothetical membrane protein


121
3621
115949
116263
315


122
3622
118599
116548
2052


123
3623
119589
118810
780
sp: ACCR_AGRTU

Agrobacterium tumefaciens

29.5
59.7
258
transcriptional repressor








accR


124
3624
120021
120410
390
pir: C70019

Bacillus subtilis yurT

57.9
78.6
126
methylglyoxalase


125
3625
120922
120413
510
sp: YC76_MYCTU

Mycobacterium tuberculosis

37.0
64.8
162
hypothetical protein








H37Rv Rv1276c


126
3626
122459
120951
1509
prf: 2309180A

Pseudomonas fluorescens mtlD

43.5
70.4
497
mannitol dehydrogenase


127
3627
123841
122507
1335
prf: 2321326A

Klebsiella pneumoniae dalT

30.3
68.3
435
D-arabinitol transporter


128
3628
123842
124030
189


129
3629
124130
124966
837
sp: GATR_ECOLI

Escherichia coli K12 gatR

27.3
64.6
260
galactitol utilization operon repressor


130
3630
124932
126350
1419
sp: XYLB_STRRU

Streptomyces rubiginosus xylB

45.0
68.1
451
xylulose kinase


131
3631
127171
127992
822


132
3632
127189
126353
837
gp: CGPAN_2

Corynebacterium glutamicum

100.0
100.0
279
pantoate-beta-alanine ligase








ATCC 13032 panC


133
3633
128004
127192
813
gp: CGPAN_1

Corynebacterium glutamicum

100.0
100.0
271
3-methyl-2-oxobutanoate








ATCC 13032 panB



hydroxymethyltransferase


134
3634
129049
128099
951


135
3635
130118
129489
630
sp: 3MG_ARATH

Arabidopsis thaliana mag

42.0
67.6
188
DNA-3-methyladenine glycosylase


136
3636
130145
130798
654


137
3637
131738
130815
924
gp: AB029896_1
Petroleum-degrading bacterium
39.3
69.3
270
esterase








HD-1 hde


138
3638
131798
132424
627


139
3639
132424
132981
558
sp: CAH_METTE

Methanosarcina thermophila

30.9
53.2
201
carbonate dehydratase


140
3640
134113
132971
1143
sp: XYLR_BACSU

Bacillus subtilis W23 xylR

24.1
49.3
357
xylose operon repressor protein


141
3641
135478
134207
1272
gp: LLLPK214_12

Lactococcus lactis mef214

21.1
61.2
418
macrolide efflux protein


142
3642
136321
135518
804


143
3643
136565
136122
444


144
3644
136804
138744
1941


145
3645
138791
140329
1539


146
3646
139861
139226
636


147
3647
140329
141789
1461
pir: I39714

Agrobacterium tumefaciens celA

24.3
51.2
420
cellulose synthase


148
3648
141796
143526
1731
sp: HKR1_YEAST

Saccharomyces cerevisiae

25.1
51.8
593
hypothetical membrane protein








YDR420W hkr1


149
3649
142455
143075
621


150
3650
143575
144639
1065


151
3651
144725
145480
756


152
3652
146396
145518
879
sp: RARD_PSEAE

Pseudomonas aeruginosa rarD

34.7
60.7
303
chloramphenicol sensitive protein


153
3653
146522
147238
717
sp: YADS_ECOLI

Escherichia coli K12 yadS

30.3
59.1
198
hypothetical membrane protein


154
3654
147238
147570
333


155
3655
148122
149780
1659


156
3656
150930
149794
1137
sp: ABRB_ECOLI

Escherichia coli K12 abrB

32.4
62.3
361
transport protein


157
3657
151572
152369
798
sp: YFCA_ECOLI

Escherichia coli K12 yfcA

34.7
70.2
248
hypothetical membrane protein


158
3658
151589
150966
624


159
3659
152410
152814
405


160
3660
155613
153226
2388
sp: HRPB_ECOLI

Escherichia coli K12 hrpB

33.8
64.3
829
ATP-dependent helicase


161
3661
155853
156167
315


162
3662
156821
156147
675
sp: NODL_RHILV

Rhizobium leguminosarum bv.

40.4
66.0
188
nodulation protein








viciae plasmid pRL1JI nodL


163
3663
156848
157537
690
sp: ALKB_ECOLI

Escherichia coli o373#1 alkB

34.7
60.7
219
DNA repair system specific for












alkylated DNA


164
3664
157614
158138
525
sp: 3MG1_ECOLI

Escherichia coli K12 tag

39.8
65.1
166
DNA-3-methyladenine glycosylase


165
3665
158154
158831
678
sp: RHTC_ECOLI

Escherichia coli K12 rhtC

34.1
61.3
217
threonine efflux protein


166
3666
158869
159159
291
sp: YAAA_BACSU

Bacillus subtilis yaaA

50.9
72.7
55
hypothetical protein


167
3667
159162
160013
852
prf: 2510326B

Streptomyces peucetius dnrV

31.0
52.1
284
doxorubicin biosynthesis enzyme


168
3668
160029
160370
342
gp: SPAC1250_3

Schizosaccharomyces pombe

35.6
56.7
104
methyltransferase








SPAC1250.04c


169
3669
160431
161360
930


170
3670
161696
162352
657


171
3671
162295
161363
933


172
3672
162463
162867
405
gp: AE002420_13

Neisseria meningitidis MC58

41.5
76.3
118
ribonuclease








NMB0662


173
3673
162965
163603
639


174
3674
165717
166457
741


175
3675
165755
163689
2067
gp: AF176569_1

Mus musculus nl1

28.5
57.2
722
neprilysin-like metallopeptidase 1


176
3676
166457
167419
963


177
3677
168595
167837
759
sp: FARR_ECOLI

Escherichia coli K12 farR

29.8
65.6
238
transcriptional regulator, GntR family












or fatty acyl-responsive regulator


178
3678
168975
169991
1017
pir: T14544

Beta vulgaris

28.6
63.0
332
fructokinase or carbohydrate kinase


179
3679
169996
170916
921
gp: SC8F11_3

Streptomyces coelicolor A3(2)

52.7
80.7
296
hypothetical protein








SC8F11.03c


180
3680
170933
172444
1512
prf: 2204281A

Streptomyces coelicolor msdA

61.0
86.1
498
methylmalonic acid semialdehyde












dehydrogenase


181
3681
172468
173355
888
sp: IOLB_BACSU

Bacillus subtilis iolB

33.2
58.2
268
myo-inositol catabolism


182
3682
173548
175275
1728
sp: IOLD_BACSU

Bacillus subtilis iolD

41.0
69.8
586
myo-inositol catabolism


183
3683
175319
176272
954
sp: MOCC_RHIME

Rhizobium meliloti mocC

29.7
51.0
290
rhizopine catabolism protein


184
3684
176308
177318
1011
sp: MI2D_BACSU

Bacillus subtilis idh or iolG

39.1
72.2
335
myo-inositol 2-dehydrogenase


185
3685
177334
178203
870
sp: IOLH_BACSU

Bacillus subtilis iolH

44.6
72.1
287
myo-inositol catabolism


186
3686
178285
179658
1374
sp: TCMA_STRGA

Streptomyces glaucescens tcmA

30.9
61.5
457
metabolite export pump of












tetracenomycin C resistance


187
3687
179081
178461
621


188
3688
179689
180711
1023
sp: YVAA_BACSU

Bacillus subtilis yvaA

31.1
65.5
354
oxidoreductase


189
3689
180842
181297
456


190
3690
181264
181647
384


191
3691
182679
181687
993
gp: SRE9798_1

Streptomyces reticuli cebR

32.0
61.9
331
regulatory protein


192
3692
182819
184051
1233
sp: Y4HM_RHISN

Rhizobium sp. NGR234 y4hM

24.4
52.5
442
oxidoreductase


193
3693
184077
185087
1011
sp: YFIH_BACSU

Bacillus subtilis yfiH

33.7
64.7
303
hypothetical protein


194
3694
185214
185642
429


195
3695
186508
186708
201
sp: CSP_ARTGO

Streptomyces coelicolor A3(2)

70.3
92.2
64
cold shock protein








csp


196
3696
186769
187302
534


197
3697
187302
187607
306


198
3698
187687
188100
414
prf: 2113413A

Stellaria longipes

30.6
58.2
134
caffeoyl-CoA 3-O-methyltransferase


199
3699
188725
188300
426


200
3700
189736
188747
990
sp: CCPA_BACSU

Bacillus subtilis ccpA

28.7
62.1
338
glucose-resistance amylase












regulator regulator


201
3701
189920
190321
402


202
3702
190628
190389
240


203
3703
192175
190703
1473
sp: XYLT_LACBR

Lactobacillus brevis xylT

36.0
70.5
458
D-xylose proton symporter


204
3704
193248
192949
300


205
3705
193262
194464
1203
gp: AF189147_1

Corynebacterium glutamicum

100.0
100.0
401
transposase (ISCg2)








ATCC 13032 tnp


206
3706
195038
194604
435
sp: FIXL_RHIME

Rhizobium meliloti fixL

27.6
60.7
145
signal-transducing histidine kinase


207
3707
195240
199769
4530
gp: AB024708_1

Corynebacterium glutamicum

99.9
100.0
1510
glutamine 2-oxoglutarate








gltB



aminotransferase large subunit


208
3708
199772
201289
1518
gp: AB024708_2

Corynebacterium glutamicum

99.4
99.8
506
glutamine 2-oxoglutarate








gltD



aminotransferase small subunit


209
3709
201580
201341
240


210
3710
203244
201760
1485
pir: C70793

Mycobacterium tuberculosis

44.6
72.8
496
hypothetical protein








H37Rv Rv3698


211
3711
205588
205956
369


212
3712
206068
206385
318


213
3713
207011
203541
3471
prf: 2224383C

Mycobacterium avium embB

39.8
70.6
1122
arabinosyl transferase


214
3714
208989
207007
1983
pir: D70697

Mycobacterium tuberculosis

35.0
66.1
651
hypothetical membrane protein








H37Rv Rv3792


215
3715
209968
209210
759
prf: 2504279B

Pseudomonas sp. phbB

31.4
56.5
223
acetoacetyl CoA reductase


216
3716
211455
209992
1464
pir: B70697

Mycobacterium tuberculosis

66.0
85.1
464
oxidoreductase








H37Rv Rv3790


217
3717
211768
211535
234


218
3718
211777
212283
507


219
3719
212283
212735
453


220
3720
212656
213657
1002
gp: LMA243459_1

Leishmania major ppg1

24.3
57.4
350
proteophosphoglycan


221
3721
213712
214107
396
sp: Y0GN_MYCTU

Mycobacterium tuberculosis

60.5
83.9
124
hypothetical protein








H37Rv Rv3789


222
3722
214121
214522
402


223
3723
214527
215159
633
pir: H70666

Mycobacterium tuberculosis

43.2
73.8
206
hypothetical protein








H37Rv Rv1864c


224
3724
216100
215162
939
pir: B70696

Mycobacterium tuberculosis

63.6
79.1
302
rhamnosyl transferase








H37Rv Rv3782 rfbE


225
3725
216264
216605
342


226
3726
216712
216116
597
gp: AB016260_100

Agrobacterium tumefaciens

31.3
55.1
214
hypothetical protein








plasmid pTi-SAKURA tiorf100


227
3727
217929
217141
789
sp: RFBE_YEREN

Yersinia enterocolitica rfbE

47.0
78.4
236
O-antigen export system ATP-












binding protein


228
3728
218746
217943
804
sp: RFBD_YEREN

Yersinia enterocolitica rfbD

31.3
75.6
262
O-antigen export system permease












protein


229
3729
218979
220151
1173
pir: F70695

Mycobacterium tuberculosis

36.5
63.0
416
hypothetical protein








H37Rv Rv3778c


230
3730
221107
220154
954
gp: AF010309_1

Homo sapiens pig3

41.1
71.5
302
NADPH quinone oxidoreductase


231
3731
221712
221131
582


232
3732
221911
222207
297
PIR: A70606

Mycobacterium tuberculosis

35.0
51.0
78
probable electron transfer protein








H37Rv Rv3571


233
3733
223685
222210
1476
sp: ALST_BACSU

Bacillus subtilis alsT

46.7
75.8
475
amino acid carrier protein


234
3734
224336
225244
909


235
3735
226324
225242
1083
gp: SYPCCMOEB_1

Synechococcus sp. PCC 7942

43.8
70.1
368
molybdopterin biosynthesis protein








moeB



moeB (sulfurylase)


236
3736
226767
226312
456
prf: 2403296D

Arthrobacter nicotinovorans

44.7
75.3
150
molybdopterin synthase, large








moaE



subunit


237
3737
227230
226760
471
sp: MOCB_SYNP7

Synechococcus sp. PCC 7942

33.5
63.3
158
molybdenum cofactor biosynthesis








moaCB



protein CB


238
3738
227685
227218
468
prf: 2403296C

Arthrobacter nicotinovorans

61.7
84.4
154
co-factor synthesis protein








moaC


239
3739
228887
227703
1185
gp: ANY10817_2

Arthrobacter nicotinovorans

34.5
58.6
377
molybdopterin co-factor synthesis








moeA



protein


240
3740
229613
228891
723
prf: 2403296F

Arthrobacter nicotinovorans

44.1
70.5
227
hypothetical membrane protein








modB


241
3741
230514
229711
804
prf: 2403296E

Arthrobacter nicotinovorans

34.0
68.0
256
molybdate-binding periplasmic








modA



protein


242
3742
230608
230928
321
pir: D70816

Mycobacterium tuberculosis

37.5
70.8
96
molybdopterin converting factor








H37Rv moaD2



subunit 1


243
3743
231842
230931
912
prf: 2518354A

Thermococcus litoralis malK

34.3
60.8
365
maltose transport protein


244
3744
232267
231848
420
sp: YPT3_STRCO

Streptomyces coelicolor A3(2)

36.4
76.9
121
hypothetical membrane protein








ORF3


245
3745
233282
232260
1023
sp: HIS8_ZYMMO

Zymomonas mobilis hisC

37.3
65.8
330
histidinol-phosphate












aminotransferase


246
3746
233913
234818
906


247
3747
235203
234910
294


248
3748
235290
235409
120


249
3749
236212
235451
762
gp: BAU81286_1

Brucella abortus oxyR

29.4
57.1
252
transcription factor


250
3750
236326
237342
1017
sp: ADH2_BACST

Bacillius stearothermophilus

34.0
66.0
335
alcohol dehydrogenase








DSM 2334 adh


251
3751
237345
238145
801
sp: PUO_MICRU

Micrococcus rubens puo

21.5
38.1
451
putrescine oxidase


252
3752
238176
239525
1350
prf: 2305239A

Borrelia burgdorferi mgtE

30.9
68.5
444
magnesium ion transporter


253
3753
239772
239945
174


254
3754
239986
241515
1530
prf: 2320140A

Xenopus laevis

33.2
59.6
567
Na/dicarboxylate cotransporter


255
3755
242902
241883
1020
pir: C70800

Mycobacterium tuberculosis

46.1
69.1
317
oxidoreductase








H37Rv tyrA


256
3756
242910
243431
522
pir: B70800

Mycobacterium tuberculosis

48.8
73.8
160
hypothetical protein








H37Rv Rv3753c


257
3757
243494
243910
417
gp: RHBNFXP_1

Bradyrhizobium japonicum

45.1
70.1
144
nitrogen fixation protein


258
3758
244015
244215
201


259
3759
244466
244816
351


260
3760
244902
247304
2403
sp: YV34_MYCTU

Mycobacterium tuberculosis

20.7
45.7
997
membrane transport protein








H37Rv Rv0507 mmpL2


261
3761
247310
248572
1263
sp: TGT_ZYMMO

Zymomonas mobilis

41.3
68.0
400
queuine tRNA-ribosyltransferase


262
3762
249294
248557
738
sp: YPDP_BACSU

Bacillus subtilis ypdP

28.1
62.1
203
hypothetical membrane protein


263
3763
249428
250507
1080


264
3764
250369
249722
648


265
3765
250503
251939
1437
pir: S65588

Streptomyces glaucescens strW

24.3
49.6
526
ABC transporter


266
3766
251952
252830
879
sp: SYE_BACSU

Bacillus subtilis gltX

34.8
63.3
316
glutamyl-tRNA synthetase


267
3767
253819
252830
990


268
3768
255438
254329
1110
gp: PSESTBCBAD_1

Pseudomonas syringae tnpA

34.2
55.0
360
transposase


269
3769
255794
255492
303


270
3770
256067
256204
138


271
3771
256599
257894
1296
gsp: W69554

Brevibacterium lactofermentum

98.6
100.0
432
aspartate transaminase








aspC


272
3772
257900
258529
630


273
3773
258551
260875
2325
gp: AF025391_1

Thermus thermophilus dnaX

31.6
53.1
642
DNA polymerase III holoenzyme tau












subunit


274
3774
259312
258596
717


275
3775
260987
261295
309
sp: YAAK_BACSU

Bacillus subtilis yaaK

41.6
74.3
101
hypothetical protein


276
3776
261402
262055
654
sp: RECR_BACSU

Bacillus subtilis recR

42.5
72.4
214
recombination protein


277
3777
263295
262546
750
prf: 2503462B

Heliobacillus mobilis cobQ

38.3
61.7
248
cobyric acid synthase


278
3778
264566
263298
1269
prf: 2503462C

Heliobacillus mobilis murC

31.3
60.6
444
UDP-N-acetylmuramyl tripeptide












synthetase


279
3779
265678
264599
1080
pir: H70794

Mycobacterium tuberculosis

25.7
55.2
346
DNA polymerase III epsilon chain








H37Rv dnaQ


280
3780
269124
268258
867
sp: YLEU_CORGL

Corynebacterium glutamicum

100.0
100.0
270
hypothetical membrane protein








(Brevibacterium flavum) ATCC








13032 orfX


281
3781
269371
270633
1263
sp: AKAB_CORGL

Corynebacterium glutamicum

99.5
99.8
421
aspartate kinase alpha chain








lysC-alpha


282
3782
270576
269524
1053


283
3783
271761
273194
1434


284
3784
274120
273542
579
prf: 2312309A

Mycobacterium smegmatis sigE

31.2
63.5
189
extracytoplasmic function alternative












sigma factor


285
3785
274366
275871
1506
sp: CATV_BACSU

Bacillus subtilis katA

52.9
76.4
492
vegetative catalase


286
3786
275891
276232
342


287
3787
276247
275957
291


288
3788
276763
276302
462
sp: LRP_KLEPN

Klebsiella pneumoniae lrp

37.1
72.0
143
leucine-responsive regulatory












protein


289
3789
276829
277581
753
sp: AZLC_BACSU

Bacillus subtilis 1A1 aziC

30.5
68.0
203
branched-chain amino acid transport


290
3790
277581
277904
324


291
3791
278301
277987
315


292
3792
278732
278388
345
gp: AF178758_1

Sinorhizobium sp. As4 arsR

34.4
68.9
90
metalloregulatory protein


293
3793
278814
279893
1080
gp: AF178758_2

Sinorhizobium sp. As4 arsB

52.2
84.2
341
arsenic oxyanion-translocation pump












membrane subunit


294
3794
279893
280279
387
sp: ARSC_STAXY

Staphylococcus xylosus arsC

31.1
68.9
119
arsenate reductase


295
3795
280666
280349
318


296
3796
280939
280670
270


297
3797
281401
280949
453


298
3798
282933
281404
1530
gp: AF097740_4

Bacillus firmus OF4 mrpD

32.4
70.4
503
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein D


299
3799
283317
282937
381
prf: 2504285D

Staphylococcus aureus mnhC

37.0
70.6
119
Na+/H+ antiporter


300
3800
286202
283317
2886
gp: AF097740_1

Bacillus firmus OF4 mrpA

34.1
64.3
824
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein A


301
3801
286373
287857
1485


302
3802
287661
287059
603


303
3803
288829
287966
864


304
3804
289796
289131
666
sp: CZCR_ALCEU

Alcaligenes eutrophus CH34

38.6
70.4
223
transcriptional activator








czcR


305
3805
291243
289777
1467
prf: 2214304B

Mycobacterium tuberculosis

26.7
56.8
521
two-component system sensor








mtrB



histidine kinase


306
3806
291815
292417
603
sp: APL_LACLA

Lactococcus lactis MG1363 apl

28.3
60.0
180
alkaline phosphatase


307
3807
291833
291273
561


308
3808
293511
292597
915
pir: B69865

Bacillus subtilis ykuE

26.1
54.7
307
phosphoesterase


309
3809
293539
293991
453
sp: YQEY_BACSU

Bacillus subtilis yqeY

37.6
71.8
149
hypothetical protein


310
3810
296388
294004
2385
prf: 2209359A

Mycobacterium leprae pon1

48.3
77.1
782
class A penicillin-binding












protein(PBP1)


311
3811
297064
297402
339
pir: S20912

Streptomyces coelicolor A3(2)

40.9
63.4
71
regulatory protein








whiB


312
3812
297431
297622
192


313
3813
297631
297783
153
gp: SCH17_10

Streptomyces coelicolor A3(2)

84.0
96.0
50
hypothetical protein








SCH17.10c


314
3814
297792
298250
459
pir: G70790

Mycobacterium tuberculosis

65.1
89.9
149
transcriptional regulator








H37Rv Rv3678c


315
3815
299684
298332
1353
sp: SHIA_ECOLI

Escherichia coli K12 shiA

37.3
68.9
440
shikimate transport protein


316
3816
300087
300695
609


317
3817
301261
299726
1536
sp: LCFA_BACSU

Bacillus subtilis lcfA

31.1
59.9
534
long-chain-fatty-acid—CoA ligase


318
3818
302036
301512
525
gp: SCJ4_28

Streptomyces coelicolor A3(2)

33.9
65.4
127
transcriptional regulator








SCJ4.28c


319
3819
302167
303099
933
sp: FABG_BACSU

Bacillus subtilis fabG

41.0
72.5
251
3-oxoacyl-(acyl-carrier-protein)












reductase


320
3820
303133
304074
942
sp: FLUG_EMENI

Emericella nidulans fluG

27.2
52.0
254
glutamine synthetase


321
3821
304070
305263
1194
prf: 2512386A

Arabidopsis thaliana atg6

38.8
66.5
394
short-chain acyl CoA oxidase


322
3822
305288
305758
471
sp: NODN_RHILV

Rhizobium leguminosarum nodN

45.8
72.6
153
nodulation protein


323
3823
305858
306700
843
pir: F70790

Mycobacterium tuberculosis

41.2
72.4
272
hydrolase








H37Rv Rv3677c


324
3824
306367
305195
1173


325
3825
306800
307504
705


326
3826
307462
306782
681
prf: 2323349A

Vibrio cholerae crp

30.9
65.7
207
cAMP receptor protein


327
3827
307918
307727
192


328
3828
307955
308734
780
sp: UVEN_MICLU

Micrococcus luteus pdg

57.5
77.1
240
ultraviolet N-glycosylase/AP lyase


329
3829
308745
309302
558
pir: B70790

Mycobacterium tuberculosis

34.6
58.3
211
cytochrome c biogenesis protein








H37Rv Rv3673c


330
3830
309370
310038
669
sp: YEAB_ECOLI

Escherichia coli K12 yeaB

30.7
56.3
192
hypothetical protein


331
3831
310135
311325
1191
pir: H70789

Mycobacterium tuberculosis

38.6
71.0
396
serine proteinase








H37Rv Rv3671c


332
3832
312891
311899
993
prf: 2411250A

Corynebacterium sp. C12 cEH

29.6
52.1
280
epoxide hydrolase


333
3833
313457
312909
549
pir: F70789

Mycobacterium tuberculosis

46.8
77.6
156
hypothetical membrane protein








H37Rv Rv3669


334
3834
314590
313625
966
pir: S72914

Mycobacterium leprae

29.6
65.5
287
phosphoserine phosphatase








MTCY20G9.32C. serB


335
3835
314980
316002
1023
pir: E70788

Mycobacterium tuberculosis

35.0
60.2
349
hypothetical protein








H37Rv Rv3660c


336
3836
316110
317132
1023
pir: C44020

Escherichia coli trbB

32.9
66.5
319
conjugal transfer region protein


337
3837
316964
316350
615


338
3838
317078
317893
816
pir: C70788

Mycobacterium tuberculosis

30.5
63.7
262
hypothetical membrane protein








H37Rv Rv3658c


339
3839
317920
318465
546
pir: B70788

Mycobacterium tuberculosis

33.8
64.2
201
hypothetical protein








H37Rv Rv3657c


340
3840
318492
318689
198
pir: A70788

Mycobacterium tuberculosis

47.5
84.8
59
hypothetical protein








H37Rv Rv3656c


341
3841
318696
319013
318


342
3842
318958
318545
414


343
3843
318991
319335
345


344
3844
321690
319336
2355
sp: YPRA_BACSU

Bacillus subtilis yprA

33.8
66.1
764
ATP-dependent RNA helicase


345
3845
322007
322207
201
sp: CSP_ARTGO

Arthrobacter globiformis SI55

68.7
88.1
67
cold shock protein








csp


346
3846
322216
321992
225


347
3847
322910
325897
2988
pir: G70563

Mycobacterium tuberculosis

61.7
81.6
977
DNA topoisomerase I








H37Rv Rv3646c topA


348
3848
325904
326614
711


349
3849
327735
326695
1041
sp: CYAB_STIAU

Stigmatella aurantiaca B17R20

32.7
62.4
263
adenylate cyclase








cyaB


350
3850
328283
329539
1257
sp: DP3X_BACSU

Bacillus subtilis dnaX

25.3
52.7
423
DNA polymerase III subunit












tau/gamma


351
3851
329748
329909
162


352
3852
329933
330376
444
gp: AE002103_3

Ureaplasma urealyticum uu033

32.6
59.0
144
hypothetical protein


353
3853
330973
331533
561
gp: AE001882_8

Deinococcus radiodurans

39.0
63.4
172
hypothetical protein








DR0202


354
3854
331552
332433
882
sp: RLUC_ECOLI

Escherichia coli K12 rluC

43.6
65.0
314
ribosomal large subunit












pseudouridine synthase C


355
3855
332919
334562
1644
sp: BGLX_ERWCH

Erwinia chrysanthemi D1 bgxA

34.8
60.2
558
beta-glucosidase/xylosidase


356
3856
332965
334953
1989
gp: AF090429_2

Azospirillum irakense salB

38.6
61.4
101
beta-glucosidase


357
3857
335009
336112
1104
sp: FADH_AMYME

Amycolatopsis methanolica

66.6
86.5
362
NAD/mycothiol-dependent












formaldehyde dehydrogenase


358
3858
335805
335185
621


359
3859
336212
336748
537
sp: YTH5_RHOSN

Rhodococcus erythropolis orf5

32.5
47.5
160
metallo-beta-lactamase superfamily


360
3860
336781
337449
669
sp: FABG_ECOLI

Escherichia coli K12 fabG

25.9
55.8
251
3-oxoacyl-(acyl-carrier-protein)












reductase


361
3861
337539
338768
1230
gp: AF148322_1

Streptomyces viridifaciens vlmF

26.3
56.4
415
valanimycin resistant protein


362
3862
338793
339725
933
prf: 2512357B

Actinoplanes sp. acbB

33.8
66.3
320
dTDP-glucose 4,6-dehydratase


363
3863
340569
340195
375
pir: A70562

Mycobacterium tuberculosis

59.3
88.9
108
hypothetical protein








H37Rv Rv3632


364
3864
341327
340569
759
sp: YC22_METJA

Methanococcus jannaschii JAL-

33.9
66.5
230
dolichol phosphate mannose








1 MJ1222



synthase


365
3865
341347
342375
1029


366
3866
342417
343451
1035
sp: YEFJ_ECOLI

Escherichia coli K12 yefJ

25.8
57.3
260
nucleotide sugar synthetase


367
3867
343636
345717
2082
sp: USHA_SALTY

Salmonella typhimurium ushA

26.1
54.4
586
UDP-sugar hydrolase


368
3868
345975
345814
162


369
3869
346460
346110
351


370
3870
348019
346961
1059
sp: ADH_MYCTU

Mycobacterium tuberculosis

52.2
74.9
343
NADP-dependent alcohol








H37Rv adhC



dehydrogenase


371
3871
348952
348098
855
sp: RFBA_SALAN

Salmonella anatum M32 rfbA

62.8
84.9
285
glucose-1-phosphate












thymidylyltransferase


372
3872
350310
348952
1359
gp: D78182_5

Streptococcus mutans rmlC

49.5
74.0
192
dTDP-4-keto-L-rhamnose reductase


373
3873
351443
350313
1131
sp: RMLB_STRMU

Streptococcus mutans XC rmlB

61.8
83.4
343
dTDP-glucose 4,6-dehydratase


374
3874
351948
351370
579
sp: NOX_THETH

Thermus aquaticus HB8 nox

35.4
61.2
206
NADH dehydrogenase


375
3875
352693
353637
945
prf: 2510361A

Staphylococcus aureus sirA

33.2
66.5
325
Fe-regulated protein


376
3876
354387
353749
639


377
3877
355906
354599
1308
sp: Y17M_MYCTU

Mycobacterium tuberculosis

37.4
68.3
423
hypothetical membrane protein








H37Rv Rv3630


378
3878
357228
355849
1380
gp: SC5F2A_19

Streptomyces coelicolor

34.1
62.5
461
metallopeptidase








SC5F2A.19c


379
3879
359354
357237
2118
prf: 2502226A

Sphingomonas capsulata

28.4
56.4
708
prolyl endopeptidase


380
3880
360334
359762
573


381
3881
361905
360814
1092
gp: SCF43_2

Streptomyces coelicolor A3(2)

26.0
46.0
258
hypothetical membrane protein


382
3882
363151
362057
1095
gsp: W56155

Corynebacterium

50.7
76.6
363
cell surface layer protein









ammoniagenes ATCC 6872



383
3883
363824
365257
1434
prf: 2404346B

Acinetobacter johnsonii ptk

28.5
57.2
453
autophosphorylating protein Tyr












kinase


384
3884
365250
365852
603
prf: 2404346A

Acinetobacter johnsonii ptp

39.2
68.6
102
protein phosphatase


385
3885
365855
366838
984


386
3886
366832
368643
1812
sp: CAPD_STAAU

Staphylococcus aureus M capD

33.0
65.7
613
capsular polysaccharide












biosynthesis


387
3887
368642
367701
942
PRF: 2109288X

Vibrio cholerae

41.0
51.0
90
ORF 3


388
3888
368647
369801
1155
prf: 2423410L

Campylobacter jejuni wlaK

37.1
68.3
394
lipopolysaccharide biosynthesis/












aminotransferase


389
3889
369794
370405
612
gp: AF014804_1

Neisseria meningitidis pglB

54.6
75.0
196
pilin glycosylation protein


390
3890
370613
371773
1161
sp: CAPM_STAAU

Staphylococcus aureus M capM

33.4
69.2
380
capsular polysaccharide












biosynthesis


391
3891
371929
373419
1491
pir: S67859

Xanthomonas campestris gumJ

34.3
69.8
504
lipopolysaccharide biosynthesis/












export protein


392
3892
373500
374813
1314
sp: MURA_ENTCL

Enterobacter cloacae murA

31.4
64.6
427
UDP-N-acetylglucosamine 1-












carboxyvinyltransferase


393
3893
374833
375837
1005
sp: MURB_BACSU

Bacillus subtilis murB

34.8
68.5
273
UDP-N-












acetylenolpyruvoylglucosamine












reductase


394
3894
375842
376876
1035
gp: VCLPSS_9

Vibrio cholerae ORF39 × 2

32.0
57.3
356
sugar transferase


395
3895
377683
377832
150
prf: 2211295A

Corynebacterium glutamicum

60.4
79.3
53
transposase


396
3896
378093
378227
135


397
3897
378185
378511
327
pir: S43613

Corynebacterium glutamicum

75.7
94.3
70
transposase (insertion sequence








ATCC 31831



IS31831)


398
3898
378562
378287
276


399
3899
379837
378668
1170
pir: G70539

Mycobacterium tuberculosis

28.0
57.4
404
hypothetical protein








H37Rv Rv1565c


400
3900
380842
379850
993
gsp: W37352

Pseudomonas aeruginosa PAO1

34.5
60.2
354
acetyltransferase








psbC


401
3901
381265
381495
231
PIR: S60890

Corynebacterium glutamicum

44.0
53.0
65
hypothetical protein B


402
3902
381948
383108
1161
sp: UDG8_ECOLI

Escherichia coli ugd

63.7
89.7
388
UDP-glucose 6-dehydrogenase


403
3903
383768
383496
273


404
3904
385190
383982
1209


405
3905
386195
385374
822
gp: AF172324_3

Escherichia coli wbnA

32.1
65.0
243
glycosyl transferase


406
3906
386556
387200
645
gp: AB008676_13

Escherichia coli 0157 wbhH

33.0
62.0
221
acetyltransferase


407
3907
387657
387463
195


408
3908
387692
389098
1407
gp: CGLPD_1

Corynebacterium glutamicum

99.6
100.0
469
dihydrolipoamide dehydrogenase








ATCC 13032 lpd


409
3909
389248
390168
921
pir: JC4985

Xanthomonas campestris

41.7
68.1
295
UTP—glucose-1-phosphate












uridylyltransferase


410
3910
390233
390730
498
gp: PAU49666_2

Pseudomonas aeruginosa PAO1

43.8
71.9
153
regulatory protein








orfX


411
3911
392208
390787
1422
pir: E70828

Mycobacterium tuberculosis

57.0
81.3
477
transcriptional regulator








H37Rv Rv0465c


412
3912
392705
393475
771
gp: SCM10_12

Streptomyces coelicolor A3(2)

34.8
67.4
230
cytochrome b subunit








SCM10.12c


413
3913
393639
395513
1875
pir: A27763

Bacillus subtilis sdhA

32.4
61.2
608
succinate dehydrogenase












flavoprotein


414
3914
395426
396262
837
gp: BMSDHCAB_4

Paenibacillus macerans sdhB

27.5
56.2
258
succinate dehydrogenase subunit B


415
3915
396315
396650
336


416
3916
396672
396932
261


417
3917
397040
396411
630


418
3918
397730
397825
96


419
3919
397884
398222
339


420
3920
398206
397232
975
gp: SCC78_5

Streptomyces coelicolor

26.3
49.8
259
hypothetical protein








SCC78.05


421
3921
398329
399579
1251
sp: YJIN_ECOLI

Escherichia coli K12 yjiN

32.7
64.3
431
hypothetical protein


422
3922
399598
400017
420


423
3923
400039
400341
303


424
3924
400473
401150
678
sp: TCMR_STRGA

Streptomyces glaucescens

26.4
53.8
197
tetracenomycin C transcription








GLA.0 tcmR



repressor


425
3925
401050
401253
204


426
3926
401150
402796
1647
gp: AF164961_8

Streptomyces fradiae T#2717

36.1
74.6
499
transporter








urdJ


427
3927
402799
404430
1632
gp: AF164961_8

Streptomyces fradiae T#2717

39.6
74.6
508
transporter








urdJ


428
3928
405419
404508
912
sp: PURU_CORSP

Corynebacterium sp. P-1 purU

40.9
72.7
286
formyltetrahydrofolate deformylase


429
3929
405480
406145
666
sp: DEOC_BACSU

Bacillus subtilis deoC

38.5
74.0
208
deoxyribose-phosphate aldolase


430
3930
406310
406161
150


431
3931
406417
405521
897


432
3932
406550
407416
867
prf: 2413441K

Mycobacterium avium GIR10

26.8
53.6
280
hypothetical protein








mav346


433
3933
407708
407409
300
pir: A70907

Mycobacterium tuberculosis

58.7
85.9
92
hypothetical protein








H37Rv Rv0190


434
3934
408546
409145
600


435
3935
409975
407711
2265
sp: CTPB_MYCLE

Mycobacterium leprae ctpB

45.7
75.3
748
cation-transporting P-type ATPase B


436
3936
410476
410027
450


437
3937
410683
412545
1863
sp: AMYH_YEAST

Saccharomyces cerevisiae

27.3
56.1
626
glucan 1,4-alpha-glucosidase








S288C YIR019C sta1


438
3938
412557
413633
1077
gp: AF109162_1

Corynebacterium diphtheriae

57.2
83.6
348
hemin-binding periplasmic protein








hmuT


439
3939
413643
414710
1068
gp: AF109162_2

Corynebacterium diphtheriae

65.2
90.3
330
ABC transporter








hmuU


440
3940
414714
415526
813
gp: AF109162_3

Corynebacterium diphtheriae

63.8
85.0
254
ABC transporter ATP-binding protein








hmuV


441
3941
415643
416599
957
gp: SCC75A_17

Streptomyces coelicolor C75A

28.6
56.4
266
hypothetical protein








SCC75A.17c


442
3942
416603
417439
837
gp: SCC75A_17

Streptomyces coelicolor C75A

32.6
61.6
258
hypothetical protein








SCC75A.17c


443
3943
418354
417545
810


444
3944
419253
418441
813


445
3945
419757
419257
501


446
3946
419785
420885
1101
gp: ECOMURBA_1

Escherichia coli RDD012 murB

30.1
58.4
356
UDP-N-acetylpyruvoylglucosamine












reductase


447
3947
420866
421516
651


448
3948
421043
420309
735


449
3949
421858
422031
174


450
3950
423793
422090
1704
sp: LCFA_BACSU

Bacillus subtilis lcfA

35.5
68.1
558
long-chain-fatty-acid—CoA ligase


451
3951
423878
425131
1254
gp: SC2G5_6

Streptomyces coelicolor

33.9
58.7
416
transferase








SC2G5.06


452
3952
425177
425920
744
sp: PMGY_STRCO

Streptomyces coelicolor A3(2)

70.7
84.2
246
phosphoglycerate mutase








gpm


453
3953
425934
427172
1239
prf: 2404434A

Mycobacterium bovis senX3

49.2
74.8
417
two-component system sensor












histidine kinase


454
3954
427172
427867
696
prf: 2404434B

Mycobacterium bovis BCG

75.8
90.9
231
two-component response regulator








regX3


455
3955
428561
429439
879


456
3956
432023
429438
2586
gp: SCE25_30

Streptomyces coelicolor A3(2)

31.3
60.7
921
ABC transporter ATP-binding protein








SCE25.30


457
3957
433028
432126
903
sp: YV21_MYCTU

Mycobacterium tuberculosis

45.0
66.9
269
cytochrome P450








H37Rv RV3121


458
3958
433062
433988
927
prf: 2512277A

Pseudomonas aeruginosa ppx

28.8
57.8
306
exopolyphosphatase


459
3959
434010
434822
813
sp: YV23_MYCTU

Mycobacterium tuberculosis

28.8
57.3
302
hypothetical membrane protein








H37Rv Rv0497


460
3960
434886
435695
810
sp: PROC_CORGL

Corynebacterium glutamicum

100.0
100.0
269
pyrroline-5-carboxylate reductase








ATCC 17965 proC


461
3961
434986
433865
1122
gp: D88733_1

Equine herpesvirus 1 ORF71

25.4
52.0
394
membrane glycoprotein


462
3962
435940
436137
198
pir: S72921

Mycobacterium leprae

76.4
94.6
55
hypothetical protein








B2168_C1_172


463
3963
436321
436103
219


464
3964
436463
436561
99
gp: SCE68_25

Streptomyces coelicolor

89.7
100.0
29
hypothetical protein








SCE68.25c


465
3965
436573
436764
192


466
3966
437233
437850
618


467
3967
438044
436980
1065
pir: S72914

Mycobacterium leprae

51.0
77.4
296
phosphoserine phosphatase








MTCY20G9.32C. serB


468
3968
438179
438424
246
sp: YV35_MYCTU

Mycobacterium tuberculosis

40.5
66.2
74
hypothetical protein








H37Rv Rv0508


469
3969
438294
438037
258


470
3970
438516
439904
1389
sp: HEM1_MYCLE

Mycobacterium leprae hemA

44.4
74.3
455
glutamyl-tRNA reductase


471
3971
439909
440814
906
pir: S72887

Mycobacterium leprae hem3b

50.7
75.3
308
hydroxymethylbilane synthase


472
3972
441220
441591
372


473
3973
442482
441601
882
sp: CATM_ACICA

Acinetobacter calcoaceticus

27.1
57.6
321
cat operon transcriptional regulator








catM


474
3974
442758
444158
1401
sp: SHIA_ECOLI

Escherichia coli K12 shiA

35.5
72.2
417
shikimate transport protein


475
3975
444185
446038
1854
sp: 3SHD_NEUCR

Neurospora crassa qa4

28.2
57.9
309
3-dehydroshikimate dehydratase


476
3976
446538
447386
849
gp: AF124518_2

Corynebacterium glutamicum

98.2
98.6
282
shikimate dehydrogenase








ASO19 aroE


477
3977
447670
447398
273


478
3978
449179
448130
1050
sp: POTG_ECOLI

Escherichia coli K12 potG

34.7
68.6
363
putrescine transport protein


479
3979
449714
449100
615


480
3980
450826
449183
1644
sp: SFUB_SERMA

Serratia marcescens sfuB

25.1
55.2
578
iron(III)-transport system permease












protein


481
3981
450849
451961
1113


482
3982
451895
450837
1059
gp: SHU75349_1

Brachyspira hyodysenteriae bitA

25.1
59.9
347
periplasmic-iron-binding protein


483
3983
452661
454430
1770
pir: S72909

Mycobacterium leprae cysG

46.5
71.6
486
uroporphyrin-III C-methyltransferase


484
3984
454450
454875
426


485
3985
454967
455983
1017
sp: HEM2_STRCO

Streptomyces coelicolor A3(2)

60.8
83.1
337
delta-aminolevulinic acid








hemB



dehydratase


486
3986
456016
456597
582


487
3987
456641
457150
510


488
3988
457357
459900
2544
sp: CTPB_MYCLE

Mycobacterium leprae ctpB

27.4
56.5
858
cation-transporting P-type ATPase B


489
3989
459425
458583
843


490
3990
460020
461093
1074
sp: DCUP_STRCO

Streptomyces coelicolor A3(2)

55.0
76.7
364
uroporphyrinogen decarboxylase








hemE


491
3991
461112
462455
1344
sp: PPOX_BACSU

Bacillus subtilis hemY

28.0
59.9
464
protoporphyrinogen IX oxidase


492
3992
462557
463867
1311
sp: GSA_MYCLE

Mycobacterium leprae hemL

61.7
83.5
425
glutamate-1-semialdehyde 2,1-












aminomutase


493
3993
463867
464472
606
sp: PMG2_ECOLI

Escherichia coli K12 gpmB

28.0
62.7
161
phosphoglycerate mutase


494
3994
464482
465102
621
pir: A70545

Mycobacterium tuberculosis

44.7
71.2
208
hypothetical protein








H37Rv Rv0526


495
3995
465118
465909
792
pir: B70545

Mycobacterium tuberculosis

53.5
85.3
245
cytochrome c-type biogenesis








H37Rv ccsA



protein


496
3996
465949
467571
1623
pir: C70545

Mycobacterium tuberculosis

50.7
76.0
533
hypothetical membrane protein








H37Rv Rv0528


497
3997
467648
468658
1011
pir: D70545

Mycobacterium tuberculosis

44.1
77.8
338
cytochrome c biogenesis protein








H37Rv ccsB


498
3998
469370
470170
801


499
3999
470184
470654
471
pir: G70790

Mycobacterium tuberculosis

38.9
69.4
144
transcriptional regulator








H37Rv Rv3678c pb5


500
4000
471013
470657
357
prf: 2420312A

Staphylococcus aureus zntR

31.1
72.2
90
Zn/Co transport repressor


501
4001
471420
471121
300


502
4002
471515
471847
333
pir: F70545

Mycobacterium tuberculosis

39.0
78.1
82
hypothetical membrane protein








H37Rv Rv0531


503
4003
472808
471915
894
sp: MENA_ECOLI

Escherichia coli K12 menA

33.6
61.5
301
1,4-dihydroxy-2-naphthoate












octaprenyltransferase


504
4004
472948
473811
864
gp: AF125164_6

Bacteroides fragilis wcgB

32.4
62.6
238
glycosyl transferase


505
4005
475136
473814
1323
prf: 2423270B

Rhizobium trifolii matB

25.4
51.5
421
malonyl-CoA-decarboxylase


506
4006
475407
474997
411
sp: YQJF_ECOLI

Escherichia coli K12 yqjF

35.3
65.5
139
hypothetical membrane protein


507
4007
477048
475489
1560
pir: S27612

Pseudomonas putida

50.4
76.0
520
ketoglutarate semialdehyde












dehydrogenase


508
4008
477995
477048
948
sp: KDGD_PSEPU

Pseudomonas putida KDGDH

48.5
75.6
303
5-dehydro-4-deoxyglucarate












dehydratase


509
4009
478970
478092
879
sp: ALSR_BACSU

Bacillus subtilis 168 alsR

36.9
66.2
293
als operon regulatory protein


510
4010
479303
478989
315
pir: B70547

Mycobacterium tuberculosis

33.0
64.9
94
hypothetical protein








H37Rv Rv0543c


511
4011
480154
480597
444


512
4012
480201
479452
750
gp: SSP277295_9

Sphingomonas sp. LB126 fldB

28.1
54.7
267
2-pyrone-4,6-dicarboxylic acid


513
4013
480624
480208
417


514
4014
481001
480624
378


515
4015
481391
481131
261


516
4016
482668
481394
1275
pir: D70547

Mycobacterium tuberculosis

60.0
83.2
410
low-affinity inorganic phosphate








H37Rv pitA



transporter


517
4017
483587
483366
222


518
4018
483942
483637
306


519
4019
485062
484106
957
sp: MENB_BACSU

Bacillus subtilis menB

48.5
70.3
293
naphthoate synthase


520
4020
485384
485986
603
gp: AE001957_12

Deinococcus radiodurans

57.9
82.7
202
peptidase E








DR1070


521
4021
485385
485077
309
pir: C70304

Aquifex aeolicus VF5 phhB

37.7
68.8
77
pterin-4a-carbinolamine dehydratase


522
4022
486001
487014
1014
pir: D70548

Mycobacterium tuberculosis

54.0
76.7
335
muconate cycloisomerase








H37Rv Rv0553 menC


523
4023
487028
488656
1629
sp: MEND_BACSU

Bacillus subtilis menD

29.4
54.0
606
2-oxoglutarate decarboxylase and 2-












succinyl-6-hydroxy-2,4-












cyclohexadiene-1-carboxylate












synthase


524
4024
488660
489100
441
pir: G70548

Mycobacterium tuberculosis

37.2
64.9
148
hypothetical membrane protein








H37Rv Rv0556


525
4025
489209
490447
1239
pir: H70548

Mycobacterium tuberculosis

22.8
54.2
408
alpha-D-mannose-alpha(1-6)








H37Rv pimB



phosphatidyl myo-inositol












monomannoside transferase


526
4026
490580
491938
1359
sp: CYCA_ECOLI

Escherichia coli K12 cycA

66.2
89.9
447
D-serine/D-alanine/glycine












transporter


527
4027
491966
492655
690
sp: UBIE_ECOLI

Escherichia coli K12 ubiE

37.1
66.7
237
ubiquinone/menaquinone












biosynthesis methyltransferase


528
4028
492915
493583
669


529
4029
493916
492645
1272
pir: D70549

Mycobacterium tuberculosis

49.0
76.7
412
oxidoreductase








H37Rv Rv0561c


530
4030
494061
495110
1050
sp: HEP2_BACST

Bacillus stearothermophilus

39.2
67.1
316
heptaprenyl diphosphate synthase








ATCC 10149 hepT



component II


531
4031
496810
497142
333
gp: AF130462_2

Corynebacterium glutamicum

100.0
100.0
111
preprotein translocase SecE subunit








ATCC 13032 secE


532
4032
497374
498327
954
gp: AF130462_3

Corynebacterium glutamicum

100.0
100.0
318
transcriptional antiterminator protein








ATCC 13032 nusG


533
4033
498598
499032
435
gp: AF130462_4

Corynebacterium glutamicum

100.0
100.0
145
50S ribosomal protein L11








ATCC 13032 rplK


534
4034
499162
499869
708
gp: AF130462_5

Corynebacterium glutamicum

100.0
100.0
236
50S ribosomal protein L1








ATCC 13032 rplA


535
4035
501436
499925
1512
gp: SC5H4_2

Streptomyces coelicolor

23.1
50.2
564
regulatory protein








SC5H4.02


536
4036
501577
502920
1344
sp: GABT_MYCTU

Mycobacterium tuberculosis

60.5
82.4
443
4-aminobutyrate aminotransferase








H37Rv RV2589 gabT


537
4037
502925
504283
1359
sp: GABD_ECOLI

Escherichia coli K12 gabD

40.8
71.8
461
succinate-semialdehyde












dehydrogenase (NAD(P)+)


538
4038
503739
503272
468
GP: ABCARRA_2

Azospirillum brasilense carR

32.0
38.0
150
novel two-component regulatory












system


539
4039
504379
505569
1191
sp: TYRP_ECOLI

Escherichia coli K12 o341#7

25.5
49.9
447
tyrosine-specific transport protein








tyrP


540
4040
505698
507647
1950
sp: CTPG_MYCTU

Mycobacterium tuberculosis

33.2
64.4
615
cation-transporting ATPase G








H37Rv RV1992C ctpG


541
4041
507669
509081
1413
sp: P49_STRLI

Streptomyces lividans P49

40.2
66.2
468
hypothetical protein or












dehydrogenase


542
4042
509094
509696
603


543
4043
509998
510510
513
sp: RL10_STRGR

Streptomyces griseus N2-3-11

52.9
84.7
170
50S ribosomal protein L10








rplJ


544
4044
510591
510974
384
sp: RL7_MYCTU

Mycobacterium tuberculosis

72.3
89.2
130
50S ribosomal protein L7/L12








H37Rv RV0652 rplL


545
4045
511126
510989
138


546
4046
511536
512507
972
pir: A70962

Mycobacterium tuberculosis

25.8
55.5
283
hypothetical membrane protein








H37Rv Rv0227c


547
4047
512913
516407
3495
sp: RPOB_MYCTU

Mycobacterium tuberculosis

75.4
90.4
1180
DNA-directed RNA polymerase beta








H37Rv RV0667 rpoB



chain


548
4048
516494
520492
3999
sp: RPOC_MYCTU

Mycobacterium tuberculosis

72.9
88.7
1332
DNA-directed RNA polymerase beta








H37Rv RV0668 rpoC



chain


549
4049
519277
518696
582
GP: AF121004_1

Mycobacterium tuberculosis

39.0
52.0
169
hypothetical protein








H37Rv Jv0166c


550
4050
520671
520850
180


551
4051
520865
521644
780
gp: SCJ9A_15

Streptomyces coelicolor A3(2)

39.2
63.8
232
DNA-binding protein








SCJ9A.15c


552
4052
522476
521679
798
sp: YT08_MYCTU

Mycobacterium tuberculosis

29.3
57.7
215
hypothetical protein








H37Rv RV2908C


553
4053
522694
523059
366
sp: RS12_MYCIT

Mycobacterium intracellulare

90.9
97.5
121
30S ribosomal protein S12








rpsL


554
4054
523069
523533
465
sp: RS7_MYCSM

Mycobacterium smegmatis

81.8
94.8
154
30S ribosomal protein S7








LR222 rpsG


555
4055
523896
526010
2115
sp: EFG_MICLU

Micrococcus luteus fusA

71.7
88.9
709
elongation factor G


556
4056
526070
523911
2160


557
4057
526156
526013
144


558
4058
527121
526894
228
GSP: Y37841

Chlamydia trachomatis

56.0
78.0
44
lipoprotein


559
4059
527759
527607
153


560
4060
528040
528768
729


561
4061
529570
528779
792
sp: FEPC_ECOLI

Escherichia coli K12 fepC

56.2
83.7
258
ferric enterobactin transport ATP-












binding protein


562
4062
530626
529592
1035
sp: FEPG_ECOLI

Escherichia coli K12 fepG

45.6
77.8
329
ferric enterobactin transport protein


563
4063
531782
530748
1035
sp: FEPD_ECOLI

Escherichia coli K12 fepD

48.1
80.6
335
ferric enterobactin transport protein


564
4064
532008
532523
516
gp: CTACTAGEN_1

Thermoanaerobacterium

56.6
79.3
145
butyryl-CoA: acetate coenzyme A









thermosaccharolyticum actA




transferase


565
4065
533099
533401
303
sp: RS10_PLARO

Planobispora rosea ATCC

84.2
99.0
101
30S ribosomal protein S10








53733 rpsJ


566
4066
533437
534090
654
sp: RL3_MYCBO

Mycobacterium bovis BCG rplC

66.5
89.6
212
50S ribosomal protein L3


567
4067
534087
533401
687


568
4068
534090
534743
654
sp: RL4_MYCBO

Mycobacterium bovis BCG rplD

71.2
90.1
212
50S ribosomal protein L4


569
4069
534746
535048
303
sp: RL23_MYCBO

Mycobacterium bovis BCG rplW

74.0
90.6
96
50S ribosomal protein L23


570
4070
535072
534746
327


571
4071
535076
535915
840
sp: RL2_MYCLE

Mycobacterium bovis BCG rplB

80.7
92.9
280
50S ribosomal protein L2


572
4072
535935
536210
276
sp: RS19_MYCTU

Mycobacterium tuberculosis

87.0
98.9
92
30S ribosomal protein S19








H37Rv Rv0705 rpsS


573
4073
536183
535899
285


574
4074
536217
536576
360
sp: RL22_MYCTU

Mycobacterium tuberculosis

74.3
91.7
109
50S ribosomal protein L22








H37Rv Rv0706 rplV


575
4075
536579
537322
744
sp: RS3_MYCBO

Mycobacterium bovis BCG rpsC

77.4
91.2
239
30S ribosomal protein S3


576
4076
537328
537741
414
sp: RL16_MYCBO

Mycobacterium bovis BCG rplP

69.3
88.3
137
50S ribosomal protein L16


577
4077
537744
537971
228
sp: RL29_MYCBO

Mycobacterium bovis BCG rpmC

65.7
88.1
67
50S ribosomal protein L29


578
4078
537977
538252
276
sp: RS17_MYCBO

Mycobacterium bovis BCG rpsQ

69.5
89.0
82
30S ribosomal protein S17


579
4079
538267
537974
294


580
4080
538698
538381
318


581
4081
539413
538718
696


582
4082
539741
540106
366
sp: RL14_MYCTU

Mycobacterium tuberculosis

83.6
95.1
122
50S ribosomal protein L14








H37Rv Rv0714 rplN


583
4083
540112
540423
312
sp: RL24_MYCTU

Mycobacterium tuberculosis

76.2
91.4
105
50S ribosomal protein L24








H37Rv Rv0715 rplX


584
4084
540426
540998
573
sp: RL5_MICLU

Micrococcus luteus rplE

73.6
92.3
183
50S ribosomal protein L5


585
4085
541048
542079
1032


586
4086
542896
542090
807
sp: 2DKG_CORSP

Corynebacterium sp.

52.3
74.2
260
2,5-diketo-D-gluconic acid reductase


587
4087
543412
542921
492


588
4088
544329
543415
915
sp: FDHD_WOLSU

Wolinella succinogenes fdhD

28.9
59.7
298
formate dehydrogenase chain D


589
4089
544670
544335
336
gp: SCGD3_29

Streptomyces coelicolor A3(2)

37.2
68.1
94
molybdopterin-guanine dinucleotide








SCGD3.29c



biosynthesis protein


590
4090
546889
544757
2133
sp: FDHF_ECOLI

Escherichia coli fdfF

24.3
53.4
756
formate dehydrogenase H or alpha












chain


591
4091
547329
548084
756


592
4092
548990
548187
804


593
4093
550651
548990
1662
sp: YC81_MYCTU

Mycobacterium tuberculosis

26.9
52.6
624
ABC transporter ATP-binding protein








H37Rv Rv1281c oppD


594
4094
551844
550699
1146


595
4095
552927
551854
1074


596
4096
554129
552948
1182
pir: E69424

Archaeoglobus fulgidus AF1398

24.7
50.4
405
hypothetical protein


597
4097
554919
554452
468
gp: AE001931_13

Deinococcus radiodurans

42.7
66.7
150
hypothetical protein








DR0763


598
4098
555331
555726
396
pir: S29885

Micrococcus luteus

75.8
97.7
132
30S ribosomal protein S8


599
4099
555749
556282
534
pir: S29886

Micrococcus luteus

59.2
87.7
179
50S ribosomal protein L6


600
4100
556289
556690
402
sp: RL18_MICLU

Micrococcus luteus rplR

67.3
90.9
110
50S ribosomal protein L18


601
4101
556734
557366
633
sp: RS5_MICLU

Micrococcus luteus rpsE

67.8
88.3
171
30S ribosomal protein S5


602
4102
557373
557555
183
sp: RL30_ECOLI

Escherichia coli K12 rpmJ

54.6
76.4
55
50S ribosomal protein L30


603
4103
557565
558008
444
sp: RL15_MICLU

Micrococcus luteus rplO

66.4
87.4
143
50S ribosomal protein L15


604
4104
557588
556860
729


605
4105
558517
558197
321
prf: 2204281A

Streptomyces coelicolor msdA

46.9
68.8
128
methylmalonic acid semialdehyde












dehydrogenase


606
4106
558969
558607
363


607
4107
559805
560260
456
GP: ABCARRA_2

Azospirillum brasilense carR

47.0
52.0
125
novel two-component regulatory












system


608
4108
560634
559144
1491
prf: 2516398E

Rhodococcus rhodochrous

41.7
71.5
487
aldehyde dehydrogenase or betaine








plasmid pRTL1 orf5



aldehyde dehydrogenase


609
4109
561368
560634
735


610
4110
562632
562937
306


611
4111
562633
561368
1266
prf: 2411257B

Sphingomonas sp. redA2

41.1
71.6
409
reductase


612
4112
562963
562646
318
prf: 2313248B

Rhodobacter capsulatus fdxE

47.7
66.4
107
2Fe2S ferredoxin


613
4113
563736
562993
744
gp: PPU24215_2

Pseudomonas putida cymB

35.8
70.8
257
p-cumic alcohol dehydrogenase


614
4114
563871
564083
213
PIR: H72754

Aeropyrum pernix K1 APE0029

50.0
56.0
50
hypothetical protein


615
4115
565471
563732
1740
pir: JC4176

Pyrococcus furiosus Vc1 DSM

22.9
45.0
629
phosphoenolpyruvate synthetase








3638 ppsA


616
4116
566759
565680
1080
pir: JC4176

Pyrococcus furiosus Vc1 DSM

38.6
66.7
378
phosphoenolpyruvate synthetase








3638 ppsA


617
4117
568088
566799
1290
prf: 2104333G

Rhodococcus erythropolis thcB

34.8
65.2
422
cytochrome P450


618
4118
569075
568272
804
prf: 2512309A

Erwinia carotovora carotovora

28.5
66.0
256
transcriptional repressor








kdgR


619
4119
570774
571316
543
sp: KAD_MICLU

Micrococcus luteus adk

48.9
81.0
184
adenylate kinase


620
4120
571367
570756
612


621
4121
571476
572267
792
sp: AMPM_BACSU

Bacillus subtilis 168 map

43.1
74.7
253
methionine aminopeptidase


622
4122
572349
573176
828


623
4123
573407
573622
216
pir: F69644

Bacillus subtilis infA

77.0
86.0
72
translation initiation factor IF-1


624
4124
573816
574181
366
prf: 2505353B

Thermus thermophilus HB8

66.4
91.0
122
30S ribosomal protein S13








rps13


625
4125
574187
574588
402
sp: RS11_STRCO

Streptomyces coelicolor A3(2)

81.3
93.3
134
30S ribosomal protein S11








SC6G4.06. rpsK


626
4126
574615
575217
603
prf: 2211287F

Mycobacterium tuberculosis

82.6
93.9
132
30S ribosomal protein S4








H37Rv RV3458C rpsD


627
4127
575338
576351
1014
sp: RPOA_BACSU

Bacillus subtilis 168 rpoA

51.1
77.8
311
RNA polymerase alpha subunit


628
4128
575366
575211
156


629
4129
576410
576898
489
sp: RL17_ECOLI

Escherichia coli K12 rplQ

51.6
77.1
122
50S ribosomal protein L17


630
4130
577057
577923
867
sp: TRUA_ECOLI

Escherichia coli k12 truA

37.0
61.1
265
pseudouridylate synthase A


631
4131
578033
580429
2397
pir: G70695

Mycobacterium tuberculosis

24.8
51.2
786
hypothetical membrane protein








H37Rv Rv3779


632
4132
580891
580436
456


633
4133
581221
580919
303


634
4134
581406
582662
1257
pir: A70836

Mycobacterium tuberculosis

27.4
53.8
485
hypothetical protein








H37Rv Rv0283


635
4135
582684
584228
1545
sp: DIM_ARATH

Arabidopsis thaliana CV DIM

22.8
50.9
505
cell elongation protein


636
4136
584268
585620
1353
sp: CFA_ECOLI

Escherichia coli K12 cfa

30.7
56.0
423
cyclopropane-fatty-acyl-phospholipid












synthase


637
4137
585823
586248
426
gp: SCL2_30

Streptomyces coelicolor A3(2)

28.0
59.0
100
hypothetical membrane protein








SCL2.30c


638
4138
587757
586399
1359
sp: ELYA_BACAO

Bacillus alcalophilus

31.3
58.0
273
high-alkaline serine proteinase


639
4139
589015
587645
1371
pir: T10930

Streptomyces coelicolor A3(2)

24.0
50.6
516
hypothetical membrane protein








SC3C3.21


640
4140
589296
592862
3567
pir: E70977

Mycobacterium tuberculosis

65.0
38.4
1260
hypothetical membrane protein








H37Rv Rv3447c


641
4141
590411
589590
822


642
4142
590560
589898
663


643
4143
592862
593761
900


644
4144
593935
594258
324
pir: C70977

Mycobacterium tuberculosis

31.1
69.9
103
hypothetical protein








H37Rv Rv3445c


645
4145
594293
594580
288
prf: 2111376A

Mycobacterium tuberculosis

36.3
81.3
80
early secretory antigen target ESAT-












6 protein


646
4146
594939
595379
441
sp: RL13_STRCO

Streptomyces coelicolor A3(2)

58.6
82.1
145
50S ribosomal protein L13








SC6G4.12. rplM


647
4147
595382
595927
546
sp: RS9_STRCO

Streptomyces coelicolor A3(2)

49.2
72.4
181
30S ribosomal protein S9








SG6G4.13. rpsl


648
4148
596109
597449
1341
prf: 2320260A

Staphylococcus aureus

48.9
76.4
450
phosphoglucosamine mutase








femR315


649
4149
597892
598194
303


650
4150
598194
599702
1509
pir: S75138

Synechocystis sp. PCC6803

29.3
45.6
318
hypothetical protein








slr1753


651
4151
599350
598778
573


652
4152
599699
599932
234


653
4153
600876
600022
855
pir: S73000

Mycobacterium leprae

44.0
72.2
259
hypothetical protein








B229_F1_20


654
4154
600971
602053
1083
sp: ALR_MYCTU

Mycobacterium tuberculosis

41.6
68.5
368
alanine racemase








H37Rv RV3423C alr


655
4155
602080
602574
495
sp: Y097_MYCTU

Mycobacterium tuberculosis

48.7
78.6
154
hypothetical protein








H37Rv Rv3422c


656
4156
602811
604409
1599
sp: YIDE_ECOLI

Escherichia coli K12 yidE

28.9
66.2
550
hypothetical membrane protein


657
4157
604470
605708
1239
gp: PSJ00161_1

Propionibacterium shermanii pip

51.3
77.6
411
proline iminopeptidase


658
4158
605718
606392
675
sp: Y098_MYCTU

Mycobacterium tuberculosis

52.2
75.4
207
hypothetical protein








H37Rv Rv3421c


659
4159
606392
606898
507
sp: RIMI_ECOLI

Escherichia coli K12 riml

30.3
59.9
132
ribosomal-protein-alanine N-












acetyltransferase


660
4160
606905
607936
1032
sp: GCP_PASHA

Pasteurella haemolytica

46.1
75.2
319
O-sialoglycoprotein endopeptidase








SEROTYPE A1 gcp


661
4161
607958
609679
1722
sp: Y115_MYCTU

Mycobacterium tuberculosis

38.4
59.4
571
hypothetical protein








H37Rv Rv3433c


662
4162
609747
610175
429


663
4163
610268
609816
453


664
4164
610348
610644
297
sp: CH10_MYCTU

Mycobacterium tuberculosis

76.0
94.0
100
heat shock protein groES








H37Rv RV3418C mopB


665
4165
610659
612272
1614
sp: CH61_MYCLE

Mycobacterium leprae

63.3
85.1
537
heat shock protein groEL








B229_C3_248 groE1


666
4166
611200
610946
255
GP: MSGTCWPA_1

Mycobacterium tuberculosis

50.0
56.0
76
hypothetical protein


667
4167
612266
611109
1158
GP: MSGTCWPA_3

Mycobacterium tuberculosis

34.0
45.0
138
hypothetical protein


668
4168
612714
612418
297
gp: AF073300_1

Mycobacterium smegmatis

64.9
88.3
94
regulatory protein








whiB3


669
4169
613156
613719
564
sp: Y09F_MYCTU

Mycobacterium tuberculosis

55.2
81.6
174
RNA polymerase sigma factor








H37Rv Rv3414c sigD


670
4170
613722
614747
1026


671
4171
615180
614803
378
sp: Y09H_MYCLE

Mycobacterium leprae

41.4
69.8
116
hypothetical protein








B1620_F3_131


672
4172
615336
616853
1518
gp: AB003154_1

Corynebacterium

80.8
93.9
504
IMP dehydrogenase









ammoniagenes ATCC 6872









guaB


673
4173
616231
615605
627
PIR: F71456

Pyrococcus horikoshii PH0308

39.0
53.0
146
hypothetical protein


674
4174
616973
618094
1122
gp: AB003154_2

Corynebacterium

70.9
86.1
381
IMP dehydrogenase









ammoniagenes ATCC 6872



675
4175
619013
618093
921
sp: YBIF_ECOLI

Escherichia coli K12 ybiF

38.0
67.5
274
hypothetical membrane protein


676
4176
619086
619994
909
prf: 1516239A

Bacillus subtilis gltC

29.0
58.4
262
glutamate synthetase positive












regulator


677
4177
620004
621572
1569
sp: GUAA_CORAM

Corynebacterium

81.6
92.8
517
GMP synthetase









ammoniagenes guaA



678
4178
620926
620264
663


679
4179
621717
622157
441


680
4180
622269
622457
189


681
4181
623635
622460
1176
gp: SCD63_22

Streptomyces coelicolor A3(2)

20.5
39.6
513
hypothetical membrane protein


682
4182
623800
624939
1140
gp: SC6E10_15

Streptomyces coelicolor A3(2)

26.8
48.7
411
two-component system sensor








SC6E10.15c



histidine kinase


683
4183
624985
625674
690
sp: DEGU_BACSU

Bacillus subtilis 168 degU

33.5
65.1
218
transcriptional regulator or












extracellular proteinase response












regulator


684
4184
625677
626000
324


685
4185
626558
626070
489


686
4186
627539
626577
963


687
4187
627727
628551
825
pir: B70975

Mycobacterium tuberculosis

30.9
64.2
201
hypothetical protein








H37Rv Rv3395c


688
4188
628551
630140
1590
pir: A70975

Mycobacterium tuberculosis

37.5
64.1
563
hypothetical protein








H37Rv Rv3394c


689
4189
630810
630151
660


690
4190
630949
631809
861
gp: SC5B8_20

Streptomyces coelicolor A3(2)

33.8
62.9
275
hypothetical protein








SC5B8.20c


691
4191
632684
631824
861
gp: AE001935_7

Deinococcus radiodurans

27.8
58.3
288
hypothetical membrane protein








DR0809


692
4192
633079
632690
390


693
4193
633474
633079
396
gp: MMU92075_3

Mycobacterium marinum

36.8
67.4
95
hypothetical membrane protein


694
4194
635175
633532
1644
gp: AF139916_3

Brevibacterium linens ATCC

50.4
76.2
524
phytoene desaturase








9175 crtl


695
4195
636089
635178
912
gp: AF139916_2

Brevibacterium linens ATCC

42.0
71.2
288
phytoene synthase








9175 crtB


696
4196
638278
636089
2190
gp: SCF43A_29

Streptomyces coelicolor A3(2)

48.6
75.6
722
transmembrane transport protein








SCF43A.29c


697
4197
639462
638317
1146
gp: AF139916_11

Brevibacterium linens crtE

32.7
63.8
367
geranylgeranyl pyrophosphate












(GGPP) synthase


698
4198
639624
640208
585
gp: AF139916_14

Brevibacterium linens

38.3
68.1
188
transcriptional regulator (MarR












family)


699
4199
640879
640232
648
sp: BLC_CITFR

Citrobacter freundii blc OS60 blc

33.1
62.1
145
outer membrane lipoprotein


700
4200
641133
642557
1425
gp: AF139916_1

Brevibacterium linens

48.7
74.2
462
hypothetical protein


701
4201
643959
642556
1404
gp: AF139916_5

Brevibacterium linens ATCC

40.0
63.2
497
DNA photolyase








9175 cpd1


702
4202
644026
644778
753
gp: AF155804_7

Streptococcus suis cps1K

25.9
53.7
205
glycosyl transferase


703
4203
647590
645176
2415
gp: SCE25_30

Streptomyces coelicolor A3(2)

24.3
54.9
897
ABC transporter








SCE25.30


704
4204
648309
647593
717
prf: 2420410P

Bacillus subtilis 168 yvrO

35.4
72.2
223
ABC transporter


705
4205
648467
648315
153


706
4206
649105
648440
666
prf: 2320284D

Helicobacter pylori abcD

35.9
75.2
206
ABC transporter


707
4207
649342
650187
846


708
4208
650193
649114
1080
sp: ABC_ECOLI

Escherichia coli TAP90 abc

43.6
75.4
346
ABC transporter


709
4209
651288
650392
897
sp: HLPA_HAEIN

Haemophilus influenzae

28.7
67.2
268
lipoprotein








SEROTYPE B hlpA


710
4210
651601
654612
3012
prf: 2517386A

Thermus aquaticus dnaE

30.2
57.5
1101
DNA polymerase III


711
4211
654676
655122
447
gp: SCE126_11

Streptomyces coelicolor A3(2)

41.5
62.3
159
hypothetical protein








SCE126.11


712
4212
655122
656534
1413
gp: SCE9_1

Streptomyces coelicolor A3(2)

26.1
56.0
468
hypothetical membrane protein








SCE9.01


713
4213
655834
655097
738


714
4214
656547
657215
669
pir: C70884

Mycobacterium tuberculosis

50.3
76.4
203
transcriptional repressor








H37Rv Rv2788 sirR


715
4215
658002
657205
798
gp: SCG8A_5

Streptomyces coelicolor A3(2)

34.9
61.7
264
hypothetical protein








SCG8A.05c


716
4216
658005
658142
138


717
4217
658155
658928
774
pir: C69459

Archaeoglobus fulgidus AF1676

42.5
71.8
245
transcriptional regulator (Sir2 family)


718
4218
658933
659424
492
gp: SC5H1_34

Streptomyces coelicolor A3(2)

45.2
78.3
157
hypothetical protein








SC5H1.34


719
4219
659543
660538
996
gp: CDU02617_1

Corynebacterium diphtheriae

31.1
62.2
357
iron-regulated lipoprotein precursor








irp1


720
4220
661120
660650
471
pir: E70971

Mycobacterium tuberculosis

62.9
86.1
151
rRNA methylase








H37Rv Rv3366 spoU


721
4221
661166
662017
852
pir: C70970

Mycobacterium tuberculosis

70.9
87.4
278
methylenetetrahydrofolate








H37Rv Rv3356c folD



dehydrogenase


722
4222
662120
662374
255
gp: MLCB1779_8

Mycobacterium leprae

31.3
76.3
80
hypothetical membrane protein








MLCB1779.16c


723
4223
663761
662382
1380
gp: SC66T3_18

Streptomyces coelicolor A3(2)

34.0
63.2
489
hypothetical protein








SC66T3.18c


724
4224
665088
664126
963


725
4225
666313
665183
1131
gp: AF052652_1

Corynebacterium glutamicum

99.5
99.5
379
homoserine O-acetyltransferase








metA


726
4226
667770
666460
1311
prf: 2317335A

Leptospira meyeri metY

49.7
76.2
429
O-acetylhomoserine sulfhydrylase


727
4227
668264
670465
2202
sp: CSTA_ECOLI

Escherichia coli K12 cstA

53.9
78.4
690
carbon starvation protein


728
4228
670053
669445
609


729
4229
670472
670672
201
sp: YJIX_ECOLI

Escherichia coli K12 yjiX

40.0
66.0
50
hypothetical protein


730
4230
671653
671045
609


731
4231
671700
672653
954
pir: C70539

Mycobacterium tuberculosis

71.0
86.4
317
hypothetical protein








H37Rv Rv1130


732
4232
672665
673576
912
prf: 1902224A

Streptomyces hygroscopicus

41.6
76.2
281
carboxy phosphoenolpyruvate












mutase


733
4233
673608
674756
1149
sp: CISY_MYCSM

Mycobacterium smegmatis

56.1
81.3
380
citrate synthase








ATCC 607 gltA


734
4234
673639
672710
930


735
4235
674990
674799
192
sp: YNEC_ECOLI

Escherichia coli K12 yneC

34.0
62.3
53
hypothetical protein


736
4236
675175
675846
672


737
4237
676122
675082
1041
sp: MDH_METFE

Methanothermus fervidus V24S

37.6
67.5
338
L-malate dehydrogenase








mdh


738
4238
676937
676218
720
prf: 2514353L

Bacillus stearothermophilus T-6

26.1
62.8
226
regulatory protein








uxuR


739
4239
677748
677047
702


740
4240
681027
680131
897
sp: VIUB_VIBCH

Vibrio cholerae OGAWA 395

25.4
54.2
284
vibriobactin utilization protein








viuB


741
4241
681846
681040
807
gp: AF176902_3

Corynebacterium diphtheriae

55.4
85.1
269
ABC transporter ATP-binding protein








irp1D


742
4242
682904
681846
1059
gp: AF176902_2

Corynebacterium diphtheriae

56.3
86.4
339
ABC transporter








irp1C


743
4243
683866
682871
996
gp: AF176902_1

Corynebacterium diphtheriae

63.0
88.2
330
ABC transporter








irp1B


744
4244
684925
683876
1050
gp: CDU02617_1

Corynebacterium diphtheriae

53.1
82.3
356
iron-regulated lipoprotein precursor








irp1


745
4245
685109
686380
1272
prf: 2202262A

Streptomyces venezuelae cmlv

32.2
69.6
395
chloramphenicol resistance protein


746
4246
686435
687346
912
prf: 2222220B

Pseudomonas aeruginosa crc

30.4
58.1
303
catabolite repression control protein


747
4247
687351
688007
657
sp: YICG_HAEIN

Haemophilus influenzae Rd

56.2
85.8
219
hypothetical protein








HI1240


748
4248
688141
688335
195


749
4249
689890
688916
975


750
4250
690696
689917
780
gp: AF109162_3

Corynebacterium diphtheriae

45.1
73.8
244
ferrichrome ABC transporter








hmuV


751
4251
691722
690706
1017
pir: S54438

Yersinia enterocolitica hemU

38.7
69.1
346
hemin permease


752
4252
691882
692916
1035
sp: SYW_ECOLI

Escherichia coli K12 trpS

54.4
79.8
331
tryptophanyl-tRNA synthetase


753
4253
693028
694110
1083
sp: YHJD_ECOLI

Escherichia coli K12 yhjD

37.1
72.3
278
hypothetical protein


754
4254
694172
695074
903


755
4255
696213
695077
1137
sp: DACD_SALTY

Salmonella typhimurium LT2

30.9
57.5
301
penicillin-binding protein 6B








dacD



precursor


756
4256
697995
696769
1227
pir: F70842

Mycobacterium tuberculosis

34.1
70.7
417
hypothetical protein








H37Rv Rv3311


757
4257
698922
698065
858
gp: SC6G10_8

Streptomyces coelicolor A3(2)

29.4
52.6
323
hypothetical protein








SC6G10.08c


758
4258
699072
699266
195


759
4259
699272
698922
351


760
4260
699281
699913
633
sp: UPP_LACLA

Lactococcus lactis upp

46.4
72.3
209
uracil phosphoribosyltransferase


761
4261
699998
700381
384
gp: SC1A2_11

Streptomyces coelicolor A3(2)

41.6
66.2
77
bacterial regulatory protein, lacl








SC1A2.11



family


762
4262
702081
703262
1182
pir: H70841

Mycobacterium tuberculosis

51.4
80.5
385
N-acyl-L-amino acid amidohydrolase








H37Rv Rv3305c amiA



or peptidase


763
4263
702108
700384
1725
sp: MANB_MYCPI

Mycoplasma pirum BER manB

22.1
53.8
561
phosphomannomutase


764
4264
703405
704811
1407
sp: DLDH_HALVO

Halobacterium volcanii ATCC

31.6
65.0
468
dihydrolipoamide dehydrogenase








29605 lpd


765
4265
705211
708630
3420
prf: 2415454A

Corynebacterium glutamicum

100.0
100.0
1140
pyruvate carboxylase








strain21253 pyc


766
4266
708839
709708
870
sp: YD24_MYCTU

Mycobacterium tuberculosis

26.2
60.1
263
hypothetical protein








H37Rv Rv1324


767
4267
709793
710278
486
gp: SCF11_30

Streptomyces coelicolor A3(2)

30.7
66.9
127
hypothetical protein








SCF11.30


768
4268
711605
710520
1086
pir: B69760

Bacillus subtilis 168 yciC

44.6
69.0
381
hypothetical protein


769
4269
711724
712647
924
sp: TRXB_BACSU

Bacillus subtilis IS58 trxB

24.6
59.3
305
thioredoxin reductase


770
4270
712738
714231
1494
sp: PRPD_SALTY

Salmonella typhimurium LT2

24.0
49.5
521
PrpD protein for propionate








prpD



catabolism


771
4271
714258
715145
888
prf: 1902224A

Streptomyces hygroscopicus

42.5
74.5
278
carboxy phosphoenolpyruvate












mutase


772
4272
714757
714380
378
PIR: E72779

Aeropyrum pernix K1 APE0223

39.0
47.0
96
hypothetical protein


773
4273
715102
716283
1182
sp: CISY_MYCSM

Mycobacterium smegmatis

54.6
78.9
383
citrate synthase








ATCC 607 gltA


774
4274
716660
716286
375


775
4275
718009
716687
1323
pir: B70539

Mycobacterium tuberculosis

40.8
72.6
456
hypothetical protein








H37Rv Rv1129c


776
4276
718105
718350
246


777
4277
718658
720016
1359


778
4278
721449
720547
903
sp: THTR_CORGL

Corynebacterium glutamicum

100.0
100.0
225
thiosulfate sulfurtransferase








ATCC 13032 thtR


779
4279
721777
722841
1065
gp: CJ11168X1_62

Campylobacter jejuni Cj0069

61.1
79.8
352
hypothetical protein


780
4280
723338
722925
414
gp: MLCB4_16

Mycobacterium leprae

51.1
76.7
133
hypothetical protein








MLCB4.27c


781
4281
723412
725559
2148
pir: G70539

Mycobacterium tuberculosis

35.1
63.4
718
hypothetical membrane protein








H37Rv Rv1565c


782
4282
726462
725872
591
sp: YCEF_ECOLI

Escherichia coli K12 yceF

31.8
66.2
192
hypothetical protein


783
4283
726715
726470
246
prf: 2323363CF

Mycobacterium leprae B1308-

33.3
69.8
63
hypothetical protein








C3-211


784
4284
728352
726742
1611
gp: AB018531_2

Corynebacterium glutamicum

99.8
100.0
537
detergent sensitivity rescuer or








AJ11060 dtsR2



carboxyl transferase


785
4285
730324
728696
1629
pir: JC4991

Corynebacterium glutamicum

99.6
100.0
543
detergent sensitivity rescuer or








AJ11060 dtsR1



carboxyl transferase


786
4286
730436
731299
864
sp: BIRA_ECOLI

Escherichia coli K12 birA

28.7
61.8
293
bifunctional protein (biotin synthesis












repressor and biotin acetyl-CoA












carboxylase ligase)


787
4287
731312
731797
486
pir: G70979

Mycobacterium tuberculosis

23.0
58.8
165
hypothetical membrane protein








H37Rv Rv3278c


788
4288
731857
733017
1161
sp: PURK_CORAM

Corynebacterium

69.0
83.8
394
5′-phosphoribosyl-5-amino-4-









ammoniagenes ATCC 6872




imidasol carboxylase








purK


789
4289
733072
734943
1872
sp: KUP_ECOLI

Escherichia coli K12 kup

41.1
73.6
628
K+-uptake protein


790
4290
733797
733183
615


791
4291
734984
735340
357


792
4292
735402
735896
495
sp: PUR6_CORAM

Corynebacterium

85.7
93.2
147
5′-phosphoribosyl-5-amino-4-









ammoniagenes ATCC 6872




imidasol carboxylase








purE


793
4293
735899
736351
453
gp: APU33059_5

Actinosynnema pretiosum

36.2
60.5
152
hypothetical protein


794
4294
736413
737204
792
gp: SCF43A_36

Streptomyces coelicolor A3(2)

42.8
70.6
255
hypothetical protein








SCF43A.36


795
4295
738529
737216
1314
sp: NTAA_CHEHE

Chelatobacter heintzii ATCC

43.2
73.0
426
nitrilotriacetate monooxygenase








29600 ntaA


796
4296
740172
738673
1500
pir: A69426

Archaeoglobus fulgidus

23.4
52.5
303
transposase (ISA0963-5)


797
4297
741016
740228
789
sp: DHG2_BACME

Bacillus megaterium IAM 1030

31.3
64.8
256
glucose 1-dehydrogenase








gdhII


798
4298
741397
741765
369
pir: A72258

Thermotoga maritima MSB8

29.2
68.8
96
hypothetical membrane protein








TM1408


799
4299
741854
742195
342


800
4300
742384
741818
567
sp: YWJB_BACSU

Bacillus subtilis 168 ywjB

28.6
66.3
175
hypothetical protein


801
4301
742409
742828
420
gp: SCJ9A_21

Streptomyces coelicolor A3(2)

35.9
76.8
142
hypothetical protein








SCJ9A.21


802
4302
743052
742831
222


803
4303
743900
743067
834
prf: 2406355C

Thermococcus litoralis malG

42.4
75.3
271
trehalose/maltose-binding protein


804
4304
744931
743900
1032
prf: 2406355B

Thermococcus litoralis malF

37.3
70.3
306
trehalose/maltose-binding protein


805
4305
745513
745046
468


806
4306
746893
745622
1272
prf: 2406355A

Thermococcus litoralis malE

30.9
62.4
417
trehalose/maltose-binding protein


807
4307
748020
748442
423


808
4308
748026
747031
996
prf: 2308356A

Streptomyces reticuli msiK

57.2
73.9
332
ABC transporter ATP-binding protein












(ABC-type sugar transport protein)












or celloblose/maltose transport












protein


809
4309
748446
748814
369


810
4310
753685
748886
4800
pir: B75633

Deinococcus radiodurans R1

25.1
49.9
1783
RNA helicase








DRB0135


811
4311
757063
757434
372


812
4312
757395
753697
3699


813
4313
758262
757630
633
pir: E70978

Mycobacterium tuberculosis

31.7
59.2
240
hypothetical protein








H37Rv Rv3268


814
4314
760796
758364
2433
pir: C71929

Helicobacter pylori J99 jhp0462

30.0
62.5
720
hypothetical protein


815
4315
762468
760906
1563
sp: UVRD_ECOLI

Escherichia coli K12 uvrD

20.7
41.1
701
DNA helicase II


816
4316
762497
762853
357


817
4317
762730
763122
393


818
4318
762977
762582
396


819
4319
768191
767367
825


820
4320
769443
763237
6207
pir: T36671

Streptomyces coelicolor

22.4
45.8
2033
RNA helicase








SCH5.13


821
4321
774142
769547
4596
pir: T08313

Halobacterium sp. NRC-1

24.4
53.2
698
hypothetical protein








plasmid pNRC100 H1130


822
4322
777035
774150
2886
sp: HEPA_ECOLI

Escherichia coli K12 hepA

23.1
48.6
873
RNA polymerase associated protein












(ATP-dependent helicase)


823
4323
778711
777158
1554
pir: D70978

Mycobacterium tuberculosis

45.5
71.4
527
hypothetical protein








H37Rv Rv3267


824
4324
779014
779910
897
gp: AF187550_1

Mycobacterium smegmatis

56.4
77.9
289
dTDP-Rha: a-D-GlcNAc-








mc2155 wbbL



diphosphoryl polyprenol, a-3-L-












rhamnosyl transferase


825
4325
780128
781171
1044
sp: MPG1_YEAST

Saccharomyces cerevisiae

29.8
66.9
353
mannose-1-phosphate








YDL055C MPG1



guanylyltransferase


826
4326
781468
781875
408
gp: AF164439_1

Mycobacterium smegmatis

73.4
81.9
94
regulatory protein








whmD


827
4327
782617
782162
456
pir: B70847

Mycobacterium tuberculosis

48.9
74.8
139
hypothetical protein








H37Rv Rv3259


828
4328
782712
783101
390
gp: SCE34_11

Streptomyces coelicolor A3(2)

51.5
71.3
136
hypothetical protein








SCE34.11c


829
4329
783184
784557
1374
sp: MANB_SALMO

Salmonella montevideo M40

38.0
66.3
460
phosphomannomutase








manB


830
4330
784635
785639
1005
pir: B70594

Mycobacterium tuberculosis

31.2
56.3
327
hypothetical protein








H37Rv Rv3256c


831
4331
785643
786824
1182
sp: MANA_ECOLI

Escherichia coli K12 manA

36.9
66.2
420
mannose-6-phosphate isomerase


832
4332
786896
787045
150


833
4333
787624
787983
360


834
4334
787733
787170
564
prf: 1804279K

Enterococcus faecalis plasmid

35.6
57.8
180
pheromone-responsive protein








pCF10 prgC


835
4335
788196
788546
351


836
4336
788672
790093
1422
sp: SAHH_TRIVA

Trichomonas vaginalis WAA38

59.0
83.0
476
S-adenosyl-L-homocysteine












hydrolase


837
4337
789426
788719
708


838
4338
789721
789002
720


839
4339
790096
790704
609
sp: KTHY_ARCFU

Archaeoglobus fulgidus VC-16

25.8
56.0
209
thymidylate kinase








AF0061


840
4340
790732
791409
678
prf: 2214304A

Mycobacterium tuberculosis

73.7
90.6
224
two-component system response








H37Rv Rv3246c mtrA



regulator


841
4341
791421
790738
684


842
4342
791512
793008
1497
prf: 2214304B

Mycobacterium tuberculosis

53.1
78.9
484
two-component system sensor








H37Rv Rv3245c mtrB



histidine kinase


843
4343
793008
794711
1704
pir: F70592

Mycobacterium tuberculosis

29.6
65.6
595
lipoprotein








H37Rv Rv3244c lpqB


844
4344
794714
795301
588
pir: D70592

Mycobacterium tuberculosis

38.0
72.8
213
hypothetical protein








H37Rv Rv3242c


845
4345
795447
795292
156


846
4346
795448
796110
663
sp: RR30_SPIOL

Spinacia oleracea CV rps22

34.5
61.6
203
30S ribosomal protein or chloroplast












precursor


847
4347
796250
798784
2535
gsp: R74093

Brevibacterium flavum

99.1
99.6
845
preprotein translocase SecA subunit








(Corynebacterium glutamicum)








MJ-233 secA


848
4348
799020
799691
672


849
4349
799697
800200
504
pir: A70591

Mycobacterium tuberculosis

47.1
78.8
170
hypothetical protein








H37Rv Rv3231c


850
4350
801194
800208
987
pir: F70590

Mycobacterium tuberculosis

64.6
82.9
322
hypothetical protein








H37Rv Rv3228


851
4351
802602
801190
1413
gp: AF114233_1

Corynebacterium glutamicum

99.0
99.0
461
5-enolpyruvylshikimate 3-phosphate








ASO19 aroA



synthase


852
4352
802649
803128
480
pir: D70590

Mycobacterium tuberculosis

38.3
63.9
180
hypothetical protein








H37Rv Rv3226c


853
4353
802687
802565
123
GP: AF114233_1

Corynebacterium glutamicum

100.0
100.0
23
5-enolpyruvylshikimate 3-phosphate












synthase


854
4354
804240
803131
1110
pir: G70506

Mycobacterium tuberculosis

21.6
42.4
380
hypothetical protein








H37Rv Rv0336


855
4355
804408
805025
618
prf: 2515333D

Mycobacterium tuberculosis

61.2
87.2
188
RNA polymerase sigma factor








sigH


856
4356
805792
805535
258
pir: D70596

Mycobacterium tuberculosis

78.6
96.4
84
regulatory protein








H37Rv Rv3219 whiB1


857
4357
806318
806737
420
pir: B70596

Mycobacterium tuberculosis

33.3
65.1
129
hypothetical protein








H37Rv Rv3217c


858
4358
807939
806740
1200
pir: E70595

Mycobacterium tuberculosis

29.6
62.2
415
hypothetical protein








H37Rv Rv3212


859
4359
809217
807946
1272
sp: DEAD_KLEPN

Klebsiella pneumoniae CG43

37.3
64.0
458
DEAD box ATP-dependent RNA








deaD



helicase


860
4360
809286
809510
225


861
4361
809549
810394
846
pir: H70594

Mycobacterium tuberculosis

46.4
69.8
291
hypothetical protein








H37Rv Rv3207c


862
4362
810405
811163
759
pir: F70594

Mycobacterium tuberculosis

37.0
65.9
249
hypothetical protein








H37Rv Rv3205c


863
4363
811170
814217
3048
pir: G70951

Mycobacterium tuberculosis

23.9
48.9
1155
ATP-dependent DNA helicase








H37Rv Rv3201c


864
4364
812165
811386
780


865
4365
814204
817422
3219
pir: G70951

Mycobacterium tuberculosis

41.4
65.7
1126
ATP-dependent DNA helicase








H37Rv Rv3201c


866
4366
815541
814210
1332


867
4367
817519
818523
1005
sp: Y13B_METJA

Methanococcus jannaschii JAL-

26.2
64.2
302
potassium channel








1 MJ0138.1.


868
4368
818523
819236
714
pir: E70951

Mycobacterium tuberculosis

30.4
58.3
230
hypothetical protein








H37Rv Rv3199c


869
4369
819254
821287
2034
sp: UVRD_ECOLI

Escherichia coli K12 uvrD

32.6
58.8
660
DNA helicase II


870
4370
822079
822669
591


871
4371
822105
821290
816
pir: B70951

Mycobacterium tuberculosis

26.8
49.3
280
hypothetical protein








H37Rv Rv3196


872
4372
822789
823391
603


873
4373
824125
822680
1446
pir: A70951

Mycobacterium tuberculosis

42.8
76.4
474
hypothetical protein








H37Rv Rv3195


874
4374
824190
825239
1050
pir: H70950

Mycobacterium tuberculosis

43.4
74.9
350
hypothetical protein








H37Rv Rv3194


875
4375
825916
825242
675


876
4376
826517
825996
522


877
4377
826616
829570
2955
pir: G70950

Mycobacterium tuberculosis

47.2
73.5
1023
hypothetical protein








H37Rv Rv3193c


878
4378
830985
829627
1359
gp: AE001938_5

Deinococcus radiodurans

34.3
57.7
463
regulatory protein








DR0840


879
4379
831021
831971
951
sp: ER1_HEVBR

Hevea brasiliensis laticifer er1

67.4
89.0
301
ethylene-inducible protein


880
4380
831922
831578
345
PIR: F72782

Aeropyrum pernix K1 APE0247

49.0
53.0
81
hypothetical protein


881
4381
831971
832570
600
sp: YAAE_BACSU

Bacillus subtilis 168 yaaE

40.8
73.6
201
hypothetical protein


882
4382
833157
832795
363


883
4383
833572
834633
1062
pir: TRYXB4

Lysobacter enzymogenes ATCC

26.7
44.4
408
alpha-lytic proteinase precursor








29487


884
4384
834888
835388
501


885
4385
835253
835837
585
pir: S03722

Neurospora intermedia LaBelle-

25.0
51.4
208
DNA-directed DNA polymerase








1b mitochondrion plasmid


886
4386
837312
838892
1581
sp: CSP1_CORGL

Corynebacterium glutamicum

27.0
51.5
363
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


887
4387
838925
839353
429


888
4388
839630
840139
510


889
4389
840431
840210
222


890
4390
840745
840437
309


891
4391
842296
841517
780
prf: 2207273H

Streptomyces alboniger pur3

51.8
74.9
255
monophosphatase


892
4392
843124
842306
819
gp: U70376_9

Streptomyces flavopersicus

33.7
59.3
243
myo-inositol monophosphatase








spcA


893
4393
843257
844360
1104
sp: RF2_STRCO

Streptomyces coelicolor A3(2)

68.0
88.6
359
peptide chain release factor 2








prfB


894
4394
844495
845181
687
pir: E70919

Mycobacterium tuberculosis

70.4
91.2
226
cell division ATP-binding protein








H37Rv Rv3102c ftsE


895
4395
845105
844842
264
PIR: G72510

Aeropyrum pernix K1 APE2061

43.0
54.0
72
hypothetical protein


896
4396
845198
846097
900
pir: D70919

Mycobacterium tuberculosis

40.5
74.8
301
cell division protein








H37Rv Rv3101c ftsX


897
4397
846137
846628
492
sp: SMPB_ECOLI

Escherichia coli K12 smpB

43.5
75.9
145
small protein B (SSRA-binding












protein)


898
4398
846632
846982
351
sp: YEAO_ECOLI

Escherichia coli K12 yeaO

44.0
73.3
116
hypothetical protein


899
4399
846805
846269
537


900
4400
847727
848026
300


901
4401
848122
847718
405


902
4402
849323
848499
825
sp: VIUB_VIBCH

Vibrio cholerae OGAWA 395

26.8
52.9
272
vibriobactin utilization protein








viuB


903
4403
850243
849326
918
prf: 2510361A

Staphylococcus aureus sirA

29.5
58.3
319
Fe-regulated protein


904
4404
850999
850412
588
gp: MLCB1243_5

Mycobacterium leprae

36.1
71.2
191
hypothetical membrane protein








MLCB1243.07


905
4405
851351
852364
1014
sp: FATB_VIBAN

Vibrio anguillarum 775 fatB

27.7
61.5
325
ferric anguibactin-binding protein












precursor


906
4406
852618
853616
999
pir: B69763

Bacillus subtilis 168 yclN

39.3
80.8
313
ferrichrome ABC transporter












(permease)


907
4407
853783
854724
942
pir: C69763

Bacillus subtilis 168 yclO

35.6
76.0
312
ferrichrome ABC transporter












(permease)


908
4408
854724
855476
753
pir: D69763

Bacillus subtilis 168 yclP

48.4
82.0
250
ferrichrome ABC transporter (ATP-












binding protein)


909
4409
860224
860078
147
PIR: F81737

Chlamydia muridarum Nigg

66.0
72.0
48
hypothetical protein








TC0129


910
4410
860745
860473
273
GSP: Y35814

Chlamydia pneumoniae

61.0
66.0
84
hypothetical protein


911
4411
861544
862752
1209
pir: S66270

Rattus norvegicus (Rat)

33.5
64.9
442
kynurenine












aminotransferase/glutamine












transaminase K


912
4412
863391
862753
639


913
4413
865066
863396
1671
sp: RA25_YEAST

Saccharomyces cerevisiae

30.7
62.3
613
DNA repair helicase








S288C YIL143C RAD25


914
4414
867317
865119
2199
pir: F70815

Mycobacterium tuberculosis

36.1
65.2
764
hypothetical protein








H37Rv Rv0862c


915
4415
867353
867571
219
pir: G70815

Mycobacterium tuberculosis

44.0
62.0
57
hypothetical protein








H37Rv Rv0863


916
4416
867788
868630
843


917
4417
868399
867803
597
prf: 2420502A

Micrococcus luteus rpf

39.4
64.7
198
resuscitation-promoting factor


918
4418
868938
869318
381
prf: 2320271A

Lactococcus lactis cspB

42.6
75.4
61
cold shock protein


919
4419
869903
869379
525
gp: MLCB57_11

Mycobacterium leprae

28.3
58.5
159
hypothetical protein








MLCB57.27c


920
4420
870691
869918
774
gp: AE001874_1

Deinococcus radiodurans

41.8
67.8
273
glutamine cyclotransferase








DR0112


921
4421
871419
870721
699


922
4422
871523
871660
138


923
4423
871738
873210
1473
gp: SC6C5_9

Streptomyces coelicolor A3(2)

43.6
79.3
477
permease








SC6C5.09


924
4424
872927
872016
912


925
4425
873213
874040
828
sp: TSNR_STRAZ

Streptomyces azureus tsnR

27.9
51.7
319
rRNA(adenosine-2′-O-)-












methyltransferase


926
4426
874944
874069
876


927
4427
875883
874951
933
sp: YZ11_MYCTU

Mycobacterium tuberculosis

32.6
55.1
316
hypothetical protein








H37Rv Rv0883c


928
4428
877112
875985
1128
pir: S71439

Bacillus circulans ATCC 21783

21.9
52.9
374
phosphoserine transaminase


929
4429
881114
879642
1473
sp: ACCD_ECOLI

Escherichia coli K12 accD

36.0
69.5
236
acetyl-coenzyme A carboxylase












carboxy transferase subunit beta


930
4430
881647
881985
339
gp: SCI8_8

Streptomyces coelicolor A3(2)

51.5
80.6
103
hypothetical protein








SCI8.08c


931
4431
881995
883647
1653
pir: JC2382

Pseudomonas fluorescens

26.4
58.1
549
sodium/proline symporter


932
4432
883726
884541
816


933
4433
885388
884549
840
pir: A70657

Mycobacterium tuberculosis

49.0
77.4
243
hypothetical protein








H37Rv Rv2525c


934
4434
885672
894578
8907
pir: S55505

Corynebacterium

63.1
83.4
3026
fatty-acid synthase









ammoniagenes fas



935
4435
894703
895191
489


936
4436
895408
895593
186


937
4437
896642
895596
1047
prf: 2317335B

Leptospira meyeri metX

29.0
59.7
335
homoserine O-acetyltransferase


938
4438
897144
896719
426


939
4439
897423
897689
267


940
4440
897963
897727
237
gp: AE002044_8

Deinococcus radiodurans

43.6
72.6
62
glutaredoxin








DR2085


941
4441
898434
897979
456
prf: 2408256A

Mycobacterium avium folA

38.0
62.0
171
dihydrofolate reductase


942
4442
899231
898434
798
sp: TYSY_ECOLI

Escherichia coli K12 thyA

64.8
88.9
261
thymidylate synthase


943
4443
900008
899253
756
sp: CYSQ_ECOLI

Escherichia coli K12 cysQ

32.2
56.4
202
ammonium transporter


944
4444
900043
904602
4560
gp: SC7C7_16

Streptomyces coelicolor A3(2)

47.4
68.1
1715
ATP dependent DNA helicase








SC7C7.16c


945
4445
904615
905382
768
sp: FPG_SYNEN

Synechococcus elongatus

29.2
51.0
298
formamidopyrimidine-DNA









naegeli mutM




glycosidase


946
4446
905389
905796
408
pir: F70816

Mycobacterium tuberculosis

55.5
86.7
128
hypothetical protein








H37Rv Rv0870c


947
4447
906391
905792
600
sp: APL_LACLA

Lactococcus lactis MG1363 apl

38.8
71.9
196
alkaline phosphatase


948
4448
907731
906559
1173
pir: T36776

Streptomyces coelicolor A3(2)

33.8
67.0
403
integral membrane transporter








SCI28.06c


949
4449
908612
909328
717


950
4450
909378
907759
1620
pir: NUEC

Escherichia coli JM101 pgi

52.4
77.0
557
glucose-6-phosphate isomease


951
4451
910696
909521
1176
pir: G70506

Mycobacterium tuberculosis

24.6
52.3
195
hypothetical protein








H37Rv Rv0336


952
4452
910843
911223
381


953
4453
911163
910855
309
sp: YT26_MYCTU

Mycobacterium tuberculosis

59.0
85.9
78
hypothetical protein








H37Rv Rv0948c


954
4454
911226
913514
2289
sp: PCRA_BACST

Bacillus stearothermophilus

46.1
73.1
763
ATP-dependent helicase








NCA 1503 pcrA


955
4455
915699
913477
2223
gp: SCE25_30

Streptomyces coelicolor A3(2)

21.8
48.6
885
ABC transporter








SCE25.30


956
4456
916364
915699
666
prf: 2420410P

Bacillus subtilis 168 yvrO

43.8
71.4
217
ABC transporter


957
4457
916874
916368
507


958
4458
917680
916970
711
pir: D70716

Mycobacterium tuberculosis

43.6
73.3
236
peptidase








H37Rv Rv0950c


959
4459
917928
919352
1425
sp: YT19_MYCTU

Mycobacterium tuberculosis

31.1
60.8
434
hypothetical protein








H37Rv Rv0955


960
4460
918054
917827
228


961
4461
919330
919956
627
gp: AB003159_2

Corynebacterium

64.6
86.2
189
5′-phosphoribosylglycinamide









ammoniagenes purN




formyltransferase


962
4462
919967
921526
1560
gp: AB003159_3

Corynebacterium

74.5
87.8
525
5′-phosphoribosyl-5-aminoimidazole-









ammoniagenes purH




4-carboxamide formyltransferase


963
4463
921594
922412
819
gp: CGL133719_3

Corynebacterium glutamicum

100.0
100.0
217
citrate lyase (subunit)








ATCC 13032 citE


964
4464
923061
922396
666
gp: CGL133719_2

Corynebacterium glutamicum

100.0
100.0
222
repressor of the high-affinity (methyl)








ATCC 13032 amtR



ammonium uptake system


965
4465
923464
923138
327
gp: CGL133719_1

Corynebacterium glutamicum

100.0
100.0
109
hypothetical protein








ATCC 13032 yjcC


966
4466
923661
923981
321


967
4467
924407
924159
249
sp: RR18_CYAPA

Cyanophora paradoxa rps18

52.2
76.1
67
30S ribosomal protein S18


968
4468
924727
924425
303
sp: RS14_ECOLI

Escherichia coli K12 rpsN

54.0
80.0
100
30S ribosomal protein S14


969
4469
924895
924734
162
sp: RL33_ECOLI

Escherichia coli K12 rpmG

55.1
83.7
49
50S ribosomal protein L33


970
4470
925134
924901
234
pir: R5EC28

Escherichia coli K12 rpmB

52.0
81.8
77
50S ribosomal protein L28


971
4471
926935
925325
1611
pir: B70033

Bacillus subtilis 168 yvdB

34.4
71.1
529
transporter (sulfate transporter)


972
4472
927242
926931
312
prf: 2420312A

Staphylococcus aureus zntR

37.5
77.5
80
Zn/Co transport repressor


973
4473
927474
927737
264
sp: RL31_HAEDU

Haemophilus ducreyi rpmE

37.2
65.4
78
50S ribosomal protein L31


974
4474
927752
927922
171
gp: SC51A_14

Streptomyces coelicolor A3(2)

60.0
78.2
55
50S ribosomal protein L32








SCF51A.14


975
4475
927785
927339
447


976
4476
928117
928812
696
sp: COPR_PSESM

Pseudomonas syringae copR

48.0
73.6
227
copper-inducible two-component












regulator


977
4477
928884
930248
1365
sp: BAES_ECOLI

Escherichia coli K12 baeS

24.4
60.1
484
two-component system sensor


978
4478
930410
931648
1239
pir: S45229

Escherichia coli K12 htrA

33.3
59.9
406
proteinase DO precursor


979
4479
931706
932290
585
sp: CNX1_ARATH

Arabidopsis thaliana CV cnx1

27.7
54.3
188
molybdopterin biosynthesis cnx1












protein (molybdenum cofactor












biosynthesis enzyme cnx1)


980
4480
932290
932487
198


981
4481
932974
932570
405
sp: MSCL_MYCTU

Mycobacterium tuberculosis

50.4
77.1
131
large-conductance








H37Rv Rv0985c mscL



mechanosensitive channel


982
4482
933710
933060
651
pir: A70601

Mycobacterium tuberculosis

28.6
60.0
210
hypothetical protein








H37Rv Rv0990


983
4483
934302
933733
570
pir: JC4389

Homo sapiens MTHFS

25.1
59.7
191
5-formyltetrahydrofolate cyclo-ligase


984
4484
934423
935319
897
pir: JC4985

Xanthomonas campestris

42.2
68.9
296
UTP—glucose-1-phosphate












uridylyltransferase


985
4485
935351
936607
1257
prf: 2403296B

Arthrobacter nicotinovorans

31.8
62.6
390
molybdopterin biosynthesis protein








moeA


986
4486
936615
937274
660
sp: RIMJ_ECOLI

Escherichia coli K12 rimJ

29.0
54.9
193
ribosomal-protein-alanine N-












acetyltransferase


987
4487
937382
938401
1020
pir: G70601

Mycobacterium tuberculosis

30.3
54.8
367
hypothetical membrane protein








H37Rv Rv0996


988
4488
938427
939626
1200
sp: CYNX_ECOLI

Escherichia coli K12 cynX

26.6
62.4
380
cyanate transport protein


989
4489
939217
937799
1419


990
4490
939686
940090
405
sp: YG02_HAEIN

Haemophilus influenzae Rd

32.1
60.6
137
hypothetical membrane protein








HI1602


991
4491
940041
940754
714
sp: Y05C_MYCTU

Mycobacterium tuberculosis

25.3
59.6
225
hypothetical membrane protein








H37Rv Rv0093c


992
4492
940759
941925
1167
sp: CDAS_BACSH

Bacillus sphaericus E-244

26.8
53.6
444
cyclomaltodextrinase








CDase


993
4493
943940
942381
1560
pir: E70602

Mycobacterium tuberculosis

43.0
75.2
488
hypothetical membrane protein








H37Rv


994
4494
944009
944833
825
sp: Y19J_MYCTU

Mycobacterium tuberculosis

54.0
78.3
272
hypothetical protein








H37Rv Rv1003


995
4495
946840
948669
1830
sp: SYM_METTH

Methanobacterium

33.8
66.7
615
methionyl-tRNA synthetase









thermoautotrophicum Delta H









MTH587 metG


996
4496
948791
950839
2049
prf: 1306383A

Escherichia coli recQ

26.2
49.0
741
ATP-dependent DNA helicase


997
4497
951460
950828
633
pir: B69206

Methanobacterium

27.6
53.3
210
hypothetical protein









thermoautotrophicum Delta H









MTH796


998
4498
952991
951834
1158
sp: YXAG_BACSU

Bacillus subtilis 168 yxaG

30.0
59.0
363
hypothetical protein


999
4499
953573
953043
531


1000
4500
953973
954266
294
gp: AF029727_1

Enterococcus faecium

33.0
59.6
94
transposase


1001
4501
954277
954753
477
pir: TQECI3

Escherichia coli K12

41.7
67.6
139
transposase


1002
4502
954941
955354
414
gp: AF052055_1

Brevibacterium linens tnpA

73.2
88.4
112
transposase subunit


1003
4503
955911
956774
864


1004
4504
957398
955686
1713
prf: 2014253AE

Escherichia coli dld

46.4
75.6
565
D-lactate dehydrogenase


1005
4505
958683
957844
840
sp: MTK1_KLEPN

Klebsiella pneumoniae OK8

30.8
62.8
231
site-specific DNA-methyltransferase








kpnIM


1006
4506
959403
959185
219


1007
4507
960081
960374
294
gp: AF029727_1

Enterococcus faecium

33.0
59.6
94
transposase


1008
4508
960385
960861
477
pir: TQECI3

Escherichia coli K12

41.7
67.6
139
transposase


1009
4509
961297
961653
357
sp: YJ94_MYCTU

Mycobacterium tuberculosis

62.6
84.6
91
transcriptional regulator








H37Rv Rv1994c


1010
4510
961629
962249
621
prf: 2514367A

Staphylococcus aureus cadD

31.7
66.8
205
cadmium resistance protein


1011
4511
961662
961321
342


1012
4512
962809
963639
831
pir: C70603

Mycobacterium tuberculosis

46.4
70.7
263
hypothetical protein








H37Rv Rv1008


1013
4513
963864
964934
1071
pir: D70603

Mycobacterium tuberculosis

34.8
63.5
362
hypothetical protein








H37Rv Rv1009 rpf


1014
4514
964974
965852
879
sp: KSGA_ECOLI

Escherichia coli K12 ksgA

34.3
65.3
265
dimethyladenosine transferase


1015
4515
965852
966784
933
pir: F70603

Mycobacterium tuberculosis

42.5
67.0
315
isopentenyl monophosphate kinase








H37Rv Rv1011


1016
4516
966591
965950
642


1017
4517
966828
968660
1833
pir: S47441

Saccharopolyspora erythraea

65.5
85.8
478
ABC transporter








ertX


1018
4518
968667
969458
792
sp: PDXK_ECOLI

Escherichia coli K12 pdxK

40.1
67.4
242
pyridoxine kinase


1019
4519
969940
969461
480
sp: YX05_MYCTU

Mycobacterium tuberculosis

27.0
58.5
159
hypothetical protein








H37Rv Rv2874


1020
4520
970029
970349
321
gp: SCF1_2

Streptomyces coelicolor A3(2)

45.4
78.7
108
hypothetical protein








SCF1.02


1021
4521
970418
970738
321
gp: SCF1_2

Streptomyces coelicolor A3(2)

35.5
69.2
107
hypothetical protein








SCF1.02


1022
4522
970864
971823
960
gp: SCJ1_15

Streptomyces coelicolor A3(2)

64.8
88.1
261
regulator








SCJ1.15


1023
4523
973035
972244
792
sp: YXEH_BACSU

Bacillus subtilis 168 yxeH

27.2
59.1
276
hypothetical protein


1024
4524
973139
974155
1017
pir: E70893

Mycobacterium tuberculosis

35.6
70.9
337
enoyl-CoA hydratase








H37Rv echA9


1025
4525
973957
973304
654


1026
4526
974186
974962
777


1027
4527
976176
974965
1212


1028
4528
976349
977734
1386
sp: CSP1_CORGL

Corynebacterium glutamicum

27.7
56.8
440
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


1029
4529
978378
977800
579
gp: SCF56_6

Streptomyces coelicolor A3(2)

44.0
70.0
100
transcriptional regulator (tetR








SCF56.06



family)


1030
4530
980740
978368
2373
gp: SCE87_17

Streptomyces coelicolor A3(2)

42.6
70.0
802
membrane transport protein








SCE87.17c


1031
4531
980993
981490
498
sp: MENG_HAEIN

Haemophilus influenzae Rd

38.2
75.8
157
S-adenosylmethionine: 2-








HI0508 menG



demethylmenaquinone












methyltransferase


1032
4532
981622
982287
666


1033
4533
982674
982294
381
gp: NMA6Z2491_214

Neisseria meningitidis NMA1953

29.8
63.6
121
hypothetical protein


1034
4534
983100
984650
1551
pir: A70539

Mycobacterium tuberculosis

24.9
48.3
482
hypothetical protein








H37Rv Rv1128c


1035
4535
984910
985845
936


1036
4536
986510
984864
1647
pir: I59305

Escherichia coli K12 prfC

39.2
68.0
546
peptide-chain-release factor 3


1037
4537
986739
988007
1269
prf: 2406311A

Methylophilus methylotrophus

42.8
72.8
404
amide-urea transport protein








fmdD


1038
4538
988023
988904
882
prf: 2406311B

Methylophilus methylotrophus

40.8
61.0
77
amide-urea transport protein








fmdE


1039
4539
988904
989980
1077
prf: 2406311C

Methylophilus methylotrophus

34.6
68.0
234
amide-urea transport protein








fmdF


1040
4540
989980
990705
726
sp: BRAF_PSEAE

Pseudomonas aeruginosa PAO

37.9
70.0
253
high-affinity branched-chain amino








braF



acid transport ATP-binding protein


1041
4541
990716
991414
699
sp: BRAG_PSEAE

Pseudomonas aeruginosa PAO

35.2
69.1
236
high-affinity branched-chain amino








braG



acid transport ATP-binding protein


1042
4542
992028
991417
612
sp: PTH_ECOLI

Escherichia coli K12 pth

39.0
70.6
187
peptidyl-tRNA hydrolase


1043
4543
992058
993080
1023
sp: 2NPD_WILMR

Williopsis mrakii IFO 0895

25.2
54.0
361
2-nitropropane dioxygenase


1044
4544
993549
994613
1065
sp: G3P_ZYMMO

Streptomyces roseofulvus gap

39.5
72.8
342
glyceraldehyde-3-phosphate












dehydrogenase


1045
4545
994474
994106
369
GSP: Y75094

Neisseria meningitidis

54.0
61.0
51
polypeptides predicted to be useful












antigens for vaccines and












diagnostics


1046
4546
995375
994845
531
sp: PTH_ECOLI

Escherichia coli K12 pth

38.5
63.2
174
peptidyl-tRNA hydrolase


1047
4547
996126
995527
600
pir: B70622

Mycobacterium tuberculosis

47.0
65.0
194
50S ribosomal protein L25








H37Rv rplY


1048
4548
996402
996830
429
sp: LGUL_SALTY

Salmonella typhimurium D21

28.7
54.6
143
lactoylglutathione lyase








gloA


1049
4549
997456
996833
624
prf: 2516401BW

Bacillus cereus ATCC 10987

38.9
62.5
208
DNA alkylation repair enzyme








alkD


1050
4550
998440
997466
975
sp: KPRS_BACCL

Bacillus subtilis prs

44.0
79.1
316
ribose-phosphate












pyrophosphokinase


1051
4551
999909
998455
1455
pir: S66080

Bacillus subtilis gcaD

42.0
71.9
452
UDP-N-acetylglucosamine












pyrophosphorylase


1052
4552
1001242
1000016
1227


1053
4553
1001332
1002864
1533
sp: SUFI_ECOLI

Escherichia coli K12 sufI

30.8
61.7
506
sufI protein precursor


1054
4554
1003013
1003930
918
sp: NODI_RHIS3

Rhizobium sp. N33 nodI

35.8
64.8
310
nodulation ATP-binding protein I


1055
4555
1003953
1004783
831
pir: JN0850

Streptomyces lividans ORF2

30.2
63.2
272
hypothetical membrane protein


1056
4556
1004829
1006085
1257
sp: UHPB_ECOLI

Escherichia coli K12 uhpB

24.6
48.4
459
two-component system sensor












histidine kinase


1057
4557
1006089
1006697
609
prf: 2107255A

Streptomyces peucetius dnrN

36.6
67.3
202
two component transcriptional












regulator (luxR family)


1058
4558
1006937
1006734
204


1059
4559
1006998
1008152
1155
gp: SCF15_7

Streptomyces coelicolor A3(2)

31.5
64.5
349
hypothetical membrane protein








SCF15.07


1060
4560
1008622
1010061
1440
pir: S65587

Streptomyces glaucescens strV

28.6
57.0
535
ABC transporter


1061
4561
1008686
1008534
153


1062
4562
1010057
1011790
1734
pir: T14180

Mycobacterium smegmatis exiT

44.0
74.0
573
ABC transporter


1063
4563
1013761
1011797
1965
sp: GGT_ECOLI

Escherichia coli K12 ggt

32.4
58.6
666
gamma-glutamyltranspeptidase












precursor


1064
4564
1014016
1014264
249


1065
4565
1014861
1014343
519


1066
4566
1014925
1015116
192


1067
4567
1015652
1016560
909


1068
4568
1015692
1015450
243
GPU: AF164956_23

Corynebacterium glutamicum

64.0
72.0
37
transposase protein fragment








TnpNC


1069
4569
1015852
1015145
708
gp: AF121000_8

Corynebacterium glutamicum

99.6
100.0
236
transposase (IS1628 TnpB)








22243 R-plasmid pAG1 tnpB


1070
4570
1016557
1017018
462


1071
4571
1017870
1017274
597


1072
4572
1018082
1018393
312


1073
4573
1018416
1019066
651
sp: TETC_ECOLI

Escherichia coli tetR

23.0
59.6
183
transcriptional regulator (TetR-












family)


1074
4574
1019090
1022716
3627
sp: MFD_ECOLI

Escherichia coli mfd

36.2
65.1
1217
transcription/repair-coupling protein


1075
4575
1020613
1019390
1224


1076
4576
1021305
1021078
228
GSP: Y75301

Neisseria gonorrhoeae

48.0
69.0
76
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


1077
4577
1024666
1022699
1968
sp: MDLB_ECOLI

Escherichia coli mdlB

31.3
62.7
632
multidrug resistance-like ATP-












binding protein, ABC-type transport












protein


1078
4578
1026396
1024666
1731
sp: YC73_MYCTU

Mycobacterium tuberculosis

50.2
81.9
574
ABC transporter








H37Rv Rv1273c


1079
4579
1028886
1026505
2382
sp: YLI3_CORGL

Corynebacterium glutamicum

100.0
100.0
368
hypothetical membrane protein








ATCC 13032 orf3


1080
4580
1031885
1032181
297


1081
4581
1032196
1032780
585
sp: YABN_BACSU

Bacillus subtilis yabN

33.4
57.4
183
hypothetical protein


1082
4582
1033185
1032760
426


1083
4583
1033646
1033269
378


1084
4584
1033954
1034739
786
pir: A70623

Mycobacterium tuberculosis

46.5
68.9
241
lpqU protein








H37Rv Rv1022 lpqU


1085
4585
1034949
1036223
1275
sp: ENO_BACSU

Bacillus subtilis eno

64.5
86.0
422
enolase (2-phosphoglycerate












dehydratase)(2-phospho-D-












glycerate hydro-lyase)


1086
4586
1036159
1036016
144
PIR: B72477

Aeropyrum pernix K1 APE2459

68.0
58.0
41
hypothetical protein


1087
4587
1036316
1036855
540
pir: C70623

Mycobacterium tuberculosis

31.9
55.0
191
hypothetical protein








H37Rv Rv1024


1088
4588
1036900
1037445
546
pir: D70623

Mycobacterium tuberculosis

59.5
77.8
153
hypothetical protein








H37Rv Rv1025


1089
4589
1037448
1038410
963
sp: GPPA_ECOLI

Escherichia coli gppA

25.2
55.0
329
guanosine pentaphosphatase or












exopolyphosphatase


1090
4590
1037481
1036498
984


1091
4591
1039650
1038721
930
sp: THD2_ECOLI

Escherichia coli tdcB

30.3
64.7
314
threonine dehydratase


1092
4592
1039783
1039977
195


1093
4593
1039996
1040325
330


1094
4594
1040494
1040682
189
pir: B72287

Thermotoga maritima MSB8

46.3
74.1
56
hypothetical protein


1095
4595
1040925
1041917
993
sp: RHAR_ECOLI

Escherichia coli rhaR

24.8
55.8
242
transcription activator of L-rhamnose












operon


1096
4596
1042027
1042842
816
pir: F70893

Mycobacterium tuberculosis

57.8
80.1
282
hypothetical protein








H37Rv Rv1072


1097
4597
1043236
1042850
387


1098
4598
1043747
1043298
450
gp: SCF55_39

Streptomyces coelicolor A3(2)

30.0
57.1
140
hypothetical protein








SCF55.39


1099
4599
1044295
1043774
522
sp: GREA_ECOLI

Escherichia coli greA

35.0
60.1
143
transcription elongation factor


1100
4600
1044959
1044477
483
pir: G70894

Mycobacterium tuberculosis

34.3
72.1
140
hypothetical protein








H37Rv Rv1081c


1101
4601
1045158
1046030
873
pir: S44952

Streptomyces lincolnensis lmbE

31.7
56.3
300
lincomycin-production


1102
4602
1046073
1046390
318


1103
4603
1046610
1047707
1098
sp: AROG_CORGL

Corynebacterium glutamicum

99.2
99.5
367
3-deoxy-D-arabino-heptulosonate-7-








aroG



phosphate synthase


1104
4604
1047452
1046820
633


1105
4605
1047827
1048501
675
sp: YARF_CORGL

Corynebacterium glutamicum

96.0
97.3
97
hypothetical protein or undecaprenyl








CCRC18310



pyrophosphate synthetase


1106
4606
1048356
1048529
174
SP: YARF_CORGL

Corynebacterium glutamicum

100.0
100.0
28
hypothetical protein








(Brevibacterium flavum)


1107
4607
1048525
1049043
519


1108
4608
1049385
1049068
318


1109
4609
1050362
1049427
936
sp: COAA_ECOLI

Escherichia coli coaA

53.9
79.9
308
pantothenate kinase


1110
4610
1050624
1051925
1302
gsp: R97745

Brevibacterium flavum MJ-233

99.5
100.0
434
serine hydroxymethyl transferase








glyA


1111
4611
1052021
1053880
1860
sp: PABS_STRGR

Streptomyces griseus pabS

47.6
70.1
898
p-aminobenzoic acid synthase


1112
4612
1053880
1054602
723


1113
4613
1054859
1055722
864


1114
4614
1055032
1054640
393


1115
4615
1055783
1056319
537
gp: A01504_1

Alcaligenes faecalis ptcR

30.3
58.8
165
phosphinothricin resistance protin


1116
4616
1057200
1056322
879
sp: YBGK_ECOLI

Escherichia coli ybgK

30.3
59.0
300
hypothetical protein


1117
4617
1057573
1058628
1056


1118
4618
1057868
1057200
669
sp: YBGJ_ECOLI

Escherichia coli ybgJ

37.8
57.8
225
hypothetical protein


1119
4619
1058598
1057843
756
sp: LAMB_EMENI

Emericella nidulans lamB

30.8
52.2
276
lactam utilization protein


1120
4620
1059214
1058624
591
sp: YCSH_BACSU

Bacillus subtilis ycsH

40.6
81.2
165
hypothetical membrane protein


1121
4621
1059218
1059889
672


1122
4622
1059360
1059962
603


1123
4623
1060112
1060792
681
sp: YDHC_BACSU

Bacillus subtilis ydhC

26.0
63.2
204
transcriptional regulator


1124
4624
1060869
1062146
1278


1125
4625
1063629
1062211
1419
sp: FUMH_RAT

Rattus norvegicus (Rat) fumH

52.0
79.4
456
fumarate hydratase precursor


1126
4626
1063936
1064424
489
gp: AF048979_1

Rhodococcus erythropolis

32.7
65.4
159
NADH-dependent FMN








IGTS8 dszD



oxydoreductase


1127
4627
1064738
1064478
261


1128
4628
1065200
1064754
447


1129
4629
1065867
1065304
564
gp: SCAH10_16

Streptomyces coelicolor A3(2)

55.4
81.0
184
reductase








StAH10.16


1130
4630
1066083
1067570
1488
sp: SOXA_RHOSO

Rhodococcus sp. IGTS8 soxA

39.1
67.7
443
dibenzothiophene desulfurization












enzyme A


1131
4631
1067570
1068649
1080
sp: SOXC_RHOSO

Rhodococcus sp. IGTS8 soxC

25.8
51.3
372
dibenzothiophene desulfurization












enzyme C (DBT sulfur dioxygenase)


1132
4632
1068649
1069845
1197
sp: SOXC_RHOSO

Rhodococcus sp. IGTS8 soxC

28.9
61.6
391
dibenzothiophene desulfurization












enzyme C (DBT sulfur dioxygenase)


1133
4633
1069692
1068913
780


1134
4634
1069808
1069119
690


1135
4635
1069959
1071134
1176
gp: ECO237695_3

Escherichia coli K12 ssuD

45.3
73.1
397
FMNH2-dependent aliphatic












sulfonate monooxygenase


1136
4636
1072441
1071479
963
sp: GLPX_ECOLI

Escherichia coli K12 glpX

44.3
75.7
325
glycerol metabolism


1137
4637
1072676
1073245
570
pir: B70897

Mycobacterium tuberculosis

27.5
56.4
211
hypothetical protein








H37Rv Rv1100


1138
4638
1075241
1073340
1902
pir: H70062

Bacillus subtilis ywmD

31.3
66.1
227
hypothetical protein


1139
4639
1075357
1075641
285


1140
4640
1075553
1075329
225
gp: SCH24_37

Streptomyces coelicolor A3(2)

36.6
78.1
82
transmembrane efflux protein








SCH24.37


1141
4641
1075909
1075667
243
sp: EX7S_ECOLI

Escherichia coli K12 MG1655

40.3
67.7
62
exodeoxyribonuclease small subunit








xseB


1142
4642
1077183
1075933
1251
sp: EX7L_ECOLI

Escherichia coli K12 MG1655

30.0
55.6
466
exodeoxyribonuclease large subunit








xseA


1143
4643
1077297
1078271
975
sp: LYTB_ECOLI

Escherichia coli K12 lytB

50.2
78.8
311
penicillin tolerance


1144
4644
1077734
1077306
429
GSP: Y75421

Neisseria gonorrhoeae

33.0
47.0
131
polypeptides predicted to be useful












antigens for vaccines and












diagnostics


1145
4645
1079146
1078319
828


1146
4646
1080540
1079221
1320
sp: PERM_ECOLI

Escherichia coli K12 perM

26.3
63.9
338
permease


1147
4647
1080965
1080786
180


1148
4648
1082708
1080972
1737
sp: NTPR_RAT

Rattus norvegicus (Rat) SLC6A7

30.3
61.4
552
sodium-dependent proline








ntpR



transporter


1149
4649
1084183
1082951
1233
sp: CSP1_CORGL

Corynebacterium glutamicum

29.9
60.0
412
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


1150
4650
1084380
1085462
1083
sp: YYAF_BACSU

Bacillus subtilis yyaF

70.1
88.6
361
GTP-binding protein


1151
4651
1085791
1086087
297
sp: VAPI_BACNO

Dichelobacter nodosus intA

57.3
80.0
75
virulence-associated protein


1152
4652
1086096
1086917
822
sp: OTCA_PSEAE

Pseudomonas aeruginosa argF

29.6
58.8
301
ornithine carbamoyltransferase


1153
4653
1087544
1087044
501
sp: YKKB_BACSU

Bacillus subtilis 168 ykkB

39.2
69.9
143
hypothetical protein


1154
4654
1088293
1087664
630
gp: AF013288_1

Mus musculus RDH4

33.8
60.6
198
9-cis retinol dehydrogenase or












oxidoreductase


1155
4655
1089740
1088535
1206
sp: YIS1_STRCO

Streptomyces coelicolor

42.2
73.0
396
transposase/integrase (IS110)








SC3C8.10


1156
4656
1090175
1093216
3042
sp: YEGE_ECOLI

Escherichia coli K12 yegE

23.0
52.2
1153
hypothetical membrane protein


1157
4657
1093929
1094693
765
sp: NODC_RHIME

Rhizobium meliloti nodC

22.8
47.1
259
N-acetylglucosaminyltransferase


1158
4658
1094693
1094911
219


1159
4659
1095052
1095384
333


1160
4660
1095677
1095387
291
pir: S43613

Corynebacterium glutamicum

82.5
93.8
97
transposase (insertion sequence








ATCC 31831



IS31831)


1161
4661
1096093
1095719
375
pir: JC4742

Corynebacterium glutamicum

79.2
94.4
125
transposase








(Brevibacterium lactofermentum)








ATCC 13869


1162
4662
1096331
1096188
144
pir: JC4742

Corynebacterium glutamicum

87.5
95.8
48
transposase








(Brevibacterium lactofermentum)








ATCC 13869


1163
4663
1096471
1096331
141


1164
4664
1097111
1096746
366


1165
4665
1097229
1097726
498


1166
4666
1097750
1098592
843
sp: MORA_PSEPU

Pseudomonas putida M10 norA

37.5
66.3
264
oxidoreductase or morpyine-6-












dehydrogenase (naloxone












reductase)


1167
4667
1098609
1098929
321
sp: DC4C_ACICA

Acinetobacter calcoaceticus

33.3
63.9
108
4-carboxymuconolactone








dc4c



decarboxlyase


1168
4668
1099088
1099750
663


1169
4669
1099209
1099015
195


1170
4670
1099768
1099115
654
gp: AF058302_19

Streptomyces roseofulvus frnS

34.9
66.4
146
frenolicin gene cluster protein












involved in frenolicin biosynthetic


1171
4671
1099917
1101653
1737
gp: SPU59234_3

Synechococcus sp. PCC 7942

48.1
78.5
563
biotin carboxylase








accC


1172
4672
1102043
1102639
597


1173
4673
1102695
1103192
498


1174
4674
1103180
1103524
345


1175
4675
1103951
1104103
153


1176
4676
1104923
1105561
639


1177
4677
1106058
1104103
1956
sp: YT15_MYCTU

Mycobacterium tuberculosis

57.9
80.3
655
hypothetical protein








H37Rv Rv0959


1178
4678
1107381
1106086
1296
sp: BCHI_RHOSH

Rhodobacter sphaeroides ATCC

27.7
52.6
329
magnesium chelatase subunit








17023 bchl


1179
4679
1107560
1108201
642
gp: AMU73808_1

Amycolatopsis methanolica pgm

33.8
62.5
160
2,3-PDG dependent












phosphoglycerate mutase


1180
4680
1108201
1108905
705
pir: A70577

Mycobacterium tuberculosis

38.2
60.7
262
hypothetical protein








H37Rv Rv2133c


1181
4681
1108993
1109754
762
gp: STMBCPA_1

Streptomyces hygroscopicus

29.4
59.3
248
carboxyphosphonoenolpyruvate








SF1293 BcpA



phosphonomutase


1182
4682
1109792
1111432
1641
sp: TLRC_STRFR

Streptomyces fradiae tlrC

31.7
54.1
593
tyrosin resistance ATP-binding












protein


1183
4683
1111820
1111425
396
sp: Y06C_MYCTU

Mycobacterium tuberculosis

29.4
66.9
136
hypothetical protein








H37Rv Rv2923c


1184
4684
1111889
1112230
342
sp: PHNA_ECOLI

Escherichia coli K12 MG1655

55.0
82.0
111
alkylphosphonate uptake protein








phnA


1185
4685
1112957
1112484
474
sp: YXAD_BACSU

Bacillus subtilis 168 yxaD

32.1
62.7
134
transcriptional regulator


1186
4686
1113102
1114319
1218
gp: SPN7367_1

Streptococcus pneumoniae

22.6
59.4
367
multi-drug resistance efflux pump








pmrA


1187
4687
1114486
1115793
1308
pir: S43613

Corynebacterium glutamicum

99.5
99.8
436
transposase (insertion sequence








(Brevibacterium lactofermentum)



IS31831)








ATCC 31831


1188
4688
1116905
1115832
1074
gp: RFAJ3152_2

Ruminococcus flavefaciens

43.9
73.4
376
cysteine desulphurase








cysteine desulphurase gene


1189
4689
1117744
1116908
837
sp: NADC_MYCTU

Mycobacterium tuberculosis

42.1
68.9
283
nicotinate-nucleotide












pyrophosphorylase


1190
4690
1118932
1117751
1182
pir: E69663

Bacillus subtilis nadA

49.3
77.6
361
quinolinate synthetase A


1191
4691
1119727
1119086
642
gp: SC5B8_7

Streptomyces coelicolor

37.0
60.9
235
DNA hydrolase








SC5B8.07


1192
4692
1120205
1120804
600
gp: AE001961_5

Deinococcus radiodurans R1

23.4
54.7
192
hypothetical membrane protein








DR1112


1193
4693
1121432
1120833
600
gp: SC3A7_8

Streptomyces coelicolor

36.0
66.4
214
hypothetical protein








SC3A7.08


1194
4694
1121809
1121468
342
sp: YBDF_ECOLI

Escherichia coli K12 MG1655

41.7
74.1
108
hypothetical protein








ybdF


1195
4695
1122606
1121818
789
gp: AAA21740_1

Escherichia coli K12 lplA

30.1
60.7
216
lipoate-protein ligase A


1196
4696
1123051
1123461
411
sp: PHNB_ECOLI

Escherichia coli K12 phnB

29.7
60.8
148
alkylphosphonate uptake protein












and C-P lyase activity


1197
4697
1124826
1123534
1293
sp: PCAK_PSEPU

Pseudomonas putida pcaK

28.8
64.3
420
transmembrane transport protein or












4-hydroxybenzoate transporter


1198
4698
1126020
1124836
1185
sp: PHHY_PSEAE

Pseudomonas aeruginosa phhy

40.8
68.6
395
p-hydroxybenzoate hydroxylase (4-












hydroxybenzoate 3-












monooxygenase)


1199
4699
1126422
1127009
588
pir: A69859

Bacillus subtilis 168 ykoE

36.7
69.6
191
hypothetical membrane protein


1200
4700
1127013
1128350
1338
sp: YJJK_ECOLI

Escherichia coli yjjK

24.8
47.6
532
ABC transporter ATP-binding protein


1201
4701
1128350
1129102
753
pir: G69858

Bacillus subtilis 168 ykoC

25.6
61.6
250
hypothetical membrane protein


1202
4702
1129102
1129632
531


1203
4703
1129655
1130704
1050
sp: CHAA_ECOLI

Escherichia coli chaA

33.3
69.0
339
Ca2+/H+ antiporter ChaA


1204
4704
1130721
1131428
708
pir: C75001

Pyrococcus abyssi Orsay

28.4
57.6
236
hypothetical protein








PAB1341


1205
4705
1132123
1131401
723
sp: YWAF_BACSU

Bacillus subtilis ywaF

27.6
61.1
221
hypothetical membrane protein


1206
4706
1134472
1132133
2340
sp: UVRA_THETH

Thermus thermophilus unrA

35.5
58.7
946
excinuclease ABC subunit A


1207
4707
1134561
1135055
495
sp: TPX_MYCTU

Mycobacterium tuberculosis

57.3
81.7
164
thioredoxin peroxidase








H37Rv tpx


1208
4708
1135476
1135691
216


1209
4709
1136833
1135058
1776


1210
4710
1137891
1136938
954
sp: YEDI_ECOLI

Escherichia coli yedL

39.9
72.0
318
hypothetical membrane protein


1211
4711
1137960
1138859
900
gp: SCF76_2

Streptomyces coelicolor A3(2)

34.0
49.0
282
oxidoreductase or thiamin












biosynthesis protein


1212
4712
1138880
1139245
366


1213
4713
1139196
1139492
297


1214
4714
1139357
1139617
261


1215
4715
1140021
1139635
387


1216
4716
1140861
1140028
834
sp: CTR2_PENVA

Penaeus vannamei

28.8
51.3
271
chymotrypsin BII


1217
4717
1141245
1140901
345
sp: ARC2_ECOLI

Escherichia coli

43.2
72.1
111
arsenate reductase (arsenical pump












modifier)


1218
4718
1141273
1142472
1200
sp: YYAD_BACSU

Bacillus subtilis yyaD

23.5
62.4
340
hypothetical membrane protein


1219
4719
1143015
1142479
537
pir: F70559

Mycobacterium tuberculosis

43.5
71.4
147
hypothetical protein








H37Rv Rv1632c


1220
4720
1143739
1143026
714
pir: F70555

Mycobacterium tuberculosis

35.8
62.9
221
hypothetical protein








H37Rv Rv1157c


1221
4721
1144118
1146028
1911
sp: TYPA_ECOLI

Escherichia coli K12 typA

46.3
76.7
614
GTP-binding protein (tyrosine












phsphorylated protein A)


1222
4722
1146097
1147602
1506
pir: F70874

Mycobacterium tuberculosis

27.9
54.9
506
hypothetical protein








H37Rv Rv1166


1223
4723
1147592
1148461
870
pir: B70875

Mycobacterium tuberculosis

38.7
61.9
315
hypothetical protein








H37Rv Rv1170


1224
4724
1148445
1148882
438


1225
4725
1148953
1149267
315
sp: FER_STRGR

Streptomyces griseus fer

78.6
91.3
103
ferredoxin [4Fe-4S]


1226
4726
1149279
1150379
1101
sp: AAT_BACSP

Bacillus sp: strain YM-2 aat

25.9
52.9
397
aspartate aminotransferase


1227
4727
1150408
1151028
621


1228
4728
1151186
1152370
1185


1229
4729
1153263
1152373
891
gp: CGAJ4934_1

Corynebacterium glutamicum

100.0
100.0
229
tetrahydrodipicolinate succinylase or








ATCC 13032 dapD



succinylation of piperidine-2,6-












dicarboxylate


1230
4730
1156537
1155875
663


1231
4731
1156902
1157669
768
pir: S60064

Corynebacterium glutamicum

100.0
100.0
211
hypothetical protein








ATCC 13032 orf2


1232
4732
1157694
1158524
831
gp: SCP8_4

Streptomyces coelicolor A3(2)

59.0
69.0
273
dihydropteroate synthase








dhpS


1233
4733
1158524
1159252
729
gp: MLU15180_14

Mycobacterium leprae u1756I

45.7
73.1
245
hypothetical protein


1234
4734
1159267
1159572
306
pir: G70609

Mycobacterium tuberculosis

31.3
67.7
99
hypothetical protein








H37Rv Rv1209


1235
4735
1159635
1159799
165
gsp: W32443

Mycobacterium tuberculosis

72.3
91.5
47
antigen TbAAMK, useful in vaccines












for prevention or treatment of












tuberculosis


1236
4736
1159865
1160728
864
sp: MYRA_MICGR

Micromonospora griseorubida

39.2
67.8
286
mycinamicin-resistance gene








myrA


1237
4737
1162231
1160738
1494
sp: SCRB_PEDPE

Pediococcus pentosaceus scrB

23.5
51.0
524
sucrose-6-phosphate hydrolase


1238
4738
1163605
1162379
1227
sp: GLGA_ECOLI

Escherichia coli K12 MG1655

24.7
51.3
433
ADPglucose—starch(bacterial








glgA



glycogen) glucosyltransferase


1239
4739
1163702
1164916
1215
sp: GLGC_STRCO

Streptomyces coelicolor A3(2)

61.0
81.8
400
glucose-1-phosphate








glgC



adenylyltransferase


1240
4740
1165612
1164974
639
sp: MDMC_STRMY

Streptomyces mycarofaciens

25.8
62.4
93
methyltransferase








MdmC


1241
4741
1165746
1166384
639
sp: RPOE_ECOLI

Escherichia coli rpoE

27.3
57.2
194
RNA polymerase sigma factor












(sigma-24); heat shock and












oxidative stress


1242
4742
1166576
1167067
492


1243
4743
1167110
1167577
468
pir: C70508

Mycobacterium tuberculosis

45.5
73.2
112
hypothetical protein








H37Rv Rv1224


1244
4744
1168711
1167587
1125
sp: MRP_ECOLI

Escherichia coli mrp

43.6
72.0
257
ATPase


1245
4745
1169325
1168747
579
pir: B70509

Mycobacterium tuberculosis

60.4
83.8
154
hypothetical protein








H37Rv Rv1231c


1246
4746
1170610
1169321
1290
pir: C70509

Mycobacterium tuberculosis

49.8
77.0
434
hypothetical protein








H37Rv Rv1232c


1247
4747
1170672
1171187
516
pir: A70952

Mycobacterium tuberculosis

57.9
87.1
140
hypothetical protein








H37Rv Rv1234


1248
4748
1171206
1171871
666


1249
4749
1172462
1171869
594


1250
4750
1176271
1172501
3771
prf: 2306367A

Corynebacterium glutamicum

99.4
99.8
1257
2-oxoglutarate dehydrogenase








AJ12036 odhA


1251
4751
1180048
1176308
3741
sp: MDR2_CRIGR

Cricetulus griseus (Chinese

28.8
60.4
1288
ABC transporter or multidrug








hamster) MDR2



resistance protein 2 (P-glycoprotein












2)


1252
4752
1180837
1180121
717
pir: H70953

Mycobacterium tuberculosis

31.7
72.1
240
hypothetical protein








H37Rv Rv1249c


1253
4753
1181675
1180872
804
sp: AROE_ECOLI

Escherichia coli aroE

25.5
61.2
255
shikimate dehydrogenase


1254
4754
1181993
1183603
1611
sp: PNBA_BACSU

Bacillus subtilis pnbA

35.7
64.7
501
para-nitrobenzyl esterase


1255
4755
1183607
1184257
651


1256
4756
1184280
1185155
876


1257
4757
1185742
1185218
525


1258
4758
1185825
1187039
1215
sp: TCR1_ECOLI

Escherichia coli transposon

27.1
61.4
409
tetracycline resistance protein








Tn1721 tetA


1259
4759
1187043
1188389
1347
sp: TCMA_STRGA

Streptomyces glaucescens tcmA

32.4
64.2
444
metabolite export pump of












tetracenomycin C resistance


1260
4760
1189822
1190526
705


1261
4761
1190622
1188388
2235
pir: S57636

Catharanthus roseus metE

45.2
72.2
774
5-












methyltetrahydropteroyltriglutamate—












homocysteine S-methyltransferase


1262
4762
1191087
1191542
456


1263
4763
1192410
1193807
1398
gsp: Y29930

Nocardia asteroides strain KGB1

55.2
79.5
444
thiophene biotransformation protein


1264
4764
1193867
1194190
324


1265
4765
1194165
1195109
945


1266
4766
1195916
1195125
792


1267
4767
1195974
1197620
1647


1268
4768
1197624
1197815
192


1269
4769
1199543
1197990
1554
sp: CYDC_ECOLI

Escherichia coli K12 MG1655

28.7
63.5
526
ABC transporter








cydC


1270
4770
1201075
1199543
1533
sp: CYDD_ECOLI

Escherichia coli K12 MG1655

29.4
58.4
551
ABC transporter








cydD


1271
4771
1202088
1201090
999
gp: AB035086_2

Corynebacterium glutamicum

92.0
93.0
333
cytochrome bd-type menaquinol








(Brevibacterium lactofermentum)



oxidase subunit II








cydB


1272
4772
1203632
1202094
1539
gp: AB035086_1

Corynebacterium glutamicum

99.6
99.0
512
cytochrome bd-type menaquinol








(Brevibacterium lactofermentum)



oxidase subunit I








cydA


1273
4773
1206180
1203916
2265
sp: YEJH_ECOLI

Escherichia coli K12 MG1655

26.4
55.0
402
helicase








yejH


1274
4774
1206316
1206657
342


1275
4775
1207223
1206831
393
sp: MUTT_PROVU

Proteus vulgaris mutT

36.9
65.6
98
mutator mutT protein ((7,8-dihydro-












8-oxoguanine-triphosphatase)(8-












oxo-dGTPase)(dGTP












pyrophosphohydrolase)


1276
4776
1207374
1208138
765


1277
4777
1209615
1208212
1404
sp: PROY_SALTY

Salmonella typhimurium proY

51.3
85.0
433
proline-specific permease


1278
4778
1209934
1212129
2196
sp: DEAD_KLEPN

Klebsiella pneumoniae CG43

48.1
74.3
643
DEAD box ATP-dependent RNA








DEAD box ATP-dependent RNA



helicase








helicase deaD


1279
4779
1213115
1212429
687
prf: 2323363BT

Mycobacterium leprae

24.7
47.4
247
bacterial regulatory protein, tetR








B1308_C2_181



family


1280
4780
1213269
1214858
1590
sp: PCPB_FLAS3

Sphingomonas flava pcpB

24.5
47.7
595
pentachlorophenol 4-












monooxygenase


1281
4781
1214871
1215938
1068
sp: CLCE_PSESB

Pseudomonas sp. B13 clcE

40.4
72.0
354
maleylacetate reductase


1282
4782
1215952
1216836
885
sp: CATA_ACICA

Acinetobacter calcoaceticus

30.6
59.4
278
catechol 1,2-dioxygenase








catA


1283
4783
1217374
1216904
471


1284
4784
1217982
1217443
540
pir: A70672

Mycobacterium tuberculosis

31.9
58.4
185
hypothetical protein








H37Rv Rv2972c


1285
4785
1219895
1222996
3102
sp: SNF2_YEAST

Saccharomyces cerevisiae

24.9
55.4
878
transcriptional regulator








SNF2


1286
4786
1222905
1221841
1065


1287
4787
1222986
1223843
858
gp: SCO007731_6

Streptomyces coelicolor A3(2)

29.6
56.2
203
hypothetical protein








orfZ


1288
4788
1223887
1225059
1173
pir: E70755

Mycobacterium tuberculosis

39.2
67.3
395
phosphoesterase








H37Rv Rv1277


1289
4789
1225066
1227693
2628
sp: Y084_MYCTU

Mycobacterium tuberculosis

29.7
59.6
915
hypothetical protein








H37Rv Rv1278


1290
4790
1227587
1227282
306


1291
4791
1227657
1227340
318


1292
4792
1227863
1228636
774
gp: AB029896_1
Petroleum-degrading bacterium
37.3
64.6
220
esterase or lipase








HD-1 hde


1293
4793
1228718
1229095
378


1294
4794
1229150
1229935
786


1295
4795
1229716
1229180
537
sp: ATOE_ECOLI

Streptomyces coelicolor

37.7
69.7
122
short-chain fatty acids transporter








SC1C2.14c atoE


1296
4796
1229995
1230480
486
sp: PECS_ERWCH

Erwinia chrysanthemi recS

24.7
56.6
166
regulatory protein


1297
4797
1230610
1230831
222


1298
4798
1231432
1230914
519


1299
4799
1231730
1232479
750
sp: FNR_ECOLI

Escherichia coli K12 MG1655 fnr

25.0
57.9
228
fumarate (and nitrate) reduction












regulatory protein


1300
4800
1232603
1232836
234
sp: MERP_SHEPU

Shewanella putrefaciens merP

33.3
66.7
81
mercuric transort protein periplasmic












component precursor


1301
4801
1233007
1234881
1875
sp: ATZN_ECOLI

Escherichia coli K12 MG1655

38.0
70.6
605
zinc-transporting ATPase Zn(II)-








atzN



translocating P-type ATPase


1302
4802
1234983
1235612
630
sp: RELA_VIBSS

Vibrio sp. S14 relA

32.9
58.4
137
GTP pyrophosphokinase (ATP: GTP












3′-pyrophosphotransferase) (ppGpp












synthetase I)


1303
4803
1238125
1236545
1581
gsp: R80504

Streptomyces lividans tap

26.6
49.3
601
tripeptidyl aminopeptidase


1304
4804
1242156
1241554
603


1305
4805
1242275
1242156
120


1306
4806
1243621
1243728
108
GSP: P61449

Corynebacterium glutamicum

95.0
98.0
24
homoserine dehydrogenase


1307
4807
1245201
1243942
1260


1308
4808
1245532
1244843
690


1309
4809
1246496
1245720
777
sp: NARI_BACSU

Bacillus subtilis narI

45.0
69.6
220
nitrate reductase gamma chain


1310
4810
1247239
1246508
732
sp: NARJ_BACSU

Bacillus subtilis narJ

30.3
63.4
175
nitrate reductase delta chain


1311
4811
1248791
1247199
1593
sp: NARH_BACSU

Bacillus subtilis narH

56.6
83.4
505
nitrate reductase beta chain


1312
4812
1249851
1250444
594
PIR: D72603

Aeropyrum pernix K1 APE1291

36.0
48.0
137
hypothetical protein


1313
4813
1251545
1251817
273
PIR: B72603

Aeropyrum pernix K1 APE1289

36.0
55.0
83
hypothetical protein


1314
4814
1252537
1248794
3744
sp: NARG_BACSU

Bacillus subtilis narG

46.9
73.8
1271
nitrate reductase alpha chain


1315
4815
1253906
1252557
1350
sp: NARK_ECOLI

Escherichia coli K12 narK

32.8
67.9
461
nitrate extrusion protein


1316
4816
1254146
1254634
489
sp: CNX1_ARATH

Arabidopsis thaliana CV cnx1

32.5
65.0
157
molybdopterin biosynthesis cnx1












protein (molybdenum cofactor












biosynthesis enzyme cnx1)


1317
4817
1256602
1254737
1866
sp: PRTS_SERMA

Serratia marcescens strain IFO-

21.1
45.9
738
extracellular serine protease








3046 prtS



precurosor


1318
4818
1257067
1257750
684


1319
4819
1257858
1256851
1008
sp: Y0D3_MYCTU

Mycobacterium tuberculosis

30.8
62.6
334
hypothetical membrane protein








H37Rv Rv1841c


1320
4820
1259265
1257865
1401
sp: Y0D2_MYCTU

Mycobacterium tuberculosis

31.6
60.2
472
hypothetical membrane protein








H37Rv Rv1842c


1321
4821
1259989
1259429
561
gp: PPU242952_2

Pseudomonas putida mobA

27.5
52.3
178
molybdopterin guanine dinucleotide












synthase


1322
4822
1261201
1259993
1209
sp: MOEA_ECOLI

Mycobacterium tuberculosis

32.8
58.2
366
molybdoptein biosynthesis protein








H37Rv Rv0438c moeA


1323
4823
1262818
1261688
1131
sp: CNX2_ARATH

Arabidopsis thaliana cnx2

51.4
73.7
354
molybdopterin biosynthsisi protein












Moybdenume (mosybdenum












cofastor biosythesis enzyme)


1324
4824
1264610
1262886
1725
sp: ALKK_PSEOL

Pseudomonas oleovorans

36.7
65.7
572
edium-chain fatty acid—CoA ligase


1325
4825
1265142
1267427
2286
sp: RHO_MICLU

Micrococcus luteus rho

50.7
73.8
753
Rho factor


1326
4826
1265665
1266267
603


1327
4827
1266306
1265611
696


1328
4828
1266449
1265427
1023


1329
4829
1267430
1268503
1074
sp: RF1_ECOLI

Escherichia coli K12 RF-1

41.9
71.9
363
peptide chain release factor 1


1330
4830
1268507
1269343
837
sp: HEMK_ECOLI

Escherichia coli K12

31.1
57.9
280
protoporphyrinogen oxidase


1331
4831
1269040
1268267
774


1332
4832
1269396
1270043
648
sp: YD01_MYCTU

Mycobacterium tuberculosis

62.3
86.0
215
hypothetical protein








H37Rv Rv1301


1333
4833
1270047
1271192
1146
sp: RFE_ECOLI

Escherichia coli K12 rfe

31.1
58.4
322
undecaprenyl-phosphate alpha-N-












acetylglucosaminyltransferase


1334
4834
1271213
1271698
486


1335
4835
1271871
1272119
249
GPU: AB046112_1

Corynebacterium glutamicum

98.0
99.0
80
hypothetical protein








atpI


1336
4836
1272340
1273149
810
sp: ATP6_ECOLI

Escherichia coli K12 atpB

24.1
56.7
245
ATP synthase chain a (protein 6)


1337
4837
1273286
1273525
240
sp: ATPL_STRLI

Streptomyces lividans atpL

54.9
85.9
71
H+-transporting ATP synthase lipid-












binding protein. ATP synthase C












chane


1338
4838
1273559
1274122
564
sp: ATPF_STRLI

Streptomyces lividans atpF

27.8
66.9
151
H+-transporting ATP synthase chain b


1339
4839
1274131
1274943
813
sp: ATPD_STRLI

Streptomyces lividans atpD

34.3
67.2
274
H+-transporting ATP synthase delta












chain


1340
4840
1274975
1276648
1674
sp: ATPA_STRLI

Streptomyces lividans atpA

66.9
88.4
516
H+-transporting ATP synthase alpha












chain


1341
4841
1276708
1277682
975
sp: ATPG_STRLI

Streptomyces lividans atpG

46.3
76.6
320
H+-transporting ATP synthase












gamma chain


1342
4842
1277688
1279136
1449
sp: ATPB_CORGL

Corynebacterium glutamicum

99.8
100.0
483
H+-transporting ATP synthase beta








AS019 atpB



chain


1343
4843
1279151
1279522
372
sp: ATPE_STRLI

Streptomyces lividans atpE

41.0
73.0
122
H+-transporting ATP synthase












epsilon chain


1344
4844
1279770
1280240
471
sp: Y02W_MYCTU

Mycobacterium tuberculosis

38.6
67.4
132
hypothetical protein








H37Rv Rv1312


1345
4845
1280270
1280959
690
sp: Y036_MYCTU

Mycobacterium tuberculosis

70.0
85.7
230
hypothetical protein








H37Rv Rv1321


1346
4846
1280967
1281251
285
GP: SC26G5_35

Streptomyces coelicolor A3(2)

45.0
56.0
95
putative ATP/GTP-binding protein


1347
4847
1281714
1281262
453
sp: YQJC_BACSU

Bacillus subtilis yqjC

35.8
68.7
134
hypothetical protein


1348
4848
1281794
1282105
312
sp: YC20_MYCTU

Mycobacterium tuberculosis

54.5
79.2
101
hypothetical protein








H37Rv Rv1898


1349
4849
1282194
1283114
921
sp: YD24_MYCTU

Mycobacterium tuberculosis

37.9
71.4
301
thioredoxin








H37Rv Rv1324


1350
4850
1283324
1284466
1143
gp: ECO237695_3

Escherichia coli K12 ssuD

50.3
74.3
366
FMNH2-dependent aliphatic












sulfonate monooxygenase


1351
4851
1284517
1285284
768
sp: SSUC_ECOLI

Escherichia coli K12 ssuC

40.8
75.8
240
alphatic sulfonates transport












permease protein


1352
4852
1285302
1286030
729
sp: SSUB_ECOLI

Escherichia coli K12 ssuB

50.4
72.8
228
alphatic sulfonates transport












permease protein


1353
4853
1286043
1286999
957
sp: SSUA_ECOLI

Escherichia coli K12 ssuA

35.1
62.1
311
sulfonate binding protein precursor


1354
4854
1289473
1287281
2193
sp: GLGB_ECOLI

Mycobacterium tuberculosis

46.1
72.7
710
1,4-alpha-glucan branching enzyme








H37Rv Rv1326c glgB



(glycogen branching enzyme)


1355
4855
1291007
1289514
1494
sp: AMY3_DICTH

Dictyoglomus thermophilum

22.9
50.5
467
alpha-amylase








amyC


1356
4856
1291026
1291373
348


1357
4857
1291699
1292577
879
sp: FEPC_ECOLI

Escherichia coli K12 fepC

31.8
87.6
211
ferric enterobactin transport ATP-












binding protein or ABC transport












ATP-binding protein


1358
4858
1293222
1294025
804
pir: C70860

Mycobacterium tuberculosis

39.6
68.5
260
hypothetical protein








H37Rv Rv3040c


1359
4859
1294151
1295206
1056
pir: H70859

Mycobacterium tuberculosis

43.1
70.0
367
hypothetical protein








H37Rv Rv3037c


1360
4860
1295047
1294436
612


1361
4861
1295435
1296220
786
sp: FIXA_RHIME

Rhizobium meliloti fixA

31.2
64.8
244
electron transfer flavoprotein beta-












subunit


1362
4862
1296253
1297203
951
sp: FIXB_RHIME

Rhizobium meliloti fixB

33.1
61.8
335
electron transfer flavoprotein alpha












subunit for various dehydrogenases


1363
4863
1296479
1297093
615


1364
4864
1297212
1298339
1128
sp: NIFS_AZOVI

Azotobacter vinelandii nifS

35.2
67.7
375
nitrogenase cofactor sythesis protein


1365
4865
1298653
1298342
312


1366
4866
1300145
1299000
1146
sp: Y4ME_RHISN

Rhizobium sp. NGR234 plasmid

29.5
55.7
397
hypothetical protein








pNGR234a y4mE


1367
4867
1300369
1300145
225
sp: Y4MF_RHISN

Rhizobium sp. NGR234 plasmid

47.5
76.3
59
transcriptional regulator








pNGR234a Y4mF


1368
4868
1300552
1301055
504
sp: YHBS_ECOLI

Escherichia coli K12 MG1655

34.8
55.3
181
acetyltransferase


1369
4869
1301929
1300988
942


1370
4870
1303123
1301975
1149


1371
4871
1303299
1303694
396


1372
4872
1303829
1304923
1095
pir: C70858

Mycobacterium tuberculosis

61.8
80.9
361
tRNA (5-methylaminomethyl-2-








H37Rv Rv3024c



thiouridylate)-methyltransferase


1373
4873
1304536
1303883
654


1374
4874
1304932
1305921
990
pir: B70857

Mycobacterium tuberculosis

33.7
66.0
332
hypothetical protein








H37Rv Rv3015c


1375
4875
1307384
1305924
1461
sp: TCMA_STRGA

Streptomyces glaucescens tcmA

30.2
65.8
500
tetracenomycin C resistance and












export protin


1376
4876
1308196
1307462
735


1377
4877
1308330
1310369
2040
sp: DNLJ_RHOMR

Rhodothermus marinus dnlJ

42.8
70.6
677
DNA ligase












(polydeoxyribonucleotide synthase












[NAD+]


1378
4878
1311097
1310435
663
pir: H70856

Mycobacterium tuberculosis

40.0
70.9
220
hypothetical protein








H37Rv Rv3013


1379
4879
1311320
1311616
297
sp: GATC_STRCO

Streptomyces coelicolor A3(2)

53.0
64.0
97
glutamyl-tRNA(Gln)








gatC



amidotransferase subunit C


1380
4880
1311625
1313115
1491
sp: GATA_MYCTU

Mycobacterium tuberculosis

74.0
83.0
484
glutamyl-tRNA(Gln)








H37Rv gatA



amidotransferase subunit A


1381
4881
1313270
1314118
849
sp: VIUB_VIBVU

Vibrio vulnificus viuB

28.1
54.0
263
vibriobactin utilization protein/iron-












chelator utilization protein


1382
4882
1314775
1314470
306
gp: SCE6_24

Streptomyces coelicolor A3(2)

46.9
79.2
96
hypothetical membrane protein








SCE6.24


1383
4883
1315013
1316083
1071
sp: PFP_AMYME

Amycolatopsis methanolica pfp

54.8
77.9
358
pyrophosphate—fructose 6-












phosphate 1-phosphotransrefase


1384
4884
1315954
1315325
630


1385
4885
1316338
1317444
1107
sp: CCPA_BACME

Bacillus megaterium ccpA

31.4
31.4
328
glucose-resistance amylase












regulator (catabolite control protein)


1386
4886
1317434
1319005
1572
sp: RBSA_ECOLI

Escherichia coli K12 rbsA

44.7
76.2
499
ripose transport ATP-binding protein


1387
4887
1319005
1319976
972
sp: RBSC_ECOLI

Escherichia coli K12 MG1655

45.6
76.9
329
high affinity ribose transport protein








rbsC


1388
4888
1320001
1320942
942
sp: RBSB_ECOLI

Escherichia coli K12 MG1655

45.9
77.7
305
periplasmic ribose-binding protein








rbsB


1389
4889
1320952
1321320
369
sp: RBSD_ECOLI

Escherichia coli K12 MG1655

41.7
68.4
139
high affinity ribose transport protein








rbsD


1390
4890
1321476
1322111
636
sp: YIW2_YEAST

Saccharomyces cerevisiae

31.0
58.0
200
hypothetical protein








YIR042c


1391
4891
1322393
1323406
1014
gp: SCF34_13

Streptomyces coelicolor

31.4
60.2
354
iron-siderophore binding lipoprotein








SCF34.13c


1392
4892
1323533
1324537
1005
sp: NTCI_RAT

Rattus norvegicus (Rat) NTCI

35.8
61.9
268
Na-dependent blle acid transporter


1393
4893
1324778
1326256
1479
gsp: W61467

Staphylococcus aureus WHU 29

43.1
71.8
485
RNA-dependent amidotransferase B








ratB


1394
4894
1326378
1327049
672
sp: F4RE_METJA

Methanococcus jannaschii

32.6
61.1
172
putative F420-dependent NADH








MJ1501 f4re



reductase


1395
4895
1330967
1329891
1077
sp: YQJG_ECOLI

Escherichia coli K12 yqjG

39.8
66.9
317
hypothetical protein


1396
4896
1331102
1331875
774
pir: A70672

Mycobacterium tuberculosis

39.3
62.4
234
hypothetical protein








H37Rv Rv2972c


1397
4897
1331953
1333008
1056
pir: H70855

Mycobacterium tuberculosis

27.4
52.6
325
hypothetical membrane protein








H37Rv Rv3005c


1398
4898
1333424
1333188
237


1399
4899
1335280
1333442
1839
gp: AJ012293_1

Corynebacterium glutamicum

99.2
99.4
613
dihydroxy-acid dehydratase








ATCC 13032 llvD


1400
4900
1335975
1335412
564
pir: G70855

Mycobacterium tuberculosis

33.3
68.6
105
hypothetical protein








H37Rv Rv3004


1401
4901
1337567
1336095
1473
sp: YILV_CORGL

Corynebacterium glutamicum

100.0
100.0
62
hypothetical membrane protein








ATCC 13032 yilV


1402
4902
1338609
1338379
231
GP: SSU18930_263

Sulfolobus solfataricus

45.0
55.0
66
hypothetical protein


1403
4903
1342072
1342677
606


1404
4904
1342457
1341960
498
sp: NRTD_SYNP7

Synechococcus sp. nrtD

50.9
80.8
167
nitrate transport ATP-binding potein


1405
4905
1342727
1342461
267
sp: MALK_ENTAE

Enterobacter aerogenes

46.0
78.2
87
maltose/maltodextrin transport ATP-








(Aerobacter aerogenes) malK



binding protein


1406
4906
1343675
1342794
882
sp: NRTA_ANASP

Anabaena sp. strain PCC 7120

28.1
56.8
324
nitrate transporter protein








nrtA


1407
4907
1344018
1344464
447


1408
4908
1344440
1344808
369


1409
4909
1344935
1345420
486
sp: DIM6_STRCO

Streptomyces coelicolor

39.4
73.2
142
actinorhodin polyketide dimerase


1410
4910
1345486
1346439
954
sp: CZCD_ALCEU

Ralstonia eutropha czcD

39.1
72.7
304
cobalt-zinc-cadimium resistance












protein


1411
4911
1345487
1345335
153


1412
4912
1346331
1345642
690


1413
4913
1346458
1348272
1815
sp: V686_METJA

Methanococcus jannaschii

22.9
53.7
642
hypothetical protein


1414
4914
1348334
1350076
1743


1415
4915
1350855
1352444
1590
gsp: Y22646

Brevibacterium flavum serA

99.8
100.0
530
D-3-phosphoglycerate












dehydrogenase


1416
4916
1352053
1351727
327
SP: YEN1_SCHPO

Schizosaccharomyces pombe

29.0
52.0
105
hypothetical serine-rich protein








SPAC11G7.01


1417
4917
1352585
1353451
867


1418
4918
1355601
1354540
1062


1419
4919
1355689
1357554
1866
pir: T03476

Rhodobacter capsulatus strain

32.9
63.1
620
hypothetical protein








SB1003


1420
4920
1356452
1356853
402


1421
4921
1357557
1358210
654


1422
4922
1358259
1359062
804
sp: HPCE_ECOLI

Escherichia coli C hpcE

33.3
59.2
228
homoprotocatechiuate catabolism












bifunctional












isomerase/decarboxylase [includes:












2-hydroxyhepta-2,4-diene-1,7-dioate












isomerase(hhdd isomerase); 5-












carboxymethyl-2-oxo-hex-3-ene-1,7-












dioate decarboxylase(opet












decarboxylase)]


1423
4923
1359052
1359669
618
sp: UBIG_ECOLI

Escherichia coli K12

23.4
55.7
192
methyltransferase or 3-












demethylubiquinone-9 3-O-












methyltransferase


1424
4924
1361295
1360168
1128
sp: DHBC_BACSU

Bacillus subtilis dhbC

38.0
70.4
371
isochorismate synthase


1425
4925
1361361
1362848
1488
sp: SYE_BACSU

Bacillus subtilis gltX

37.3
69.7
485
glutamyl-tRNA synthetase


1426
4926
1363138
1362926
213
gp: SCJ33_10

Streptomyces coelicolor A3(2)

77.0
90.0
67
transcriptional regulator


1427
4927
1363657
1363142
516


1428
4928
1364253
1363732
522


1429
4929
1364915
1365256
342


1430
4930
1364960
1364340
621


1431
4931
1365180
1364878
303


1432
4932
1365396
1365217
180


1433
4933
1365808
1366137
330


1434
4934
1367293
1367505
213


1435
4935
1368070
1367888
183


1436
4936
1368078
1368395
318


1437
4937
1368400
1369551
1152


1438
4938
1369551
1369874
324


1439
4939
1371637
1369877
1761
sp: THIC_BACSU

Bacillus subtilis thiA or thiC

65.1
81.0
599
thiamin biosynthesis protein


1440
4940
1372326
1371979
348


1441
4941
1372601
1373131
531


1442
4942
1373798
1373929
132
GSP: Y37857

Chlamydia trachomatis

61.0
74.0
44
lipoprotein


1443
4943
1374556
1375491
936


1444
4944
1375776
1373350
2427
sp: PHS1_RAT

Rattus norvegicus (Rat)

44.2
74.0
797
glycogen phosphorylase


1445
4945
1375987
1375805
183


1446
4946
1376088
1375933
156


1447
4947
1377555
1376149
1407
sp: YRKH_BACSU

Bacillus subtilis yrkH

25.4
52.8
299
hypothetical protein


1448
4948
1378415
1377666
750
sp: Y441_METJA

Methanococcus jannaschii Y441

25.4
64.8
256
hypothetical membrane protein


1449
4949
1378942
1378466
477


1450
4950
1379003
1379566
564
sp: SPOT_ECOLI

Escherichia coli K12 spoT

29.8
60.1
178
guanosine 3′,5′-bis(diphosphate) 3′-












pyrophosphatase


1451
4951
1380259
1379555
705
sp: ICLR_ECOLI

Escherichia coli K12 iclR

26.1
60.7
257
acetate repressor protein


1452
4952
1380440
1381882
1443
sp: LEU2_ACTTI

Actinoplanes teichomyceticus

68.1
87.5
473
3-isopropylmalate dehydratase large








leu2



subunit


1453
4953
1381902
1382492
591
sp: LEUD_SALTY

Salmonella typhimurium

67.7
89.2
195
3-isopropylmalate dehydratase small












subunit


1454
4954
1382819
1382502
318


1455
4955
1383798
1382845
954
gp: MLCB637_35

Mycobacterium tuberculosis

45.9
71.4
294
mutator mutT protein ((7,8-dihydro-








H37Rv MLCB637.35c



8-oxoguanine-triphosphatase)(8-












oxo-dGTPase)(dGTP












pyrophosphohydrolase)


1456
4956
1383930
1384085
156


1457
4957
1384130
1385125
996
sp: GPDA_BACSU

Bacillus subtilis gpdA

45.0
72.2
331
NAD(P)H-dependent












dihydroxyacetone phosphate












reductase


1458
4958
1385153
1386232
1080
sp: DDLA_ECOLI

Escherichia coli K12 MG1655

40.4
67.4
374
D-alanine-D-alanine ligase








ddlA


1459
4959
1387270
1386293
978


1460
4960
1387332
1388324
993
sp: THIL_ECOLI

Escherichia coli K12 thiL

32.2
57.6
335
thiamin-phosphate kinase


1461
4961
1388312
1389073
762
sp: UNG_MOUSE

Mus musculus ung

38.8
59.6
245
uracil-DNA glycosylase precursor


1462
4962
1389208
1390788
1581
sp: Y369_MYCGE

Mycoplasma genitalium (SGC3)

23.1
56.3
568
hypothetical protein








MG369


1463
4963
1390796
1392916
2121
sp: RECG_ECOLI

Escherichia coli K12 recG

35.4
60.0
693
ATP-dependent DNA helicase


1464
4964
1391961
1391638
324
GSP: Y75303

Neisseria meningitidis

31.0
48.0
108
polypeptides predicted to be useful












antigens for vaccines and












diagnostics


1465
4965
1392939
1393151
213
sp: BCCP_PROFR

Propionibacterium freudenreichii

38.8
67.2
67
biotin carboxyl carrier protein








subsp. Shermanii


1466
4966
1393154
1393735
582
sp: YHHF_ECOLI

Escherichia coli K12 yhhF

37.1
63.5
167
methylase


1467
4967
1393742
1394221
480
sp: KDTB_ECOLI

Escherichia coli K12 MG1655

42.6
78.7
155
lipopolysaccharide core biosynthesis








kdtB



protein


1468
4968
1394854
1395933
1080


1469
4969
1394894
1395097
204
GSP: Y75358

Neisseria gonorrhoeae

67.0
74.0
65
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


1470
4970
1395549
1394800
750
sp: GLNQ_BACST

Bacillus stearothermophilus

56.4
78.6
252
ABC transporter or glutamine ABC








glnQ



transporter, ATP-binding protein


1471
4971
1396410
1395568
843
sp: NOCM_AGRT5

Agrobacterium tumefaciens

32.7
75.0
220
nopaline transport protein








nocM


1472
4972
1397421
1396561
861
sp: GLNH_ECOLI

Escherichia coli K12 MG1655

27.4
59.0
234
glutamine-binding protein precursor








glnH


1473
4973
1397662
1398468
807


1474
4974
1399534
1398557
978
pir: H69160

Methanobacterium

28.6
60.3
322
hypothetical membrane protein









thermoautotrophicum MTH465



1475
4975
1400926
1401333
408


1476
4976
1400940
1400185
756
sp: VINT_BPL54

Bacteriophage L54a vinT

26.9
52.5
223
phage integrase


1477
4977
1401333
1402076
744


1478
4978
1402272
1402703
432


1479
4979
1402874
1402368
507


1480
4980
1403128
1403991
864


1481
4981
1403997
1404215
219


1482
4982
1404885
1404694
192
pir: S60890

Corynebacterium glutamicum

88.5
96.2
26
insertion element (IS3 related)








orf2


1483
4983
1406174
1405320
855


1484
4984
1407109
1406999
111
PIR: S60890

Corynebacterium glutamicum

89.0
97.0
37
hypothetical protein


1485
4985
1407535
1407167
369


1486
4986
1407873
1407559
315


1487
4987
1409023
1408703
321


1488
4988
1409802
1409428
375


1489
4989
1411011
1410064
948


1490
4990
1411424
1411119
306


1491
4991
1412000
1411437
564


1492
4992
1412351
1412572
222


1493
4993
1412916
1412626
291


1494
4994
1413745
1416459
2715
sp: DPO1_MYCTU

Mycobacterium tuberculosis

56.3
80.8
896
DNA polymerase I








polA


1495
4995
1417883
1416462
1422
sp: CMCT_NOCLA

Streptomyces lactamdurans

33.8
67.8
456
cephamycin export protein








cmcT


1496
4996
1417962
1418870
909
gp: SCJ9A_15

Streptomyces coelicolor A3(2)

41.3
65.4
283
DNA-binding protein








SCJ9A.15c


1497
4997
1418876
1419748
873
sp: MORA_PSEPU

Pseudomonas putida morA

46.5
76.1
284
morphine-6-dehydrogenase


1498
4998
1420036
1419878
159


1499
4999
1420724
1420071
654
sp: YAFE_ECOLI

Streptomyces coelicolor

31.9
58.3
163
hypothetical protein








SCH5.13 yafE


1500
5000
1421099
1422556
1458
sp: RS1_ECOLI

Escherichia coli K12 rpsA

39.5
71.4
451
30S ribosomal protein S1


1501
5001
1422571
1421096
1476


1502
5002
1425279
1425878
600
sp: YACE_BRELA

Brevibacterium lactofermentum

80.5
93.9
195
hypothetical protein








ATCC 13869 yacE


1503
5003
1426257
1427354
1098


1504
5004
1427957
1427376
582


1505
5005
1428049
1427804
246


1506
5006
1428290
1429246
957


1507
5007
1429159
1428224
936
sp: IUNH_CRIFA

Crithidia fasciculata iunH

61.9
81.0
310
inosine-uridine preferring nucleoside












hypolase (purine nucleosidase)


1508
5008
1430642
1429194
1449
sp: QACA_STAAU

Staphylococcus aureus

23.6
53.8
517
aniseptic resistance protein


1509
5009
1431579
1430659
921
sp: RBSK_ECOLI

Escherichia coli K12 rbsK

35.5
67.6
293
ribose kinase


1510
5010
1432612
1431575
1038
sp: ASCG_ECOLI

Escherichia coli K12 ascG

30.0
65.6
337
criptic asc operon repressor,












ranscription regulator


1511
5011
1432750
1433547
798


1512
5012
1434105
1436201
2097
sp: UVRB_STRPN

Streptococcus pneumoniae

57.4
83.3
671
excinuclease ABC subunit B








plasmid pSB470 uvrB


1513
5013
1436335
1436775
441
sp: Y531_METJA

Methanococcus jannaschii

33.6
59.2
152
hypothetical protein








MJ0531


1514
5014
1437249
1436869
381
sp: YTFH_ECOLI

Escherichia coli K12 ytfH

38.8
80.2
121
hypothetical protein


1515
5015
1437356
1438201
846
sp: YTFG_ECOLI

Escherichia coli K12 ytfG

53.8
77.1
279
hypothetical protein


1516
5016
1439343
1440026
684


1517
5017
1440560
1438212
2349
pir: H70040

Bacillus subtilis yvgS

23.2
47.2
839
hypothetical protein


1518
5018
1441586
1440675
912
gp: SC9H11_26

Streptomyces coelicolor A3(2)

32.7
68.0
150
hypothetical protein








SC9H11.26c


1519
5019
1442392
1441793
600
sp: YCBL_ECOLI

Escherichia coli K12 ycbL

30.4
58.4
214
hydrolase


1520
5020
1442487
1445333
2847
sp: UVRA_ECOLI

Escherichia coli K12 uvrA

56.2
80.6
952
excinuclease ABC subunit A


1521
5021
1444115
1443810
306
PIR: JQ0406

Micrococcus luteus

40.0
57.0
100
hypothetical protein 1246 (uvrA












region)


1522
5022
1445393
1444944
450
PIR: JQ0406

Micrococcus luteus

31.0
47.0
142
hypothetical protein 1246 (uvrA












region)


1523
5023
1446158
1446874
717


1524
5024
1447446
1445323
2124


1525
5025
1447792
1448358
567
sp: IF3_RHOSH

Rhodobacter sphaeroides infC

52.5
78.2
179
translation initiation factor IF-3


1526
5026
1448390
1448581
192
sp: RL35_MYCFE

Mycoplasma fermentans

41.7
76.7
60
50S ribosomal protein L35


1527
5027
1448645
1449025
381
sp: RL20_PSESY

Pseudomonas syringae pv.

75.0
92.7
117
50S ribosomal protein L20








syringae


1528
5028
1449940
1449119
822


1529
5029
1450126
1450692
567


1530
5030
1450918
1451820
903
sp: UGPA_ECOLI

Escherichia coli K12 MG1655

33.2
71.6
292
sn-glycerol-3-phosphate transport








ugpA



system permease protein


1531
5031
1451820
1452653
834
sp: UGPE_ECOLI

Escherichia coli K12 MG1655

33.3
70.4
270
sn-glycerol-3-phosphate transport








upgE



system protein


1532
5032
1452758
1454071
1314
sp: UGPB_ECOLI

Escherichia coli K12 MG1655

26.6
57.6
436
sn-glycerol-3-phosphate transport








ugpB



system permease proein


1533
5033
1454115
1455338
1224
sp: UGPC_ECOLI

Escherichia coli K12 MG1655

44.0
71.3
393
sn-glycerol-3-phosphate transport








ugpC



ATP-binding protein


1534
5034
1454350
1454102
249
PIR: E72756

Aeropyrum pernix K1 APE0042

47.0
56.0
74
hypothetical protein


1535
5035
1456066
1455350
717
sp: GLPQ_BACSU

Bacillus subtilis glpQ

26.2
50.0
244
glycerophosphoryl diester












phosphodiesterase


1536
5036
1456355
1456948
594
sp: TRMH_ECOLI

Escherichia coli K12 MG1655

34.0
71.2
153
tRNA(guanosine-2′-0-)-








trmH



methlytransferase


1537
5037
1457047
1458066
1020
sp: SYFA_BACSU

Bacillus subtilis 168 syfA




phenylalanyl-tRNA synthetase alpha












chain


1538
5038
1458133
1460616
2484
sp: SYFB_ECOLI

Escherichia coli K12 MG1655

42.6
71.7
343
phenylalanyl-tRNA synthetase beta








syfB



chain


1539
5039
1458966
1458196
771


1540
5040
1461157
1462128
972
sp: ESTA_STRSC

Streptomyces scabies estA

26.5
55.1
363
esterase


1541
5041
1462134
1463516
1383
sp: MDMB_STRMY

Streptomyces mycarofaciens

30.0
56.3
423
macrolide 3-O-acyltransferase








mdmB


1542
5042
1463533
1463934
402


1543
5043
1464083
1465123
1041
gp: AF005242_1

Corynebacterium glutamicum

98.3
99.1
347
N-acetylglutamate-5-semialdehyde








ASO19 argC



dehydrogenase


1544
5044
1465210
1466373
1164
sp: ARGJ_CORGL

Corynebacterium glutamicum

99.5
99.7
388
glutamate N-acetyltransferase








ATCC 13032 argJ


1545
5045
1467376
1468548
1173
sp: ARGD_CORGL

Corynebacterium glutamicum

99.0
99.2
391
acetylornithine aminotransferase








ATCC 13032 argD


1546
5046
1470211
1471413
1203
sp: ASSY_CORGL

Corynebacterium glutamicum

99.5
99.5
401
argininosuccinate synthetase








ASO19 argG


1547
5047
1471362
1470154
1209


1548
5048
1471477
1472907
1431
gp: AF048764_1

Corynebacterium glutamicum

83.3
90.0
478
argininosuccinate lyase








ASO19 argH


1549
5049
1472977
1474119
1143


1550
5050
1474119
1475693
1575


1551
5051
1475683
1476294
612


1552
5052
1476343
1476519
177
sp: YCAR_ECOLI

Escherichia coli K12 ycaR

48.0
72.0
50
hypothetical protein


1553
5053
1476550
1477809
1260
sp: SYY1_BACSU

Bacillus subtilis syy1

48.4
79.6
417
tyrosyl-tRNA synthase (tyrosine—












tRNA ligase)


1554
5054
1478393
1477929
465
sp: Y531_METJA

Methanococcus jannaschii

26.9
64.4
149
hypothetical protein








MJ0531


1555
5055
1478892
1478503
390


1556
5056
1483475
1483335
141
PIR: F81737

Chlamydia muridarum Nigg

71.0
75.0
42
hypothetical protein








TC0129


1557
5057
1483996
1483724
273
GSP: Y35814

Chlamydia pneumoniae

61.0
66.0
84
hypothetical protein


1558
5058
1484675
1486027
1353
sp: IF2_BORBU

Borrelia burgdorferi IF2

36.3
67.0
182
translation initiation factor IF-2


1559
5059
1486042
1487025
984
sp: YZGD_BACSU

Bacillus subtilis yzgD

29.6
60.1
311
hypothetical protein


1560
5060
1487032
1487193
162


1561
5061
1487238
1488056
819
sp: YQXC_BACSU

Bacillus subtilis yqxC

38.5
69.6
260
hypothetical protein


1562
5062
1488146
1489018
873
sp: YFJB_HAEIN

Mycobacterium tuberculosis

31.6
31.6
225
hypothetical protein








H37Rv Rv1695


1563
5063
1489103
1490881
1779
sp: RECN_ECOLI

Escherichia coli K12 recN

31.4
63.4
574
DNA repair protein


1564
5064
1490944
1492134
1191
pir: H70502

Mycobacterium tuberculosis

41.9
73.1
394
hypothetical protein








H37Rv Rv1697


1565
5065
1492147
1493109
963
pir: A70503

Mycobacterium tuberculosis

30.4
68.1
313
hypothetical protein








H37Rv Rv1698


1566
5066
1493513
1495174
1662
sp: PYRG_ECOLI

Escherichia coli K12 pyrG

55.0
76.7
549
CTP synthase (UTP—ammonia












ligase)


1567
5067
1495205
1495861
657
sp: YQKG_BACSU

Bacillus subtilis yqkG

36.3
71.3
157
hypothetical protein


1568
5068
1495861
1496772
912
gp: AF093548_1

Staphylococcus aureus xerD

39.7
71.7
300
tyrosine recombinase


1569
5069
1498324
1496795
1530
sp: TLRC_STRFR

Streptomyces fradiae tlrC

30.5
59.7
551
tyrosin resistance ATP-binding












protein


1570
5070
1498863
1499645
783
gp: CCU87804_4

Caulobacter crescentus parA

44.6
73.6
258
chromosome partitioning protein or












ATPase involved in active












partitioning of diverse bacterial












plasmids


1571
5071
1499931
1500695
765
sp: YPUG_BACSU

Bacillus subtilis ypuG

28.3
64.5
251
hypothetical protein


1572
5072
1501471
1500911
561


1573
5073
1501710
1502576
867
gp: AF109156_1

Datisca glomerata tst

35.6
67.0
270
thiosulfate sulfurtransferase


1574
5074
1502634
1503176
543
sp: YPUH_BACSU

Bacillus subtilis ypuH

33.1
65.7
172
hypothetical protein


1575
5075
1503483
1504238
756
sp: RLUB_BACSU

Bacillus subtilis rluB

45.9
72.5
229
ribosomal large subunit












pseudouridine synthase B


1576
5076
1504256
1504945
690
sp: KCY_BACSU

Bacillus subtilis cmk

38.6
73.6
220
cytidylate kinase


1577
5077
1505017
1506573
1557
sp: YPHC_BACSU

Bacillus subtilis yphC

42.8
74.0
435
GTP binding protein


1578
5078
1507327
1506662
666


1579
5079
1507902
1507405
498


1580
5080
1508729
1507917
813
sp: YX42_MYCTU

Mycobacterium tuberculosis

36.2
67.2
232
methyltransferase








Rv3342


1581
5081
1508813
1510366
1554
prf: 2513302B

Corynebacterium striatum M82B

29.7
60.1
499
ABC transporter








tetA


1582
5082
1510366
1512132
1767
prf: 2513302A

Corynebacterium striatum M82B

31.2
56.3
602
ABC transporter








tetB


1583
5083
1511667
1510843
825


1584
5084
1512189
1512977
789
sp: YGIE_ECOLI

Escherichia coli K12 ygiE

39.7
73.2
257
hypothetical membrane protein


1585
5085
1514505
1514693
189


1586
5086
1514527
1512980
1548
gp: AB029555_1

Bacillus subtilis ATCC 9372

25.7
61.5
499
Na+/H+ antiporter








nhaG


1587
5087
1515159
1514974
186


1588
5088
1515396
1515815
420


1589
5089
1515782
1515408
375
sp: YCHJ_ECOLI

Escherichia coli K12 o249#9

36.9
57.7
130
hypothetical protein








ychJ


1590
5090
1516962
1515799
1164
pir: C69334

Archaeoglobus fulgidus AF0675

25.2
63.8
210
2-hydroxy-6-oxohepta-2,4-dienoate












hydrolase


1591
5091
1517170
1519458
2289
sp: SECA_BACSU

Bacillus subtills secA

35.2
61.7
805
preprotein translocase SecA subunit


1592
5092
1519601
1520029
429
gp: AF173844_2

Mycobacterium smegmatis garA

75.8
93.2
132
signal transduction protein


1593
5093
1520190
1520945
756
sp: Y0DF_MYCTU

Mycobacterium tuberculosis

41.9
74.4
234
hypothetical protein








H37Rv Rv1828


1594
5094
1520957
1521589
633
sp: Y0DE_MYCTU

Mycobacterium tuberculosis

30.8
63.2
133
hypothetical protein








H37Rv Rv1828


1595
5095
1521771
1522343
573
sp: Y0DE_MYCTU

Mycobacterium tuberculosis

71.4
84.3
178
hypothetical protein








H37Rv Rv1828


1596
5096
1522941
1522432
510


1597
5097
1524500
1523052
1449


1598
5098
1525374
1525973
600


1599
5099
1525497
1524568
930


1600
5100
1526534
1525473
1062
sp: YHDP_BACSU

Bacillus subtilis yhdP

33.9
69.0
342
hemolysin


1601
5101
1527913
1526534
1380
sp: YHDT_BACSU

Bacillus subtilis yhdT

31.4
65.5
65
hemolysin


1602
5102
1527968
1528186
219


1603
5103
1529330
1527987
1344
gp: TTHERAGEN_1

Thermus thermophilus herA

41.2
69.5
374
DEAD box RNA helicase


1604
5104
1529486
1530220
735
sp: YD48_MYCTU

Mycobacterium tuberculosis

34.3
66.1
245
ABC transporter ATP-binding protein








H37Rv Rv1348


1605
5105
1531816
1530341
1476
gsp: W27613

Brevibacterium flavum

99.0
99.2
492
6-phosphogluconate dehydrogenase


1606
5106
1531933
1532394
462
pir: G70664

Mycobacterium tuberculosis

39.7
67.8
121
thioesterase








H37Rv Rv1847


1607
5107
1532322
1532996
675


1608
5108
1533041
1533781
741
sp: NODI_RHIS3

Rhizobium sp. N33 nodl

39.6
68.1
235
nodulation ATP-binding protein I


1609
5109
1533781
1534521
741
pir: E70501

Mycobacterium tuberculosis

43.1
76.3
232
hypothetical membrane protein








H37Rv Rv1686c


1610
5110
1535401
1534529
873
sp: YFHH_ECOLI

Escherichia coli K12 yfhH

26.7
63.9
277
transcriptional regulator


1611
5111
1536227
1535382
846
sp: PHNE_ECOLI

Escherichia coli K12 phnE

29.9
63.4
281
phosphonates transport system












permease protein


1612
5112
1537030
1536227
804
sp: PHNE_ECOLI

Escherichia coli K12 phnE

27.2
62.3
268
phosphonates transport system












permease protein


1613
5113
1537833
1537030
804
sp: PHNC_ECOLI

Escherichia coli K12 phnC

44.8
72.0
250
phosphonates transport ATP-binding












protein


1614
5114
1538759
1538968
210


1615
5115
1538919
1537870
1050


1616
5116
1539664
1538963
702


1617
5117
1541403
1539820
1584
sp: THID_SALTY

Salmonella typhimurium thiD

47.3
70.2
262
phosphomethylpyrimidine kinase


1618
5118
1542922
1542119
804
sp: THIM_SALTY

Salmonella typhimurium LT2

46.6
77.5
249
hydoxyethylthiazole kinase








thiM


1619
5119
1544976
1546289
1314
pir: H70830

Mycobacterium tuberculosis

28.6
55.0
451
cyclopropane-fatty-acyl-phospholipid








H37Rv ufaA1



synthase


1620
5120
1547692
1546307
1386
prf: 2223339B

Burkholderia cepacia Pc701

32.5
66.9
468
sugar transporter or 4-methyl-o-








mopB



phthalate/phthalate permease


1621
5121
1548440
1547967
474
prf: 2120352B

Thermus flavus AT-62 gpt

36.5
59.0
156
purine phosphoribosyltransferase


1622
5122
1548651
1549349
699
sp: YEBN_ECOLI

Escherichia coli K12 yebN

39.8
68.5
206
hypothetical protein


1623
5123
1549403
1550398
996
gp: AF178758_2

Sinorhizobium sp. As4 arsB

23.3
54.6
361
arsenic oxyanion-translocation pump












membrane subunit


1624
5124
1550469
1550951
483


1625
5125
1551545
1552237
693
gp: SCI7_33

Streptomyces coelicolor A3(2)

62.2
83.8
222
hypothetical protein








SCI7.33


1626
5126
1552518
1553972
1455
gp: PSTRTETC1_6

Pseudomonas sp. R9 ORFA

51.8
83.6
469
sulfate permease


1627
5127
1553722
1553297
426
GP: PSTRTETC1_7

Pseudomonas sp. R9 ORFG

39.0
50.0
97
hypothetical protein


1628
5128
1554684
1554070
615


1629
5129
1554861
1555067
207


1630
5130
1555079
1554891
189


1631
5131
1555835
1555086
750


1632
5132
1556376
1556771
396
pir: A70945

Mycobacterium tuberculosis

71.8
87.3
110
hypothetical protein








H37Rv Rv2050


1633
5133
1557823
1557014
810
prf: 2317468A

Schizosaccharomyces pombe

39.2
71.0
217
dolichol phosphate mannose








dpm1



synthase


1634
5134
1559493
1557859
1635
sp: LNT_ECOLI

Escherichia coli K12 Int

25.1
55.6
527
apolipoprotein N-acyltransferase


1635
5135
1560237
1559497
741


1636
5136
1561660
1560437
1224
gp: AF188894_1

Candida albicans lip1

23.7
55.6
392
secretory lipase


1637
5137
1561780
1562553
774
pir: C70764

Mycobacterium tuberculosis

31.3
56.7
291
precorrin 2 methyltransferase








H37Rv cobG


1638
5138
1563802
1562525
1278
sp: COBL_PSEDE

Pseudomonas denitrificans

32.4
60.8
411
precorrin-6Y C5, 15-








SC510 cobL



methyltransferase


1639
5139
1563872
1564237
366


1640
5140
1564237
1564482
246


1641
5141
1565302
1564565
738
sp: YY12_MYCTU

Mycobacterium tuberculosis

54.1
75.4
244
oxidoreductase








H37Rv RV3412


1642
5142
1566438
1565302
1137
gp: AF014460_1

Streptococcus mutans LT11

36.1
61.3
382
dipeptidase or X-Pro dipeptidase








pepQ


1643
5143
1566468
1567106
639


1644
5144
1569903
1567117
2787
sp: MTR4_YEAST

Saccharomyces cerevisiae

26.5
55.7
1030
ATP-dependent RNA helicase








YJL050W dob1


1645
5145
1570933
1569932
1002
sp: TATC_ECOLI

Escherichia coli K12 tatC

28.7
62.7
268
sec-independent protein translocase












protein


1646
5146
1571382
1571068
315
sp: YY34_MYCLE

Mycobacterium leprae

44.7
69.4
85
hypothetical protein








MLCB2533.27


1647
5147
1572486
1571506
981
sp: YY35_MYCTU

Mycobacterium tuberculosis

31.9
61.2
317
hypothetical protein








H37Rv Rv2095c


1648
5148
1573463
1572492
972
sp: YY36_MYCLE

Mycobacterium leprae

32.4
64.8
324
hypothetical protein








MLCB2533.25


1649
5149
1574915
1573491
1425
sp: YY37_MYCTU

Mycobacterium tuberculosis

53.1
77.3
467
hypothetical protein








H37Rv Rv2097c


1650
5150
1574957
1575205
249


1651
5151
1575136
1574945
192
pir: B70512

Mycobacterium tuberculosis

54.1
80.3
61
hypothetical protein








H37Rv Rv2111c


1652
5152
1576947
1575406
1542
pir: C70512

Mycobacterium tuberculosis

48.6
74.2
516
hypothetical protein








H37Rv Rv2112c


1653
5153
1577327
1577806
480
PIR: H72504

Aeropyrum pernix K1 APE2014

42.0
50.0
159
hypothetical protein


1654
5154
1578531
1576951
1581
prf: 2422382Q

Rhodococcus erythropolis arc

51.6
78.5
545
AAA family ATPase (chaperone-like












function)


1655
5155
1579400
1578567
834
pir: S72844

Mycobacterium leprae pimT

57.3
79.0
281
protein-beta-aspartate












methyltransferase


1656
5156
1580771
1579449
1323
gp: AF005050_1

Homo sapiens

38.1
67.2
436
aspartyl aminopeptidase


1657
5157
1580807
1581640
834
pir: B70513

Mycobacterium tuberculosis

45.4
71.4
269
hypothetical protein








H37Rv Rv2119


1658
5158
1581851
1582114
264
sp: VAPI_BACNO

Dichelobacter nodosus A198

40.6
72.5
69
virulence-associated protein








vapI


1659
5159
1583481
1582273
1209
prf: 2513299A

Staphylococcus aureus norA23

21.8
61.0
385
quinolon resistance protein


1660
5160
1585490
1583913
1578
sp: ASPA_CORGL

Corynebacterium glutamicum

99.8
99.8
526
aspartate ammonia-lyase








(Brevibacterium flavum) MJ233








aspA


1661
5161
1586445
1585603
843
gp: AF050166_1

Corynebacterium glutamicum

96.8
97.5
281
ATP phosphoribosyltransferase








ASO19 hisG


1662
5162
1587504
1586812
693
pir: H72277

Thermotoga maritima MSB8

30.8
63.1
195
beta-phosphoglucomutase








TM1254


1663
5163
1591235
1587573
3663
sp: METH_ECOLI

Escherichia coli K12 metH

31.6
62.4
1254
5-methyltetrahydrofolate—












homocysteine methyltransferase


1664
5164
1591343
1591912
570


1665
5165
1592966
1591941
1026
sp: AHPF_XANCH

Xanthomonas campestris ahpF

22.4
49.5
366
alkyl hydroperoxide reductase












subunit F


1666
5166
1593337
1594512
1176
sp: ACR3_YEAST

Saccharomyces cerevisiae

33.0
63.9
388
arsenical-resistance protein








S288C YPR201W acr3


1667
5167
1594532
1594951
420
sp: ARSC_STAAU

Staphylococcus aureus plasmid

32.6
64.3
129
arsenate reductase








pl258 arsC


1668
5168
1595030
1595668
639
pir: G70964

Mycobacterium tuberculosis

47.2
75.6
123
arsenate reductase








H37Rv arsC


1669
5169
1596221
1595844
378


1670
5170
1597460
1596249
1212
sp: SYC_ECOLI

Escherichia coli K12 cysS

35.9
64.3
387
cysteinyl-tRNA synthetase


1671
5171
1598623
1597745
879
sp: BACA_ECOLI

Escherichia coil K12 bacA

37.3
69.4
255
bacitracin resistance protein


1672
5172
1598667
1599614
948
prf: 2214302F

Agrobacterium tumefaciens

33.4
62.6
326
oxidoreductase








mocA


1673
5173
1599679
1600677
999
pir: F70577

Mycobacterium tuberculosis

27.0
53.5
359
lipoprotein








H37Rv lppL


1674
5174
1600692
1601804
1113
sp: PYRD_AGRAE

Agrocybe aegerita ura1

44.0
67.1
334
dihydroorotate dehydrogenase


1675
5175
1602281
1601931
351


1676
5176
1602660
1603466
807


1677
5177
1603520
1604629
1110
gp: PSESTBCBAD_1

Pseudomonas syringae tnpA

34.7
55.3
360
transposase


1678
5178
1605315
1604830
486


1679
5179
1605811
1605281
531
sp: YBHB_ECOLI

Escherichia coli K12 ybhB

44.1
75.0
152
bio operon ORF I (biotin biosynthetic












enzyme)


1680
5180
1605961
1606689
729
GSP: Y74829

Neisseria meningitidis

26.0
33.0
198
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


1681
5181
1607646
1608248
603


1682
5182
1607657
1605861
1797
prf: 2513302A

Corynebacterium striatum M82B

43.6
68.7
597
ABC transporter








tetB


1683
5183
1609087
1609335
249


1684
5184
1609247
1607661
1587
prf: 2513302B

Corynebacterium striatum M82B

36.8
67.1
535
ABC transporter








tetA


1685
5185
1610192
1609842
351


1686
5186
1610236
1610844
609
pir: JU0052

Streptomyces anulatus pac

32.4
56.4
56
puromycin N-acetyltransferase


1687
5187
1612238
1611150
1089
sp: ARGK_ECOLI

Escherichia coli K12 argK

43.1
72.3
339
LAO(lysine, arginine, and












ornithine)/AO (arginine and












ornithine)transport system kinase


1688
5188
1614444
1612234
2211
sp: MUTB_STRCM

Streptomyces cinnamonensis

72.2
87.5
741
methylmalonyl-CoA mutase alpha








A3823.5 mutB



subunit


1689
5189
1616298
1614451
1848
sp: MUTA_STRCM

Streptomyces cinnamonensis

41.6
68.2
610
methylmalonyl-CoA mutase beta








A3823.5 mutA



subunit


1690
5190
1616578
1617300
723
sp: YS13_MYCTU

Mycobacterium tuberculosis

39.7
70.1
224
hypothetical membrane protein








H37Rv Rv1491c


1691
5191
1617398
1617994
597


1692
5192
1619616
1618321
1296
sp: YS09_MYCTU

Mycobacterium tuberculosis

64.1
87.0
370
hypothetical membrane protein








H37Rv Rv1488


1693
5193
1620106
1619672
435
pir: B70711

Mycobacterium tuberculosis

44.7
78.7
141
hypothetical membrane protein








H37Rv Rv1487


1694
5194
1621009
1620167
843
gp: SCC77_24

Streptomyces coelicolor A3(2)

51.0
72.8
261
hypothetical protein








SCC77.24


1695
5195
1621056
1621838
783


1696
5196
1622950
1621841
1110
sp: HEMZ_PROFR

Propionibacterium freudenreichii

36.8
65.7
364
ferrochelatase








subsp. Shermanii hemH


1697
5197
1624826
1623027
1800
sp: P54_ENTFC

Streptococcus faecium

25.5
56.5
611
invasin


1698
5198
1625925
1625428
498


1699
5199
1626279
1629107
2829
pir: F70873

Mycobacterium tuberculosis

69.9
85.9
959
aconitate hydratase








H37Rv acn


1700
5200
1629298
1629861
564
pir: E70873

Mycobacterium tuberculosis

54.6
81.6
174
transcriptional regulator








H37Rv Rv1474c


1701
5201
1629913
1630668
756
pir: F64496

Methanococcus jannaschii

21.3
51.9
235
GMP synthetase








MJ1575 guaA


1702
5202
1631329
1630667
663
gp: SCD82_4

Streptomyces coelicolor A3(2)

32.6
62.0
221
hypothetical protein








SCD82.04c


1703
5203
1631660
1631926
267
pir: E64494

Methanococcus jannaschii

37.2
80.2
86
hypothetical protein








MJ1558


1704
5204
1631745
1631353
393


1705
5205
1631933
1633324
1392
gp: AE002515_9

Neisseria meningitidis MC58

61.2
86.1
446
hypothetical protein








NMB1652


1706
5206
1632588
1632109
480
GSP: Y38838

Neisseria gonorrhoeae ORF24

54.0
60.0
113
antigenic protein


1707
5207
1633137
1632682
456
GSP: Y38838

Neisseria gonorrhoeae

59.0
69.0
152
antigenic protein


1708
5208
1633566
1636241
2676
sp: ATA1_SYNY3

Synechocystis sp. PCC6803

42.6
73.2
883
cation-transporting ATPase P








sll1614 pma1


1709
5209
1634563
1633781
783


1710
5210
1636732
1636244
489
gp: SC3D11_2

Streptomyces coelicolor A3(2)

35.8
58.3
120
hypothetical protein








SC3D11.02c


1711
5211
1637081
1638442
1362


1712
5212
1639132
1638776
357


1713
5213
1639365
1639520
156


1714
5214
1639656
1639817
162


1715
5215
1639781
1640155
375
prf: 2408488H

Streptococcus thermophilus

43.0
73.8
107
host cell surface-exposed lipoprotein








phage TP-J34


1716
5216
1640546
1641001
456
prf: 2510491A

Corynephage 304L int

34.4
60.4
154
integrase


1717
5217
1642674
1641046
1629
sp: YJJK_ECOLI

Escherichia coli K12 yjjK

32.8
64.4
497
ABC transporter ATP-binding protein


1718
5218
1644218
1642743
1476


1719
5219
1645499
1644318
1182
sp: NANH_MICVI

Micromonospora viridifaciens

51.9
72.4
387
sialidase








ATCC 31146 nedA


1720
5220
1645661
1646368
708
gp: AF121000_8

Corynebacterium glutamicum

99.6
100.0
236
transposase (IS1628)








22243 R-plasmid pAG1 tnpB


1721
5221
1645821
1646063
243
GPU: AF164956_23

Corynebacterium glutamicum

64.0
72.0
37
transposase protein fragment








TnpNC


1722
5222
1645861
1645601
261
GP: NT1TNIS_5
Plasmid NTP16
32.0
43.0
88
hypothetical protein


1723
5223
1646549
1647133
585


1724
5224
1647634
1647212
423
pir: B75015

Pyrococcus abyssi Orsay

32.7
70.1
107
dTDP-4-keto-L-rhamnose reductase








PAB1087


1725
5225
1648097
1647651
447
pir: S72754

Mycobacterium leprae

63.8
85.2
149
nitrogen fixation protein








MLCL536.24c nifU7


1726
5226
1648548
1648709
162
PIR: C72506

Aeropyrum pernix K1 APE2025

48.0
57.0
52
hypothetical protein


1727
5227
1649362
1648100
1263
pir: S72761

Mycobacterium leprae nifS

64.7
84.4
411
nitrogen fixation protein


1728
5228
1650122
1649367
756
gp: SCC22_4

Streptomyces coelicolor A3(2)

70.2
89.3
252
ABC transporter ATP-binding protein








SCC22.04c


1729
5229
1651424
1650249
1176
pir: A70872

Mycobacterium tuberculosis

55.2
83.0
377
hypothetical protein








H37Rv Rv1462


1730
5230
1652875
1651433
1443
sp: Y074_SYNY3

Synechocystis sp. PCC6803

41.0
73.0
493
ABC transporter








slr0074


1731
5231
1653586
1652894
693
gp: SCC22_8

Streptomyces coelicolor A3(2)

46.1
71.4
217
DNA-binding protein








SCC22.08c


1732
5232
1654043
1655671
1629
pir: F70871

Mycobacterium tuberculosis

36.3
67.8
518
hypothetical membrane protein








H37Rv Rv1459c


1733
5233
1655681
1656700
1020
pir: S72783

Mycobacterium leprae

50.2
77.3
317
ABC transporter








MLCL536.31 abc2


1734
5234
1656712
1657515
804
pir: S72778

Mycobacterium leprae

41.0
74.8
266
hypothetical protein








MLCL536.32


1735
5235
1657677
1658675
999
pir: C70871

Mycobacterium tuberculosis

43.0
74.6
291
hypothetical protein








H37Rv Rv1456c


1736
5236
1659496
1659140
357


1737
5237
1659508
1661136
1629
pir: C71156

Pyrococcus horikoshii PH0450

23.4
51.0
418
helicase


1738
5238
1661578
1662552
975
sp: QOR_ECOLI

Escherichia coli K12 qor

37.5
70.9
323
quinone oxidoreductase


1739
5239
1663598
1662630
969
gp: NWCOXABC_3

Nitrobacter winogradskyi coxC

37.6
66.8
295
cytochrome o ubiquinol oxidase












assembly factor/heme O












synthase


1740
5240
1664403
1666502
2100
gp: AB023377_1

Corynebacterium glutamicum

100.0
100.0
675
transketolase








ATCC 31833 tkt


1741
5241
1666673
1667752
1080
sp: TAL_MYCLE

Mycobacterium leprae

62.0
85.2
358
transaldolase








MLCL536.39 tal


1742
5242
1667764
1666601
1164


1743
5243
1667950
1669401
1452
gsp: W27612

Brevibacterium flavum

99.8
100.0
484
glucose-6-phosphate












dehydrogenase


1744
5244
1669419
1670375
957
pir: A70917

Mycobacterium tuberculosis

40.6
71.7
318
oxppcycle protein (glucose 6-








H37Rv Rv1446c opcA



phosphate dehydrogenase












assembly protein)


1745
5245
1670395
1671099
705
sp: SOL3_YEAST

Saccharomyces cerevisiae

28.7
58.1
258
6-phosphogluconolactonase








S288C YHR163W sol3


1746
5246
1671677
1671273
405
sp: SAOX_BACSN

Bacillus sp. NS-129

35.2
57.8
128
sarcosine oxidase


1747
5247
1671723
1673123
1401
gp: AF126281_1

Rhodococcus erythropolis

24.6
46.6
500
transposase (IS1676)


1748
5248
1674105
1673266
840
gp: CGL007732_5

Corynebacterium glutamicum

100.0
100.0
205
sarcosine oxidase








ATCC 13032 soxA


1749
5249
1677211
1677384
174


1750
5250
1678756
1678070
687


1751
5251
1679148
1680128
981


1752
5252
1681108
1680332
777
sp: TPIS_CORGL

Corynebacterium glutamicum

99.2
99.6
259
triose-phosphate isomerase








AS019 ATCC 13059 tpiA


1753
5253
1681263
1681670
408
SP: YCQ3_YEAST

Saccharomyces cerevisiae

37.0
51.0
128
probable membrane protein








YCR013c


1754
5254
1682404
1681190
1215
sp: PGK_CORGL

Corynebacterium glutamicum

98.0
98.5
405
phosphoglycerate kinase








AS019 ATCC 13059 pgk


1755
5255
1683625
1682624
1002
sp: G3P_CORGL

Corynebacterium glutamicum

99.1
99.7
333
glyceraldehyde-3-phosphate








AS019 ATCC 13059 gap



dehydrogenase


1756
5256
1685097
1684117
981
pir: D70903

Mycobacterium tuberculosis

63.9
87.4
324
hypothetical protein








H37Rv Rv1423


1757
5257
1686132
1685110
1023
sp: YR40_MYCTU

Mycobacterium tuberculosis

56.3
82.5
309
hypothetical protein








H37Rv Rv1422


1758
5258
1687078
1686152
927
sp: YR39_MYCTU

Mycobacterium tuberculosis

52.0
76.2
281
hypothetical protein








H37Rv Rv1421


1759
5259
1689190
1687103
2088
sp: UVRC_PSEFL

Synechocystis sp. PCC6803

34.4
61.5
701
excinuclease ABC subunit C








uvrC


1760
5260
1689779
1689201
579
sp: YR35_MYCTU

Mycobacterium tuberculosis

32.7
68.7
150
hypothetical protein








H37Rv Rv1417


1761
5261
1690345
1689869
477
SP: RISB_ECOLI

Escherichia coli K12

43.5
72.1
154
6,7-dimethyl-8-ribityllumazine












synthase


1762
5262
1690694
1690921
228
GSP: Y83273

Bacillus subtilis

59.0
68.0
72
polypeptide encoded by rib operon


1763
5263
1690708
1691421
714
GSP: Y83272

Bacillus subtilis

26.0
48.0
217
riboflavin biosynthetic protein


1764
5264
1691012
1691347
336
GSP: Y83273

Bacillus subtilis

44.0
52.0
106
polypeptide encoded by rib operon


1765
5265
1691625
1690360
1266
gp: AF001929_1

Mycobacterium tuberculosis ribA

65.6
84.7
404
GTP cyclohydrolase II and 3,4-












dihydroxy-2-butanone 4-phosphate












synthase (riboflavin synthesis)


1766
5266
1692271
1691639
633
sp: RISA_ACTPL

Actinobacillus

47.4
79.2
211
riboflavin synthase alpha chain








pleuropneumoniae ISU-178 ribE


1767
5267
1693258
1692275
984
sp: RIBD_ECOLI

Escherichia coli K12 ribD

37.3
62.7
365
riboflavin-specific deaminase


1768
5268
1693918
1693262
657
sp: RPE_YEAST

Saccharomyces cerevisiae

43.6
73.1
234
ribulose-phosphate 3-epimerase








S288C YJL121C rpe1


1769
5269
1695298
1693967
1332
sp: SUN_ECOLI

Escherichia coli K12 sun

30.8
60.7
448
nucleolar protein NOL1/NOP2












(eukaryotes) family


1770
5270
1696443
1695499
945
sp: FMT_PSEAE

Pseudomonas aeruginosa fmt

41.6
67.9
308
methionyl-tRNA formyltransferase


1771
5271
1696972
1696466
507
sp: DEF_BACSU

Bacillus subtilis 168 def

44.7
72.7
150
polypeptide deformylase


1772
5272
1699147
1697084
2064
sp: PRIA_ECOLI

Escherichia coli priA

22.9
46.3
725
primosomal protein n


1773
5273
1700397
1699177
1221
gsp: R80060

Brevibacterium flavum MJ-233

99.3
99.5
407
S-adenosylmethionine synthetase


1774
5274
1701767
1700508
1260
sp: DFP_MYCTU

Mycobacterium tuberculosis

58.0
80.9
409
DNA/pantothenate metabolism








H37Rv RV1391 dfp



flavoprotein


1775
5275
1702322
1702032
291
sp: YD90_MYCTU

Mycobacterium tuberculosis

70.4
87.7
81
hypothetical protein








H37Rv Rv1390


1776
5276
1703037
1702411
627
pir: KIBYGU

Saccharomyces cerevisiae guk1

39.8
74.7
186
guanylate kinase


1777
5277
1703308
1702991
318
pir: B70899

Mycobacterium tuberculosis

80.6
90.3
103
integration host factor








H37Rv Rv1388 mIHF


1778
5278
1704350
1703517
834
sp: DCOP_MYCTU

Mycobacterium tuberculosis

51.8
73.6
276
orotidine-5′-phosphate








H37Rv uraA



decarboxylase


1779
5279
1707697
1704359
3339
pir: SYECCP

Escherichia coli carB

53.1
77.5
1122
carbamoyl-phosphate synthase












large chain


1780
5280
1708884
1707706
1179
sp: CARA_PSEAE

Pseudomonas aeruginosa

45.4
70.1
381
carbamoyl-phosphate synthase








ATCC 15692 carA



small chain


1781
5281
1710357
1709017
1341
sp: PYRC_BACCL

Bacillus caldolyticus DSM 405

42.8
67.7
402
dihydroorotase








pyrC


1782
5282
1711348
1710413
936
sp: PYRB_PSEAE

Pseudomonas aeruginosa

48.6
79.7
311
aspartate carbamoyltransferase








ATCC 15692


1783
5283
1711927
1711352
576
sp: PYRR_BACCL

Bacillus caldolyticus DSM 405

54.0
80.1
176
phosphoribosyl transferase or








pyrR



pyrimidine operon regulatory protein


1784
5284
1712596
1713759
1164
sp: Y00R_MYCTU

Mycobacterium tuberculosis

39.7
73.4
297
cell division inhibitor








H37Rv Rv2216


1785
5285
1713830
1714306
477


1786
5286
1714299
1714760
462


1787
5287
1714741
1714950
210


1788
5288
1716062
1715382
681
sp: NUSB_BACSU

Bacillus subtilis nusB

33.6
69.3
137
N utilization substance protein B












(regulation of rRNA biosynthesis by












transcriptional antitermination)


1789
5289
1716692
1716132
561
sp: EFP_BRELA

Brevibacterium lactofermentum

97.9
98.4
187
elongation factor P








ATCC 13869 efp


1790
5290
1717868
1716780
1089
gp: AF124600_4

Corynebacterium glutamicum

99.5
100.0
217
cytoplasmic peptidase








AS019 pepQ


1791
5291
1719032
1717938
1095
gp: AF124600_3

Corynebacterium glutamicum

98.6
99.7
361
3-dehydroquinate synthase








AS019 aroB


1792
5292
1719598
1719107
492
gp: AF124600_2

Corynebacterium glutamicum

100.0
100.0
166
shikimate kinase








AS019 aroK


1793
5293
1721381
1720971
411
sp: LEP3_AERHY

Aeromonas hydrophila tapD

35.2
54.9
142
type IV prepilin-like protein specific












leader peptidase


1794
5294
1721725
1721423
303
gp: SC1A2_22

Streptomyces coelicolor A3(2)

45.8
68.7
83
bacterial regulatory protein, arsR








SC1A2.22



family


1795
5295
1721780
1722853
1074
gp: AF109162_2

Corynebacterium diphtheriae

35.9
73.2
340
ABC transporter








hmuU


1796
5296
1722807
1722202
606


1797
5297
1722870
1723826
957
pir: A75169

Pyrococcus abyssi Orsay

23.6
50.7
373
iron(III) ABC transporter,








PAB0349



periplasmic-binding protein


1798
5298
1723826
1724578
753
sp: FHUC_BACSU

Bacillus subtilis 168 fhuC

38.3
71.7
230
ferrichrome transport ATP-binding












protein


1799
5299
1725439
1724612
828
pir: D70660

Mycobacterium tuberculosis

50.0
60.0
259
shikimate 5-dehydrogenase








H37Rv aroE


1800
5300
1726625
1725459
1167
pir: E70660

Mycobacterium tuberculosis

41.8
70.1
395
hypothetical protein








H37Rv Rv2553c


1801
5301
1727170
1726625
546
pir: F70660

Mycobacterium tuberculosis

52.8
69.6
161
hypothetical protein








H37Rv Rv2554c


1802
5302
1730048
1727385
2664
sp: SYA_THIFE

Thiobacillus ferrooxidans ATCC

43.3
71.8
894
alanyl-tRNA synthetase








33020 alaS


1803
5303
1731542
1730166
1377
sp: Y0A9_MYCTU

Mycobacterium tuberculosis

65.4
84.8
454
hypothetical protein








H37Rv Rv2559c


1804
5304
1732822
1731599
1224


1805
5305
1734811
1732988
1824
sp: SYD_MYCLE

Mycobacterium leprae aspS

71.1
89.2
591
aspartyl-tRNA synthetase


1806
5306
1735056
1735946
891
sp: Y0BQ_MYCTU

Mycobacterium tuberculosis

46.1
74.1
297
hypothetical protein








H37Rv Rv2575


1807
5307
1738679
1736004
2676
sp: AMYH_YEAST

Saccharomyces cerevisiae

26.1
53.6
839
glucan 1,4-alpha-glucosidase








S288C YIR019C sta1


1808
5308
1740569
1738713
1857
sp: YHGE_BACSU

Bacillus subtilis yhgE

23.1
54.0
742
phage infection protein


1809
5309
1741219
1740572
648


1810
5310
1741313
1741906
594
gp: SCE68_13

Streptomyces coelicolor A3(2)

29.2
62.0
192
transcriptional regulator








SCE68.13


1811
5311
1741893
1742606
714


1812
5312
1742701
1743813
1113
gp: SCE15_13

Streptomyces coelicolor A3(2)

72.8
88.1
371
oxidoreductase








SCE15.13c


1813
5313
1743843
1743968
126


1814
5314
1744025
1744519
495
sp: SLFA_PSEAE

Pseudomonas aeruginosa PAO1

37.1
77.6
116
NADH-dependent FMN reductase








slfA


1815
5315
1744884
1746230
1347
sp: SDHL_ECOLI

Escherichia coli K12 sdaA

46.8
71.4
462
L-serine dehydratase


1816
5316
1746728
1747588
861


1817
5317
1747918
1746233
1686
prf: 2423362A

Enterococcus casseliflavus glpO

28.4
53.9
598
alpha-glycerolphosphate oxidase


1818
5318
1749276
1747990
1287
sp: SYH_STAAU

Staphylococcus aureus

43.2
72.2
421
histidyl-tRNA synthetase








SR17238 hisS


1819
5319
1749963
1749325
639
gp: CJ11168X3_127

Campylobacter jejuni

40.3
62.1
211
hydrolase








NCTC11168 Cj0809c


1820
5320
1750427
1750933
507
prf: 2313309A

Streptomyces chrysomallus

35.4
61.1
175
cyclophilin








sccypB


1821
5321
1750964
1751200
237


1822
5322
1751497
1752051
555
gp: AF038651_4

Corynebacterium glutamicum

98.4
100.0
128
hypothetical protein








ATCC 13032 orf4


1823
5323
1752186
1752527
342


1824
5324
1754894
1752615
2280
gp: AF038651_3

Corynebacterium glutamicum

99.9
99.9
760
GTP pyrophosphokinase








ATCC 13032 rel


1825
5325
1755479
1754925
555
gp: AF038651_2

Corynebacterium glutamicum

99.5
100.0
185
adenine phosphoribosyltransferase








ATCC 13032 apt


1826
5326
1755748
1755599
150
gp: AF038651_1

Corynebacterium glutamicum

98.0
98.8
49
dipeptide transport system








ATCC 13032 dciAE


1827
5327
1757228
1755486
1743
sp: Y0BG_MYCTU

Mycobacterium tuberculosis

30.7
60.9
558
hypothetical protein








H37Rv Rv2585c


1828
5328
1758797
1757589
1209
sp: SECF_ECOLI

Escherichia coli K12 secF

25.9
57.2
332
protein-export membrane protein


1829
5329
1759707
1760336
630


1830
5330
1760734
1758803
1932
prf: 2313285A

Rhodobacter capsulatus secD

24.4
52.0
616
protein-export membrane protein


1831
5331
1761367
1761005
363
sp: Y0BD_MYCLE

Mycobacterium leprae

39.6
66.0
106
hypothetical protein








MLCB1259.04


1832
5332
1762498
1761419
1080
sp: RUVB_ECOLI

Escherichia coli K12 ruvB

55.3
81.9
331
holliday junction DNA helicase


1833
5333
1763134
1762517
618
sp: RUVA_MYCLE

Mycobacterium leprae ruvA

45.2
74.3
210
holliday junction DNA helicase


1834
5334
1763839
1763177
663
sp: RUVC_ECOLI

Escherichia coli K12 ruvC

35.6
63.3
180
crossover junction












endodeoxyribonuclease


1835
5335
1764742
1763990
753
sp: YEBC_ECOLI

Escherichia coli K12 ORF246

49.2
78.4
250
hypothetical protein








yebC


1836
5336
1765860
1765015
846
sp: TESB_ECOLI

Escherichia coli K12 tesB

38.5
68.6
283
acyl-CoA thiolesterase


1837
5337
1765969
1766442
474
gp: SC10A5_9

Streptomyces coelicolor A3(2)

31.5
61.3
111
hypothetical protein








SC10A5.09c


1838
5338
1766948
1766487
462
pir: H70570

Mycobacterium tuberculosis

38.2
61.2
170
hypothetical protein








H37Rv Rv2609c


1839
5339
1768030
1766948
1083
sp: GPI3_YEAST

Saccharomyces cerevisiae

21.7
49.3
414
hexosyltransferase or N-








S288C spt14



acetylglucosaminyl-












phosphatidylinositol biosynthetic












protein


1840
5340
1768996
1768034
963
gp: SCL2_16

Streptomyces coelicolor A3(2)

46.4
67.8
295
acyltransferase








SCL2.16c


1841
5341
1769678
1769022
657
pir: C70571

Mycobacterium tuberculosis

48.2
78.0
78
CDP-dlacylglycerol—glycerol-3-








H37Rv Rv2612c pgsA



phosphate phosphatidyltransferase


1842
5342
1770340
1769681
660
pir: D70571

Mycobacterium tuberculosis

54.6
78.4
194
histidine triad (HIT) family protein








H37Rv Rv2613c


1843
5343
1772384
1770327
2058
sp: SYT2_BACSU

Bacillus subtilis thrZ

42.0
68.9
647
threonyl-tRNA synthetase


1844
5344
1773863
1772658
1206
sp: YWBN_BACSU

Bacillus subtilis ywbN

34.3
61.8
400
hypothetical protein


1845
5345
1773881
1774444
564


1846
5346
1774438
1773893
546


1847
5347
1775191
1774457
735


1848
5348
1777269
1777646
378


1849
5349
1777444
1778037
594


1850
5350
1779508
1778102
1407


1851
5351
1780168
1779554
615


1852
5352
1780905
1780507
399


1853
5353
1781585
1781019
567
sp: PUAC_STRLP

Streptomyces anulatus pac

36.3
64.2
190
puromycin N-acetyltransferase


1854
5354
1781705
1782790
1086


1855
5355
1783281
1784381
1101


1856
5356
1784080
1783382
699


1857
5357
1785473
1782894
2580


1858
5358
1786844
1785732
1113


1859
5359
1788829
1786907
1923


1860
5360
1789080
1789562
483


1861
5361
1789580
1789768
189


1862
5362
1789746
1790057
312


1863
5363
1790889
1790461
429


1864
5364
1791842
1792438
597
sp: AFUC_ACTPL

Actinobacillus

28.7
28.7
202
ferric transport ATP-binding protein









pleuropneumoniae afuC



1865
5365
1792428
1793426
999


1866
5366
1793654
1793496
159


1867
5367
1793714
1794820
1107


1868
5368
1795202
1795621
420


1869
5369
1795591
1796181
591
gp: AF088896_20

Zymomonas mobilis dfp

27.1
66.7
129
pantothenate metabolism












flavoprotein


1870
5370
1796186
1797049
864


1871
5371
1797350
1797769
420


1872
5372
1797969
1797850
120


1873
5373
1798757
1798023
735


1874
5374
1799182
1799406
225


1875
5375
1799473
1800366
894


1876
5376
1800604
1800449
156


1877
5377
1800834
1801307
474


1878
5378
1801344
1802096
753


1879
5379
1802577
1802155
423


1880
5380
1802733
1803419
687


1881
5381
1803465
1803893
429


1882
5382
1804134
1804598
465


1883
5383
1804629
1804865
237


1884
5384
1804919
1805599
681


1885
5385
1805727
1806686
960


1886
5386
1806917
1807396
480


1887
5387
1807433
1808113
681


1888
5388
1808137
1808421
285


1889
5389
1808458
1808832
375


1890
5390
1809761
1810372
612
sp: TNP2_ECOLI

Escherichia coli tnpR

51.1
78.0
186
transposon TN21 resolvase


1891
5391
1810541
1811545
1005


1892
5392
1811564
1811938
375


1893
5393
1812215
1812691
477
sp: PVH1_YEAST

Saccharomyces cerevisiae

29.3
51.8
164
protein-tyrosine phosphatase








S288C YIR026C yvh1


1894
5394
1812881
1813606
726


1895
5395
1812882
1812460
423


1896
5396
1813780
1814517
738
gp: SCA32WHIH_6

Streptomyces coelicolor A3(2)

34.3
65.7
216
sporulation transcription factor








whiH


1897
5397
1814863
1815651
789


1898
5398
1815673
1816128
456


1899
5399
1816451
1816636
186


1900
5400
1817132
1817803
672


1901
5401
1817803
1818219
417


1902
5402
1818460
1818774
315


1903
5403
1818798
1819166
369


1904
5404
1819954
1819748
207


1905
5405
1822382
1820181
2202
pir: C72285

Thermotoga maritima MSB8

22.6
55.2
545
hypothetical protein








TM1189


1906
5406
1822577
1824322
1746


1907
5407
1824371
1824589
219


1908
5408
1824784
1824927
144


1909
5409
1825606
1825178
429


1910
5410
1826024
1826557
534
PIR: S60891

Corynebacterium glutamicum

63.0
75.0
166
hypothetical protein


1911
5411
1826644
1825751
894
pir: S60890

Corynebacterium glutamicum

87.9
95.6
298
insertion element (IS3 related)








orf2


1912
5412
1826937
1826644
294
pir: S60889

Corynebacterium glutamicum

72.3
84.2
101
insertion element (IS3 related)








orf1


1913
5413
1829900
1829688
213


1914
5414
1830765
1832063
1299


1915
5415
1832167
1834044
1878
sp: RECJ_ERWCH

Erwinia chrysanthemi recJ

24.0
50.6
622
single-stranded-DNA-specific












exonuclease


1916
5416
1834928
1834149
780


1917
5417
1836675
1838324
1650
pir: T13302

Streptococcus phage phi-O1205

31.8
64.3
381
primase








ORF13


1918
5418
1838349
1842137
3789


1919
5419
1842235
1842681
447


1920
5420
1842804
1843337
534


1921
5421
1843518
1845356
1839
sp: Y018_MYCPN

Mycoplasma pneumoniae ATCC

22.1
44.7
620
helicase








29342 yb95


1922
5422
1845483
1845857
375


1923
5423
1845872
1846207
336
pir: T13144

Bacteriophage N15 gene57

36.7
64.2
109
phage N15 protein gp57


1924
5424
1846698
1846333
366


1925
5425
1847315
1847932
618


1926
5426
1847938
1848474
537


1927
5427
1848509
1849036
528


1928
5428
1848988
1849785
798


1929
5429
1849781
1849966
186


1930
5430
1850035
1850406
372


1931
5431
1850415
1849978
438


1932
5432
1851049
1850474
576


1933
5433
1851220
1852440
1221
gp: SPAPJ760_2

Schizosaccharomyces pombe

28.7
49.8
422
actin binding protein with SH3








SPAPJ760.02c



domains


1934
5434
1851473
1852324
852


1935
5435
1852479
1853873
1395


1936
5436
1854261
1854854
594


1937
5437
1855058
1855237
180


1938
5438
1855532
1856788
1257
gp: SC5C7_14

Streptomyces coelicolor

23.6
52.5
347
ATP/GTP binding protein








SC5C7.14


1939
5439
1856885
1858738
1854


1940
5440
1858763
1860727
1965
sp: CLPA_ECOLI

Escherichia coli K12 clpA

30.2
61.0
630
ATP-dependent Clp proteinase ATP-












binding subunit


1941
5441
1860752
1861225
474


1942
5442
1861320
1861475
156


1943
5443
1861842
1861519
324


1944
5444
1862088
1862399
312


1945
5445
1862945
1865299
2355
sp: PCRA_STAAU

Staphylococcus aureus SA20

21.4
45.9
693
ATP-dependent helicase








pcrA


1946
5446
1865265
1865822
558


1947
5447
1865842
1866219
378


1948
5448
1866328
1866792
465


1949
5449
1866832
1867095
264


1950
5450
1867098
1867874
777
gp: SCH17_7

Streptomyces coelicolor A3(2)

25.9
47.8
224
hypothetical protein








SCH17.07c


1951
5451
1867886
1868587
702
prf: 2514444Y

Bacteriophage phi-C31 gp52

31.7
61.5
208
deoxynucleotide monophosphate












kinase


1952
5452
1868895
1868671
225


1953
5453
1871092
1868927
2166


1954
5454
1871373
1871101
273


1955
5455
1877886
1871380
6507


1956
5456
1878312
1879400
1089
prf: 2403350A

Corynebacterium glutamicum

99.2
99.7
363
type II 5-cytosoine








ATCC 13032 cglIM



methyltransferase


1957
5457
1879412
1880485
1074
pir: A55225

Corynebacterium glutamicum

99.7
99.7
358
type II restriction endonuclease








ATCC 13032 cglIR


1958
5458
1883990
1882470
1521


1959
5459
1884936
1884220
717


1960
5460
1885230
1887047
1818
gp: SC1A2_16

Streptomyces coelicolor A3(2)

24.6
45.8
504
hypothetical protein








SC1A2.16c


1961
5461
1887405
1887590
186


1962
5462
1888038
1887688
351
gp: AE001973_4

Deinococcus radiodurans

46.7
70.0
90
SNF2/Rad54 helicase-related








DR1258



protein


1963
5463
1889094
1888231
864
pir: T13226

Lactobacillus phage phi-gle

33.1
56.4
163
hypothetical protein








Rorf232


1964
5464
1889530
1889859
330


1965
5465
1891707
1890028
1680
gp: AF188935_16

Bacillus anthracis pXO2-16

20.7
47.9
537
hypothetical protein


1966
5466
1893037
1891832
1206


1967
5467
1894680
1893388
1293


1968
5468
1897231
1894739
2493


1969
5469
1899158
1897374
1785
sp: CLPB_ECOLI

Escherichia coli clpB

25.3
52.5
724
endopeptidase Clp ATP-binding












chain B


1970
5470
1899853
1899233
621


1971
5471
1900916
1899804
1113


1972
5472
1901911
1901066
846


1973
5473
1901975
1902955
981


1974
5474
1902883
1902005
879


1975
5475
1903028
1903225
198


1976
5476
1905878
1903113
2766
pir: S23647

Homo sapiens numA

20.1
49.1
1004
nuclear mitotic apparatus protein


1977
5477
1906572
1905973
600


1978
5478
1907914
1906664
1251


1979
5479
1908660
1907965
696


1980
5480
1909498
1908785
714


1981
5481
1910508
1909501
1008


1982
5482
1912300
1910642
1659


1983
5483
1913820
1912333
1488


1984
5484
1914371
1913973
399


1985
5485
1916233
1914725
1509


1986
5486
1916374
1916733
360


1987
5487
1916944
1917165
222


1988
5488
1917640
1917329
312


1989
5489
1918208
1917564
645


1990
5490
1919461
1918703
759


1991
5491
1920194
1919646
549


1992
5492
1921276
1920347
930


1993
5493
1925390
1925695
306


1994
5494
1925682
1926038
357


1995
5495
1926010
1921547
4464
pir: T03099

Sus scrofa domestica

23.2
49.2
1408
submaxillary apomucin


1996
5496
1926837
1926259
579


1997
5497
1928189
1927245
945


1998
5498
1928211
1928381
171
sp: MTE1_ECOLI

Escherichia coli ecoR1

42.6
65.6
61
modification methylase


1999
5499
1928534
1928908
375


2000
5500
1930879
1929059
1821


2001
5501
1931190
1930990
201


2002
5502
1931888
1931421
468


2003
5503
1932315
1931935
381
pir: H70638

Mycobacterium tuberculosis

38.6
58.8
114
hypothetical protein








H37Rv Rv1956


2004
5504
1932879
1932373
507


2005
5505
1934358
1933522
837


2006
5506
1935912
1934971
942
sp: Y137_METJA

Methanococcus jannaschii

27.1
54.6
328
hypothetical protein








MJ0137


2007
5507
1936226
1936849
624


2008
5508
1937202
1937411
210


2009
5509
1938019
1937486
534


2010
5510
1938945
1940135
1191


2011
5511
1939064
1938531
534


2012
5512
1940257
1940844
588


2013
5513
1941107
1941550
444


2014
5514
1942484
1941732
753


2015
5515
1942510
1942812
303


2016
5516
1943095
1943310
216


2017
5517
1943345
1943653
309


2018
5518
1943680
1944564
885


2019
5519
1945435
1944608
828
prf: 2509434A

Enterococcus faecalis esp

23.0
44.1
304
surface protein


2020
5520
1945891
1945595
297


2021
5521
1946332
1945952
381


2022
5522
1947037
1946609
429


2023
5523
1948650
1947070
1581
sp: CSP1_CORGL

Corynebacterium glutamicum

30.7
54.4
270
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


2024
5524
1951450
1949021
2430


2025
5525
1952485
1951619
867


2026
5526
1954822
1952546
2277
sp: TOP3_ECOLI

Escherichia coli topB

23.8
50.9
597
DNA topoisomerase III


2027
5527
1958287
1956203
2085


2028
5528
1959340
1958450
891


2029
5529
1960196
1959765
432


2030
5530
1961114
1960371
744


2031
5531
1963000
1961114
1887
sp: CSP1_CORGL

Corynebacterium glutamicum

29.7
54.7
344
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


2032
5532
1963429
1963139
291


2033
5533
1964743
1963514
1230


2034
5534
1965902
1964727
1176


2035
5535
1966267
1965911
357


2036
5536
1966301
1966984
684
sp: NUC_STAAU

Staphylococcus aureus nuc

30.4
57.7
227
thermonuclease


2037
5537
1967435
1967289
147


2038
5538
1967604
1968167
564


2039
5539
1968264
1969715
1452


2040
5540
1969745
1970203
459


2041
5541
1970254
1971474
1221


2042
5542
1971672
1973090
1419


2043
5543
1973147
1973737
591


2044
5544
1973809
1974204
396


2045
5545
1974267
1974503
237


2046
5546
1975171
1975794
624
prf: 2313347B

Shewanella sp. ssb

24.9
59.1
225
single stranded DNA-binding protein


2047
5547
1975916
1976494
579


2048
5548
1976522
1976983
462


2049
5549
1977043
1977549
507


2050
5550
1977742
1978329
588


2051
5551
1978389
1978721
333


2052
5552
1978660
1979217
558


2053
5553
1979239
1979808
570


2054
5554
1979974
1980885
912
sp: S24D_ANOGA

Anopheles gambiae AgSP24D

25.7
52.6
249
serine protease


2055
5555
1980965
1981657
693


2056
5556
1981663
1982028
366


2057
5557
1982071
1982817
747


2058
5558
1982091
1981912
180


2059
5559
1983186
1983548
363


2060
5560
1983611
1983883
273


2061
5561
1983918
1984181
264


2062
5562
1984217
1984450
234


2063
5563
1984387
1984728
342


2064
5564
1985092
1985364
273


2065
5565
1985373
1985071
303


2066
5566
1986590
1985442
1149
sp: VINT_BPML5

Mycobacterium phage L5 int

29.6
55.9
406
integrase


2067
5567
1987896
1987507
390
gsp: R23011

Brevibacterium lactofermentum

83.9
94.4
124
transposase (divided)








CGL2005 ISaB1


2068
5568
1988303
1987887
417
gsp: R23011

Brevibacterium lactofermentum

70.9
84.6
117
transposase (divided)








CGL2005 ISaB1


2069
5569
1988383
1988589
207


2070
5570
1988483
1988370
114
gsp: R21601

Brevibacterium lactofermentum

80.7
96.8
31
transposition repressor








CGL2005 ISaB1


2071
5571
1988664
1988530
135
pir: S60889

Corynebacterium glutamicum

74.4
88.4
43
insertion element (IS3 related)








orf1


2072
5572
1989605
1988778
828
gp: SCJ11_12

Streptomyces coelicolor A3(2)

31.1
53.7
270
transposase








SCJ11.12


2073
5573
1990667
1991020
354


2074
5574
1990764
1989874
891


2075
5575
1991620
1991189
432


2076
5576
1992538
1991795
744


2077
5577
1994121
1992538
1584
sp: CSP1_CORGL

Corynebacterium glutamicum

25.0
37.0
153
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


2078
5578
1995294
1994608
687
sp: VINT_BPML5

Mycobacterium phage L5 int

28.7
56.1
223
integrase


2079
5579
1996088
1995783
306
pir: F64546

Helicobacter pylori 26695

39.8
76.1
88
sodium-dependent transporter








HP0214


2080
5580
1996106
1996537
432
sp: YXAA_BACSU

Bacillus subtilis yxaA

48.9
81.5
92
hypothetical protein


2081
5581
1996768
1997112
345


2082
5582
1997168
1997503
336


2083
5583
1997545
1998240
696
pir: C70968

Mycobacterium tuberculosis

33.5
64.4
233
riboflavin biosynthesis protein








H37Rv Rv2671 ribD


2084
5584
1998289
1999542
1254
pir: E70968

Mycobacterium tuberculosis

42.5
71.9
384
potential membrane protein








H37Rv Rv2673


2085
5585
1999542
1999949
408
gp: AF128264_2

Streptococcus gordonii msrA

41.3
67.5
126
methionine sulfoxide reductase


2086
5586
2000132
1999707
426


2087
5587
2001216
2000521
696
pir: H70968

Mycobacterium tuberculosis

55.2
77.2
232
hypothetical protein








H37Rv Rv2676c


2088
5588
2001489
2002112
624
pir: C70528

Mycobacterium tuberculosis

55.7
78.6
201
hypothetical protein








H37Rv Rv2680


2089
5589
2002072
2003334
1263
sp: RND_HAEIN

Haemophilus influenzae Rd

25.9
52.8
371
ribonuclease D








KW20 HI0390 rnd


2090
5590
2005309
2003402
1908
gp: AB026631_1

Streptomyces sp. CL190 dxs

55.3
78.5
618
1-deoxy-D-xylulose-5-phosphate












synthase


2091
5591
2006697
2005462
1236
pir: E72298

Thermotoga maritima MSB8

25.4
52.3
472
RNA methyltransferase








TM1094


2092
5592
2006698
2006979
282


2093
5593
2007637
2006777
861
pir: C70530

Mycobacterium tuberculosis

38.1
62.7
268
hypothetical protein








H37Rv Rv2696c


2094
5594
2008184
2007738
447
sp: DUT_STRCO

Streptomyces coelicolor A3(2)

55.0
82.1
140
deoxyuridine 5′-triphosphate








SC2E9.09 dut



nucleotidohydrolase


2095
5595
2008250
2008798
549
pir: E70530

Mycobacterium tuberculosis

46.0
70.7
150
hypothetical protein








H37Rv Rv2698


2096
5596
2009082
2008876
207


2097
5597
2009570
2009280
291
pir: F70530

Mycobacterium tuberculosis

58.0
81.0
100
hypothetical protein








H37Rv Rv2699c


2098
5598
2010539
2009724
816
sp: SUHB_ECOLI

Escherichia coli K12 suhB

38.4
68.2
198
extragenic suppressor protein


2099
5599
2010555
2011382
828
sp: PPGK_MYCTU

Mycobacterium tuberculosis

54.4
80.2
248
polyphosphate glucokinase








H37Rv RV2702 ppgK


2100
5600
2011863
2013356
1494
prf: 2204286A

Corynebacterium glutamicum

98.0
98.6
500
sigma factor or RNA polymerase








sigA



transcription factor


2101
5601
2015496
2014162
1335
sp: YRKO_BACSU

Bacillus subtilis yrkO

23.9
51.4
422
hypothetical membrane protein


2102
5602
2016121
2015585
537


2103
5603
2017966
2016257
1710
sp: Y065_MYCTU

Mycobacterium tuberculosis

61.3
80.8
578
hypothetical protein








H37Rv Rv2917


2104
5604
2018119
2018754
636
pir: H70531

Mycobacterium tuberculosis

32.3
59.1
127
hypothetical membrane protein








H37Rv Rv2709


2105
5605
2018202
2017966
237
pir: G70531

Mycobacterium tuberculosis

65.8
85.5
76
hypothetical protein








H37Rv Rv2708c


2106
5606
2018744
2020276
1533
gp: SCH5_8

Streptomyces coelicolor A3(2)

33.5
61.2
523
transferase








SCH5.08c


2107
5607
2020293
2020724
432
prf: 2204286C

Corynebacterium glutamicum

97.2
100.0
144
hypothetical protein








ATCC 13869 ORF1


2108
5608
2022266
2022949
684
pir: I40339

Corynebacterium glutamicum

98.7
99.6
228
iron dependent repressor or








ATCC 13869 dtxR



diphtheria toxin repressor


2109
5609
2022546
2022313
234
GP: AF010134_1

Streptomyces aureofaciens

62.0
64.0
77
putative sporulation protein


2110
5610
2022959
2023945
987
sp: GALE_BRELA

Corynebacterium glutamicum

99.1
99.1
329
UDP-glucose 4-epimerase








ATCC 13869 (Brevibacterium









lactofermentum) galE



2111
5611
2025270
2023948
1323


2112
5612
2025423
2026379
957
pir: E70532

Mycobacterium tuberculosis

45.3
79.0
305
hypothetical protein








H37Rv Rv2714


2113
5613
2026494
2029043
2550
sp: MTR4_YEAST

Saccharomyces cerevisiae

24.4
50.7
661
ATP-dependent RNA helicase








YJL050W dob1


2114
5614
2029177
2030157
981
sp: OXYR_ECOLI

Escherichia coli oxyR

35.8
65.6
299
hydrogen peroxide-inducible genes












activator


2115
5615
2031365
2030277
1089


2116
5616
2031478
2035383
3906
sp: HRPA_ECOLI

Escherichia coli hrpA

49.2
76.2
1298
ATP-dependent helicase


2117
5617
2035880
2035431
450
gp: SCAJ4870_3

Streptomyces clavuligerus nrdR

61.4
86.2
145
regulatory protein


2118
5618
2036409
2035990
420


2119
5619
2036812
2037507
696
sp: LEXA_BACSU

Bacillus subtilis dinR

46.9
71.6
222
SOS regulatory protein


2120
5620
2037815
2038591
777
sp: GATR_ECOLI

Escherichia coli K12 gatR

33.9
67.8
245
galactitol utilization operon repressor


2121
5621
2038591
2039550
960
gp: SCE22_14

Streptomyces coelicolor A3(2)

27.2
55.6
320
phosphofructokinase (fructose 1-








SCE22.14c



phosphate kinase)


2122
5622
2041321
2039618
1704
sp: PT1_BACST

Bacillus stearothermophilus ptsI

34.3
64.0
592
phosphoenolpyruvate-protein












phosphotransferase


2123
5623
2041728
2042519
792
sp: GLPR_ECOLI

Escherichia coli K12 glpR

26.7
62.6
262
glycerol-3-phosphate regulon












repressor


2124
5624
2042519
2043508
990
sp: K1PF_RHOCA

Rhodobacter capsulatus fruK

33.0
55.7
345
1-phosphofructokinase or 6-












phosphofructokinase


2125
5625
2043736
2045571
1836
sp: PTFB_ECOLI

Escherichia coli K12 fruA

43.0
69.6
549
PTS system, fructose-specific IIBC












component


2126
5626
2045762
2046028
267
sp: PTHP_BACST

Bacillus stearothermophilus XL-

37.0
71.6
81
phosphocarrier protein








65-6 ptsH


2127
5627
2047295
2046714
582


2128
5628
2048606
2047320
1287
sp: PYRP_BACCL

Bacillus caldolyticus pyrP

39.1
70.5
407
uracil permease


2129
5629
2050107
2048650
1458
gp: AF145049_8

Streptomyces fradiae orf11*

54.4
80.0
419
ATP/GTP-binding protein


2130
5630
2050321
2051106
786


2131
5631
2051306
2051842
537


2132
5632
2052675
2051845
831
sp: DAPF_HAEIN

Haemophilus influenzae Rd

33.5
64.7
269
diaminopimelate epimerase








KW20 HI0750 dapF


2133
5633
2053586
2052684
903
sp: MIAA_ECOLI

Escherichia coli K12 miaA

40.0
68.7
300
tRNA delta-2-












isopentenylpyrophosphate












transferase


2134
5634
2054283
2053609
675


2135
5635
2054403
2055761
1359
pir: B70506

Mycobacterium tuberculosis

48.5
75.7
445
hypothetical protein








H37Rv Rv2731


2136
5636
2055743
2054724
1020


2137
5637
2055765
2056787
1023


2138
5638
2057788
2057120
669
pir: C70506

Mycobacterium tuberculosis

29.0
63.7
190
hypothetical membrane protein








H37Rv Rv2732c


2139
5639
2059420
2057855
1566
sp: Y195_MYCLE

Mycobacterium leprae

68.4
86.4
494
hypothetical protein








B2235_C2_195


2140
5640
2059774
2060499
726
sp: GLUA_CORGL

Corynebacterium glutamicum

99.6
99.6
242
glutamate transport ATP-binding








ATCC 13032 gluA



protein


2141
5641
2060414
2060196
219
GSP: Y75358

Neisseria gonorrhoeae

66.0
73.0
71
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


2142
5642
2061629
2062312
684
sp: GLUC_CORGL

Corynebacterium glutamicum

100.0
100.0
225
glutamate transport system








ATCC 13032 gluC



permease protein


2143
5643
2062441
2063259
819
sp: GLUD_CORGL

Corynebacterium glutamicum

99.3
99.6
273
glutamate transport system








(Brevibacterium flavum) ATCC



permease protein








13032 gluD


2144
5644
2063894
2063298
597
sp: RECX_MYCLE

Mycobacterium leprae recX

34.5
66.9
142
regulatory protein


2145
5645
2065627
2065394
234
pir: A70878

Mycobacterium tuberculosis

40.3
71.6
67
hypothetical protein








H37Rv Rv2738c


2146
5646
2066404
2065667
738


2147
5647
2066566
2067141
576
sp: BIOY_BACSH

Bacillus sphaericus bioY

33.0
61.4
197
biotin synthase


2148
5648
2067168
2067866
699
sp: POTG_ECOLI

Escherichia coli K12 potG

33.2
69.5
223
putrescine transport ATP-binding












protein


2149
5649
2067866
2068474
609
pir: F69742

Bacillus subtilis ybaF

24.6
58.8
228
hypothetical membrane protein


2150
5650
2068703
2069392
690
pir: B60176

Mycobacterium tuberculosis

41.7
78.5
228
hypothetical protein


2151
5651
2069383
2068556
828
sp: 35KD_MYCTU

Mycobacterium tuberculosis

72.5
89.6
269
hypothetical protein (35 kD protein)








H37Rv RV2744C


2152
5652
2069936
2069616
321
pir: H70878

Mycobacterium tuberculosis

54.2
78.3
83
regulator (DNA-binding protein)








H37Rv Rv2745c


2153
5653
2070512
2069997
516
sp: CINA_STRPN

Streptococcus pneumoniae R6X

41.8
68.5
165
competence damage induced








cinA



proteins


2154
5654
2071121
2070519
603
prf: 2421334D

Streptococcus pyogenes pgsA

38.8
72.5
160
phosphotidylglycerophosphate












synthase


2155
5655
2071315
2071599
285
pir: T10688

Arabidopsis thaliana

24.8
52.1
117
hypothetical protein








ATSP: T16|18.20


2156
5656
2071624
2071740
117
gp: AF071810_1

Streptococcus pneumoniae

60.0
70.0
30
surface protein (Peumococcal








DBL5 pspA



surface protein A)


2157
5657
2072066
2072878
813


2158
5658
2072905
2071799
1107
prf: 2119295D

Escherichia coli terC

31.0
59.8
358
tellurite resistance protein


2159
5659
2076056
2073294
2763
sp: SP3E_BACSU

Bacillus subtilis 168 spoIIIE

38.0
64.6
845
stage III sporulation protein E


2160
5660
2077024
2076392
633
gp: SC4G6_14

Streptomyces coelicolor A3(2)

33.3
61.0
216
hypothetical protein








SC4G6.14


2161
5661
2079275
2077122
2154
sp: YOR4_CORGL

Corynebacterium glutamicum

99.1
99.4
645
hypothetical protein








ATCC 13032 orf4


2162
5662
2081136
2080387
750
sp: YDAP_BRELA

Corynebacterium glutamicum

99.2
99.6
250
hypothetical protein








(Brevibacterium lactofermentum)








ATCC 13869 orf2


2163
5663
2082115
2082813
699


2164
5664
2082368
2082105
264


2165
5665
2085190
2082932
2259
prf: 2217311A

Streptomyces antibioticus gpsI

65.4
85.3
742
guanosine pentaphosphate












synthetase


2166
5666
2085702
2085436
267
pir: F69700

Bacillus subtilis rpsO

64.0
88.8
89
30S ribosomal protein S15


2167
5667
2086826
2085879
948
prf: 2518365A

Leishmania major

35.1
63.3
319
nucleoside hydrolase


2168
5668
2087941
2086919
1023
sp: RIBF_CORAM

Corynebacterium

56.2
79.0
329
bifunctional protein (riboflavin kinase









ammoniagenes ATCC 6872 ribF




and FAD synthetase)


2169
5669
2087973
2088863
891
sp: TRUB_BACSU

Bacillus subtilis 168 truB

32.7
61.7
303
tRNA pseudouridine synthase B


2170
5670
2088181
2087954
228
PIR: PC4007

Corynebacterium

65.0
73.0
47
hypothetical protein









ammoniagenes



2171
5671
2089868
2089218
651
gp: SC5A7_23

Streptomyces coelicolor A3(2)

42.2
62.5
237
hypothetical protein








SC5A7.23


2172
5672
2090664
2089861
804
pir: B70885

Mycobacterium tuberculosis

46.9
68.9
273
phosphoesterase








H37Rv Rv2795c


2173
5673
2092055
2090751
1305
pir: G70693

Mycobacterium tuberculosis

51.0
78.8
433
DNA damaged inducible protein f








H37Rv Rv2836c dinF


2174
5674
2093046
2092051
996
pir: H70693

Mycobacterium tuberculosis

36.7
70.8
308
hypothetical protein








H37Rv Rv2837c


2175
5675
2093501
2093055
447
sp: RBFA_BACSU

Bacillus subtilis 168 rbfA

32.4
70.4
108
ribosome-binding factor A


2176
5676
2096723
2093712
3012
sp: IF2_STIAU

Stigmatella aurantiaca DW4 infB

37.7
62.9
1103
translation initiation factor IF-2


2177
5677
2097179
2096844
336
gp: SC5H4_29

Streptomyces coelicolor A3(2)

44.6
66.3
83
hypothetical protein








SC5H4.29


2178
5678
2098375
2097380
996
sp: NUSA_BACSU

Bacillus subtilis 168 nusA

42.3
71.0
352
n-utilization substance protein












(transcriptional












termination/antitermination factor)


2179
5679
2098562
2099815
1254


2180
5680
2098945
2098412
534
pir: E70588

Mycobacterium tuberculosis

34.6
65.5
165
hypothetical protein








H37Rv Rv2842c


2181
5681
2100240
2101841
1602
sp: DPPE_BACSU

Bacillus subtilis 168 dppE

25.3
60.9
534
peptide-binding protein


2182
5682
2102023
2102946
924
sp: DPPB_ECOLI

Escherichia coli K12 dppB

37.7
69.4
337
peptidetransport system permease


2183
5683
2102975
2103973
999
prf: 1709239C

Bacillus subtilis spo0KC

38.4
69.2
292
oligopeptide permease


2184
5684
2103973
2105703
1731
pir: H70788

Mycobacterium tuberculosis

57.6
81.3
552
peptidetransport system ABC-








H37Rv Rv3663c dppD



transporter ATP-binding protein


2185
5685
2107564
2105801
1764
sp: SYP_MYCTU

Mycobacterium tuberculosis

67.0
84.6
578
prolyl-tRNA synthetase








H37Rv Rv2845c proS


2186
5686
2107652
2108386
735
gp: SCC30_5

Streptomyces coelicolor A3(2)

39.5
65.0
243
hypothetical protein








SCC30.05


2187
5687
2109147
2108389
759
sp: BCHD_RHOSH

Rhodobacter sphaeroides ATCC

32.4
60.7
37
magnesium-chelatase subunit








17023 bchD


2188
5688
2110255
2109155
1101
prf: 2503462AA

Heliobacillus mobilis bchI

46.5
69.6
342
magnesium-chelatase subunit


2189
5689
2111183
2110434
750
prf: 2108318B

Propionibacterium freudenreichii

49.0
73.8
237
uroporphyrinogen III








cobA



methyltransferase


2190
5690
2111238
2112659
1422
sp: YPLC_CLOPE

Clostridium perfringens NCIB

41.2
68.7
488
hypothetical protein








10662 ORF2


2191
5691
2113616
2112717
900
gp: SC5H1_10

Streptomyces coelicolor A3(2)

35.1
62.3
151
hypothetical protein








SC5H1.10c


2192
5692
2115761
2116774
1014
pir: A70590

Mycobacterium tuberculosis

37.6
65.7
338
hypothetical protein








H37Rv Rv2854


2193
5693
2116916
2118310
1395
sp: GSHR_BURCE

Burkholderia cepacia AC1100

53.0
76.6
466
glutathione reductase








gor


2194
5694
2117956
2117015
942


2195
5695
2118607
2119080
474


2196
5696
2119139
2119495
357


2197
5697
2119628
2120356
729


2198
5698
2121147
2120359
789
sp: AMPM_ECOLI

Escherichia coli K12 map

47.2
75.8
252
methionine aminopeptidase


2199
5699
2123161
2121296
1866
prf: 2224268A

Streptomyces clavuligerus pcbR

27.3
56.5
630
penicillin binding protein


2200
5700
2123848
2123219
630
prf: 2518330B

Corynebacterium diphtheriae

44.0
72.2
216
response regulator (two-component








chrA



system response regulator)


2201
5701
2124996
2123848
1149
prf: 2518330A

Corynebacterium diphtheriae

29.5
56.8
424
two-component system sensor








chrS



histidine kinase


2202
5702
2125089
2126045
957
gp: AE001863_70

Deinococcus radiodurans

24.4
58.1
360
hypothetical membrane protein








DRA0279


2203
5703
2126064
2126753
690
prf: 2420410P

Bacillus subtilis 168 yvrO

37.3
71.1
225
ABC transporter


2204
5704
2127087
2126926
162


2205
5705
2128483
2127350
1134
sp: GCPE_ECOLI

Escherichia coli K12 gcpE

44.3
73.8
359
hypothetical protein (gcpE protein)


2206
5706
2128850
2129461
612


2207
5707
2129880
2128669
1212
pir: G70886

Mycobacterium tuberculosis

43.0
73.6
405
hypothetical membrane protein








H37Rv Rv2869c


2208
5708
2130306
2130950
645
GSP: Y37145

Chlamydia trachomatis

36.0
43.0
147
polypeptides can be used as












vaccines against Chlamydia












trachomatis


2209
5709
2131078
2129903
1176
sp: DXR_ECOLI

Escherichia coli K12 dxr

22.8
42.0
312
1-deoxy-D-xylulose-5-phosphate












reductoisomerase


2210
5710
2131322
2131762
441


2211
5711
2131726
2131247
480


2212
5712
2133402
2131825
1578


2213
5713
2134260
2133406
855
pir: B72334

Thermotoga maritima MSB8

37.1
75.1
245
ABC transporter ATP-binding protein








TM0793


2214
5714
2135551
2134454
1098
sp: YS80_MYCTU

Mycobacterium tuberculosis

66.0
78.0
356
pyruvate formate-lyase 1 activating








H37Rv



enzyme


2215
5715
2135884
2136141
258
pir: A70801

Mycobacterium tuberculosis

41.5
74.5
94
hypothetical membrane protein








H37Rv Rv3760


2216
5716
2137089
2136235
855
sp: CDSA_PSEAE

Pseudomonas aeruginosa

33.3
56.5
294
phosphatidate cytidylyltransferase








ATCC 15692 cdsA


2217
5717
2137840
2137286
555
sp: RRF_BACSU

Bacillus subtilis 168 frr

47.0
84.3
185
ribosome recycling factor


2218
5718
2138664
2137936
729
prf: 2510355C

Pseudomonas aeruginosa pyrH

28.4
43.1
109
uridylate kinase


2219
5719
2138994
2139854
861


2220
5720
2139827
2139003
825
sp: EFTS_STRCO

Streptomyces coelicolor A3(2)

49.6
76.8
280
elongation factor Ts








SC2E1.42 tsf


2221
5721
2140886
2140071
816
pir: A69699

Bacillus subtilis rpsB

54.7
83.5
254
30S ribosomal protein S2


2222
5722
2141257
2141760
504
sp: YS91_MYCTU

Mycobacterium tuberculosis

46.0
58.0
120
hypothetical protein








H37Rv Rv2891


2223
5723
2142686
2141763
924
prf: 2417318A

Proteus mirabilis xerD

40.1
68.7
297
site-specific recombinase


2224
5724
2144066
2142885
1182
sp: YX27_MYCTU

Mycobacterium tuberculosis

39.8
66.8
395
hypothetical protein








H37Rv Rv2896c


2225
5725
2145586
2144066
1521
sp: YX28_MYCTU

Mycobacterium tuberculosis

46.6
75.8
504
Mg(2+) chelatase family protein








H37Rv Rv2897c


2226
5726
2145941
2145576
366
sp: YX29_MYCTU

Mycobacterium tuberculosis

40.3
72.3
119
hypothetical protein








H37Rv Rv2898c


2227
5727
2146566
2146264
303
sp: YT01_MYCTU

Mycobacterium tuberculosis

68.3
96.0
101
hypothetical protein








H37Rv Rv2901c


2228
5728
2147192
2146566
627
sp: RNH2_HAEIN

Haemophilus influenzae Rd

42.6
69.5
190
ribonuclease HII








HI1059 rnhB


2229
5729
2147231
2148022
792


2230
5730
2148046
2147261
786
prf: 2514288H

Streptomyces lividans TK21

32.3
61.1
285
signal peptidase








sipY


2231
5731
2148231
2149166
936
prf: 2510361A

Staphylococcus aureus sirA

25.4
59.1
323
Fe-regulated protein


2232
5732
2149571
2149359
213


2233
5733
2149972
2149634
339
sp: RL19_BACST

Bacillus stearothermophilus rplS

70.3
88.3
111
50S ribosomal protein L19


2234
5734
2150335
2150997
663
sp: THIE_BACSU

Bacillus subtilis 168 thiE

28.4
60.9
225
thiamine phosphate












pyrophosphorylase


2235
5735
2151039
2152118
1080
gp: SC6E10_1

Streptomyces coelicolor A3(2)

34.0
64.1
376
oxidoreductase








SC6E10.01


2236
5736
2152135
2152329
195
sp: THIS_ECOLI

Escherichia coli K12 thiS

37.1
74.2
62
thiamine biosynthetic enzyme thiS












(thiG1) protein


2237
5737
2152334
2153113
780
sp: THIG_ECOLI

Escherichia coli K12 thiG

48.2
76.9
251
thiamine biosynthetic enzyme thiG












protein


2238
5738
2153058
2154191
1134
prf: 2417383A

Emericella nidulans cnxF

30.2
56.8
437
molybdopterin biosynthesis protein


2239
5739
2156733
2154460
2274
sp: TEX_BORPE

Bordetella pertussis TOHAMA I

56.6
78.7
776
transcriptional accessory protein








tex


2240
5740
2157721
2156747
975
pir: A36940

Bacillus subtilis 168 degA

27.0
65.3
334
sporulation-specific degradation












regulator protein


2241
5741
2159181
2157754
1428
pir: H72105

Chlamydophila pneumoniae

45.8
78.3
456
dicarboxylase translocator








CWL029 ybhl


2242
5742
2159237
2159019
219
prf: 2108268A

Spinacia oleracea chloroplast

40.0
80.0
65
2-oxoglutarate/malate translocator


2243
5743
2160537
2159287
1251
sp: PCAB_PSEPU

Pseudomonas putida pcaB

39.1
66.3
350
3-carboxy-cis, cis-muconate












cycloisomerase


2244
5744
2160670
2160768
99


2245
5745
2161503
2161111
393


2246
5746
2162196
2161507
690


2247
5747
2163014
2162196
819
sp: TRMD_ECOLI

Escherichia coli K12 trmD

34.8
64.8
273
tRNA (guanine-N1)-












methyltransferase


2248
5748
2163098
2163745
648
gp: SCF81_27

Streptomyces coelicolor A3(2)

30.5
57.6
210
hypothetical protein








SCF81.27


2249
5749
2164260
2163748
513
sp: RIMM_MYCLE

Mycobacterium leprae

52.3
72.1
172
16S rRNA processing protein








MLCB250.34. rimM


2250
5750
2164390
2164737
348
pir: B71881

Helicobacter pylori J99 jhp0839

29.0
66.7
69
hypothetical protein


2251
5751
2165309
2164815
495
pir: C47154

Bacillus subtilis 168 rpsP

47.0
79.5
83
30S ribosomal protein S16


2252
5752
2165523
2166098
576
pir: T14151

Mus musculus inv

32.1
61.7
196
inversin


2253
5753
2166990
2166124
867
prf: 2512328G

Streptococcus agalactiae cylB

26.6
69.1
256
ABC transporter


2254
5754
2167865
2166990
876
prf: 2220349C

Pyrococcus horikoshll OT3 mtrA

35.5
63.8
318
ABC transporter


2255
5755
2169584
2167944
1641
sp: SR54_BACSU

Bacillus subtilis 168 ffh

58.7
78.2
559
signal recognition particle protein


2256
5756
2170426
2171058
633


2257
5757
2171715
2172131
417


2258
5758
2172209
2172877
669


2259
5759
2175288
2173759
1530
sp: FTSY_ECOLI

Escherichia coli K12 ftsY

37.0
66.1
505
cell division protein


2260
5760
2176046
2175888
159


2261
5761
2176402
2177103
702


2262
5762
2179502
2176110
3393
sp: AMYH_YEAST

Saccharomyces cerevisiae

22.4
46.2
1144
glucan 1,4-alpha-glucosidase or








S288C YIR019C sta1



glucoamylase S1/S2 precursor


2263
5763
2180918
2181880
963


2264
5764
2183092
2179628
3465
sp: Y06B_MYCTU

Mycobacterium tuberculosis

48.3
72.6
1206
chromosome segregation protein








H37Rv Rv2922c smc


2265
5765
2183391
2183110
282
sp: ACYP_MYCTU

Mycobacterium tuberculosis

51.1
73.9
92
acylphosphatase








H37Rv RV2922.1C


2266
5766
2185258
2183405
1854


2267
5767
2186208
2185351
858
sp: YFER_ECOLI

Escherichia coli K12 yfeR

23.9
60.0
305
transcriptional regulator


2268
5768
2186299
2187129
831
pir: S72748

Mycobacterium leprae

39.3
73.5
257
hypothetical membrane protein








MLCL581.28c


2269
5769
2187160
2187342
183


2270
5770
2187679
2187233
447


2271
5771
2188306
2187692
615
gp: DNINTREG_3

Dichelobacter nodosus gep

46.8
76.6
188
cation efflux system protein


2272
5772
2189170
2188313
858
sp: FPG_ECOLI

Escherichia coli K12 mutM or

36.1
66.7
285
formamidopyrimidine-DNA








fpg



glycosylase


2273
5773
2189906
2189166
741
pir: B69693

Bacillus subtilis 168 rncS

40.3
76.5
221
ribonuclease III


2274
5774
2190439
2189906
534
sp: Y06F_MYCTU

Mycobacterium tuberculosis

35.8
62.5
176
hypothetical protein








H37Rv Rv2926c


2275
5775
2191328
2190540
789
sp: Y06G_MYCTU

Mycobacterium tuberculosis

50.0
76.9
238
hypothetical protein








H37Rv Rv2927c


2276
5776
2191522
2193165
1644
prf: 2104260G

Streptomyces verticillus

28.3
55.6
559
transport protein


2277
5777
2193165
2194694
1530
sp: CYDC_ECOLI

Escherichia coli K12 cydC

26.6
58.8
541
ABC transporter


2278
5778
2196883
2198004
1122
gp: SC9C7_2

Streptomyces coelicolor A3(2)

35.3
62.6
388
hypothetical protein








SC9C7.02


2279
5779
2198447
2198007
441


2280
5780
2198475
2199758
1284
pir: A72322

Thermotoga maritima MSB8

21.0
43.7
405
hypothetical protein








TM0896


2281
5781
2199808
2201070
1263
sp: HIPO_CAMJE

Campylobacter jejuni ATCC

32.9
64.3
353
peptidase








43431 hipO


2282
5782
2201408
2201073
336
pir: S38197

Arabidopsis thaliana SUC1

27.1
51.9
133
sucrose transport protein


2283
5783
2201584
2201450
135


2284
5784
2201869
2201594
276


2285
5785
2204541
2201992
2550
prf: 2513410A

Thermococcus litoralis malP

36.1
67.4
814
maltodextrin phosphorylase/












glycogen phosphorylase


2286
5786
2205490
2204591
900
sp: YFIE_BACSU

Bacillus subtilis 168 yfiE

33.9
66.4
295
hypothetical protein


2287
5787
2208249
2207302
948
sp: LGT_STAAU

Staphylococcus aureus FDA 485

31.4
65.5
264
prolipoprotein diacylglyceryl








lgt



transferase


2288
5788
2209167
2208367
801
sp: TRPG_EMENI

Emericella nidulans trpC

29.6
62.1
169
indole-3-glycerol-phosphate












synthase/anthranilate synthase












component II


2289
5789
2209888
2209232
657
pir: H70556

Mycobacterium tuberculosis

29.4
58.8
228
hypothetical membrane protein








H37Rv Rv1610


2290
5790
2210273
2209920
354
sp: HIS3_RHOSH

Rhodobacter sphaeroides ATCC

52.8
79.8
89
phosphoribosyl-AMP cyclohydrolase








17023 hisl


2291
5791
2211046
2210273
774
sp: HIS6_CORG

Corynebacterium glutamicum

97.3
97.7
258
cyclase








AS019 hisF


2292
5792
2211875
2211051
825
prf: 2419176B

Corynebacterium glutamicum

94.0
94.0
241
inositol monophosphate








AS019 impA



phosphatase


2293
5793
2212619
2211882
738
gp: AF051846_1

Corynebacterium glutamicum

95.9
97.6
245
phosphoribosylformimino-5-








AS019 hisA



aminoimidazole carboxamide












ribotide isomerase


2294
5794
2213273
2212641
633
gp: AF060558_1

Corynebacterium glutamicum

86.7
92.4
210
glutamine amidotransferase








AS019 hisH


2295
5795
2215586
2214321
1266
sp: CMLR_STRLI

Streptomyces lividans 66 cmlR

25.6
54.0
402
chloramphenicol resistance protein












or transmembrane transport protein


2296
5796
2215863
2215639
225


2297
5797
2216474
2215869
606
sp: HIS7_STRCO

Streptomyces coelicolor A3(2)

52.5
81.8
198
imidazoleglycerol-phosphate








hisB



dehydratase


2298
5798
2217591
2216494
1098
sp: HIS8_STRCO

Streptomyces coelicolor A3(2)

57.2
79.3
362
histidinol-phosphate








hisC



aminotransferase


2299
5799
2218925
2217600
1326
sp: HISX_MYCSM

Mycobacterium smegmatis

63.8
85.7
439
histidinol dehydrogenase








ATCC 607 hisD


2300
5800
2219159
2220358
1200
gp: SPBC215_13

Schizosaccharomyces pombe

27.2
54.4
342
serine-rich secreted protein








SPBC215.13


2301
5801
2221109
2220459
651


2302
5802
2221611
2221919
309


2303
5803
2221828
2221187
642
prf: 2321269A

Leishmania donovani SAcP-1

29.4
59.7
211
histidine secretory acid phosphatase


2304
5804
2221958
2222518
561
pir: RPECR1

Escherichia coli plasmid RP1

28.9
60.8
204
tet repressor protein








tetR


2305
5805
2222528
2225035
2508
prf: 2307203B

Sulfolobus acidocaldarius treX

47.4
75.5
722
glycogen debranching enzyme


2306
5806
2225149
2225949
801
pir: E70572

Mycobacterium tuberculosis

50.0
76.0
258
hypothetical protein








H37Rv Rv2622


2307
5807
2226763
2225990
774
gp: SC2G5_27

Streptomyces coelicolor A3(2)

29.9
55.2
268
oxidoreductase








SC2G5.27c gip


2308
5808
2227779
2226769
1011
prf: 2503399A
SinoRhizobium meliloti ldhA
35.0
60.9
343
myo-inositol 2-dehydrogenase


2309
5809
2227906
2228901
996
sp: GALR_ECOLI

Escherichia coli K12 galR

30.4
64.4
329
galactitol utilization operon repressor


2310
5810
2229896
2229099
798
sp: FHUC_BACSU

Bacillus subtilis 168 fhuC

32.9
68.3
246
ferrichrome transport ATP-binding












protein or ferrichrome ABC












transporter


2311
5811
2230937
2229900
1038
prf: 2423441E

Vibrio cholerae hutC

36.8
71.1
332
hemin permease


2312
5812
2231294
2230947
348
pir: G70046

Bacillus subtilis 168 yvrC

30.1
68.0
103
iron-binding protein


2313
5813
2231932
2231339
594
pir: G70046

Bacillus subtilis 168 yvrC

34.6
67.6
182
iron-binding protein


2314
5814
2232456
2232016
441
sp: YTFH_ECOLI

Escherichia coli K12 ytfH

38.1
73.5
113
hypothetical protein


2315
5815
2232928
2234070
1143
gp: SCI8_12

Streptomyces coelicolor A3(2)

23.4
50.1
355
DNA polymerase III epsilon chain








SCI8.12


2316
5816
2234158
2234763
606


2317
5817
2234852
2237284
2433
pir: S65769

Arthrobacter sp. Q36 treY

42.0
68.6
814
maltooligosyl trehalose synthase


2318
5818
2237331
2238353
1023
gp: AE002006_4

Deinococcus radiodurans

27.6
52.8
322
hypothetical protein








DR1631


2319
5819
2239092
2238694
399


2320
5820
2240042
2239845
198


2321
5821
2240246
2240058
189


2322
5822
2240563
2239508
1056


2323
5823
2240681
2241724
1044
sp: LXA1_PHOLU

Photorhabdus luminescens

20.5
54.4
375
alkanal monooxygenase alpha chain








ATCC 29999 luxA


2324
5824
2242115
2241738
378
gp: SC7H2_5

Streptomyces coelicolor A3(2)

58.3
79.2
120
hypothetical protein








SC7H2.05


2325
5825
2242359
2242129
231


2326
5826
2243035
2244819
1785
pir: S65770

Arthrobacter sp. Q36 treZ

46.3
72.4
568
maltooligosyltrehalose












trehalohydrolase


2327
5827
2243043
2242393
651
sp: YVYE_BACSU

Bacillus subtilis 168

36.5
72.4
214
hypothetical protein


2328
5828
2246171
2244864
1308
sp: THD1_CORGL

Corynebacterium glutamicum

99.3
99.3
436
threonine dehydratase








ATCC 13032 ilvA


2329
5829
2246386
2246892
507


2330
5830
2246450
2246295
156


2331
5831
2248208
2247006
1203
pir: S57636

Catharanthus roseus metE

22.7
49.6
415

Corynebacterium glutamicum AS019



2332
5832
2251939
2248358
3582
prf: 2508371A

Streptomyces coelicolor A3(2)

53.3
80.5
1183
DNA polymerase III








dnaE


2333
5833
2252017
2252856
840
sp: RARD_ECOLI

Escherichia coli K12 rarD

37.6
73.8
279
chloramphenicol sensitive protein


2334
5834
2253192
2253659
468
sp: HISJ_CAMJE

Campylobacter jejuni DZ72 hisJ

21.5
55.7
149
histidine-binding protein precursor


2335
5835
2253725
2254642
918
pir: D69548

Archaeoglobus fulgidus AF2388

22.7
64.7
198
hypothetical membrane protein


2336
5836
2255558
2254683
876
sp: GS39_BACSU

Bacillus subtilis 168 ydaD

48.2
80.0
280
short chain dehydrogenase or












general stress protein


2337
5837
2257024
2255738
1287
sp: DCDA_PSEAE

Pseudomonas aeruginosa lysA

22.9
47.6
445
diaminopimelate (DAP)












decarboxylase


2338
5838
2259312
2258362
951
sp: CYSM_ALCEU

Alcaligenes eutrophus CH34

32.8
64.3
314
cysteine synthase








cysM


2339
5839
2259999
2259421
579


2340
5840
2260931
2260002
930
sp: RLUD_ECOLI

Escherichia coli K12 rluD

36.5
61.0
326
ribosomal large subunit












pseudouridine synthase D


2341
5841
2261467
2260934
534
sp: LSPA_PSEFL

Pseudomonas fluorescens NCIB

33.8
61.7
154
lipoprotein signal peptidase








10586 lspA


2342
5842
2261688
2262689
1002


2343
5843
2262850
2264499
1650
pir: S67863

Streptomyces antibioticus oleB

36.4
64.0
550
oleandomycin resistance protein


2344
5844
2264996
2265298
303


2345
5845
2265108
2264509
600
prf: 2422382P

Rhodococcus erythropolis orf17

36.7
57.6
158
hypothetical protein


2346
5846
2265420
2266394
975
sp: ASPG_BACLI

Bacillus licheniformis

31.2
62.0
321
L-asparaginase


2347
5847
2268297
2266897
1401
sp: DINP_ECOLI

Escherichia coli K12 dinP

31.8
60.7
371
DNA-damage-inducible protein P


2348
5848
2269245
2268388
858
sp: YBIF_ECOLI

Escherichia coli K12 ybiF

31.5
61.5
286
hypothetical membrane protein


2349
5849
2270261
2269260
1002
gp: SCF51_6

Streptomyces coelicolor A3(2)

44.3
73.1
334
transcriptional regulator








SCF51.06


2350
5850
2270304
2270435
132


2351
5851
2270884
2270258
627
gp: SCF51_5

Streptomyces coelicolor A3(2)

42.0
67.0
212
hypothetical protein








SCF51.05


2352
5852
2274149
2270988
3162
sp: SYIC_YEAST

Saccharomyces cerevisiae

38.5
65.4
1066
isoleucyl-tRNA synthetase








A364A YBL076C ILS1


2353
5853
2274688
2274473
216


2354
5854
2275861
2274767
1095


2355
5855
2276637
2276353
285
pir: F70578

Mycobacterium tuberculosis

46.3
73.2
82
hypothetical membrane protein








H37Rv Rv2146c


2356
5856
2277336
2276881
456
gp: BLFTSZ_6

Brevibacterium lactofermentum

99.3
99.3
152
hypothetical protein (putative YAK 1








orf6



protein)


2357
5857
2278078
2277416
663
sp: YFZ1_CORGL

Corynebacterium glutamicum

97.7
99.6
221
hypothetical protein


2358
5858
2278859
2278122
738
prf: 2420425C

Brevibacterium lactofermentum

99.2
100.0
246
hypothetical protein








yfih


2359
5859
2279155
2279640
486
GP: AB028868_1

Mus musculus P4(21)n

39.0
51.0
117
hypothetical protein


2360
5860
2280215
2278890
1326
sp: FTSZ_BRELA

Brevibacterium lactofermentum

98.6
98.6
442
cell division protein








ftsZ


2361
5861
2281135
2280470
666
gsp: W70502

Corynebacterium glutamicum

99.6
100.0
222
cell division initiation protein or cell








ftsQ



division protein


2362
5862
2282623
2281166
1458
gp: AB015023_1

Corynebacterium glutamicum

99.4
99.8
486
UDP-N-acetylmuramate—alanine








murC



ligase


2363
5863
2283776
2282661
1116
gp: BLA242646_3

Brevibacterium lactofermentum

98.9
99.5
372
UDP-N-acetylglucosamine-N-








ATCC 13869 murG



acetylmuramyl-(pentapeptide)












pyrophosphoryl-undecaprenol N-












acetylglucosamine pyrophosphoryl-












undecaprenol N-acetylglucosamine


2364
5864
2285431
2283782
1650
gp: BLA242646_3

Brevibacterium lactofermentum

99.4
99.6
490
cell division protein








ATCC 13869 ftsW


2365
5865
2285904
2285437
468
gp: BLA242646_1

Brevibacterium lactofermentum

99.1
99.1
110
UDP-N-acetylmuramoylalanine-D-








ATCC 13869 murD



glutamate ligase


2366
5866
2286272
2286655
384


2367
5867
2286499
2286831
333


2368
5868
2287959
2286862
1098
sp: MRAY_ECOLI

Escherichia coli K12 mraY

38.6
63.8
365
phospho-n-acetylmuramoyl-












pentapeptide


2369
5869
2289510
2287969
1542
sp: MURF_ECOLI

Escherichia coli K12 murF

35.0
64.2
494
UDP-N-acetylmuramoylalanyl-D-












glutamyl-2,6-diaminoplmelate-D-












alanyl-D-alanyl ligase


2370
5870
2291073
2289523
1551
sp: MURE_BACSU

Bacillus subtilis 168 murE

37.7
67.6
491
UDP-N-acetylmuramoylalanyl-D-












glutamyl-2,6-diaminopimelate-D-












alanyl-D-alanyl ligase


2371
5871
2291197
2290973
225
GSP: Y33117

Brevibacterium lactofermentum

100.0
100.0
57
penicillin binding protein








ORF2 pbp


2372
5872
2293164
2291212
1953
pir: S54872

Pseudomonas aeruginosa pbpB

28.2
58.8
650
penicillin-binding protein


2373
5873
2294117
2293323
795


2374
5874
2295127
2294117
1011
pir: A70581

Mycobacterium tuberculosis

55.1
79.3
323
hypothetical protein








H37Rv Rv2165c


2375
5875
2295804
2295376
429
gp: MLCB268_11

Mycobacterium leprae

72.0
88.8
143
hypothetical membrane protein








MLCB268.11c


2376
5876
2296898
2296512
387
pir: C70935

Mycobacterium tuberculosis

39.4
69.3
137
hypothetical protein








H37Rv Rv2169c


2377
5877
2297653
2297231
423


2378
5878
2297866
2298438
573
gp: MLCB268_13

Mycobacterium leprae

36.3
65.3
190
hypothetical protein








MLCB268.13


2379
5879
2299428
2298451
978
sp: METF_STRLI

Streptomyces lividans 1326

42.6
70.6
303
5,10-methylenetetrahydrofolate








metF



reductase


2380
5880
2299524
2300636
1113
pir: S32168

Myxococcus xanthus DK1050

30.1
62.0
329
dimethylallyltranstransferase








ORF1


2381
5881
2300706
2302175
1470
gp: MLCB268_16

Mycobacterium leprae

35.7
69.6
484
hypothetical membrane protein








MLCB268.17


2382
5882
2302179
2302685
507


2383
5883
2302619
2302251
369
pir: A70936

Mycobacterium tuberculosis

43.2
68.8
125
hypothetical protein








H37Rv Rv2175c


2384
5884
2302833
2304980
2148
gp: AB019394_1

Streptomyces coelicolor A3(2)

34.2
62.4
684
eukaryotic-type protain kinase








pkaF


2385
5885
2303690
2303040
651


2386
5886
2304983
2306218
1236
gp: MLCB268_21

Mycobacterium leprae

30.7
58.4
411
hypothetical membrane protein








MLCB268.23


2387
5887
2306314
2307621
1308
pir: G70936

Mycobacterium tuberculosis

30.4
62.0
434
hypothetical membrane protein








H37Rv Rv2181


2388
5888
2309082
2307697
1386
gp: AF260581_2

Amycolatopsis mediterranei

66.9
87.9
462
3-deoxy-D-arabino-heptulosonate-7-












phosphate synthase


2389
5889
2309676
2309173
504
gp: MLCB268_20

Mycobacterium leprae

58.4
77.7
166
hypothetical protein








MLCB268.21c


2390
5890
2309835
2312252
2418
pir: G70936

Mycobacterium tuberculosis

35.1
64.5
428
hypothetical membrane protein








H37Rv Rv2181


2391
5891
2312360
2313808
1449
sp: CSP1_CORGL

Corynebacterium glutamicum

28.2
57.1
440
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


2392
5892
2313833
2314036
204


2393
5893
2314092
2313916
177


2394
5894
2315423
2314236
1188
gp: AF096280_3

Corynebacterium glutamicum

100.0
100.0
249
hypothetical membrane protein








ATCC 13032


2395
5895
2316412
2315678
735
gp: AF096280_2

Corynebacterium glutamicum

100.0
100.0
245
acyltransferase








ATCC 13032


2396
5896
2318775
2317633
1143
gp: SC6G10_5

Streptomyces coelicolor A3(2)

50.1
75.7
383
glycosyl transferase








SC6G10.05c


2397
5897
2319850
2318804
1047
sp: P60_LISIV

Listeria ivanovii iap

26.4
60.8
296
protein P60 precursor (invasion-












associated-protein)


2398
5898
2320594
2319968
627
sp: P60_LISGR

Listeria grayi iap

33.0
61.3
191
protein P60 precursor (invasion-












associated-protein)


2399
5899
2323073
2321472
1602
prf: 2503462K

Heliobacillus mobilis petB

34.3
64.7
201
ubiquinol-cytochrome c reductase












cytochrome b subunit


2400
5900
2323759
2323088
672
gp: AF107888_1

Streptomyces lividans qcrA

37.9
57.1
203
ubiquinol-cytochrome c reductase












iron-sulfur subunit (Rieske [eFe-2S]












iron-sulfur protein cyoB


2401
5901
2325195
2324311
885
sp: Y005_MYCTU

Mycobacterium tuberculosis

58.6
83.1
278
ubiquinol-cytochrome c reductase








H37Rv Rv2194 qcrC



cytochrome c


2402
5902
2325887
2325273
615
sp: COX3_SYNVU

Synechococcus vulcanus

36.7
70.7
188
cytochrome c oxidase subunit III


2403
5903
2326273
2326121
153


2404
5904
2326900
2326472
429
sp: Y00A_MYCTU

Mycobacterium tuberculosis

38.6
71.0
145
hypothetical membrane protein








H37Rv Rv2199c


2405
5905
2327997
2326921
1077
sp: COX2_RHOSH

Rhodobacter sphaeroides ctaC

28.7
53.9
317
cytochrome c oxidase subunit II


2406
5906
2328516
2330435
1920
gp: AB029550_1

Corynebacterium glutamicum

99.7
99.8
640
glutamine-dependent








KY9611 ltsA



amidotransferase or asparagine












synthetase (lysozyme insensitivity












protein)


2407
5907
2330927
2330586
342
gp: AB029550_2

Corynebacterium glutamicum

100.0
100.0
114
hypothetical protein








KY9611 orf1


2408
5908
2331200
2331967
768
gp: MLCB22_2

Mycobacterium leprae

35.0
60.2
246
hypothetical membrane protein








MLCB22.07


2409
5909
2331974
2332495
522
pir: S52220

Rhodobacter capsulatus cobP

43.0
64.0
172
cobinamide kinase


2410
5910
2332512
2333600
1089
sp: COBU_PSEDE

Pseudomonas denitrificans

37.8
66.9
341
nicotinate-nucleotide—








cobU



dimethylbenzimidazole












phosphoribosyltransferase


2411
5911
2333615
2334535
921
sp: COBV_PSEDE

Pseudomonas denitrificans cobV

25.3
49.8
305
cobalamin (5′-phosphate) synthase


2412
5912
2334717
2334481
237


2413
5913
2335741
2335028
714
prf: 2414335A

Streptomyces clavuligerus car

38.6
68.5
241
clavulanate-9-aldehyde reductase


2414
5914
2337051
2335915
1137
sp: ILVE_MYCTU

Mus musculus BCAT1

40.1
70.3
364
branched-chain amino acid












aminotransferase


2415
5915
2337235
2338734
1500
gp: PPU010261_1

Pseudomonas putida ATCC

36.3
65.9
493
leucyl aminopeptidase








12633 pepA


2416
5916
2339140
2338748
393
prf: 2110282A

Saccharopolyspora erythraea

40.2
67.0
97
hypothetical protein








ORF1


2417
5917
2339269
2341293
2025
gp: AF047034_2

Streptomyces seoulensis pdhB

48.9
68.5
691
dihydrolipoamide acetyltransferase


2418
5918
2340804
2339440
1365


2419
5919
2341412
2342164
753
gp: AB020975_1

Arabidopsis thaliana

36.7
65.7
210
lipoyltransferase


2420
5920
2342304
2343347
1044
sp: LIPA_PELCA

Pelobacter carbinolicus GRA BD1

44.6
70.9
285
lipoic acid synthetase








lipA


2421
5921
2343479
2344258
780
sp: Y00U_MYCTU

Mycobacterium tuberculosis

45.5
76.7
257
hypothetical membrane protein








H37Rv Rv2219


2422
5922
2344431
2346047
1617
sp: YIDE_ECOLI

Escherichia coli K12 yidE

32.9
67.8
559
hypothetical membrane protein


2423
5923
2347491
2346289
1203
gp: AF189147_1

Corynebacterium glutamicum

100.0
100.0
401
transposase (ISCg2)








ATCC 13032 tnp


2424
5924
2347505
2347804
300


2425
5925
2348548
2348078
471
gp: SC5F7_34

Streptomyces coelicolor A3(2)

41.4
63.7
157
hypothetical membrane protein








SC5F7.04c


2426
5926
2350620
2350408
213


2427
5927
2351022
2351996
975


31.0
44.0
145
mutator mutT domain protein


2428
5928
2351310
2350912
399
pir: B72308

Thermotoga maritima MSB8

36.7
65.6
128
hypothetical protein








TM1010


2429
5929
2351909
2351310
600


2430
5930
2351980
2352828
849
sp: LUXA_VIBHA

Vibrio harveyi luxA

25.0
60.9
220
alkanal monooxygenase alpha chain












(bacterial luciferase alpha chain)


2431
5931
2352833
2353225
393
pir: A72404

Thermotoga maritima MSB8

40.5
73.0
111
protein synthesis inhibitor








TM0215



(translation initiation inhibitor)


2432
5932
2355156
2355398
243


2433
5933
2355440
2355180
261


2434
5934
2355521
2356843
1323
prf: 2203345H

Escherichia coli hpaX

21.9
53.4
433
4-hydroxyphenylacetate permease


2435
5935
2356794
2357354
561
gp: SCGD3_10

Streptomyces coelicolor A3(2)

42.4
72.8
158
transmembrane transport protein








SCGD3.10c


2436
5936
2357264
2357707
444
gp: SCGD3_10

Streptomyces coelicolor A3(2)

31.4
66.1
118
transmembrane transport protein








SCGD3.10c


2437
5937
2357484
2357290
195


2438
5938
2357726
2358130
405


2439
5939
2358695
2358153
543


2440
5940
2359416
2358772
645
sp: HMUO_CORDI

Corynebacterium diphtheriae C7

57.9
78.0
214
heme oxygenase








hmuO


2441
5941
2362748
2359614
3135
gp: SCY17736_4

Streptomyces coelicolor A3(2)

43.4
67.0
809
glutamate-ammonia-ligase








glnE



adenylyltransferase


2442
5942
2364155
2362818
1338
sp: GLNA_THEMA

Thermotoga maritima MSB8

43.5
73.0
441
glutamine synthetase








glnA


2443
5943
2364352
2365455
1104
gp: SCE9_39

Streptomyces coelicolor A3(2)

26.8
54.1
392
hypothetical protein








SCE9.39c


2444
5944
2365587
2367413
1827
sp: Y017_MYCTU

Mycobacterium tuberculosis

33.4
58.2
601
hypothetical protein








H37Rv Rv2226


2445
5945
2367652
2367473
180
gp: SCC75A_11

Streptomyces coelicolor A3(2)

38.9
55.6
54
hypothetical protein








SCC75A.11c.


2446
5946
2367791
2369083
1293
sp: GAL1_HUMAN

Homo sapiens galK1

24.9
53.7
374
galactokinase


2447
5947
2370381
2369116
1266
gp: AF174645_1

Brucella abortus vacB

27.1
54.5
358
virulence-associated protein


2448
5948
2370423
2370908
486


2449
5949
2372557
2371412
1146
sp: Y019_MYCTU

Mycobacterium tuberculosis

54.7
75.1
382
bifunctional protein (ribonuclease H








H37Rv Rv2228c



and phosphoglycerate mutase)


2450
5950
2372561
2373289
729


2451
5951
2373289
2372573
717
sp: Y01A_MYCTU

Mycobacterium tuberculosis

26.5
58.6
249
hypothetical protein








H37Rv Rv2229c


2452
5952
2374462
2373323
1140
sp: Y01B_MYCTU

Mycobacterium tuberculosis

49.2
76.2
378
hypothetical protein








H37Rv Rv2230c


2453
5953
2374544
2375197
654
sp: GPH_ECOLI

Escherichia coli K12 gph

26.0
54.4
204
phosphoglycolate phosphatase


2454
5954
2375214
2375684
471
sp: PTPA_STRCO

Streptomyces coelicolor A3(2)

46.2
63.5
156
low molecular weight protein-








SCQ11.04c ptpA



tyrosine-phosphatase


2455
5955
2375767
2376720
954
sp: Y01G_MYCTU

Mycobacterium tuberculosis

40.9
65.5
281
hypothetical protein








H37Rv Rv2235


2456
5956
2377390
2376998
393
sp: YI21_BURCE

Burkholderia cepacia

32.6
56.6
129
insertion element (IS402)


2457
5957
2377726
2377484
243


2458
5958
2377899
2378276
378
gp: SC8F4_22

Streptomyces coelicolor A3(2)

30.4
57.8
135
transcriptional regulator








SC8F4.22c


2459
5959
2378292
2378489
198


2460
5960
2379312
2378884
429
sp: Y01K_MYCTU

Mycobacterium tuberculosis

55.2
77.6
134
hypothetical protein








H37Rv Rv2239c


2461
5961
2379426
2379770
345


2462
5962
2380033
2382744
2712
gp: AF047034_4

Streptomyces seoulensis pdhA

55.9
78.9
910
pyruvate dehydrogenase component


2463
5963
2382240
2380765
1476


2464
5964
2383615
2382827
789
sp: GLNQ_ECOLI

Escherichia coli K12 glnQ

33.7
62.8
261
ABC transporter or glutamine












transport ATP-binding protein


2465
5965
2384464
2385426
963


2466
5966
2384509
2383622
888
sp: RBSC_BACSU

Bacillus subtilis 168 rbsC

25.4
58.7
283
ribose transport system permease












protein


2467
5967
2385447
2384509
939
pir: H71693

Rickettsia prowazekii Madrid E

26.2
62.9
286
hypothetical protein








RP367


2468
5968
2385771
2386580
810
sp: CBPA_DICDI

Dictyostelium discoideum AX2

41.6
55.2
125
calcium binding protein








cbpA


2469
5969
2386284
2385913
372


2470
5970
2387627
2386614
1014
gp: SC6G4_24

Streptomyces coelicolor A3(2)

29.6
55.7
352
lipase or hydrolase








SC6G4.24


2471
5971
2387667
2387957
291
sp: ACP_MYXXA

Myxococcus xanthus ATCC

42.7
80.0
75
acyl carier protein








25232 acpP


2472
5972
2387997
2388821
825
sp: NAGD_ECOLI

Escherichia coli K12 nagD

43.9
75.5
253
N-acetylglucosamine-6-phosphate












deacetylase


2473
5973
2388838
2389869
1032
gp: AE001968_4

Deinococcus radiodurans

33.6
65.7
289
hypothetical protein








DR1192


2474
5974
2390904
2390434
471


2475
5975
2392008
2391184
825
gp: SC4A7_8

Streptomyces coelicolor A3(2)

52.4
75.3
271
hypothetical protein








SC4A7.08


2476
5976
2392566
2392075
492


2477
5977
2393349
2392579
771


2478
5978
2393425
2393970
546


2479
5979
2394437
2393973
465


2480
5980
2394594
2394935
342


2481
5981
2395204
2396763
1560
sp: PPBD_BACSU

Bacillus subtilis 168 phoD

34.2
64.7
530
alkaline phosphatase D precursor


2482
5982
2395986
2395273
714


2483
5983
2397264
2399099
1836
gp: SCI51_17

Streptomyces coelicolor A3(2)

44.4
73.1
594
hypothetical protein








SCI51.17


2484
5984
2399158
2399397
240
pir: G70661

Mycobacterium tuberculosis

41.2
72.1
68
hypothetical protein








H37Rv Rv2342


2485
5985
2400342
2399668
675


2486
5986
2401303
2399405
1899
prf: 2413330B

Mycobacterium smegmatis

59.1
82.9
633
DNA primase








dnaG


2487
5987
2401373
2401834
462
gp: XXU39467_1

Streptomyces aureofaciens BMK

49.0
67.4
98
ribonuclease Sa


2488
5988
2401838
2402080
243


2489
5989
2403165
2402530
636


2490
5990
2404012
2402144
1869
gp: AF058788_1

Mycobacterium smegmatis

59.1
82.2
636
L-glutamine: D-fructose-6-phosphate








mc2155 glmS



amidotransferase


2491
5991
2404523
2404846
324


2492
5992
2405671
2406822
1152


2493
5993
2406258
2404987
1272
prf: 2413330A

Mycobacterium smegmatis dgt

54.6
76.3
414
deoxyguanosinetriphosphate












triphosphohydrolase


2494
5994
2406936
2406262
675
gp: NMA1Z2491_235

Neisseria meningitidis NMA0251

30.4
59.7
171
hypothetical protein


2495
5995
2406993
2409029
2037
pir: B70662

Mycobacterium tuberculosis

31.1
63.6
692
hypothetical protein








H37Rv Rv2345


2496
5996
2410264
2409779
486
gp: AE003565_26

Drosophila melanogaster

24.6
54.4
138
hypothetical protein








CG10592


2497
5997
2410861
2410280
582


2498
5998
2412338
2410956
1383
pir: S58522

Thermus aquaticus HB8

46.1
69.9
508
glycyl-tRNA synthetase


2499
5999
2412580
2412948
369
pir: E70585

Mycobacterium tuberculosis

49.4
73.0
89
bacterial regulatory protein, arsR








H37Rv Rv2358 furB



family


2500
6000
2412992
2413423
432
sp: FUR_ECOLI

Escherichia coli K12 fur

34.9
70.5
132
ferric uptake regulation protein


2501
6001
2413568
2415118
1551
pir: A70539

Mycobacterium tuberculosis

24.8
46.7
529
hypothetical protein (conserved in








H37Rv Rv1128c



C. glutamicum?)


2502
6002
2416089
2415298
792
gp: AF162938_1

Streptomyces coelicolor A3(2)

40.6
67.0
224
hypothetical membrane protein








h3u


2503
6003
2417099
2416371
729
sp: UPPS_MICLU

Micrococcus luteus B-P 26 uppS

43.4
71.2
233
undecaprenyl diphosphate synthase


2504
6004
2417947
2417222
726
pir: A70586

Mycobacterium tuberculosis

45.7
74.3
245
hypothetical protein








H37Rv Rv2362c


2505
6005
2418883
2417969
915
gp: AF072811_1

Streptococcus pneumoniae era

39.5
70.3
296
Era-like GTP-binding protein


2506
6006
2420309
2418990
1320
sp: Y1DE_MYCTU

Mycobacterium tuberculosis

52.8
82.4
432
hypothetical membrane protein








H37Rv Rv2366


2507
6007
2420900
2420313
588
sp: YN67_MYCTU

Mycobacterium tuberculosis

65.0
86.0
157
hypothetical protein








H37Rv Rv2367c


2508
6008
2420973
2421236
264
GSP: Y75650

Neisseria meningitidis

45.0
50.0
85
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


2509
6009
2421949
2420900
1050
sp: PHOL_MYCTU

Mycobacterium tuberculosis

61.1
84.6
344
phosphate starvation inducible








H37Rv Rv2368c phoH



protein


2510
6010
2422697
2421975
723
gp: SCC77_19

Streptomyces coelicolor A3(2)

44.0
75.4
248
hypothetical protein








SCC77.19c.


2511
6011
2422850
2423791
942


2512
6012
2423845
2422700
1146
prf: 2421342B

Streptomyces albus dnaJ2

47.1
77.4
380
heat shock protein dnaJ


2513
6013
2424937
2423915
1023
prf: 2421342A

Streptomyces albus hrcA

48.2
79.6
334
heat-inducible transcriptional












repressor (groEL repressor)


2514
6014
2425954
2424965
990
prf: 2318256A

Bacillus stearothermophilus

33.1
64.1
320
oxygen-independent








hemN



coproporphyrinogen III oxidase


2515
6015
2426181
2426699
519
sp: AGA1_YEAST

Saccharomyces cerevisiae

36.6
64.9
134
agglutinin attachment subunit








YNR044W AGA1



precursor


2516
6016
2427468
2426776
693


2517
6017
2428184
2427807
378


2518
6018
2430028
2428184
1845
gp: SC6G10_4

Streptomyces coelicolor A3(2)

48.0
75.1
611
long-chain-fatty-acid—CoA ligase








SC6G10.04


2519
6019
2430296
2432413
2118
sp: MALQ_ECOLI

Escherichia coli K12 malQ

28.3
55.4
738
4-alpha-glucanotransferase


2520
6020
2432508
2434370
1863
gp: AB005752_1

Lactobacillus brevis plasmid

29.5
64.4
604
ABC transporter, Hop-Resistance








horA



protein


2521
6021
2433868
2433614
255
GSP: Y74827

Neisseria gonorrhoeae

44.0
51.0
68
Neisserial polypeptides predicted to












be useful antigens for vaccines and












diagnostics


2522
6022
2434207
2433875
333
GSP: Y74829

Neisseria meningitidis

47.0
53.0
107
polypeptides predicted to be useful












antigens for vaccines and












diagnostics


2523
6023
2434619
2434440
180


2524
6024
2434776
2434573
204


2525
6025
2436838
2434805
2034
sp: DCP_SALTY

Salmonella typhimurium dcp

40.3
68.3
690
peptidyl-dipeptidase


2526
6026
2436871
2438049
1179
gp: AF064523_1

Anisopteromalus calandrae

24.1
45.7
453
carboxylesterase


2527
6027
2438113
2439906
1794
pir: G70983

Mycobacterium tuberculosis

65.2
84.9
594
glycosyl hydrolase or trehalose








H37Rv Rv0126



synthase


2528
6028
2439906
2440994
1089
pir: H70983

Mycobacterium tuberculosis

32.1
58.8
449
hypothetical protein








H37Rv Rv0127


2529
6029
2441589
2441005
585
pir: T07979

Chlamydomonas reinhardtii ipi1

31.8
57.7
189
isopentenyl-diphosphate Delta-












isomerase


2530
6030
2441669
2441890
222


2531
6031
2442355
2442792
438


2532
6032
2443356
2441602
1755


2533
6033
2444015
2443356
660


2534
6034
2444551
2444033
519


2535
6035
2444735
2445709
975
gp: CORCSLYS_1

Corynebacterium glutamicum

99.4
100.0
325
beta C-S lyase (degradation of








ATCC 13032 aecD



aminoethylcysteine)


2536
6036
2445716
2446993
1278
sp: BRNQ_CORGL

Corynebacterium glutamicum

99.8
100.0
426
branched-chain amino acid transport








ATCC 13032 brnQ



system carrier protein (isoleucine












uptake)


2537
6037
2447021
2447998
978
sp: LUXA_VIBHA

Vibrio harveyi luxA

21.6
49.0
343
alkanal monooxygenase alpha chain


2538
6038
2450844
2450323
522


2539
6039
2451785
2450859
927
gp: AF155772_2
SinoRhizobium meliloti mdcF
25.9
60.5
324
malonate transporter


2540
6040
2454637
2451794
2844
sp: GLCD_ECOLI

Escherichia coli K12 glcD

27.7
55.1
483
glycolate oxidase subunit


2541
6041
2454725
2455435
711
sp: YDFH_ECOLI

Escherichia coli K12 ydfH

25.6
65.0
203
transcriptional regulator


2542
6042
2455733
2455452
282


2543
6043
2457066
2455720
1347
sp: YGIK_SALTY

Salmonella typhimurium ygiK

22.5
57.6
467
hypothetical protein


2544
6044
2457759
2457337
423


2545
6045
2457863
2459371
1509
sp: HBPA_HAEIN

Haemophilus influenzae Rd

27.5
55.5
546
heme-binding protein A precursor








HI0853 hbpA



(hemin-binding lipoprotein)


2546
6046
2459371
2460336
966
sp: APPB_BACSU

Bacillus subtilis 168 appB

40.0
73.3
315
oligopeptide ABC transporter












(permease)


2547
6047
2460340
2461167
828
sp: DPPC_ECOLI

Escherichia coli K12 dppC

43.2
74.5
271
dipeptide transport system












permease protein


2548
6048
2461163
2462599
1437
prf: 2306258MR

Escherichia coli K12 oppD

37.4
66.4
372
oligopeptide transport ATP-binding












protein


2549
6049
2462049
2461543
507
PIR: G72536

Aeropyrum pernix K1 APE1580

35.0
44.0
106
hypothetical protein


2550
6050
2463150
2462602
549
pir: D70367

Aquifex aeolicus VF5 aq_768

29.3
58.0
157
hypothetical protein


2551
6051
2463241
2464143
903
prf: 2514301A

Rhizobium etli rbsK

41.0
65.0
300
ribose kinase


2552
6052
2464344
2465768
1425
gp: SCM2_16

Streptomyces coelicolor A3(2)

39.9
64.6
466
hypothetical membrane protein








SCM2.16c


2553
6053
2465767
2465465
303


2554
6054
2467009
2466038
972
sp: NTCI_HUMAN

Homo sapiens

31.3
61.6
284
sodium-dependent transporter or












odium Bile acid symporter family


2555
6055
2467077
2467922
846
gp: AF195243_1

Chlamydomonas reinhardtii

28.5
51.2
295
apospory-associated protein C


2556
6056
2470313
2470678
366


2557
6057
2472250
2472819
570
sp: THIX_CORGL

Corynebacterium glutamicum

100.0
100.0
133
thiamine biosynthesis protein x








ATCC 13032 thiX


2558
6058
2473480
2472893
588
sp: VG66_BPMD

Mycobacteriophage D29 66

42.6
65.5
197
hypothetical protein


2559
6059
2473653
2475542
1890
sp: BETP_CORGL

Corynebacterium glutamicum

39.8
71.7
601
glycine betaine transporter








ATCC 13032 betP


2560
6060
2476497
2477492
996


2561
6061
2477644
2479251
1608


2562
6062
2479379
2479762
384


2563
6063
2481208
2479898
1311
prf: 2320266C

Rhodobacter capsulatus dctM

34.6
71.9
448
large integral C4-dicarboxylate












membrane transport protein


2564
6064
2481692
2481213
480
gp: AF186091_1

Klebsiella pneumoniae dctQ

33.9
73.7
118
small integral C4-dicarboxylate












membrane transport protein


2565
6065
2482480
2481734
747
sp: DCTP_RHOCA

Rhodobacter capsulatus B10

28.2
59.0
227
C4-dicarboxylate-binding








dctP



periplasmic protein precursor


2566
6066
2483845
2484087
243
PRF: 1806416A

Lycopersicon esculentum

63.0
73.0
46
extensin I








(tomato)


2567
6067
2484392
2482548
1845
sp: LEPA_BACSU

Bacillus subtilis 168 lepA

58.7
83.6
603
GTP-binding protein


2568
6068
2484661
2485269
609
pir: H70683

Mycobacterium tuberculosis

41.6
69.7
185
hypothetical protein








H37Rv Rv2405


2569
6069
2485473
2485733
261
sp: RS20_ECOLI

Escherichia coli K12 rpsT

48.2
72.9
85
30S ribosomal protein S20


2570
6070
2486469
2485801
669
sp: RHTC_ECOLI

Escherichia coli K12 rhtC

30.0
67.1
210
thrreonine efflux protein


2571
6071
2486881
2486477
405
gp: SC6D7_25

Streptomyces coelicolor A3(2)

61.2
80.6
129
ankyrin-like protein








SC6D7.25.


2572
6072
2487884
2486910
975
pir: H70684

Mycobacterium tuberculosis

46.0
74.1
313
hypothetical protein








H37Rv Rv2413c


2573
6073
2489450
2487912
1539
sp: CME3_BACSU

Bacillus subtilis 168 comEC

21.4
49.7
527
late competence operon required for












DNA binding and uptake


2574
6074
2490154
2489573
582
sp: CME1_BACSU

Bacillus subtilis 168 comEA

30.8
63.6
195
late competence operon required for












DNA binding and uptake


2575
6075
2490911
2491732
822


2576
6076
2491111
2490290
822
gp: SCC123_7

Streptomyces coelicolor A3(2)

34.8
66.3
273
hypothetical protein








SCC123.07c.


2577
6077
2491858
2491151
708
pir: F70685

Mycobacterium tuberculosis

46.8
66.4
235
phosphoglycerate mutase








H37Rv Rv2419c


2578
6078
2492343
2491873
471
pir: G70685

Mycobacterium tuberculosis

55.6
86.3
117
hypothetical protein








H37Rv Rv2420c


2579
6079
2493178
2492501
678
gp: SCC123_17

Streptomyces coelicolor A3(2)

68.0
85.3
197
hypothetical protein








SCC123.17c.


2580
6080
2494237
2493215
1023


2581
6081
2495634
2494339
1296
sp: PROA_CORGL

Corynebacterium glutamicum

99.1
99.8
432
gamma-glutamyl phosphate








ATCC 17965 proA



reductase or glutamate-5-












semialdehyde dehydrogenase


2582
6082
2496607
2495696
912
sp: YPRA_CORGL

Corynebacterium glutamicum

99.3
100.0
304
D-isomer specific 2-hydroxyacid








ATCC 17965 unkdh



dehydrogenase


2583
6083
2496803
2497513
711


2584
6084
2499511
2498009
1503
gp: D87915_1

Streptomyces coelicolor A3(2)

58.9
78.2
487
GTP-binding protein








obg


2585
6085
2499783
2501669
1887
sp: PBUX_BACSU

Bacillus subtilis 168 pbuX

39.1
77.3
422
xanthine permease


2586
6086
2502577
2501735
843
pir: I40838

Corynebacterium sp. ATCC

61.2
81.9
276
2,5-diketo-D-gluconic acid reductase








31090


2587
6087
2502735
2503355
621


2588
6088
2503870
2504265
396


2589
6089
2504247
2503984
264
sp: RL27_STRGR

Streptomyces griseus IFO13189

80.3
92.6
81
50S ribosomal protein L27








rpmA


2590
6090
2504602
2504300
303
prf: 2304263A

Streptomyces griseus IFO13189

56.4
82.2
101
50S ribosomal protein L21








obg


2591
6091
2507098
2504831
2268
sp: RNE_ECOLI

Escherichia coli K12 rne

30.1
56.6
886
ribonuclease E


2592
6092
2507115
2507663
549


2593
6093
2507138
2507710
573


2594
6094
2508094
2508840
747


2595
6095
2508922
2509530
609
gp: SCF76_8

Streptomyces coelicolor A3(2)

61.0
82.6
195
hypothetical protein








SCF76.08c


2596
6096
2510830
2509523
1308
plr: S43613

Corynebacterium glutamicum

99.1
100.0
436
transposase (insertion sequence








ATCC 31831



IS31831)


2597
6097
2511046
2511423
378
gp: SCF76_8

Streptomyces coelicolor A3(2)

51.3
76.9
117
hypothetical protein








SCF76.08c.


2598
6098
2511427
2511876
450
gp: SCF76_9

Streptomyces coelicolor A3(2)

37.8
67.8
143
hypothetical protein








SCF76.09


2599
6099
2512356
2511949
408
gp: AF069544_1

Mycobacterium smegmatis ndk

70.9
89.6
134
nucleoside diphosphate kinase


2600
6100
2512768
2512409
360


2601
6101
2512803
2513144
342
gp: AE002024_10

Deinococcus radiodurans R1

34.8
67.4
92
hypothetical protein








DR1844


2602
6102
2513618
2513154
465
pir: H70515

Mycobacterium tuberculosis

36.6
64.3
112
hypothetical protein








H37Rv Rv1883c


2603
6103
2514114
2513692
423
pir: E70863

Mycobacterium tuberculosis

33.9
68.6
118
hypothetical protein








H37Rv Rv2446c


2604
6104
2515487
2514114
1374
prf: 2410252B

Streptomyces coelicolor A3(2)

55.4
79.6
451
folyl-polyglutamate synthetase








folC


2605
6105
2515662
2516273
612


2606
6106
2516243
2516956
714


2607
6107
2517089
2517751
663


2608
6108
2518336
2515637
2700
sp: SYV_BACSU

Bacillus subtilis 168 balS

45.5
72.1
915
valyl-tRNA synthetase


2609
6109
2519972
2518398
1575
pir: A38447

Bacillus subtilis 168 oppA

24.2
58.5
521
oligopeptide ABC transport system












substrate-binding protein


2610
6110
2520209
2521660
1452
sp: DNAK_BACSU

Bacillus subtilis 168 dnaK

26.2
54.9
508
heat shock protein dnaK


2611
6111
2522251
2521667
585
gp: ECU89166_1

Eikenella corrodens ATCC

42.9
71.2
170
lysine decarboxylase








23824


2612
6112
2523248
2522265
984
sp: MDH_THEFL

Thermus aquaticus ATCC 33923

56.4
76.5
319
malate dehydrogenase








mdh


2613
6113
2523561
2524337
777
gp: SC4A10_33

Streptomyces coelicolor A3(2)

24.6
56.5
207
transcriptional regulator








SC4A10.33


2614
6114
2524915
2524340
576
gp: AF065442_1

Vibrio cholerae aphA

26.0
51.4
208
hypothetical protein


2615
6115
2525099
2526226
1128
prf: 2513416F

Acinetobacter sp. vanA

39.5
68.6
357
vanillate demethylase (oxygenase)


2616
6116
2526233
2527207
975
gp: FSU12290_2

Sphingomonas flava ATCC

32.8
59.2
338
pentachlorophenol 4-








39723 pcpD



monooxygenase reductase


2617
6117
2527135
2528559
1425
prf: 2513416G

Acinetobacter sp. vanK

40.8
76.8
444
transport protein


2618
6118
2529480
2528551
930
gp: KPU95087_7

Klebsiella pneumoniae mdcF

28.0
58.4
286
malonate transporter


2619
6119
2530761
2529484
1278
prf: 2303274A

Bacillus subtilis clpX

59.8
85.8
430
class-III heat-shock protein or ATP-












dependent protease


2620
6120
2530891
2531976
1086
gp: SCF55_28

Streptomyces coelicolor A3(2)

45.6
73.0
366
hypothetical protein








SCF55.28c


2621
6121
2532601
2531969
633
gp: AF109386_2

Streptomyces sp. 2065 pcaJ

63.3
85.7
210
succinyl CoA: 3-oxoadipate CoA












transferase beta subunit


2622
6122
2533353
2532604
750
gp: AF109386_1

Streptomyces sp. 2065 pcal

60.2
84.5
251
succinyl CoA: 3-oxoadipate CoA












transferase alpha subunit


2623
6123
2533391
2534182
792
prf: 2408324F

Rhodococcus opacus 1CP pcaR

58.2
82.5
251
protocatechuate catabolic protein


2624
6124
2534201
2535424
1224
prf: 2411305D

Ralstonia eutropha bktB

44.8
71.9
406
beta-ketothiolase


2625
6125
2535168
2534257
912


2626
6126
2535430
2536182
753
prf: 2408324E

Rhodococcus opacus pcaL

50.8
76.6
256
3-oxoadipate enol-lactone hydrolase












and 4-carboxymuconolactone












decarboxylase


2627
6127
2536196
2538256
2061
gp: SCM1_10

Streptomyces coelicolor A3(2)

23.6
43.0
825
transcriptional regulator








SCM1.10


2628
6128
2538613
2538248
366
prf: 2408324E

Rhodococcus opacus pcaL

78.3
89.6
115
3-oxoadipate enol-lactone hydrolase












and 4-carboxymuconolactone












decarboxylase


2629
6129
2539553
2540230
678


2630
6130
2539731
2538616
1116
prf: 2408324D

Rhodococcus opacus pcaB

39.8
63.4
437
3-carboxy-cis, cis-muconate












cycloisomerase


2631
6131
2540320
2539709
612
prf: 2408324C

Rhodococcus opacus pcaG

49.5
70.6
214
protocatechuate dioxygenase alpha












subunit


2632
6132
2541024
2540335
690
prf: 2408324B

Rhodococcus opacus pcaH

74.7
91.2
217
protocatechuate dioxygenase beta












subunit


2633
6133
2542350
2541187
1164
pir: G70506

Mycobacterium tuberculosis

26.4
48.7
273
hypothetical protein








H37Rv Rv0336


2634
6134
2542802
2542512
291
prf: 2515333B

Mycobacterium tuberculosis

54.4
81.5
92
muconolactone isomerase








catC


2635
6135
2543043
2543813
771


2636
6136
2543936
2542818
1119
sp: CATB_RHOOP

Rhodococcus opacus 1CP catB

60.8
84.7
372
muconate cycloisomerase


2637
6137
2544262
2544867
606


2638
6138
2544876
2544022
855
prf: 2503218A

Rhodococcus rhodochrous catA

72.3
88.4
285
catechol 1,2-dioxygenase


2639
6139
2545068
2544928
141


2640
6140
2545315
2546784
1470
gp: AF134348_1

Pseudomonas putida plasmid

62.2
85.6
437
toluate 1,2 dioxygenase subunit








pDK1 xylX


2641
6141
2546827
2547318
492
gp: AF134348_2

Pseudomonas putida plasmid

60.3
83.2
161
toluate 1,2 dioxygenase subunit








pDK1 xylY


2642
6142
2547333
2548868
1536
gp: AF134348_3

Pseudomonas putida plasmid

51.5
81.0
342
toluate 1,2 dioxygenase subunit








pDK1 xylZ


2643
6143
2548868
2549695
828
gp: AF134348_4

Pseudomonas putida plasmid

30.7
61.4
277
1,2-dihydroxycyclohexa-3,5-diene








pDK1 xylL



carboxylate dehydrogenase


2644
6144
2549771
2552455
2685
gp: REU95170_1

Rhodococcus erythropolis thcG

23.3
48.6
979
regulator of LuxR family with ATP-












binding site


2645
6145
2552563
2553942
1380
sp: PCAK_ACICA

Acinetobacter calcoaceticus

31.3
64.4
435
transmembrane transport protein or








pcaK



4-hydroxybenzoate transporter


2646
6146
2554026
2555267
1242
sp: BENE_ACICA

Acinetobacter calcoaceticus

29.9
66.2
388
benzoate membrane transport








benE



protein


2647
6147
2555940
2555317
624
gp: AF071885_2

Streptomyces coelicolor M145

69.5
88.3
197
ATP-dependent Clp protease








clpP2



proteolytic subunit 2


2648
6148
2556580
2555978
603
gp: AF071885_1

Streptomyces coelicolor M145

62.1
85.9
198
ATP-dependent Clp protease








clpP1



proteolytic subunit 1


2649
6149
2556599
2556748
150
gp: SIS243537_4

Sulfolobus islandicus ORF154

42.9
71.4
42
hypothetical protein


2650
6150
2558106
2556760
1347
sp: TIG_BACSU

Bacillus subtilis 168 tig

32.1
66.4
417
trigger factor (prolyl isomerase)












(chaperone protein)


2651
6151
2558609
2559103
495
gp: SCD25_17

Streptomyces coelicolor A3(2)

32.5
63.1
160
hypothetical protein








SCD25.17


2652
6152
2559157
2560131
975
sp: PBP4_NOCLA

Nocardia lactamdurans LC411

25.3
50.9
336
penicillin-binding protein








pbp


2653
6153
2560131
2560586
456
prf: 2301342A

Mus musculus Moa1

27.8
58.3
115
hypothetical protein


2654
6154
2561115
2561363
249


2655
6155
2561920
2561483
438
prf: 2513302C

Corynebacterium striatum ORF1

54.2
73.2
142
transposase


2656
6156
2562093
2562242
150


2657
6157
2562115
2561990
126
prf: 2513302C

Corynebacterium striatum ORF1

57.1
82.9
35
hypothetical protein


2658
6158
2562341
2562078
264
prf: 2513302C

Corynebacterium striatum ORF1

50.7
78.7
75
transposase


2659
6159
2562776
2562387
390


2660
6160
2562963
2563847
885


2661
6161
2564402
2563932
471
sp: LACB_STAAU

Staphylococcus aureus NCTC

40.0
71.4
140
galactose-6-phosphate isomerase








8325-4 lacB


2662
6162
2565245
2564550
696
sp: YAMY_BACAD

Bacillus acidopullulyticus ORF2

26.2
58.1
248
hypothetical protein


2663
6163
2566231
2565623
609
pir: A70866

Mycobacterium tuberculosis

56.8
80.9
199
hypothetical protein








H37Rv Rv2466c


2664
6164
2566345
2568945
2601
sp: AMPN_STRLI

Streptomyces lividans pepN

47.5
70.5
890
aminopeptidase N


2665
6165
2569211
2570293
1083
pir: B70206

Borrelia burgdorferi BB0852

25.1
58.1
358
hypothetical protein


2666
6166
2571460
2570309
1152


2667
6167
2571510
2572175
666


2668
6168
2572193
2572348
156


2669
6169
2572677
2572351
327
gp: AF139916_3

Brevibacterium linens ATCC

61.5
81.7
104
phytoene desaturase








9175 crtI


2670
6170
2572977
2572807
171


2671
6171
2573770
2573393
378


2672
6172
2573864
2572659
1206
sp: CRTJ_MYXXA

Myxococcus xanthus DK1050

31.2
63.8
381
phytoene dehydrogenase








carA2


2673
6173
2574718
2573843
876
sp: CRTB_STRGR

Streptomyces griseus JA3933

31.4
58.6
290
phytoene synthase








crtB


2674
6174
2575898
2574780
1119
gp: LMAJ9627_3

Listeria monocytogenes lltB

25.8
47.7
392
multidrug resistance transporter


2675
6175
2577213
2575981
1233


2676
6176
2578872
2577232
1641
gp: SYOATPBP_2

Synechococcus elongatus

41.3
71.6
538
ABC transporter ATP-binding protein


2677
6177
2579760
2578879
882
sp: DPPC_BACFI

Bacillus firmus OF4 dppC

38.8
73.8
286
dipeptide transport system












permease protein


2678
6178
2580707
2579769
939
pir: S47696

Escherichia coli K12 nikB

33.2
62.0
316
nickel transport system permease












protein


2679
6179
2582417
2580711
1707


2680
6180
2582564
2584504
1941


2681
6181
2584613
2585926
1314
sp: ARGD_CORGL

Corynebacterium glutamicum

31.4
63.5
411
acetylornithine aminotransferase








ATCC 13032 argD


2682
6182
2586180
2587763
1584
pir: A70539

Mycobacterium tuberculosis

25.1
47.9
482
hypothetical protein








H37Rv Rv1128c


2683
6183
2587976
2588722
747
sp: YA26_MYCTU

Mycobacterium tuberculosis

49.1
79.4
218
hypothetical membrane protein








H37Rv Rv0364


2684
6184
2589432
2588725
708
sp: PHBB_CHRVI

Chromatium vinosum D phbB

28.1
60.0
235
acetoacetyl CoA reductase


2685
6185
2589565
2590302
738
pir: A40046

Streptomyces coelicolor actII

26.7
55.0
240
transcriptional regulator, TetR family


2686
6186
2590697
2591137
441
GSP: Y74375

Neisseria meningitidis

38.0
47.0
94
polypeptides predicted to be useful












antigens for vaccines and












diagnostics


2687
6187
2592365
2591574
792
gp: AF106002_1

Pseudomonas putida GM73

31.1
65.1
238
ABC transporter ATP-binding protein








ttg2A


2688
6188
2592402
2592794
393
gp: MLCB1610_9

Mycobacterium leprae

53.2
77.0
126
globin








MLCB1610.14c


2689
6189
2592838
2593965
1128
sp: CHRA_PSEAE

Pseudomonas aeruginosa

27.3
60.4
396
chromate transport protein








Plasmid pUM505 chrA


2690
6190
2594594
2593968
627
pir: A70867

Mycobacterium tuberculosis

37.8
68.9
196
hypothetical protein








H37Rv Rv2474c


2691
6191
2595061
2594597
465
gp: SC6D10_19

Streptomyces coelicolor A3(2)

36.2
61.4
127
hypothetical protein








SC6D10.19c


2692
6192
2595808
2595188
621


2693
6193
2595983
2595822
162
pir: B72589

Aeropyrum pernix K1 APE1182

36.4
60.0
55
hypothetical protein


2694
6194
2597715
2596048
1668
sp: YJJK_ECOLI

Escherichia coli K12 yjjK

52.8
79.6
563
ABC transporter ATP-binding protein


2695
6195
2598483
2597869
615
pir: E70867

Mycobacterium tuberculosis

31.4
62.2
172
hypothetical protein








H37Rv Rv2478c


2696
6196
2600764
2598662
2103
sp: Y05L_MYCLE

Mycobacterium leprae o659

28.0
56.7
700
hypothetical membrane protein


2697
6197
2601461
2602879
1419
pir: C69676

Bacillus subtilis phoB

28.0
52.6
536
alkaline phosphatase


2698
6198
2604573
2605502
930


2699
6199
2604583
2603945
639


2700
6200
2605520
2604609
912
sp: MSMG_STRMU

Streptococcus mutans

39.1
76.3
279
multiple sugar-binding transport








INGBRITT msmG



system permease protein


2701
6201
2606369
2605527
843
sp: MSMF_STRMU

Streptococcus mutans

27.4
67.5
292
multiple sugar-binding transport








INGBRITT msmF



system permease protein


2702
6202
2606444
2608117
1674


2703
6203
2607889
2606561
1329
prf: 2206392C

Thermoanaerobacterium

28.8
63.2
462
maltose-binding protein









thermosul amyE



2704
6204
2609426
2608185
1242


2705
6205
2610639
2609512
1128
prf: 2308356A

Streptomyces reticuli msiK

59.1
79.8
386
ABC transporter ATP-binding protein












(ABC-type sugar transport protein)












or cellobiose/maltose transport












protein


2706
6206
2611523
2612272
750


2707
6207
2611531
2610848
684
prf: 2317468A

Schizosaccharomyces pombe

37.7
72.7
154
dolichol phosphate mannose








dpm1



synthase


2708
6208
2612462
2613151
690


2709
6209
2613712
2614500
789
prf: 2516398E

Rhodococcus rhodochrous

67.2
89.4
207
aldehyde dehydrogenase








plasmid pRTL1 orf5


2710
6210
2614649
2615410
762
prf: 2513418A

Synechococcus sp. PCC7942

48.6
73.8
183
circadian phase modifier








cpmA


2711
6211
2615451
2615795
345


2712
6212
2617120
2615939
1182
pir: A72312

Thermotoga maritima MSB8

35.0
64.6
412
hypothetical membrane protein








TM0964


2713
6213
2617246
2617995
750
sp: GIP_ECOLI

Escherichia coli K12 gip

41.2
69.4
255
glyoxylate-induced protein


2714
6214
2618072
2618869
798
pir: E70761

Mycobacterium tuberculosis

40.0
57.0
258
ketoacyl reductase








H37Rv Rv1544


2715
6215
2618882
2619538
657
sp: ORN_ECOLI

Escherichia coli K12 orn

48.0
78.8
179
oligoribonuclease


2716
6216
2620728
2619541
1188
prf: 2409378A

Salmonella enterica iroD

26.0
50.9
454
ferric enterochelin esterase


2717
6217
2622181
2620973
1209
pir: C70870

Mycobacterium tuberculosis

48.5
71.9
398
lipoprotein








H37Rv Rv2518c lppS


2718
6218
2622961
2623605
645


2719
6219
2623770
2623621
150


2720
6220
2623803
2624048
246


2721
6221
2625358
2624051
1308
gp: SCU53587_1

Corynebacterium glutamicum

99.5
99.8
436
transposase (IS1207)








ATCC 21086


2722
6222
2625600
2625806
207


2723
6223
2626447
2625809
639


2724
6224
2627924
2628376
453
gp: AF085239_1

Salmonella typhimurium KP1001

32.8
63.4
131
transcriptional regulator








cytR


2725
6225
2628121
2626493
1629
sp: GLSK_RAT

Rattus norvegicus SPRAGUE-

35.2
69.3
358
glutaminase








DAWLEY KIDNEY


2726
6226
2628376
2628852
477
pir: A36940

Bacillus subtilis 168 degA

42.3
72.2
97
sporulation-specific degradation












regulator protein


2727
6227
2628878
2628324
555


2728
6228
2628926
2630479
1554
sp: UXAC_ECOLI

Escherichia coli K12 uxaC

29.0
60.9
335
uronate isomerase


2729
6229
2630636
2631136
501


2730
6230
2631270
2632466
1197
prf: 1814452C

Zea diploperennis perennial

32.0
45.0
291
hypothetical protein








teosinte


2731
6231
2632543
2633100
558
prf: 2324444A

Mycobacterium avium pncA

48.1
74.6
185
pyrazinamidase/nicotinamidase


2732
6232
2633418
2633146
273
pir: E70870

Mycobacterium tuberculosis

42.7
80.0
75
hypothetical protein








H37Rv Rv2520c


2733
6233
2633600
2634064
465
sp: BCP_ECOLI

Escherichia coli K12 bcp

46.8
73.8
141
bacterioferritin comigratory protein


2734
6234
2634116
2634751
636
gp: SCI11_1

Streptomyces coelicolor A3(2)

32.5
61.4
114
bacterial regulatory protein, tetR








SCI11.01c



family


2735
6235
2635151
2634747
405
gp: BAY15081_1

Corynebacterium

56.6
75.9
145
phosphopantethiene protein









ammoniagenes ATCC 6871 ppt1




transferase


2736
6236
2636589
2635165
1425
gp: AF237667_1

Corynebacterium glutamicum

52.4
85.6
473
lincomycin resistance protein








lmrB


2737
6237
2636845
2637168
324
pir: S76537

Synechocystis sp. PCC6803

30.1
54.0
113
hypothetical membrane protein


2738
6238
2637653
2637240
414


2739
6239
2647627
2638649
8979
pir: S2047

Corynebacterium

62.3
83.6
3029
fatty-acid synthase









ammoniagenes fas



2740
6240
2649416
2648235
1182
gp: SC4A7_14

Streptomyces coelicolor A3(2)

25.3
55.2
404
hypothetical protein








SC4A7.14


2741
6241
2649550
2650164
615
pir: D70716

Mycobacterium tuberculosis

40.4
60.9
230
peptidase








H37Rv Rv0950c


2742
6242
2650441
2650902
462
sp: Y077_MYCT

Mycobacterium tuberculosis

40.2
67.9
112
hypothetical membrane protein








H37Rv Rv1343c


2743
6243
2650986
2651339
354
sp: Y076_MYCLE

Mycobacterium leprae

37.2
69.0
113
hypothetical membrane protein








B1549_F2_59


2744
6244
2652037
2651420
618
sp: Y03Q_MYCTU

Mycobacterium tuberculosis

55.0
76.7
202
hypothetical protein








H37Rv Rv1341


2745
6245
2652801
2652067
735
sp: RNPH_PSEAE

Pseudomonas aeruginosa

60.2
81.4
236
ribonuclease PH








ATCC 15692 rph


2746
6246
2653254
2653009
246


2747
6247
2654018
2653326
693


2748
6248
2654660
2654079
582


2749
6249
2656236
2654875
1362
sp: Y029_MYCTU

Mycobacterium tuberculosis

29.0
58.2
428
hypothetical membrane protein








H37Rv SC8A6.09c


2750
6250
2656452
2656985
534
gp: AF121000_8

Corynebacterium glutamicum

92.1
97.2
175
transposase (IS1628)








22243 R-plasmid pAG1 tnpB


2751
6251
2657633
2656974
660


2752
6252
2658500
2657736
765
sp: Y03O_MYCLE

Mycobacterium leprae ats

46.0
74.4
250
arylsulfatase


2753
6253
2659457
2658606
852
prf: 2516259A

Corynebacterium glutamicum

99.3
99.3
284
D-glutamate racemase








ATCC 13869 murI


2754
6254
2659496
2660131
636


2755
6255
2660638
2660147
492
gp: SCE22_22

Streptomyces coelicolor A3(2)

44.2
70.8
147
bacterial regulatory protein, marR








SCE22.22



family


2756
6256
2661417
2660671
747
sp: Y03M_MYCTU

Mycobacterium tuberculosis

38.2
69.3
225
hypothetical membrane protein








H37Rv Rv1337


2757
6257
2661565
2662455
891


2758
6258
2662376
2661417
960
pir: A47039

Flavobacterium sp. nylC

30.2
58.3
321
endo-type 6-aminohexanoate












oligomer hydrolase


2759
6259
2662867
2662331
537
sp: Y03H_MYCTU

Mycobacterium tuberculosis

35.0
58.5
200
hypothetical protein








H37Rv Rv1332


2760
6260
2663182
2662883
300
sp: Y03G_MYCTU

Mycobacterium tuberculosis

57.1
77.1
105
hypothetical protein








H37Rv Rv1331


2761
6261
2663437
2664060
624


2762
6262
2664060
2665397
1338
sp: Y03F_MYCTU

Mycobacterium tuberculosis

61.2
80.8
428
hypothetical protein








H37Rv Rv1330c


2763
6263
2665687
2665992
306


2764
6264
2666115
2667854
1740
prf: 1816252A

Escherichia coli dinG

25.2
53.3
647
ATP-dependent helicase


2765
6265
2668760
2667870
891
sp: Y0A8_MYCTU

Mycobacterium tuberculosis

29.7
60.1
313
hypothetical membrane protein








H37Rv Rv2560


2766
6266
2669561
2668839
723
pir: T34684

Streptomyces coelicolor A3(2)

39.0
52.0
222
hypothetical protein








SC1B5.06c


2767
6267
2670573
2669557
1017
sp: SERB_ECOLI

Escherichia coli K12 serB

38.7
61.0
310
phosphoserine phosphatase


2768
6268
2671126
2672721
1596


2769
6269
2672805
2671063
1743
pir: D45335

Mycobacterium tuberculosis

46.8
74.4
575
cytochrome c oxidase chain I








H37Rv Rv3043c


2770
6270
2672950
2673255
306


2771
6271
2674339
2673338
1002
gp: AF112536_1

Corynebacterium glutamicum

99.7
99.7
334
ribonucleotide reductase beta-chain








ATCC 13032 nrdF


2772
6272
2674804
2675289
486
sp: FTNA_ECOLI

Escherichia coli K12 ftnA

31.5
64.2
159
ferritin


2773
6273
2675491
2676240
750
gp: SCA32WHIH_4

Streptomyces coelicolor A3(2)

32.8
60.2
256
sporulation transcription factor








whiH


2774
6274
2676902
2676243
660
pir: I40339

Corynebacterium glutamicum

27.6
60.4
225
iron dependent repressor or








ATCC 13869 dtxR



diptheria toxin repressor


2775
6275
2676940
2677377
438
sp: TIR2_YEAST

Saccharomyces cerevisiae

24.2
62.1
124
cold shock protein TIR2 precursor








YPH148 YOR010C TIR2


2776
6276
2677193
2676918
276
pir: C69281

Archaeoglobus fulgidus AF0251

50.0
86.0
50
hypothetical membrane protein


2777
6277
2679598
2677478
2121
gp: AF112535_3

Corynebacterium glutamicum

99.9
100.0
707
ribonucleotide reductase alpha-








ATCC 13032 nrdE



chain


2778
6278
2680470
2680784
315


2779
6279
2681363
2681223
141
SP: RL36_RICPR

Rickettsia prowazekii

58.0
79.0
41
50S ribosomal protein L36


2780
6280
2681546
2682376
831
sp: NADE_BACSU

Bacillus subtilis 168 nadE

55.6
78.1
279
NH3-dependent NAD(+) synthetase


2781
6281
2681556
2681464
93


2782
6282
2683119
2683616
498


2783
6283
2683125
2682379
747
pir: S76790

Synechocystis sp. PCC6803

30.7
56.4
257
hypothetical protein








str1563


2784
6284
2683418
2683131
288
pir: G70922

Mycobacterium tuberculosis

41.7
68.8
96
hypothetical protein








H37Rv Rv3129


2785
6285
2684646
2683627
1020
sp: ADH2_BACST

Bacillus stearothermophilus

26.1
52.8
337
alcohol dehydrogenase








DSM 2334 adh


2786
6286
2684919
2686289
1371
sp: MMGE_BACSU

Bacillus subtilis 168 mmgE

27.0
56.0
459

Bacillus subtilis mmg (for mother cell













metabolic genes)


2787
6287
2686315
2687148
834
pir: T05174

Arabidopsis thaliana T6K22.50

33.8
66.2
284
hypothetical protein


2788
6288
2688240
2687449
792


2789
6289
2690050
2688389
1662
sp: PGMU_ECOLI

Escherichia coli K12 pgm

61.7
80.6
556
phosphoglucomutase


2790
6290
2690150
2690437
288
pir: F70650

Mycobacterium tuberculosis

41.7
64.3
84
hypothetical membrane protein








H37Rv Rv3069


2791
6291
2690437
2690760
324
pir: D71843

Helicobacter pylori J99 jhp1146

25.4
61.5
122
hypothetical membrane protein


2792
6292
2690773
2691564
792
sp: YCSI_BACSU

Bacillus subtilis 168 ycsI

51.2
79.1
254
hypothetical protein


2793
6293
2691689
2693053
1365
gp: AF126281_1

Rhodococcus erythropolis

24.2
48.6
496
transposase (IS1676)


2794
6294
2693299
2694918
1620
sp: CSP1_CORGL

Corynebacterium glutamicum

24.8
49.6
355
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 csp1


2795
6295
2694926
2695279
354


2796
6296
2695554
2695718
165


2797
6297
2695766
2695320
447


2798
6298
2695812
2697212
1401
gp: AF126281_1

Rhodococcus erythropolis

24.6
46.6
500
transposase (IS1676)


2799
6299
2698150
2697383
768


2800
6300
2699531
2698194
1338
sp: GLTT_BACCA

Bacillus subtilis 168

30.8
66.2
438
proton/sodium-glutamate symport












protein


2801
6301
2700920
2701612
693


2802
6302
2702466
2699926
2541
gp: SCE25_30

Streptomyces coelicolor A3(2)

33.0
69.0
873
ABC transporter








SCE25.30


2803
6303
2702466
2703356
891


2804
6304
2703194
2702487
708
gp: SAU18641_2

Staphylococcus aureus

45.4
79.8
218
ABC transporter ATP-binding protein


2805
6305
2704314
2704586
273
PIR: F81516

Chlamydophila pneumoniae

60.0
67.0
84
hypothetical protein








AR39 CP0987


2806
6306
2704835
2704975
141
PIR: F81737

Chlamydia muridarum Nigg

71.0
75.0
42
hypothetical protein








TC0129


2807
6307
2709878
2710555
678


2808
6308
2710637
2711308
672
prf: 2509388L

Streptomyces collinus Tu 1892

28.1
54.1
196
oxidoreductase or dehydrogenase








ansG


2809
6309
2711850
2712374
525
sp: Y089_MYCTU

Mycobacterium tuberculosis

25.9
51.2
205
methyltransferase








H37Rv Rv0089


2810
6310
2713181
2713453
273
GSP: Y35814

Chlamydia pneumoniae

61.0
66.0
84
hypothetical protein


2811
6311
2713702
2713842
141
PIR: F81737

Chlamydia muridarum Nigg

71.0
75.0
42
hypothetical protein








TC0129


2812
6312
2718187
2717993
195


2813
6313
2719689
2718436
1254
sp: MURA_ACICA

Acinetobacter calcoaceticus

44.8
75.3
417
UDP-N-acetylglucosamine 1-








NCIB 8250 murA



carboxyvinyltransferase


2814
6314
2719750
2720319
570
sp: Y02Y_MYCTU

Mycobacterium tuberculosis

66.3
84.2
190
hypothetical protein








H37Rv Rv1314c


2815
6315
2721227
2720385
843
gp: SC2G5_15

Streptomyces coelicolor A3(2)

45.9
69.0
281
transcriptional regulator








SC2G5.15c


2816
6316
2721702
2721295
408


2817
6317
2721934
2722857
924
sp: CYSK_BACSU

Bacillus subtilis 168 cysK

57.1
84.6
305
cysteine synthase


2818
6318
2723064
2723609
546
prf: 2417357C

Azotobacter vinelandii cysE2

61.1
79.7
172
O-acetylserine synthase


2819
6319
2724057
2723770
288
gp: AE002024_10

Deinococcus radiodurans R1

36.1
65.1
83
hypothetical protein








DR1844


2820
6320
2725359
2724478
882
sp: SUCD_COXBU

Coxiella burnetii Nine Mile Ph I

52.9
79.4
291
succinyl-CoA synthetase alpha








sucD



chain


2821
6321
2725619
2725843
225
PIR: F72706

Aeropyrum pernix K1 APE1069

42.0
43.0
75
hypothetical protein


2822
6322
2726577
2725384
1194
sp: SUCC_BACSU

Bacillus subtilis 168 sucC

39.8
73.0
400
succinyl-CoA synthetase beta chain


2823
6323
2727145
2726786
360


2824
6324
2728133
2727399
735
gp: AF058302_5

Streptomyces roseofulvus frnE

38.5
71.8
213
frenolicin gene E product


2825
6325
2729025
2728207
819


2826
6326
2730916
2729378
1539
sp: CAT1_CLOKL

Clostridium kluyveri cat1 cat1

47.9
77.8
501
succinyl-CoA coenzyme A












transferase


2827
6327
2731376
2732518
1143
sp: NIR3_AZOBR

Azospirillum brasilense ATCC

38.6
68.5
321
transcriptional regulator








29145 ntrC


2828
6328
2732230
2731424
807


2829
6329
2732636
2733367
732
pir: E70810

Mycobacterium tuberculosis

46.5
81.7
213
phosphate transport system








H37Rv Rv0821c phoY-2



regulatory protein


2830
6330
2734351
2733455
897
pir: S68595

Pseudomonas aeruginosa pstB

58.8
82.8
255
phosphate-specific transport












component


2831
6331
2735184
2734264
921
gp: MTPSTA1_1

Mycobacterium tuberculosis

51.4
82.2
292
phosphate ABC transport system








H37Rv Rv0830 pstA1



permease protein


2832
6332
2736215
2735202
1014
pir: A70584

Mycobacterium tuberculosis

50.2
78.5
325
phosphate ABC transport system








H37Rv Rv0829 pstC2



permease protein


2833
6333
2737538
2736414
1125
pir: H70583

Mycobacterium tuberculosis

40.0
56.0
369
phosphate-binding protein S-3








H37Rv phoS2



precursor


2834
6334
2738711
2737836
876
gp: SCD84_18

Streptomyces coelicolor A3(2)

34.3
60.0
315
acetyltransferase








SCD84.18c


2835
6335
2738771
2739553
783


2836
6336
2740650
2739556
1095
sp: BMRU_BACSU

Bacillus subtilis 168 bmrU

24.7
55.2
344
hypothetical protein


2837
6337
2740670
2741356
687
pir: E70809

Mycobacterium tuberculosis

44.9
74.2
225
hypothetical protein








H37Rv Rv0813c


2838
6338
2742577
2741636
942
gp: AF193846_1

Solanum tuberosum BCAT2

28.6
56.0
259
branched-chain amino acid












aminotransferase


2839
6339
2742685
2743785
1101
gp: AB003158_6

Corynebacterium

58.5
79.0
352
hypothetical protein









ammoniagenes ATCC 6872









ORF4


2840
6340
2744010
2744222
213
pir: B70809

Mycobacterium tuberculosis

58.6
81.0
58
hypothetical protein








H37Rv Rv0810c


2841
6341
2745954
2744881
1074
gp: AB003158_5

Corynebacterium

81.0
94.2
347
5′-phosphoribosyl-5-aminoimidazole









ammoniagenes ATCC 6872




synthetase








purM


2842
6342
2747564
2746083
1482
gp: AB003158_4

Corynebacterium

70.3
89.0
482
amidophosphoribosyl transferase









ammoniagenes ATCC 6872









purF


2843
6343
2748057
2747683
375
pir: H70536

Mycobacterium tuberculosis

57.3
75.8
124
hypothetical protein








H37Rv Rv0807


2844
6344
2748095
2749111
1017
gp: AB003158_2

Corynebacterium

75.9
94.0
315
hypothetical protein









ammoniagenes ATCC 6872









ORF2


2845
6345
2749902
2749162
741
gp: AB003158_1

Corynebacterium

67.7
87.1
217
hypothetical membrane protein









ammoniagenes ATCC 6872









ORF1


2846
6346
2751918
2752103
186
GP: SSU18930_214

Sulfolobus solfataricus

64.0
71.0
42
hypothetical protein


2847
6347
2752312
2750027
2286
gp: AB003162_3

Corynebacterium

77.6
89.5
763
5′-phosphoribosyl-N-









ammoniagenes ATCC 6872




formylglycinamidine synthetase








purL


2848
6348
2752402
2753121
720


2849
6349
2752995
2752327
669
gp: AB003162_2

Corynebacterium

80.3
93.3
223
5′-phosphoribosyl-N-









ammoniagenes ATCC 6872




formylglycinamidine synthetase








purQ


2850
6350
2753237
2752995
243
gp: AB003162_1

Corynebacterium

81.0
93.7
79
hypothetical protein









ammoniagenes ATCC 6872









purorf


2851
6351
2753298
2753819
522


2852
6352
2753804
2753328
477
prf: 2420329A

Lactococcus lactis gpo

46.2
77.9
158
gluthatione peroxidase


2853
6353
2753992
2756739
2748
prf: 2216389A

Aeromonas hydrophila JMP636

28.0
51.5
965
extracellular nuclease








nucH


2854
6354
2756851
2757126
276


2855
6355
2757815
2757129
687
pir: C70709

Mycobacterium tuberculosis

37.4
68.7
211
hypothetical protein








H37Rv Rv0784


2856
6356
2759200
2757863
1338
sp: DCTA_SALTY

Salmonella typhimurium LT2

49.0
81.6
414
C4-dicarboxylate transporter








dctA


2857
6357
2761649
2759532
2118
prf: 2408266A

Pseudomonas sp. WO24 dapb1

41.8
70.6
697
dipeptidyl aminopeptidase


2858
6358
2762452
2761829
624


2859
6359
2762675
2761785
891
gp: AB003161_3

Corynebacterium

70.1
89.1
294
5′-phosphoribosyl-4-N-









ammoniagenes ATCC 6872




succinocarboxamide-5-amino








purC



imidazole synthetase


2860
6360
2764931
2763504
1428
gp: AB003161_2

Corynebacterium

85.3
95.0
477
adenylosuccino lyase









ammoniagenes ATCC 6872









purB


2861
6361
2766135
2764978
1158
sp: AAT_SULSO

Sulfolobus solfataricus ATCC

28.1
62.3
395
aspartate aminotransferase








49255


2862
6362
2767420
2766158
1263
gp: AB003161_1

Corynebacterium

71.1
86.4
425
5′-phosphoribosylglycinamide









ammoniagenes ATCC 6872




synthetase








purD


2863
6363
2767580
2767993
414
sp: YHIT_MYCLE

Mycobacterium leprae u296a

53.7
80.2
136
histidine triad (HIT) family protein


2864
6364
2768137
2767703
435


2865
6365
2769095
2768343
753
pir: S62195

Methanosarcina barkeri orf3

26.8
56.4
243
hypothetical protein


2866
6366
2770511
2769156
1356
sp: DTPT_LACLA

Lactococcus lactis subsp. lactis

30.1
67.6
469
di-/tripeptide transpoter








dipT


2867
6367
2770714
2771982
1269
sp: BIOA_CORGL

Corynebacterium glutamicum

95.7
98.8
423
adenosylmethionine-8-amino-7-








(Brevibacterium flavum) MJ233



oxononanoate aminotransferase or








bioA



7,8-diaminopelargonic acid












aminotransferase


2868
6368
2771989
2772660
672
sp: BIOD_CORGL

Corynebacterium glutamicum

98.7
99.6
224
dethiobiotin synthetase








(Brevibacterium flavum) MJ233








bioD


2869
6369
2774098
2772644
1455
gp: AF049873_3

Lactococcus lactis M71plasmid

31.3
70.5
335
two-component system sensor








pND306



histidine kinase


2870
6370
2774814
2774110
705
prf: 2222216A

Thermotoga maritima drrA

42.0
72.7
231
two-component system regulatory












protein


2871
6371
2775689
2774937
753
sp: TIPA_STRLI

Streptomyces lividans tipA

37.4
69.5
249
transcriptional activator


2872
6372
2776879
2775740
1140
prf: 2419350A

Arthrobacter sp. DK-38

30.9
53.9
382
metal-activated pyridoxal enzyme or












low specificity D-Thr aldolase


2873
6373
2778504
2776768
1737
gp: ECOPOXB8G_1

Escherichia coli K12 poxB

46.3
75.8
574
pyruvate oxidase


2874
6374
2778965
2780446
1482
prf: 2212334B

Staphylococcus aureus plasmid

33.3
68.9
504
multidrug efflux protein








pSK23 qacB


2875
6375
2780439
2780969
531
sp: YCDC_ECOLI

Escherichia coli K12 ycdC

30.4
68.5
92
transcriptional regulator


2876
6376
2780996
2782315
1320
pir: D70551

Mycobacterium tuberculosis

45.6
78.4
421
hypothetical membrane protein








H37Rv Rv2508c


2877
6377
2784481
2782340
2142


2878
6378
2785615
2784656
960
gp: AF096929_2

Rhodococcus erythropolis SQ1

34.3
62.1
303
3-ketosteroid dehydrogenase








kstD1


2879
6379
2786355
2785651
705
sp: ALSR_BACSU

Bacillus subtilis 168 alsR

37.1
69.0
232
transcriptional regulator, LysR family


2880
6380
2787782
2788594
813
pir: C70982

Mycobacterium tuberculosis

28.4
52.9
278
hypothetical protein








H37Rv Rv3298c lpqC


2881
6381
2789399
2788587
813
pir: C69862

Bacillus subtilis 168 ykrA

26.7
55.6
288
hypothetical protein


2882
6382
2789935
2789477
459


2883
6383
2790152
2790550
399
pir: A45264

Oryctolagus cuniculus kidney

28.6
50.7
140
hypothetical protein








cortex rBAT


2884
6384
2790946
2792448
1503
pir: B70798

Mycobacterium tuberculosis

36.0
64.0
464
hypothetical membrane protein








H37Rv Rv3737


2885
6385
2792531
2792857
327
pir: S41307

Streptomyces griseus hrdB

32.3
50.3
155
transcription initiation factor sigma


2886
6386
2792873
2794327
1455
sp: TPS1_SCHPO

Schizosaccharomyces pombe

38.8
66.7
487
trehalose-6-phosphate synthase








tps1


2887
6387
2794300
2794812
513


2888
6388
2794870
2795637
768
sp: OTSB_ECOLI

Escherichia coli K12 otsB

27.4
57.6
245
trehalose-phosphatase


2889
6389
2796749
2795676
1074
sp: CCPA_BACME

Bacillus megaterium ccpA

24.7
60.2
344
glucose-resistance amylase












regulator


2890
6390
2796865
2797806
942
sp: ZNUA_HAEIN

Haemophilus influenzae Rd

22.4
46.7
353
high-affinity zinc uptake system








HI0119 znuA



protein


2891
6391
2797820
2798509
690
gp: AF121672_2

Staphylococcus aureus 8325-4

31.4
63.2
223
ABC transporter








mreA


2892
6392
2798837
2799391
555
pir: E70507

Mycobacterium tuberculosis

60.0
87.4
135
hypothetical membrane protein








H37Rv Rv2060


2893
6393
2799535
2801034
1500
pir: A69426

Archaeoglobus fulgidus

23.4
52.5
303
transposase (ISA0963-5)


2894
6394
2801113
2801313
201


2895
6395
2803246
2801558
1689
gp: AF096929_2

Rhodococcus erythropolis SQ1

32.1
62.0
561
3-ketosteroid dehydrogenase








kstD1


2896
6396
2803996
2803250
747


2897
6397
2804691
2804074
618
pir: B72359

Thermotoga maritima MSB8

34.3
56.4
204
lipopolysaccharide biosynthesis








bplA



protein or oxidoreductase or












dehydrogenase


2898
6398
2805110
2804676
435
sp: MI2D_BACSU

Bacillus subtilis 168 idh or iolG

35.2
69.5
128
dehydrogenase or myo-inositol 2-












dehydrogenase


2899
6399
2805967
2805113
855
sp: SHIA_ECOLI

Escherichia coli K12 shiA

30.5
67.5
292
shikimate transport protein


2900
6400
2806441
2806016
426
sp: SHIA_ECOLI

Escherichia coli K12 shiA

43.1
80.8
130
shikimate transport protein


2901
6401
2807252
2806599
654
gp: SC5A7_19

Streptomyces coelicolor A3(2)

32.6
55.7
212
transcriptional regulator








SC5A7.19c


2902
6402
2808364
2807426
939
sp: PT56_YEAST

Saccharomyces cerevisiae

22.8
47.3
334
ribosomal RNA ribose methylase or








YOR201C PET56



tRNA/rRNA methyltransferase


2903
6403
2809778
2808399
1380
sp: SYC_ECOLI

Escherichia coli K12 cysS

42.2
68.8
464
cysteinyl-tRNA synthetase


2904
6404
2811806
2809824
1983
prf: 2511335C

Lactococcus lactis sacB

47.0
77.0
668
PTS system, enzyme II sucrose












protein (sucrose-specific IIABC












component)


2905
6405
2813258
2811960
1299
gp: AF205034_4

Clostridium acetobutylicum

35.3
56.9
473
sucrose 6-phosphate hydrolase or








ATCC 824 scrB



sucrase


2906
6406
2814037
2813279
759
sp: NAGB_ECOLI

Escherichia coli K12 nagB

38.3
69.4
248
glucosamine-6-phosphate












isomerase


2907
6407
2815232
2814081
1152
sp: NAGA_VIBFU

Vibrio furnissii SR1514 manD

30.2
60.3
368
N-acetylglucosamine-6-phosphate












deacetylase


2908
6408
2815458
2816393
936
sp: DAPA_ECOLI

Escherichia coli K12 dapA

28.2
62.1
298
dihydrodipicolinate synthase


2909
6409
2816409
2817317
909
sp: GLK_STRCO

Streptomyces coelicolor A3(2)

28.7
57.6
321
glucokinase








SC6E10.20c glk


2910
6410
2817363
2818058
696
prf: 2516292A

Clostridium perfringens NCTC

36.4
68.6
220
N-acetylmannosamine-6-phosphate








8798 nanE



epimerase


2911
6411
2818313
2818137
177


2912
6412
2819564
2818350
1215
sp: NANH_MICVI

Micromonospora viridifaciens

24.8
50.3
439
sialidase precursor








ATCC 31146 nadA


2913
6413
2820285
2819557
729
gp: AF181498_1

Rhizobium etli ansR

26.6
57.2
222
L-asparagine permease operon












repressor


2914
6414
2820584
2822191
1608
gp: BFU64514_1

Bacillus firmus OF4 dppA

22.5
51.4
560
dipeptide transporter protein or












heme-binding protein


2915
6415
2822387
2823337
951
sp: DPPB_BACFI

Bacillus firmus OF4 dappB

31.9
64.3
342
dipeptide transport system












permease protein


2916
6416
2824274
2825341
1068
sp: OPPD_BACSU

Bacillus subtilis 168 oppD

46.5
78.3
314
oligopeptide transport ATP-binding












protein


2917
6417
2825341
2826156
816
sp: OPPF_LACLA

Lactococcus lactis oppF

43.4
78.7
258
oligopeptide transport ATP-binding












protein


2918
6418
2826835
2826215
621
sp: RHTB_ECOLI

Escherichia coli K12 rhtB

28.5
62.7
193
homoserine/homoserin lactone












efflux protein or lysE type












translocator


2919
6419
2826922
2827404
483
prf: 2309303A

Bradyrhizobium japonicum lrp

31.0
66.2
142
leucine-responsive regulatory












protein


2920
6420
2827817
2827458
360


2921
6421
2828383
2827904
480
pir: C70607

Mycobacterium tuberculosis

55.9
86.2
152
hypothetical protein








H37Rv Rv3581c


2922
6422
2829146
2828379
768
sp: Y18T_MYCTU

Mycobacterium tuberculosis

46.4
71.5
235
hypothetical protein








H37Rv Rv3582c


2923
6423
2829749
2829156
594
pir: H70803

Mycobacterium tuberculosis

73.3
91.1
157
transcription factor








H37Rv Rv3583c


2924
6424
2830057
2830779
723
prf: 2214304A

Mycobacterium tuberculosis

43.5
70.0
223
two-component system response








H37Rv Rv3246c mtrA



regulator


2925
6425
2830779
2831894
1116
sp: BAES_ECOLI

Escherichia coli K12 baeS

29.3
67.7
341
two-component system sensor












histidine kinase


2926
6426
2832085
2832666
582


2927
6427
2832790
2834181
1392
sp: RADA_ECOLI

Escherichia coli K12 radA

41.5
74.3
463
DNA repair protein RadA


2928
6428
2834188
2835285
1098
sp: YACK_BACSU

Bacillus subtilis 168 yacK

40.3
73.3
345
hypothetical protein


2929
6429
2835969
2835283
687
pir: D70804

Mycobacterium tuberculosis

29.4
53.3
231
hypothetical protein








H37Rv Rv3587c


2930
6430
2837499
2836048
1452
gp: PPU96338_1

Pseudomonas putida NCIMB

59.5
85.1
471
p-hydroxybenzaldehyde








9866 plasmid pRA4000



dehydrogenase


2931
6431
2837737
2837591
147


2932
6432
2838576
2837956
621
pir: T08204

Chlamydomonas reinhardtii ca1

36.7
66.2
210
mitochondrial carbonate












dehydratase beta


2933
6433
2838643
2839521
879
gp: AF121797_1

Streptomyces antibioticus IMRU

48.4
70.7
283
A/G-specific adenine glycosylase








3720 mutY


2934
6434
2839562
2840716
1155


2935
6435
2841063
2840758
306


2936
6436
2841075
2841848
774
gp: AB009078_1

Brevibacterium saccharolyticum

99.2
99.6
258
L-2.3-butanediol dehydrogenase


2937
6437
2842130
2842453
324


2938
6438
2842493
2843233
741


2939
6439
2843405
2843716
312


2940
6440
2843722
2843432
291
pir: E70552

Mycobacterium tuberculosis

48.5
69.1
97
hypothetical protein








H37Rv Rv3592


2941
6441
2845139
2845558
420
GSP: Y29188

Pseudomonas aeruginosa

57.0
63.0
99
virulence factor








ORF24222


2942
6442
2845889
2846101
213
GSP: Y29193

Pseudomonas aeruginosa

54.0
55.0
72
virulence factor








ORF25110


2943
6443
2846186
2846506
321
GSP: Y29193

Pseudomonas aeruginosa

74.0
75.0
55
virulence factor








ORF25110


2944
6444
2846940
2844166
2775
sp: MECB_BACSU

Bacillus subtilis 168 mecB

58.5
86.2
832
ClpC adenosine triphosphatase/












ATP-binding proteinase


2945
6445
2847229
2848659
1431
gp: AB035643_1

Bacillus cereus ts-4 impdh

37.1
70.2
469
inosine monophosphate












dehydrogenase


2946
6446
2848769
2849779
1011
pir: JC6117

Rhodococcus rhodochrous nitR

24.7
62.7
316
transcription factor


2947
6447
2850031
2851815
1785
sp: PH2M_TRICU

Trichosporon cutaneum ATCC

33.5
60.9
680
phenol 2-monooxygenase








46490


2948
6448
2852017
2853732
1716


2949
6449
2853769
2855709
1941


2950
6450
2855795
2857516
1722


2951
6451
2859044
2859205
162


2952
6452
2859055
2857613
1443
gp: AF237667_1

Corynebacterium glutamicum

100.0
100.0
481
lincomycin resistance protein








lmrB


2953
6453
2860145
2859195
951
pir: G70807

Mycobacterium tuberculosis

26.7
55.8
240
hypothetical protein








H37Rv Rv3517


2954
6454
2862082
2860505
1578
gp: AB012100_1

Bacillus stearothermophilus lysS

41.7
71.2
511
lysyl-tRNA synthetase


2955
6455
2862929
2862132
798
gp: CGPAN_2

Corynebacterium glutamicum

29.9
52.6
268
pantoate—beta-alanine ligase








ATCC 13032 panC


2956
6456
2863621
2862929
693


2957
6457
2864421
2863624
798


2958
6458
2864848
2864384
465
gp: MLCB2548_4

Mycobacterium leprae

29.0
69.6
138
hypothetical membrane protein








MLCB2548.04c


2959
6459
2865343
2864867
477
sp: HPPK_METEX

Methylobacterium extorquens

42.4
69.0
158
2-amino-4-hydroxy-6-








AM1 folK



hydroxymethyldihydropteridine












pyrophosphokinase


2960
6460
2865735
2865346
390
sp: FOLB_BACSU

Bacillus subtilis 168 folB

38.1
69.5
118
dihydroneopterin aldolase


2961
6461
2866567
2865731
837
gp: AB028656_1

Mycobacterium leprae folP

51.5
75.0
268
dihydropteroate synthase


2962
6462
2867173
2866586
588
sp: GCH1_BACSU

Bacillus subtilis 168 mtrA

60.6
86.2
188
GTP cyclohydrolase I


2963
6463
2867471
2868385
915


2964
6464
2869748
2867169
2580


56.0
69.0
782
cell division protein FtsH


2965
6465
2870444
2869863
582
gp: AF008931_1

Salmonella typhimurium GP660

51.5
83.0
165
hypoxanthine








hprt



phosphoribosyltransferase


2966
6466
2871389
2870499
891
sp: YZC5_MYCTU

Mycobacterium tuberculosis

41.0
66.8
310
cell cycle protein MesJ or cytosine








H37Rv Rv3625c



deaminase-related protein


2967
6467
2872677
2871445
1233
sp: DAC_ACTSP

Actinomadura sp. R39 dac

27.2
51.4
459
D-alanyl-D-alanine












carboxypeptidase


2968
6468
2872926
2873399
474
sp: IPYR_ECOLI

Escherichia coli K12 ppa

49.7
73.6
159
inorganic pyrophosphatase


2969
6469
2873611
2873393
219


2970
6470
2875443
2873905
1539
pir: H70886

Mycobacterium tuberculosis

56.0
80.7
507
spermidine synthase








H37Rv speE


2971
6471
2875832
2875434
399
sp: Y0B1_MYCTU

Mycobacterium tuberculosis

38.6
86.4
132
hypothetical membrane protein








H37Rv Rv2600


2972
6472
2876280
2875870
411
sp: Y0B2_MYCTU

Mycobacterium tuberculosis

36.8
63.2
144
hypothetical protein








H37Rv Rv2599


2973
6473
2876777
2876280
498
sp: Y0B3_MYCTU

Mycobacterium tuberculosis

36.4
60.1
173
hypothetical protein








H37Rv Rv2598


2974
6474
2877385
2876777
609
sp: Y0B4_MYCTU

Mycobacterium tuberculosis

44.6
72.3
202
hypothetical protein








H37Rv Rv2597


2975
6475
2877703
2877455
249
sp: PTBA_BACSU

Bacillus subtilis 168 bgIP

30.3
59.6
89
PTS system, beta-glucosides-












permease II ABC component


2976
6476
2877858
2877595
264


2977
6477
2879710
2878478
1233
gp: AB017795_2

Nocardioides sp. KP7 phdD

38.0
69.6
411
ferredoxin reductase


2978
6478
2879965
2880252
288
gp: SCH69_9

Streptomyces coelicolor A3(2)

46.4
73.2
97
hypothetical protein








SCH69.09c


2979
6479
2880544
2880987
444
prf: 2516298U

Burkholderia pseudomallei ORFE

26.7
59.3
135
bacterial regulatory protein, marR












family


2980
6480
2880998
2884882
3885
prf: 2413335A

Streptomyces roseosporus cpsB

28.4
51.6
1241
peptide synthase


2981
6481
2883304
2881844
1461


2982
6482
2886497
2884935
1563
prf: 2310295A

Escherichia coli K12 padA

35.0
63.7
488
phenylacetaldehyde dehydrogenase


2983
6483
2887833
2886916
918
gp: CJ11168X2_254

Campylobacter jejuni Cj0604

57.3
79.7
241
hypothetical protein


2984
6484
2890185
2890346
162
GP: MSGTCWPA_1

Mycobacterium tuberculosis

62.0
63.0
54
hypothetical protein


2985
6485
2890377
2890553
177
GP: MSGTCWPA_1

Mycobacterium tuberculosis

74.0
80.0
31
hypothetical protein


2986
6486
2890540
2888897
1644
gsp: R94368

Brevibacterium flavum MJ-233

99.5
100.0
548
heat shock protein or chaperon or












groEL protein


2987
6487
2890930
2890751
180


2988
6488
2892138
2890930
1209


2989
6489
2893100
2892138
963


2990
6490
2895085
2893100
1986


2991
6491
2897525
2895072
2454


2992
6492
2900326
2897528
2799


2993
6493
2903920
2900330
3591
prf: 2309326A

Homo sapiens MUC5B

21.7
42.3
1236
hypothetical protein


2994
6494
2906738
2903964
2775


2995
6495
2907250
2906639
612


2996
6496
2907515
2908885
1371
pir: G70870

Mycobacterium tuberculosis

37.1
68.0
447
peptidase








H37Rv Rv2522c


2997
6497
2909210
2909788
579


2998
6498
2909830
2909231
600


2999
6499
2910172
2913228
3057
prf: 2504285B

Staphylococcus aureus mnhA

35.6
68.3
797
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein A or NADH dehydrogenase


3000
6500
2913235
2913723
489
gp: AF097740_3

Bacillus firmus OF4 mrpC

44.2
81.7
104
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein C or cation transport system












protein


3001
6501
2913749
2915416
1668
gp: AF097740_4

Bacillus firmus OF4 mrpD

35.2
72.1
523
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein D


3002
6502
2915482
2915922
441
gp: AF097740_5

Bacillus firmus OF4 mrpE

26.7
60.9
161
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein E


3003
6503
2915929
2916201
273
prf: 2416476G

Rhizobium meliloti phaF

32.5
66.2
77
K+ efflux system or multiple












resistance and pH regulation related












protein F


3004
6504
2916205
2916582
378
prf: 2504285H

Staphylococcus aureus mnhG

25.6
63.6
121
Na+/H+ antiporter or multiple












resistance and pH regulation related












protein G


3005
6505
2917617
2917024
594
pir: D70594

Mycobacterium tuberculosis

24.7
54.5
178
hypothetical protein








H37Rv lipV


3006
6506
2918757
2917630
1128
sp: YBDK_ECOLI

Escherichia coli K12 ybdK

27.0
61.7
334
hypothetical protein


3007
6507
2919481
2918819
663


3008
6508
2919715
2920293
579
sp: DEF_BACSU

Bacillus subtilis 168 def

37.5
60.9
184
polypeptide deformylase


3009
6509
2919741
2919490
252
pir: D70631

Mycobacterium tuberculosis

47.9
70.4
71
hypothetical protein








H37Rv Rv0430


3010
6510
2920286
2921290
1005
pir: B70631

Mycobacterium tuberculosis

31.3
54.2
339
acetyltransferase (GNAT) family or








H37Rv Rv0428c



N terminal acetylating enzyme


3011
6511
2920476
2919808
669


3012
6512
2920849
2920220
630


3013
6513
2921320
2922108
789
gp: AF108767_1

Salmonella typhimurium LT2

30.8
59.9
31
exodeoxyrlbonuclease III or








xthA



exonuclease


3014
6514
2922118
2923617
1500
gp: BFU88888_2

Bacillus firmus OF4 cls

27.9
62.0
513
cardiolipin synthase


3015
6515
2924191
2924844
654


3016
6516
2925147
2923954
1194
sp: BCR_ECOLI

Escherichia coli K12 bcr

31.6
67.2
393
membrane transport protein or












bicyclomycin resistance protein


3017
6517
2925541
2926704
1164
gp: VCAJ10968_1

Vibrio cholerae JS1569 nptA

28.5
68.9
382
sodium dependent phosphate pump


3018
6518
2927546
2926707
840
sp: PHZC_PSEAR

Pseudomonas aureofaciens 30-84

38.8
56.4
289
phenazine biosynthesis protein








phzC


3019
6519
2928283
2927651
633


3020
6520
2928318
2927551
768
gp: SCE8_16

Streptomyces coelicolor A3(2)

24.3
60.8
255
ABC transporter








SCE8.16c


3021
6521
2929237
2928302
936
sp: BCRA_BACLI

Bacillus licheniformis ATCC

36.9
66.3
309
ABC transporter ATP-binding protein








9945A bcrA


3022
6522
2929756
2929256
501
pir: C70629

Mycobacterium tuberculosis

47.6
68.5
168
mutator mutT protein








H37Rv Rv0413


3023
6523
2929951
2931336
1386
pir: B70629

Mycobacterium tuberculosis

35.0
70.2
423
hypothetical membrane protein








H37Rv Rv0412c


3024
6524
2931340
2932371
1032
sp: GLNH_BACST

Bacillus stearothermophilus

31.5
64.8
270
glutamine-binding protein precursor








NUB36 glnH


3025
6525
2932577
2934829
2253
plr: H70628

Mycobacterium tuberculosis

41.2
63.5
805
serine/threonine kinase








H37Rv Rv0410c pknG


3026
6526
2933398
2932652
747


3027
6527
2938403
2939767
1365
sp: ADRO_BOVIN

Bos taurus

37.2
67.8
457
ferredoxin/ferredoxin-NADP












reductase


3028
6528
2939907
2940452
546
sp: ELAA_ECOLI

Escherichia coli K12 elaA

34.0
60.3
156
acetyltransferase (GNAT) family


3029
6529
2941508
2940447
1062


3030
6530
2942500
2941472
1029


3031
6531
2943007
2942609
399


3032
6532
2944205
2943012
1194
sp: PURT_BACSU

Bacillus subtills 168 purT

59.1
82.6
379
phosphoribosylglycinamide












formyltransferase


3033
6533
2946526
2945639
888


3034
6534
2947591
2946698
894
pir: S60890

Corynebacterium glutamicum

77.6
90.9
295
insertion element (IS3 related)








orf2


3035
6535
2947886
2947620
267
pir: S60889

Corynebacterium glutamicum

67.4
84.3
89
insertion element (IS3 related)








orf1


3036
6536
2949188
2948049
1140
gp: AB016841_1

Streptomyces thermoviolaceus

22.4
51.3
349
two-component system sensor








opc-520 chiS



histidine kinase


3037
6537
2949882
2949265
618
sp: DEGU_BACBR

Bacillus brevis ALK36 degU

31.7
65.6
218
transcriptional regulator


3038
6538
2950207
2950431
225


3039
6539
2951723
2950434
1290
gp: AB003160_1

Corynebacterium

89.7
95.3
427
adenylosuccinate synthetase









ammoniagenes purA



3040
6540
2951933
2952691
759
pir: G70575

Mycobacterium tuberculosis

34.3
59.3
204
hypothetical protein








H37Rv Rv0358


3041
6541
2952709
2952972
264


3042
6542
2954141
2952975
1167
sp: YFDA_CORGL

Corynebacterium glutamicum

100.0
100.0
359
hypothetical membrane protein








AS019 ATCC 13059 ORF3


3043
6543
2955272
2954241
1032
pir: S09283

Corynebacterium glutamicum

99.7
100.0
344
fructose-bisphosphate aldolase








AS019 ATCC 13059 fda


3044
6544
2956473
2955523
951
gp: CGFDA_1

Corynebacterium glutamicum

100.0
100.0
304
hypothetical protein








AS019 ATCC 13059 ORF1


3045
6545
2957447
2956830
618
pir: G70833

Mycobacterium tuberculosis

76.9
91.2
182
methyltransferase








H37Rv Rv0380c


3046
6546
2958036
2957485
552
gp: AF058713_1

Pyrococcus abyssi pyrE

39.1
65.5
174
orotate phosphoribosyltransferase


3047
6547
2959110
2958139
972
pir: B70834

Mycobacterium tuberculosis

27.6
60.0
250
hypothetical protein








H37Rv Rv0383c


3048
6548
2960371
2959520
852
sp: THTM_HUMAN

Homo sapiens mpsT

29.6
56.1
294
3-mercaptopyruvate












sulfurtransferase


3049
6549
2961187
2960468
720


3050
6550
2963008
2962730
279


3051
6551
2963596
2963198
399


3052
6552
2964258
2964434
177
GSP: Y29188

Pseudomonas aeruginosa

76.0
82.0
59
virulence factor








ORF24222


3053
6553
2965076
2965837
762
GSP: Y29182

Pseudomonas aeruginosa

38.0
55.0
200
virulence factor








ORF23228


3054
6554
2965188
2965583
396
GSP: Y29193

Pseudomonas aeruginosa

62.0
63.0
132
virulence factor








ORF25110


3055
6555
2967804
2966458
1347
pir: S76683

Synechocystis sp. PCC6803

24.7
54.8
489
sodium/glutamate symport carrier








slr0625



protein


3056
6556
2968403
2968789
387
sp: CADF_STAAU

Staphylococcus aureus cadC

37.0
71.3
108
cadmium resistance protein


3057
6557
2968951
2969808
858
pir: H75109

Pyrococcus abyssi Orsay

23.7
63.3
283
cation efflux system protein








PAB0462



(zinc/cadmium)


3058
6558
2969834
2971003
1170
gp: AB010439_1

Rhodococcus rhodochrous

22.5
45.4
476
monooxygenase or oxidoreductase








IFO3338



or steroid monooxygenase


3059
6559
2971017
2972057
1041
sp: LUXA_KRYAS

Kryptophanaron alfredi symbiont

21.1
47.4
399
alkanal monooxygenase alpha chain








luxA


3060
6560
2972099
2971338
762


3061
6561
2973205
2972060
1146
sp: METB_ECOLI

Escherichia coli K12 metB

36.5
62.4
375
cystathionine gamma-lyase


3062
6562
2973796
2973230
567
gp: SC1A2_11

Streptomyces coelicolor A3(2)

40.2
67.9
184
bacterial regulatory protein, lacl








SC1A2.11



family


3063
6563
2973961
2974200
240
gp: SCE20_34

Streptomyces coelicolor A3(2)

49.4
65.2
89
rifampin ADP-ribosyl transferase








SCE20.34c arr


3064
6564
2974200
2974382
183
gp: SCE20_34

Streptomyces coelicolor A3(2)

73.2
87.5
56
rifampin ADP-ribosyl transferase








SCE20.34c arr


3065
6565
2974467
2975591
1125
pir: E70812

Mycobacterium tuberculosis

30.5
56.2
361
hypothetical protein








H37Rv Rv0837c


3066
6566
2975629
2976360
732
pir: D70812

Mycobacterium tuberculosis

33.8
64.7
204
hypothetical protein








H37Rv Rv0836c


3067
6567
2976596
2977774
1179
pir: D70834

Mycobacterium tuberculosis

31.9
60.6
386
oxidoreductase








H37Rv Rv0385


3068
6568
2978644
2977847
798
pir: B69109

Methanobacterium

32.0
67.3
275
N-carbamoyl-D-amino acid









thermoautotrophicum Delta H




amidohydrolase








MTH1811


3069
6569
2978737
2978979
243


3070
6570
2978982
2980115
1134
gp: SC4A7_3

Streptomyces coelicolor A3(2)

28.0
55.4
289
hypothetical protein








SC4A7.03


3071
6571
2980887
2981216
330
GP: ABCARRA_2

Azospirillum brasilense carR

38.0
44.0
108
novel two-component regulatory












system


3072
6572
2981698
2980181
1518
prf: 2104333D

Rhodococcus erythropolis thcA

69.6
90.3
507
aldehyde dehydrogenase


3073
6573
2982460
2982023
438
gp: SAU43299_2

Streptomyces albus G hspR

47.4
70.4
135
heat shock transcription regulator


3074
6574
2983679
2982495
1185
sp: DNAJ_MYCTU

Mycobacterium tuberculosis

56.7
80.1
397
heat shock protein dnaJ








H37Rv RV0352 dnaJ


3075
6575
2984522
2983887
636
sp: GRPE_STRCO

Streptomyces coelicolor grpE

38.7
66.5
212
nucleotide exchange factor grpE












protein bound to the ATPase domain












of the molecular chaperone DnaK


3076
6576
2986397
2984544
1854
gsp: R94587

Brevibacterium flavum MJ-233

99.8
99.8
618
heat shock protein dnaK








dnaK


3077
6577
2986833
2988164
1332
gp: SCF6_8

Streptomyces coelicolor A3(2)

42.6
79.0
338
hypothetical membrane protein








SCF6.09


3078
6578
2988846
2988214
633
sp: PFS_HELPY

Helicobacter pylori HP0089 mtn

27.2
60.0
195
5′-methylthioadenosine












nucleosidase and S-












adenosylhomocysteine nucleosidase


3079
6579
2990045
2988846
1200


3080
6580
2991718
2992602
885


3081
6581
2993286
2989954
3333
sp: CUT3_SCHPO

Schizosaccharomyces pombe

18.9
48.4
1311
chromosome segregation protein








cut3


3082
6582
2993921
2993286
636


3083
6583
2995405
2993921
1485


3084
6584
2996781
2995747
1035
sp: ADH2_BACST

Bacillus stearothermophilus

50.0
81.7
334
alcohol dehydrogenase








DSM 2334 adh


3085
6585
2997151
2997366
216


3086
6586
2997687
2997481
207


3087
6587
2997688
2997876
189


3088
6588
2998223
2997963
261


3089
6589
2999454
2998528
927
pir: F69997

Bacillus subtilis ytnM

43.5
70.1
301
hypothetical membrane protein


3090
6590
3000200
2999478
723
gp: SC7A8_10

Streptomyces coelicolor A3(2)

32.5
53.2
252
hypothetical protein








SC7A8.10c


3091
6591
3001512
3002426
915


3092
6592
3001539
3000241
1299
sp: CYSN_ECOLI

Escherichia coli K12 cysN

47.3
78.3
414
sulfate adenylyltransferase, subunit 1


3093
6593
3002453
3001542
912
sp: CYSD_ECOLI

Escherichia coli K12 cysD

46.1
70.1
308
sulfate adenylyltransferase small












chain


3094
6594
3003145
3002453
693
sp: CYH1_BACSU

Bacillus subtilis cysH

39.2
64.2
212
phosphoadenosine phosphosulfate












reductase


3095
6595
3005162
3003480
1683
sp: NIR_SYNP7

Synechococcus sp. PCC 7942

34.5
65.5
502
ferredoxin—nitrate reductase


3096
6596
3005545
3006915
1371
sp: ADRO_YEAST

Saccharomyces cerevisiae

30.8
61.4
487
ferredoxin/ferredoxin-NADP








FL200 arh1



reductase


3097
6597
3007294
3008376
1083
prf: 2420294J

Homo sapiens hypE

32.6
59.7
144
huntingtin interactor


3098
6598
3008689
3008453
237


3099
6599
3008770
3009303
534


3100
6600
3009162
3008749
414
sp: PHNB_ECOLI

Escherichia coli K12 phnB

26.8
59.9
142
alkylphosphonate uptake protein












and C-P lyase activity


3101
6601
3009242
3009607
366
gp: SCE68_10

Streptomyces coelicolor A3(2)

50.0
66.3
80
hypothetical protein








SCE68.10


3102
6602
3010231
3009710
522
gp: PPAMOA_1

Pseudomonas putida DSMZ ID

39.1
76.4
161
ammonia monooxygenase








88-260 amoA


3103
6603
3010659
3010979
321


3104
6604
3010926
3010441
486


3105
6605
3010989
3011273
285
SP: YTZ3_AGRVI

Agrobacterium vitis ORFZ3

41.0
58.0
68
hypothetical protein


3106
6606
3011805
3011242
564


3107
6607
3012809
3011808
1002
sp: YGB7_ALCEU

Alcaligenes eutrophus H16

26.1
57.9
337
hypothetical protein








ORF7


3108
6608
3013798
3013106
693
gp: HIU68399_3

Haemophilus influenzae hmcB

35.7
64.8
199
ABC transporter


3109
6609
3014550
3013837
714
gp: HIU68399_3

Haemophilus influenzae hmcB

39.3
73.0
211
ABC transporter


3110
6610
3014616
3015824
1209
pir: A69778

Bacillus subtilis ydeG

30.8
67.8
416
metabolite transport protein homolog


3111
6611
3015469
3014648
822


3112
6612
3016238
3016924
687


3113
6613
3017149
3015827
1323
sp: DAPE_ECOLI

Escherichia coli K12 msgB

21.5
48.5
466
succinyl-diaminopimelate












desuccinylase


3114
6614
3017316
3019220
1905


3115
6615
3017539
3018312
774


3116
6616
3018181
3017420
762


3117
6617
3019076
3018123
954
GPU: DCA297422_1

Daucus carota

33.0
46.0
114
dehydrin-like protein


3118
6618
3020609
3019542
1068
sp: MALK_ECOLI

Escherichia coli K12 malK

24.9
50.1
373
maltose/maltodextrin transport ATP-












binding protein


3119
6619
3021202
3020561
642


3120
6620
3021825
3021208
618
gp: AF036485_6

Lactococcus lactis Plasmid

30.2
67.6
179
cobalt transport protein








pNZ4000 Orf-200 cbiM


3121
6621
3022928
3022113
816
sp: FRP_VIBHA

Vibrio harveyi MAV frp

37.2
71.4
231
NADPH-flavin oxidoreductase


3122
6622
3023900
3022998
903
sp: IUNH_CRIFA

Crithidia fasciculata iunH

28.4
59.3
317
inosine-uridine preferring nucleoside












hydrolase


3123
6623
3024379
3025353
975
gp: SCE20_8

Streptomyces coelicolor A3(2)

31.2
59.4
276
hypothetical membrane protein








SCE20.08c


3124
6624
3025552
3026139
588
sp: 3MG1_ECOLI

Escherichia coli K12 tag

50.3
78.8
179
DNA-3-methyladenine glycosylase


3125
6625
3027299
3026142
1158
sp: HMPA_ALCEU

Alcaligenes eutrophus H16 fhp

33.5
63.8
406
flavohemoprotein


3126
6626
3027561
3028163
603


3127
6627
3028268
3028891
624
gp: SCO276673_18

Streptomyces coelicolor A3(2)

34.8
63.8
210
oxidoreductase








mmyQ


3128
6628
3028878
3029033
156


3129
6629
3029474
3028884
591
sp: BGLG_ECOLI

Escherichia coli K12 bglC

28.1
69.3
192
transcription antiterminator or beta-












glucoside positive regulatory protein


3130
6630
3029504
3029782
279


3131
6631
3030061
3029702
360
sp: ABGA_CLOLO

Clostridium longisporum B6405

43.7
59.9
167
6-phospho-beta-glucosidase








abgA


3132
6632
3030155
3030535
381


3133
6633
3030340
3030101
240
sp: ABGA_CLOLO

Clostridium longisporum B6405

43.9
78.8
66
6-phospho-beta-glucosidase








abgA


3134
6634
3030723
3031979
1257
gp: L78665_2

Methylobacillus flagellatus aat

53.7
80.9
402
aspartate aminotransferase


3135
6635
3032647
3032348
300


3136
6636
3032661
3033863
1203
gp: AF189147_1

Corynebacterium glutamicum

100.0
100.0
401
transposase (ISCg2)








ATCC 13032 tnp


3137
6637
3034181
3035437
1257
gp: SCQ11_10

Streptomyces coelicolor A3(2)

33.6
70.2
399
hypothetical membrane protein








SCQ11.10c


3138
6638
3034287
3034105
183


3139
6639
3036756
3035440
1317
prf: 2422381B
SinoRhizobium meliloti rkpK
40.5
72.2
442
UDP-glucose dehydrogenase


3140
6640
3037411
3036845
567
sp: DCD_ECOLI

Escherichia coli K12 dcd

43.6
72.3
188
deoxycytidine triphosphate












deaminase


3141
6641
3037675
3037911
237


3142
6642
3038172
3038942
771
gp: SCC75A_16

Streptomyces coelicolor A3(2)

30.6
59.4
229
hypothetical protein








SCC75A.16c


3143
6643
3040681
3038993
1689


3144
6644
3041932
3040748
1185
gp: AB008771_1

Streptomyces thermoviolaceus

28.5
58.1
410
beta-N-Acetylglucosaminidase








nagA


3145
6645
3041994
3042437
444


3146
6646
3042503
3042703
201


3147
6647
3042660
3045788
3129
gp: MLCB1883_7

Mycobacterium leprae

29.6
49.4
1416
hypothetical protein








MLCB1883.13c


3148
6648
3043642
3043022
621


3149
6649
3045796
3045990
195


3150
6650
3047146
3048048
903
gp: MLCB1883_4

Mycobacterium leprae

24.8
47.1
363
hypothetical membrane protein








MLCB1883.05c


3151
6651
3047189
3046122
1068
pir: JC4001

Streptomyces sp. acyA

27.7
51.0
408
acyltransferase or macrolide 3-O-












acyltransferase


3152
6652
3047904
3047197
708


3153
6653
3048058
3049479
1422
gp: MLCB1883_3

Mycobacterium leprae

31.2
54.8
529
hypothetical membrane protein








MLCB1883.04c


3154
6654
3050522
3051190
669


3155
6655
3050592
3049456
1137
pir: G70961

Mycobacterium tuberculosis

53.4
79.1
369
hexosyltransferase








H37Rv Rv0225


3156
6656
3051194
3051964
771
pir: F70961

Mycobacterium tuberculosis

58.6
73.3
251
methyl transferase








H37Rv Rv0224c


3157
6657
3053891
3052062
1830
sp: PPCK_NEOFR

Neocallimastix frontalis pepck

54.7
78.5
601
phosphoenolpyruvate carboxykinase












(GTP)


3158
6658
3054759
3055769
1011
pir: E75125

Pyrococcus abyssi Orsay

24.4
52.7
332
C4-dicarboxylate transporter








PAB2393


3159
6659
3055867
3056631
765
sp: YGGH_ECOLI

Escherichia coli K12 yggH

35.7
67.2
241
hypothetical protein


3160
6660
3056613
3057317
705
pir: E70959

Mycobacterium tuberculosis

69.1
85.0
207
hypothetical protein








H37Rv Rv0207c


3161
6661
3057328
3059643
2316
pir: C70839

Mycobacterium tuberculosis

42.3
72.3
768
mebrane transport protein








H37Rv Rv0206c mmpL3


3162
6662
3059517
3058096
1422


3163
6663
3059651
3060733
1083
pir: A70839

Mycobacterium tuberculosis

29.1
62.9
364
hypothetical membrane protein








H37Rv Rv0204c


3164
6664
3060733
3061095
363
pir: H70633

Mycobacterium tuberculosis

34.3
69.4
108
hypothetical membrane protein








H37Rv Rv0401


3165
6665
3062927
3061380
1548
gp: AF113605_1

Streptomyces coelicolor A3(2)

49.7
76.9
523
propionyl-CoA carboxylase complex








pccB



B subunit


3166
6666
3067780
3062951
4830
sp: ERY1_SACER

Streptomyces erythraeus eryA

30.2
54.2
1747
polyketide synthase


3167
6667
3069930
3068143
1788
prf: 2310345A

Mycobacterium bovis BCG

33.5
62.3
592
acyl-CoA synthase


3168
6668
3071140
3070214
927
pir: F70887

Mycobacterium tuberculosis

39.8
67.4
319
hypothetical protein








H37Rv Rv3802c


3169
6669
3071644
3071147
498


3170
6670
3073620
3071650
1971
sp: CSP1_CORGL

Corynebacterium glutamicum

98.6
99.5
657
major secreted protein PS1 protein








(Brevibacterium flavum) ATCC



precursor








17965 cop1


3171
6671
3074047
3075447
1401


3172
6672
3074075
3073857
219


3173
6673
3076562
3075540
1023
sp: A85C_MYCTU

Mycobacterium tuberculosis

36.3
62.5
331
antigen 85-C








ERDMANN RV0129C fbpC


3174
6674
3078772
3076715
2058
pir: A70888

Mycobacterium tuberculosis

37.5
61.2
667
hypothetical membrane protein








H37Rv Rv3805c


3175
6675
3079848
3078853
996
sp: NOEC_AZOCA
Azorhizobium caulinodans
27.1
51.5
295
nodulation protein








ORS571 noeC


3176
6676
3080351
3079848
504
pir: C70888

Mycobacterium tuberculosis

51.2
75.0
168
hypothetical protein








H37Rv Rv3807c


3177
6677
3082311
3080344
1968
pir: D70888

Mycobacterium tuberculosis

55.6
74.7
656
hypothetical protein








H37Rv Rv3808c


3178
6678
3082467
3083960
1494


3179
6679
3084411
3083935
477
sp: BCRC_BACLI

Bacillus licheniformis ATCC

28.2
56.5
170
phosphatidic acid phosphatase








9945A bcrC


3180
6680
3085200
3084424
777


3181
6681
3085727
3085218
510


3182
6682
3085747
3087048
1302
sp: FMO1_PIG

Sus scrofa fmo1

24.4
50.4
377
dimethylaniline monooxygenase (N-












oxide-forming)


3183
6683
3087665
3088276
612


3184
6684
3088303
3087101
1203
sp: GLF_ECOLI

Escherichia coli K12 glf

43.2
72.9
377
UDP-galactopyranose mutase


3185
6685
3088616
3090664
2049
pir: G70520

Mycobacterium tuberculosis

29.6
47.8
659
hypothetical protein








H37Rv Rv3811 csp


3186
6686
3092286
3090760
1527
sp: GLPK_PSEAE

Pseudomonas aeruginosa

51.7
78.8
499
glycerol kinase








ATCC 15692 glpK


3187
6687
3093175
3092342
834
pir: A70521

Mycobacterium tuberculosis

41.6
70.3
279
hypothetical protein








H37Rv Rv3813c


3188
6688
3094050
3093175
876
pir: D70521

Mycobacterium tuberculosis

46.7
72.0
261
acyltransferase








H37Rv Rv3816c


3189
6689
3095343
3094078
1266
gsp: W26465

Mycobacterium tuberculosis

70.2
87.6
419
seryl-tRNA synthetase








H37Rv


3190
6690
3095574
3096287
714
sp: FARR_ECOLI

Escherichia coli K12 farR

27.7
61.7
235
transcriptional regulator, GntR family












or fatty acyl-responsive regulator


3191
6691
3096311
3097423
1113
pir: H70652

Mycobacterium tuberculosis

32.6
61.2
356
hypothetical protein








H37Rv Rv3835


3192
6692
3097423
3097764
342
pir: A70653

Mycobacterium tuberculosis

46.0
79.7
113
hypothetical protein








H37Rv Rv3836


3193
6693
3097878
3097780
99


3194
6694
3098572
3097904
669
gp: AMU73808_1

Amycolatopsis methanolica pgm

37.2
62.8
218
2,3-PDG dependent












phosphoglycerate mutase


3195
6695
3098825
3099454
630


3196
6696
3099556
3100698
1143
prf: 2501285A

Mycobacterium smegmatis pzaA

27.4
50.9
460
nicotinamidase or pyrazinamidase


3197
6697
3100698
3101426
729


3198
6698
3101734
3102768
1035
gp: SC6G4_33

Streptomyces coelicolor A3(2)

31.6
57.1
380
transcriptional regulator








SC6G4.33


3199
6699
3101863
3101744
120


3200
6700
3102630
3102079
552


3201
6701
3102894
3103763
870


3202
6702
3103926
3104252
327
pir: B26872

Streptomyces lavendulae

43.9
81.3
107
hypothetical protein








ORF372


3203
6703
3104406
3105719
1314
sp: AMYH_YEAST

Saccharomyces cerevisiae

28.7
55.3
432
glucan 1,4-alpha-glucosidase








S288C YIR019C sta1


3204
6704
3106970
3106053
918


3205
6705
3107769
3106951
819
sp: GLPQ_BACSU

Bacillus subtilis glpQ

29.0
54.1
259
glycerophosphoryl diester












phosphodiesterase


3206
6706
3108131
3109519
1389
sp: GNTP_BACSU

Bacillus subtilis gntP

37.3
71.9
456
gluconate permease


3207
6707
3109464
3108823
642


3208
6708
3109845
3110003
159


3209
6709
3112080
3110464
1617
sp: KPYK_CORGL

Corynebacterium glutamicum

25.5
47.7
491
pyruvate kinase








AS019 pyk


3210
6710
3113390
3112449
942
gsp: Y25997

Brevibacterium flavum lctA

99.7
99.7
314
L-lactate dehydrogenase


3211
6711
3113619
3115394
1776
pir: C70893

Mycobacterium tuberculosis

33.5
64.8
526
hypothetical protein








H37Rv Rv1069c


3212
6712
3115407
3116042
636
gp: SC1C2_30

Streptomyces coelicolor A3(2)

32.1
58.5
224
hydrolase or haloacid








SC1C2.30



dehalogenase-like hydrolase


3213
6713
3116079
3116621
543
gp: AF030288_1

Brevibacterium linens ORF1

39.9
67.6
188
efflux protein








tmpA


3214
6714
3116640
3117332
693
sp: GLCC_ECOLI

Escherichia coli K12 MG1655

27.6
57.0
221
transcription activator or








glcC



transcriptional regulator GntR family


3215
6715
3117336
3118121
786
pir: B70885

Mycobacterium tuberculosis

47.8
68.6
255
phosphoesterase








H37Rv Rv2795c


3216
6716
3118284
3119582
1299
sp: SHIA_ECOLI

Escherichia coli K12 shiA

37.9
74.4
422
shikimate transport protein


3217
6717
3119665
3120879
1215
prf: 2219306A

Neisseria meningitidis lldA

40.4
68.9
376
L-lactate dehydrogenase or FMN-












dependent dehydrogenase


3218
6718
3120909
3121313
405


3219
6719
3121598
3121909
312
sp: RPC_BPPH1

Bacillus phage phi-105 ORF1

45.5
80.0
55
immunity repressor protein


3220
6720
3122129
3121992
138


3221
6721
3123222
3123932
711


3222
6722
3124172
3122556
1617
gp: CELY51B11A_1

Caenorhabditis elegans

29.5
51.3
569
phosphatase or reverse








Y51B11A.1



transcriptase (RNA-dependent)


3223
6723
3124886
3124341
546


3224
6724
3125298
3124897
402
sp: ILL1_ARATH

Arabidopsis thaliana ill1

36.9
63.1
122
peptidase or IAA-amino acid












hydrolase


3225
6725
3125343
3125492
150


3226
6726
3126145
3125495
651
sp: PMSR_ECOLI

Escherichia coli B msrA

47.6
69.1
210
peptide methionine sulfoxide












reductase


3227
6727
3126392
3126991
600
pir: I40858

Corynebacterium

82.3
92.7
164
superoxide dismutase (Fe/Mn)









pseudodiphtheriticum sod



3228
6728
3128417
3127494
924
sp: GLTC_BACSU

Bacillus subtilis gltC

32.5
65.8
292
transcriptional regulator


3229
6729
3128606
3129739
1134
gp: AF121000_10

Corynebacterium glutamicum

23.4
49.0
384
multidrug resistance transporter








tetA


3230
6730
3129785
3131395
1611


3231
6731
3132920
3133030
111


3232
6732
3133028
3131508
1521


3233
6733
3133115
3133747
633
pir: G70654

Mycobacterium tuberculosis

33.8
64.8
216
hypothetical protein








H37Rv Rv3850


3234
6734
3135268
3133778
1491
prf: 2508244AB

Streptomyces cyanogenus lanJ

27.3
59.3
447
membrane transport protein


3235
6735
3135297
3135752
456
sp: YXAD_BACSU

Bacillus subtilis 168 yxaD

37.2
65.0
137
transcriptional regulator


3236
6736
3136491
3135856
636
prf: 2518330B

Corynebacterium diphtheriae

50.9
75.5
212
two-component system response








chrA



regulator


3237
6737
3136920
3137558
639


3238
6738
3137884
3138471
588


3239
6739
3137903
3136593
1311
prf: 2518330A

Corynebacterium diphtheriae

30.2
64.5
408
two-component system sensor








chrS



histidine kinase


3240
6740
3138630
3138481
150
gp: SCH69_22

Streptomyces coelicolor A3(2)

45.8
79.2
48
hypothetical protein








SCH69.22c


3241
6741
3139455
3138634
822
gp: SCH69_20

Streptomyces coelicolor A3(2)

30.0
59.2
277
hypothetical protein








SCH69.20c


3242
6742
3139651
3140952
1302
sp: SP3J_BACSU

Bacillus subtilis spolllJ

26.0
53.6
265
stage III sporulation protein


3243
6743
3141523
3140885
639
pir: C70948

Mycobacterium tuberculosis

32.3
60.9
192
transcriptional repressor








H37Rv Rv3173c


3244
6744
3141969
3141709
261
sp: TAG1_ECOLI

Escherichia coli K12.MG1655

34.5
71.3
87
transglycosylase-associated protein








tag 1


3245
6745
3143356
3142454
903
sp: YW12_MYCTU

Mycobacterium tuberculosis

41.2
69.6
296
hypothetical protein








H37Rv Rv2005c


3246
6746
3144482
3143496
987
sp: YHBW_ECOLI

Escherichia coli K12 MG1655

38.5
73.9
314
hypothetical protein








yhbW


3247
6747
3144661
3145626
966
sp: YBC5_CHLVI

Chlorobium vibrioforme ybc5

28.4
51.2
334
RNA pseudouridylate synthase


3248
6748
3146569
3146841
273
GSP: Y35814

Chlamydia pneumoniae

61.0
66.0
84
hypothetical protein


3249
6749
3147090
3147230
141
PIR: F81737

Chlamydia muridarum Nigg

71.0
75.0
42
hypothetical protein








TC0129


3250
6750
3151575
3151369
207


3251
6751
3152204
3151842
363
sp: GLCC_ECOLI

Escherichia coli K12 MG1655

30.3
56.0
109
bacterial regulatory protein, gntR








glcC



family or glc operon transcriptional












activator


3252
6752
3152413
3153828
1416
gp: SC4G6_31

Streptomyces coelicolor

26.0
48.2
488
hypothetical protein








SC4G6.31c


3253
6753
3154766
3153894
873
sp: 35KD_MYCTU

Mycobacterium tuberculosis

48.3
78.7
267
hypothetical protein








H37Rv Rv2744c


3254
6754
3154817
3154969
153


3255
6755
3156697
3155246
1452


3256
6756
3157373
3156306
1068


3257
6757
3157471
3157223
249


3258
6758
3157787
3157479
309


3259
6759
3158124
3158834
711
gp: SCD35_11

Streptomyces coelicolor A3(2)

32.3
58.1
217
methyltransferase








SCD35.11c


3260
6760
3159800
3159081
720
sp: NO21_SOYBN
soybean NO21
26.1
55.2
241
nodulin 21-related protein


3261
6761
3160216
3160419
204


3262
6762
3160688
3161065
378


3263
6763
3160816
3161001
186


3264
6764
3160938
3160723
216
sp: TNP5_PSEAE

Pseudomonas aeruginosa TNP5

48.2
92.9
56
transposon tn501 resolvase


3265
6765
3161219
3161701
483


3266
6766
3161407
3161087
321
sp: FER_SACER

Saccharopolyspora erythraea fer

90.3
98.4
62
ferredoxin precursor


3267
6767
3162014
3161682
333
gp: SCD31_14

Streptomyces coelicolor A3(2)

47.3
85.5
55
hypothetical protein


3268
6768
3162694
3162804
111
GPU: AF164956_8

Corynebacterium glutamicum

81.0
84.0
27
transposase








Tnp1673


3269
6769
3162710
3162871
162
GPU: AF164956_23

Corynebacterium glutamicum

84.0
90.0
46
transposase protein fragment












TnpNC


3270
6770
3162852
3163889
1038


3271
6771
3162983
3162858
126
sp: G3P_PYRWO

Pyrococcus woesei gap

63.2
84.2
38
glyceraldehyde-3-phosphate












dehydrogenase (pseudogene)


3272
6772
3163733
3163074
660
pir: S77018

Synechocystis sp. PCC6803

32.2
59.4
180
lipoprotein








sll0788


3273
6773
3166005
3163789
2217
pir: H69268

Archaeoglobus fulgidus AF0152

45.8
73.4
717
copper/potassium-transporting












ATPase B or cation transporting












ATPase (E1-E2 family)


3274
6774
3166437
3166267
171


3275
6775
3166978
3167169
192


3276
6776
3167646
3166450
1197
sp: BAES_ECOLI

Escherichia coli K12 baeS

37.5
71.4
301
two-component system sensor












histidine kinase


3277
6777
3167739
3168566
828


3278
6778
3168401
3167646
756
sp: PHOP_BACSU

Bacillus subtilis phoP

43.4
72.1
233
two-component response regulator












or alkaline phosphatase synthesis












transcriptional regulatory protein


3279
6779
3168669
3169340
672


3280
6780
3169414
3170892
1479
sp: COPA_PSESM

Pseudomonas syringae pv.

26.7
47.9
630
laccase or copper resistance protein








tomato copA



precursor A


3281
6781
3171254
3171616
363
sp: TLPA_BRAJA

Bradyrhizobium japonicum tlpA

31.7
63.4
101
thiol: disulfide interchange protein












(cytochrome c biogenesis protein)


3282
6782
3172536
3171619
918
sp: QOR_MOUSE

Mus musculus qor

31.4
60.9
322
quinone oxidoreductase












(NADPH: quinone reductase)(seta-












crystallin)


3283
6783
3172995
3173465
471


3284
6784
3173624
3173857
234
sp: ATZN_SYNY3

Synechocystis sp. PCC6803

37.2
66.7
78
zinc-transporting ATPase (Zn(II)-








atzN



translocating p-type ATPase


3285
6785
3174066
3174380
315


3286
6786
3174990
3174784
207


3287
6787
3175027
3176901
1875
sp: ATZN_ECOLI

Escherichia coli K12 MG1655

39.8
68.5
606
zinc-transporting ATPase (Zn(II)-








atzN



translocating p-type ATPase


3288
6788
3175643
3175254
390
PIR: E72491

Aeropyrum pernix K1 APE2572

45.0
54.0
72
hypothetical protein


3289
6789
3177174
3177482
309


3290
6790
3177304
3177089
216
GPU: AF164956_8

Corynebacterium glutamicum

58.0
73.0
73
transposase








Tnp1673


3291
6791
3177565
3177308
258
GPU: AF164956_8

Corynebacterium glutamicum

75.0
77.0
70
transposase








Tnp1673


3292
6792
3177683
3177525
159
gp: AF121000_8

Corynebacterium glutamicum

92.5
96.2
53
transposase (IS1628)








22243 R-plasmid pAG1 tnpB


3293
6793
3178558
3178112
447
sp: THI2_ECOLI

Escherichia coli K12 thi2

39.0
74.0
100
thioredoxin


3294
6794
3178609
3178872
264


3295
6795
3179049
3180392
1344
sp: PCAK_PSEPU

Pseudomonas putida pcaK

27.1
60.1
421
transmembrane transport protein or












4-hydroxybenzoate transporter


3296
6796
3181104
3180946
159


3297
6797
3181126
3180551
576
sp: YQJI_ECOLI

Escherichia coli K12 yqjI

35.1
62.5
208
hypothetical protein


3298
6798
3182866
3181337
1530
sp: DNAB_ECOLI

Escherichia coli K12 dnaB

37.7
73.1
461
replicative DNA helicase


3299
6799
3183469
3183984
516


3300
6800
3183927
3183478
450
sp: RL9_ECOLI

Escherichia coli K12 RL9

42.2
71.4
154
50S ribosomal protein L9


3301
6801
3184661
3183987
675
sp: SSB_ECOLI

Escherichia coli K12 ssb

30.6
51.5
229
single-strand DNA binding protein


3302
6802
3184985
3184701
285
sp: RS6_ECOLI

Escherichia coli K12 RS6

28.3
78.3
92
30S ribosomal protein S6


3303
6803
3185536
3185348
189


3304
6804
3186993
3185536
1458
gp: AF187306_1

Mycobacterium smegmatis

41.5
68.3
480
hypothetical protein








mc(2)155


3305
6805
3187912
3188793
882


3306
6806
3189201
3187042
2160
sp: PBPA_BACSU

Bacillus subtilis ponA

29.1
60.1
647
penicillin-binding protein


3307
6807
3189652
3189296
357
sp: Y0HC_MYCTU

Mycobacterium tuberculosis

41.1
72.0
107
hypothetical protein








H37Rv Rv0049


3308
6808
3189877
3190347
471
pir: B70912

Mycobacterium tuberculosis

35.1
65.0
137
bacterial regulatory protein, marR








H37Rv Rv0042c



family


3309
6809
3190378
3191319
942
sp: Y0FF_MYCTU

Mycobacterium tuberculosis

29.7
61.8
296
hypothetical protein








H37Rv Rv2319c yofF


3310
6810
3191354
3191848
495


3311
6811
3192242
3191922
321
sp: YHGC_BACSU

Bacillus subtilis yhgC

32.4
70.4
71
hypothetical protein


3312
6812
3193201
3192266
936
sp: YCEA_ECOLI

Escherichia coli K12 yceA

30.2
63.8
298
hypothetical protein


3313
6813
3194514
3193252
1263
sp: YBJZ_ECOLI

Escherichia coli K12 ybjZ

31.2
64.0
433
ABC transporter ATP-binding protein


3314
6814
3195203
3194514
690
sp: YBJZ_ECOLI

Escherichia coli K12 MG1655

48.9
80.1
221
ABC transporter ATP-binding protein








ybjZ


3315
6815
3197186
3195210
1977
pir: E81408

Campylobacter jejuni Cj0606

18.0
42.0
237
hypothetical protein


3316
6816
3197412
3198500
1089
pir: F70912

Mycobacterium tuberculosis

77.8
90.0
360
hypothetical protein








H37Rv Rv0046c


3317
6817
3199187
3198582
606


3318
6818
3200686
3199202
1485


3319
6819
3201754
3201260
495
sp: DPS_ECOLI

Escherichia coli K12 dps

37.7
64.9
154
DNA protection during starvation












protein


3320
6820
3201900
3202712
813
sp: FPG_ECOLI

Escherichia coli K12 mutM or

28.4
55.6
268
formamidopyrimidine-DNA








fpg



glycosylase


3321
6821
3202952
3204100
1149
sp: RTCB_ECOLI

Escherichia coli K12 rtcB

47.5
66.6
404
hypothetical protein


3322
6822
3204067
3202979
1089


3323
6823
3204156
3204728
573


3324
6824
3205204
3204731
474
sp: MGMT_HUMAN

Homo sapiens mgmT

38.0
63.3
166
methylated-DNA—protein-cysteine












S-methyltransferase


3325
6825
3206232
3205222
1011
sp: QOR_CAVPO

Cavia porcellus (Guinea pig) qor

33.3
63.6
231
zinc-binding dehydrogenase or












quinone oxidoreductase












(NADPH: quinone reductase) or












alginate lyase


3326
6826
3206646
3206756
111


3327
6827
3206849
3208024
1176
sp: YDEA_ECOLI

Mycobacterium tuberculosis

26.4
66.3
398
membrane transport protein








H37Rv Rv0191 ydeA


3328
6828
3208279
3209454
1176
gp: AF234535_1

Corynebacterium melassecola

99.7
99.5
392
malate oxidoreductase [NAD] (malic








(Corynebacterium glutamicum)



enzyme)








ATCC 17965 malE


3329
6829
3211186
3209705
1482
sp: GNTK_BACSU

Bacillus subtilis gntK

24.5
53.7
486
gluconokinase or gluconate kinase


3330
6830
3211836
3211246
591
sp: VANZ_ENTFC

Enterococcus faecium vanZ

27.8
60.4
169
teicoplanin resistance protein


3331
6831
3212428
3211904
525
sp: VANZ_ENTFC

Enterococcus faecium vanZ

27.0
159.0
159
teicoplanin resistance protein


3332
6832
3212588
3213931
1344
sp: MERA_STAAU

Staphylococcus aureus merA

29.9
65.6
448
mercury(II) reductase


3333
6833
3215163
3213934
1230
sp: DADA_ECOLI

Escherichia coli K12 dadA

27.3
54.5
444
D-amino acid dehydrogenase small












subunit


3334
6834
3216759
3215257
1503


3335
6835
3217215
3216886
330


3336
6836
3217777
3217457
321


3337
6837
3217993
3218601
609
sp: NOX_THETH

Thermus thermophilus nox

25.8
55.2
194
NAD(P)H nitroreductase


3338
6838
3218777
3219700
924


3339
6839
3221044
3222495
1452


3340
6840
3222633
3219778
2856
sp: SYL_BACSU

Bacillus subtilis syl

47.7
68.1
943
leucyl-tRNA synthetase


3341
6841
3222722
3223150
429
sp: YBAN_ECOLI

Escherichia coli K12

40.4
40.4
104
hypothetical membrane protein


3342
6842
3223445
3223089
357
sp: VAPI_BACNO

Dichelobacter nodosus vapI

55.8
81.4
86
virulence-associated protein


3343
6843
3224601
3225374
774


3344
6844
3224714
3223992
723
gp: SCC54_19

Streptomyces coelicolor

31.6
53.8
247
hypothetical protein








SCC54.19


3345
6845
3225554
3224718
837
sp: HPCE_ECOLI

Escherichia coli K12 hpcE

28.5
50.3
298
bifunctional protein












(homoprotocatechuate catabolism












bifunctional












isomerase/decarboxylase) (2-












hydroxyhepta-2,4-diene-1,7-dioate












isomerase and 5-carboxymethyl-2-












oxo-hex-3-ene-1,7dioate












decarboxylase)


3346
6846
3226687
3225563
1125
gp: AF173167_1

Pseudomonas alcaligenes xlnE

34.2
64.3
339
gentisate 1,2-dioxygenase or 1-












hydroxy-2-naphthoate dioxygenase


3347
6847
3227689
3226910
780
sp: KDGR_ERWCH

Pectobacterium chrysanthemi

25.3
60.7
229
bacterial regulatory protein, lacl








kdgR



family or pectin degradation












repressor protein


3348
6848
3227724
3229079
1356
sp: PCAK_PSEPU

Pseudomonas putida pcaK

27.5
60.8
454
transmembrane transport protein or












4-hydroxybenzoate transporter


3349
6849
3229119
3230444
1326
prf: 1706191A

Pseudomonas putida

28.2
49.4
476
salicylate hydroxylase


3350
6850
3232304
3231054
1251
sp: EAT2_HUMAN

Homo sapiens eat2

25.4
54.4
507
proton/glutamate symporter or












excitatory amino acid transporter2


3351
6851
3232596
3233105
510
pir: JC2326

Corynebacterium glutamicum

99.4
99.4
170
tryptophan-specific permease








AS019 ORF1


3352
6852
3233403
3234956
1554
sp: TRPE_BRELA

Brevibacterium lactofermentum

99.2
99.8
515
anthranilate synthase component I








trpE


3353
6853
3233420
3233250
171


3354
6854
3234956
3235579
624
TRPG_BRELA

Brevibacterium lactofermentum

99.0
100.0
208
anthranilate synthase component II








trpG


3355
6855
3235602
3236645
1044
sp: TRPD_CORGL

Corynebacterium glutamicum

99.4
99.4
348
anthranilate








ATCC 21850 trpD



phosphoribosyltransferase


3356
6856
3236641
3238062
1422
sp: TRPC_BRELA

Brevibacterium lactofermentum

97.3
98.3
474
indole-3-glycerol phosphate








trpC



synthase (IGPS) and N-(5′-












phosphoribosyl) anthranilate












isomerase(PRAI)


3357
6857
3237213
3236518
696


3358
6858
3238082
3239332
1251
sp: TRPB_BRELA

Brevibacterium lactofermentum

97.6
97.9
417
tryptophan synthase beta chain








trpB


3359
6859
3239332
3240171
840
sp: TRPA_BRELA

Brevibacterium lactofermentum

95.4
96.5
283
tryptophan synthase alpha chain








trpA


3360
6860
3241851
3240313
1539
gp: SCJ21_17

Streptomyces coelicolor A3(2)

66.6
86.8
521
hypothetical membrane protein








SCJ21.17c


3361
6861
3242688
3241879
810
sp: PTXA_ECOLI

Escherichia coli K12 ptxA

30.3
71.7
152
PTS system, IIA component or












unknown pentitol












phosphotransferase enzyme II, A












component


3362
6862
3242854
3243759
906
sp: NOSF_PSEST

Pseudomonas stutzeri

32.5
63.6
305
ABC transporter ATP-binding protein


3363
6863
3243759
3245342
1584
gp: SCH10_12

Streptomyces coelicolor A3(2)

25.2
57.2
547
ABC transporter








SCH10.12


3364
6864
3245317
3245766
450
sp: UCRI_CHLLT

Chlorobium limicola petC

32.5
63.6
305
cytchrome b6-F complex iron-sulfur












subunit (Rieske iron-sulfur protein)


3365
6865
3246931
3245822
1110
sp: NADO_THEBR

Thermoanaerobacter brockii

33.3
64.3
336
NADH oxidase or NADH-dependent








nadO



flavin oxidoreductase


3366
6866
3247234
3248205
972
sp: YFEH_ECOLI

Escherichia coli K12 yfeH

43.6
74.7
328
hypothetical membrane protein


3367
6867
3248392
3249165
774
gp: SCI11_36

Streptomyces coelicolor A3(2)

34.0
54.6
262
hypothetical protein








SCI11.36c


3368
6868
3249534
3249187
348
pir: A29606

Streptomyces coelicolor Plasmid

45.1
79.4
102
bacterial regulatory protein, arsR








SCP1 mmr



family or methylenomycin A












resistance protein


3369
6869
3249651
3250742
1092
sp: NADO_THEBR

Thermoanaerobacter brockii

33.4
64.3
347
NADH oxidase or NADH-dependent








nadO



flavin oxidoreductase


3370
6870
3250758
3251405
648
sp: YMY0_YEAST

Saccharomyces cerevisiae

31.4
69.5
226
hypothetical protein








ymyO


3371
6871
3251618
3251466
153


3372
6872
3251934
3251743
192


3373
6873
3252300
3252133
168


3374
6874
3252636
3252316
321


3375
6875
3252728
3253480
753
sp: BUDC_KLETE

Klebsiella terrigena budC

26.9
52.9
238
acetoin(diacetyl) reductase (acetoin












dehydrogenase)


3376
6876
3253560
3253739
180
sp: YY34_MYCTU

Mycobacterium tuberculosis

53.5
84.5
58
hypothetical protein








H37Rv Rv2094c


3377
6877
3255182
3253824
1359
sp: DTPT_LACLA

Lactococcus lactis subsp. lactis

34.5
71.6
469
di-/tripeptide transpoter








dtpT


3378
6878
3255549
3255719
171


3379
6879
3256298
3255744
555
sp: ACRR_ECOLI

Escherichia coli K12 acrR

26.1
50.5
188
bacterial regulatory protein, tetR












family


3380
6880
3257373
3256471
903
sp: CATA_ACICA

Acinetobacter calcoaceticus

31.7
62.2
246
hydroxyquinol 1,2-dioxygenase








catA


3381
6881
3258491
3257403
1089
sp: TCBF_PSESQ

Pseudomonas sp. P51

43.0
75.5
351
maleylacetate reductase


3382
6882
3260084
3258561
1524
sp: XYLE_ECOLI

Escherichia coli K12 xylE

31.4
58.3
513
sugar transporter or D-xylose-proton












symporter (D-xylose transporter)


3383
6883
3261129
3261989
861
sp: ICLR_SALTY

Salmonella typhimurium iclR

25.7
60.7
280
bacterial transcriptional regulator or












acetate operon repressor


3384
6884
3262145
3263221
1077
sp: YDGJ_ECOLI

Escherichia coli K12 ydgJ

27.2
55.7
357
oxidoreductase


3385
6885
3263237
3264115
879
gsp: W61761

Listeria innocua strain 4450

25.9
58.2
270
diagnostic fragment protein












sequence


3386
6886
3264142
3265146
1005
sp: MI2D_BACSU
SinoRhizobium meliloti idhA
26.5
59.6
332
myo-inositol 2-dehydrogenase


3387
6887
3265184
3266266
1083
sp: STRI_STRGR

Streptomyces griseus strI

34.1
62.4
343
dehydrogenase or myo-inositol 2-












dehydrogenase or streptomycin












biosynthesis protein


3388
6888
3267062
3271093
4032
pir: C70044

Bacillus subtilis yvnB

33.3
62.7
1242
phosphoesterase


3389
6889
3268557
3267913
645


3390
6890
3269235
3268618
618


3391
6891
3271392
3272477
1086


3392
6892
3275231
3274488
744
sp: UNC1_CAEEL

Caenorhabditis elegans unc1

28.6
57.3
206
stomatin


3393
6893
3276570
3275602
969


3394
6894
3281599
3276671
4929
gp: MBO18605_3

Mycobacterium bovis BCG

58.4
80.2
1660
DEAD box RNA helicase family








RvD1-Rv2024c


3395
6895
3282172
3281666
507
prf: 2323363AAM

Mycobacterium leprae u2266k

34.8
61.0
141
hypothetical membrane protein


3396
6896
3282742
3283101
360


3397
6897
3282946
3282347
600
sp: THID_BACSU

Bacillus subtilis thiD

50.4
76.8
125
phosphomethylpyrimidine kinase


3398
6898
3283141
3283383
243
pir: F70041

Bacillus subtilis yvgY

46.3
70.1
67
mercuric ion-binding protein or












heavy-metal-associated domain












containing protein


3399
6899
3284309
3283473
837
prf: 2501295A

Corynebacterium glutamicum

29.9
62.3
297
ectoine/proline uptake protein








proP


3400
6900
3285355
3284399
957
sp: FECB_ECOLI

Escherichia coli K12 fecB

29.4
60.6
279
iron(III) dicitrate-binding periplasmic












protein precursor or iron(III) dicitrate












transport system permease protein


3401
6901
3285455
3286576
1122
sp: MRF1_SCHPO

Schizosaccharomyces pombe

27.2
58.0
324
mitochondrial respiratory function








mrf1



protein or zinc-binding












dehydrogenase or NADPH quinone












oxidoreductase


3402
6902
3286622
3287005
384


3403
6903
3287297
3287079
219


3404
6904
3288190
3287393
798
sp: THID_BACSU

Bacillus subtilis thiD

46.2
75.5
249
phosphomethylpyrimidine kinase


3405
6905
3288265
3288609
345


3406
6906
3288685
3288885
201
pir: F70041

Bacillus subtilis yvgY

41.8
70.1
67
mercuric ion-binding protein or












heavy-metal-associated domain












containing protein


3407
6907
3289315
3288971
345
sp: AZLD_BACSU

Bacillus subtilis azlD

36.3
65.7
102
branched-chain amino acid transport


3408
6908
3290021
3289311
711
sp: AZLC_BACSU

Bacillus subtilis azlD

32.1
67.0
212
branched-chain amino acid transport


3409
6909
3290591
3290025
567
sp: YQGE_ECOLI

Escherichia coli K12 yqgE

23.7
56.2
169
hypothetical protein


3410
6910
3291942
3290623
1320
sp: CCA_ECOLI

Escherichia coli K12 cca

26.8
51.8
471
tRNA nucleotidyltransferase


3411
6911
3292532
3293497
966
pir: E70600

Mycobacterium tuberculosis

43.6
69.2
234
mutator mutT protein








H37Rv Rv3908


3412
6912
3292882
3292610
273


3413
6913
3293497
3296007
2511
pir: F70600

Mycobacterium tuberculosis

25.8
54.3
858
hypothetical membrane protein








H37Rv Rv3909


3414
6914
3296156
3299404
3249
pir: G70600

Mycobacterium tuberculosis

35.7
60.1
1201
hypothetical membrane protein








H37Rv Rv3910


3415
6915
3297706
3298428
723


3416
6916
3299661
3300263
603
sp: RPSH_PSEAE

Pseudomonas aeruginosa algU

30.2
60.9
189
RNA polymerase sigma-H factor or












sigma-70 factor (ECF subfamily)


3417
6917
3300371
3301321
951
sp: TRXB_STRCL

Streptomyces clavuligerus trxB

60.4
82.5
308
thioredoxin reductase


3418
6918
3301303
3300119
1185


3419
6919
3301358
3301729
372
sp: THI2_CHLRE

Chlamydomonas reinhardtii thi2

42.0
76.5
119
thioredoxin ch2, M-type


3420
6920
3301755
3302996
1242
sp: CWLB_BACSU

Bacillus subtilis cwlB

51.0
75.4
196
N-acetylmuramoyl-L-alanine












amidase


3421
6921
3302765
3301989
777


3422
6922
3303435
3304475
1041


3423
6923
3303616
3302999
618
pir: D70851

Mycobacterium tuberculosis

34.4
58.5
212
hypothetical protein








H37Rv Rv3916c


3424
6924
3304787
3303636
1152
sp: YGI2_PSEPU

Pseudomonas putida ygi2

37.6
60.5
367
hypothetical protein


3425
6925
3305671
3304835
837
sp: YGI1_PSEPU

Mycobacterium tuberculosis

65.0
78.0
272
partitioning or sporulation protein








H37Rv parB


3426
6926
3306532
3305864
669
sp: GIDB_ECOLI

Escherichia coli K12 gidB

36.0
64.7
153
glucose inhibited division protein B


3427
6927
3307632
3306682
951
pir: A70852

Mycobacterium tuberculosis

44.7
75.4
313
hypothetical membrane protein








H37Rv Rv3921c


3428
6928
3308369
3307971
399
sp: RNPA_BACSU

Bacillus subtilis rnpA

26.8
59.4
123
ribonuclease P protein component


3429
6929
3308747
3308412
336
gp: MAU19185_1

Mycobacterium avium rpmH

83.0
93.6
47
50S ribosomal protein L34


3430
6930
3309028
3309321
294


3431
6931
3309043
3308822
222


3432
6932
147980
147573
408
gp: AF116184_1

Corynebacterium glutamicum

100.0
100.0
136
L-aspartate-alpha-decarboxylase








panD



precursor


3433
6933
268001
266154
1848
sp: LEU1_CORGL

Corynebacterium glutamicum

100.0
100.0
616
2-isopropylmalate synthase








ATCC 13032 leuA


3434
6934
269068
268814
255
sp: YLEU_CORGL

Corynebacterium glutamicum

100.0
100.0
85
hypothetical protein








(Brevibacterium flavum) ATCC








13032 orfX


3435
6935
270660
271691
1032
sp: DHAS_CORGL

Corynebacterium glutamicum

100.0
100.0
344
aspartate-semialdehyde








asd



dehydrogenase


3436
6936
446075
446521
447
gp: AF124518_1

Corynebacterium glutamicum

100.0
100.0
149
3-dehydroquinase








ASO19 aroD


3437
6937
526376
527563
1188
sp: EFTU_CORGL

Corynebacterium glutamicum

100.0
100.0
396
elongation factor Tu








ATCC 13059 tuf


3438
6938
569452
570771
1320
sp: SECY_CORGL

Corynebacterium glutamicum

100.0
100.0
440
preprotein translocase secY subuit








(Brevibacterium flavum) MJ233








secY


3439
6939
680044
677831
2214
sp: IDH_CORGL

Corynebacterium glutamicum

100.0
100.0
738
isocitrate dehydrogenase








ATCC 13032 icd



(oxalosuccinatedecarboxylase)


3440
6940
720352
718580
1773
prf: 2223173A

Corynebacterium glutamicum

100.0
100.0
591
acyl-CoA carboxylase or biotin-








ATCC 13032 accBC



binding protein


3441
6941
877838
879148
1311
sp: CISY_CORGL

Corynebacterium glutamicum

100.0
100.0
437
citrate synthase








ATCC 13032 gltA


3442
6942
879276
879629
354
sp: FKBP_CORGL

Corynebacterium glutamicum

100.0
100.0
118
putative binding protein or peptidyl-








ATCC 13032 fkbA



prolyl cis-trans isomerase


3443
6943
944996
946780
1785
sp: BETP_CORGL

Corynebacterium glutamicum

100.0
100.0
595
glycine betaine transporter








ATCC 13032 betP


3444
6944
1030283
1029006
1278
sp: YLI2_CORGL

Corynebacterium glutamicum

100.0
100.0
426
hypothetical membrane protein








ATCC 13032 orf2


3445
6945
1031871
1030369
1503
sp: LYSI_CORGL

Corynebacterium glutamicum

100.0
100.0
501
L-lysine permease








ATCC 13032 lysI


3446
6946
1154683
1153295
1389
sp: AROP_CORGL

Corynebacterium glutamicum

100.0
100.0
463
aromatic amino acid permease








ATCC 13032 aroP


3447
6947
1155676
1154729
948
pir: S52753

Corynebacterium glutamicum

100.0
100.0
316
hypothetical protein








ATCC 13032 orf3


3448
6948
1155731
1156837
1107
prf: 2106301A

Corynebacterium glutamicum

100.0
100.0
369
succinyl diaminopimelate








ATCC 13032 dapE


3449
6949
1219602
1218031
1572
gp: CGPUTP_1

Corynebacterium glutamicum

100.0
100.0
524
proline transport system








ATCC 13032 putP


3450
6950
1238274
1239923
1650
sp: SYR_CORGL

Corynebacterium glutamicum

100.0
100.0
550
arginyl-tRNA synthetase








AS019 ATCC 13059 argS


3451
6951
1239929
1241263
1335
sp: DCDA_CORGL

Corynebacterium glutamicum

100.0
100.0
445
diaminopimelate (DAP)








AS019 ATCC 13059 lysA



decarboxylase (meso-












diaminopimelate decarboxylase)


3452
6952
1242507
1243841
1335
sp: DHOM_CORGL

Corynebacterium glutamicum

100.0
100.0
445
homoserine dehydrogenase








AS019 ATCC 13059 hom


3453
6953
1243855
1244781
927
sp: KHSE_CORGL

Corynebacterium glutamicum

100.0
100.0
309
homoserine kinase








AS019 ATCC 13059 thrB


3454
6954
1327617
1328243
627
gsp: W37716

Corynebacterium glutamicum

100.0
100.0
216
ion channel subunit








R127 orf3


3455
6955
1328953
1328246
708
sp: LYSE_CORGL

Corynebacterium glutamicum

100.0
100.0
236
lysine exporter protein








R127 lysE


3456
6956
1329015
1329884
870
sp: LYSG_CORGL

Corynebacterium glutamicum

100.0
100.0
290
lysine export regulator protein








R127 lysG


3457
6957
1338131
1340008
1878
sp: ILVB_CORGL

Corynebacterium glutamicum

100.0
100.0
626
acetohydroxy acid synthase, large








ATCC 13032 ilvB



subunit


3458
6958
1340025
1340540
516
pir: B48648

Corynebacterium glutamicum

100.0
100.0
172
acetohydroxy acid synthase, small








ATCC 13032 ilvN



subunit


3459
6959
1340724
1341737
1014
pir: C48648

Corynebacterium glutamicum

100.0
100.0
338
acetohydroxy acid isomeroreductase








ATCC 13032 ilvC


3460
6960
1353489
1354508
1020
sp: LEU3_CORGL

Corynebacterium glutamicum

100.0
100.0
340
3-isopropylmalate dehydrogenase








ATCC 13032 leuB


3461
6961
1423217
1425265
2049
prf: 2014259A

Corynebacterium glutamicum

100.0
100.0
683
PTS system, phosphoenolpyruvate








KCTC1445 ptsM



sugar phosphotransferase












(mannose and glucose transport)


3462
6962
1466491
1467372
882
sp: ARGB_CORGL

Corynebacterium glutamicum

100.0
100.0
294
acetylglutamate kinase








ATCC 13032 argB


3463
6963
1468565
1469521
957
sp: OTCA_CORGL

Corynebacterium glutamicum

100.0
100.0
319
ornithine carbamoyltransferase








ATCC 13032 argF


3464
6964
1469528
1470040
513
gp: AF041436_1

Corynebacterium glutamicum

100.0
100.0
171
arginine repressor








ASO19 argR


3465
6965
1544554
1543154
1401
gp: CGL238250_1

Corynebacterium glutamicum

100.0
100.0
467
NADH dehydrogenase








ATCC 13032 ndh


3466
6966
1586725
1586465
261
gp: AF086704_1

Corynebacterium glutamicum

100.0
100.0
87
phosphoribosyl-ATP-








ASO19 hisE



pyrophosphohydrolase


3467
6967
1675208
1674123
1086
gp: CGL007732_4

Corynebacterium glutamicum

100.0
100.0
362
ornithine-cyclodecarboxylase








ATCC 13032 ocd


3468
6968
1676623
1675268
1356
gp: CGL007732_3

Corynebacterium glutamicum

100.0
100.0
452
ammonium uptake protein, high








ATCC 13032 amt



affinity


3469
6969
1677279
1677049
231
gp: CGL007732_2

Corynebacterium glutamicum

100.0
100.0
77
protein-export membrane protein








ATCC 13032 secG



secG


3470
6970
1680143
1677387
2757
prf: 1509267A

Corynebacterium glutamicum

100.0
100.0
919
phosphoenolpyruvate carboxylase








ATCC 13032 ppc


3471
6971
1720898
1719669
1230
gp: AF124600_1

Corynebacterium glutamicum

100.0
100.0
410
chorismate synthase (5-








AS019 aroC



enolpyruvylshikimate-3-phosphate












phospholyase)


3472
6972
1880490
1882385
1896
pir: B55225

Corynebacterium glutamicum

100.0
100.0
632
restriction endonuclease








ATCC 13032 cglIIR


3473
6973
2020854
2021846
993
prf: 2204286D

Corynebacterium glutamicum

100.0
100.0
331
sigma factor or RNA polymerase








ATCC 13869 sigB



transcription factor


3474
6974
2060620
2061504
885
sp: GLUB_CORGL

Corynebacterium glutamicum

100.0
100.0
295
glutamate-binding protein








ATCC 13032 gluB


3475
6975
2065116
2063989
1128
sp: RECA_CORGL

Corynebacterium glutamicum

100.0
100.0
376
recA protein








AS019 recA


3476
6976
2080183
2079281
903
sp: DAPA_BRELA

Corynebacterium glutamicum

100.0
100.0
301
dihydrodipicolinate synthase








(Brevibacterium lactofermentum)








ATCC 13869 dapA


3477
6977
2081934
2081191
744
sp: DAPB_CORGL

Corynebacterium glutamicum

100.0
100.0
248
dihydrodipicolinate reductase








(Brevibacterium lactofermentum)








ATCC 13869 dapB


3478
6978
2115363
2113864
1500
gp: CGA224946_1

Corynebacterium glutamicum

100.0
100.0
500
L-malate dehydrogenase (acceptor)








R127 mqo


3479
6979
2171741
2169666
2076
gp: CAJ10319_4

Corynebacterium glutamicum

100.0
100.0
692
uridilylyltransferase, uridilylyl-








ATCC 13032 glnD



removing enzyme


3480
6980
2172086
2171751
336
gp: CAJ10319_3

Corynebacterium glutamicum

100.0
100.0
112
nitrogen regulatory protein P-II








ATCC 13032 glnB


3481
6981
2173467
2172154
1314
gp: CAJ10319_2

Corynebacterium glutamicum

100.0
100.0
438
ammonium transporter








ATCC 13032 amtP


3482
6982
2196082
2194742
1341
pir: S32227

Corynebacterium glutamicum

100.0
100.0
447
glutamate dehydrogenase (NADP+)








ATCC 17965 gdhA


3483
6983
2207092
2205668
1425
sp: KPYK_CORGL

Corynebacterium glutamicum

100.0
100.0
475
pyruvate kinase








AS019 pyk


3484
6984
2317550
2316582
969
gp: AF096280_1

Corynebacterium glutamicum

100.0
100.0
323
glucokinase








ATCC 13032 glk


3485
6985
2348829
2350259
1431
prf: 2322244A

Corynebacterium glutamicum

100.0
100.0
477
glutamine synthetase








ATCC 13032 glnA


3486
6986
2355042
2353600
1443
sp: THRC_CORGL

Corynebacterium glutamicum

100.0
100.0
481
threonine synthase








thrC


3487
6987
2450172
2448328
1845
prf: 2501295B

Corynebacterium glutamicum

100.0
100.0
615
ectoine/proline/glycine betaine








ATCC 13032 ectP



carrier


3488
6988
2470141
2467925
2217
pir: I40715

Corynebacterium glutamicum

100.0
100.0
739
malate synthase








ATCC 13032 aceB


3489
6989
2470740
2472035
1296
pir: I40713

Corynebacterium glutamicum

100.0
100.0
432
isocitrate lyase








ATCC 13032 aceA


3490
6990
2497776
2496670
1107
sp: PROB_CORGL

Corynebacterium glutamicum

100.0
100.0
369
glutamate 5-kinase








ATCC 17965 proB


3491
6991
2591469
2590312
1158
gp: AF126953_1

Corynebacterium glutamicum

100.0
100.0
386
cystathionine gamma-synthase








ASO19 metB


3492
6992
2680127
2679684
444
gp: AF112535_2

Corynebacterium glutamicum

100.0
100.0
148
ribonucleotide reductase








ATCC 13032 nrdI


3493
6993
2680649
2680419
231
gp: AF112535_1

Corynebacterium glutamicum

100.0
100.0
77
glutaredoxin








ATCC 13032 nrdH


3494
6994
2787715
2786756
960
sp: DDH_CORGL

Corynebacterium glutamicum

100.0
100.0
320
meso-diaminopimelate D-








KY10755 ddh



dehydrogenase


3495
6995
2888078
2887944
135
gp: CGL238703_1

Corynebacterium glutamicum

100.0
100.0
45
porin or cell wall channel forming








MH20-22B porA



protein


3496
6996
2936505
2935315
1191
sp: ACKA_CORGL

Corynebacterium glutamicum

100.0
100.0
397
acetate kinase








ATCC 13032 ackA


3497
6997
2937494
2936508
987
prf: 2516394A

Corynebacterium glutamicum

100.0
100.0
329
phosphate acetyltransferase








ATCC 13032 pta


3498
6998
2961342
2962718
1377
prf: 2309322A

Corynebacterium glutamicum

100.0
100.0
459
multidrug resistance protein or








ATCC 13032 cmr



macrolide-efflux pump or












drug: proton antiporter


3499
6999
2966161
2963606
2556
sp: CLPB_CORGL

Corynebacterium glutamicum

100.0
100.0
852
ATP-dependent protease regulatory








ATCC 13032 clpB



subunit


3500
7000
3099522
3098578
945
prf: 1210266A

Corynebacterium glutamicum

100.0
100.0
315
prephenate dehydratase








pheA


3501
7001
3274074
3272563
1512
prf: 2501295A

Corynebacterium glutamicum

100.0
100.0
504
ectoine/proline uptake protein








ATCC 13032 proP









EXAMPLE 2

Determination of Effective Mutation Site


(1) Identification of Mutation Site Based on the Comparison of the Gene Nucleotide Sequence of Lysine-Producing B-6 Strain with that of Wild Type Strain ATCC 13032



Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.


(2) Evaluation of Mutation, Val59Ala, in hom and Mutation, Pro458Ser, in pyc


It is known that a mutation in horn inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (Amino Acid Fermentation, ed. by Hiroshi Aida et al., Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in hom and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in hom is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in pyc is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the pyc mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the “lysine-producing No. 58 strain” or the “No. 58 strain”). Based on the above, it was determined that the mutation, Val59Ala, in hom and the mutation, Pro458Ser, in pyc were introduced into the wild type strain of Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the “wild type ATCC 13032 strain” or the “ATCC 13032 strain”) and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.


A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (Mol. Gen. Genet., 196: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (sacB) of Bacillus subtilis (Molecular Microbiology, 6: 1195-1204 (1992)) were each digested with PstI. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing sacB were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (FEMS Microbiology Letters, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 μg/ml kanamycin at 30° C. for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the PstI site of pCE53. This plasmid was named pCES30.


Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70° C. for 2 hours so that a nucleotide, thymine (T), was added to the 3′-end to prepare a T vector of pCES30.


Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated hom gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated pyc gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72° C. for 10 minutes so that a nucleotide, adenine (A), was added to the 3′-end.


The above pCES30 T vector fragment and the mutated hom gene (1.7 kb) or mutated pyc gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30° C. for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.


The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.


One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCG11, the strain was cultured on BYG agar medium containing 20 μg/ml kanamycin and 100 μg/ml spectinomycin at 30° C. for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.


Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30° C. for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacb gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacb gene, the gene replacement into the mutated type arises.


Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.


(3) Lysine Production Test of HD-1 and No. 58pyc Strains


The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.


After culturing on BYG agar medium at 30° C. for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate hentahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 l buffle-attached Erlenmeyer flask and cultured therein at 30° C. for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 l jar fermenter and cultured therein at 32° C., 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.












TABLE 2







Strain
L-Lysine hydrochloride yield (g/l)



















ATCC 13032
0



HD-1
8



No. 58
45



No. 58pyc
51










As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the hom gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the hom gene and the mutation, Pro458Ser, in the pyc gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the lysC gene has been deposited on Dec. 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.


EXAMPLE 3

Reconstruction of Lysine-Producing Strain Based on Genome Information


The lysine-producing mutant B-6 strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces-a remarkably large amount of lysine hydrochloride when cultured in a jar at 32° C. using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.


(1) Identification of Mutation Point and Effective Mutation by Comparing the Gene Nucleotide Sequence of the B-6 Strain with that of the ATCC 13032 Strain


As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311Ile, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.


(2) Construction of Plasmid for Gene Replacement Having Mutated Gene


The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.


The lysC and zwf having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3).


Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated lysC gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated zwf gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72° C. for 10 minutes so that a nucleotide, adenine (A), was added to the 3′-end.


The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated zwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30° C. for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.


(3) Introduction of Mutation, Thr311Ile, in lysC into One Point Mutant HD-1


Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311Ile, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.


(4) Introduction of Mutation, Pro458Ser, in pyc into Two Point Mutant AHD-2


The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.


(5) Introduction of Mutation, Ala213Thr, in zwf into Three Point Mutant AHP-3


The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.


(6) Lysine Production Test on HD-1, AHD-2, AHP-3 and APZ-4 Strains


The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).


Table 3 shows the results.













TABLE 3








L-Lysine hydrochloride
Productivity



Strain
(g/l)
(g/l/h)




















HD-1
8
0.3



AHD-2
73
2.5



AHP-3
80
2.8



APZ-4
86
3.0










Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.


(7) Lysine Fermentation by APZ-4 Strain at High Temperature


The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40° C.


The results are shown in Table 4.











TABLE 4





Temperature
L-Lysine hydrochloride
Productivity


(° C.)
(g/l)
(g/l/h)







32
86
3.0


40
95
3.3









As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40° C. comparable to those at 32° C. were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34° C. so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40° C. so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.


As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.


EXAMPLE 4

Production of DNA Microarray and use thereof


A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of Corynebacterium glutamicum ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.


(1) Production of DNA Microarray


Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.


As the oligo DNA primers used for the PCR,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,


DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and


DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

    • as the respective primer set.


The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95° C. and 3 minutes at 68° C. using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.


(2) Synthesis of Fluorescence Labeled cDNA


The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30° C. for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30° C. overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4° C. and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with DnaseI (manufactured by Takara Shuzo) at 37° C. for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/μl, manufactured by Takara Shuzo) were added for denaturing at 65° C. for 10 minutes, followed by quenching on ice. To the resulting solution, 6 μl of a buffer attached to SuperScript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of SuperScript II were added, and allowed to stand at 25° C. for 10 minutes and then at 42° C. for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to stand at 65° C. for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.


(3) Hybridization


UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50° C., and the washing was carried out at 25° C.


(4) Fluorescence Analysis


The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).


Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.














TABLE 5







SEQ ID NO
Cy3 intensity
Cy5 intensity
Cy3/Cy5





















207
5248
3240
1.62



3433
2239
2694
0.83



281
2370
2595
0.91



3435
2566
2515
1.02



3439
5597
6944
0.81



765
6134
4943
1.24



3455
1169
1284
0.91



1226
1301
1493
0.87



1229
1168
1131
1.03



3448
1187
1594
0.74



3451
2845
3859
0.74



3453
3498
1705
2.05



3455
1491
1144
1.30



1743
1972
1841
1.07



3470
4752
3764
1.26



2132
1173
1085
1.08



3476
1847
1420
1.30



3477
1284
1164
1.10



3485
4539
8014
0.57



3488
34289
1398
24.52



3489
43645
1497
29.16



3494
3199
2503
1.28



3496
3428
2364
1.45



3497
3848
3358
1.15










The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)).


As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of Corynebacterium glutamicum ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of Corynebacterium glutamicum as a template in the PCR reaction, and thus producing and using a DNA microarray.


This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of Corynebacterium glutamicum ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of Corynebacterium glutamicum using these arrays.


EXAMPLE 5

Homology Search Using Corynebacterium glutamicum Genome Sequence


(1) Search of Adenosine Deaminase


The amino acid sequence (ADDECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le−10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the Escherichia coli adenosine deaminase was found in the nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.


(2) Search of Glycine Cleavage Enzyme


The sequences (GCSPECOLI, GCSTECOLI and GCSHECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of Escherichia coli glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.


By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le−10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of Escherichia coli glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.


(3) Search of IMP Dehydrogenase


The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swiss-prot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le−10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm.nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.


EXAMPLE 6

Proteome Analysis of Proteins Derived from Corynebacterium glutamicum


(1) Preparations of Proteins Derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158


Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.












TABLE 6







Strain
L-Lysine yield (g/l)



















ATCC 13032
0



FERM BP-7134
45



FERM BP-158
60










After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at −80° C. The freeze-stored cells were thawed before use, and used as washed cells.


The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disrupter (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000×g, 15 minutes, 4° C.) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.


To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.


After being dissolved, the solution was centrifuged at 12,000×g for 15 minutes, and the supernatant was recovered.


To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.


After being dissolved, the solution was centrifuged (16,000×g, 20 minutes, 4° C.), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.


(2) Separation of Protein by Two Dimensional Electrophoresis


The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.


A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.69 dithiothreitol, 0:5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.


The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CRAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.


The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20° C.:

  • step 1: 1 hour under a gradient mode of 0 to 500V;
  • step 2: 1 hour under a gradient mode of 500 to 1,000 V;
  • step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
  • step 4: 1 hour at a constant voltage of 8,000 V.


After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.


After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.


Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and subjected to electrophoresis under a constant voltage of 30 mA at 20° C. for 3 hours to separate the proteins.


(3) Detection of Protein Spot


Coomassie staining was performed by the method of Gorg et al. (Electrophoresis, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25° C. for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.


The results are shown in FIG. 2. The proteins derived from the ATCC 13032 strain (FIG. 2A), FERM BP-7134 strain (FIG. 2B) and FERM BP-158 strain (FIG. 2C) could be separated and detected as spots.


(4) In-Gel Digestion of Detected Protein Spot


The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/l ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0° C. for 45 minutes, and then allowed to stand at 37° C. for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.


(5) Mass Spectrometry and Amino Acid Sequence Analysis of Protein Spot with Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometer (MALDI-TOFMS)


The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.


As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.


The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.


The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.


The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.


(6) Identification of Protein Spot


From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.


The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.


(a) Search and Identification of Gene Encoding High-Expression Protein


In the proteins derived from Corynebacterium glutamic ATCC 13032 showing high expression amounts in CBB-staining shown in FIG. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.


As a result, it was found that Spot-1 corresponded to enolase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bis-phosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.


These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (J. of Bacteriol., 174: 6067-6086 (1992)).


Also, the protein corresponding to Spot-9 in FIG. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID NO:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID NO:3437.


Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.


(b) Search and Identification of Modified Protein


Among the proteins derived from Corynebacterium glutamicum FERM BP-7134 shown in FIG. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.


Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID NO:285. Accordingly, it is shown that the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.


Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.


(c) Search and Identification of Expressed Protein Effective in Lysine Production


It was found out that in FIG. 2A (ATCC 13032: wild type strain), FIG. 2B (FERM BP-7134: lysine-producing strain) and FIG. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.


Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.


Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins, using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.


While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims
  • 1. An isolated DNA encoding a polypeptide having homoserine dehydrogenase activity, comprising an amino acid sequence of homoserine dehydrogenase derived from a microorganism belonging to the genus Corynebacterium in which the Val residue at the position corresponding to the 59th position in the amino acid sequence of SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue, or a polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence of SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue, wherein the Val residue at the 59th position is optionally replaced with an Ala residue.
  • 2. An isolated transformed host cell, wherein the host cell is optionally a coryneform bacterium, comprising the DNA of claim 1.
  • 3. An isolated transformed host cell, wherein the host cell is optionally a coryneform bacterium, comprising in its chromosome the DNA of claim 1.
  • 4. The transformed host cell according to claim 2, wherein the host cell is a Corynebacterium glutamicum.
  • 5. The transformed host cell according to claim 3, wherein the host cell is a Corynebacterium glutamicum.
  • 6. A method for producing L-lysine, comprising: culturing the transformed host cell of any one of claims 4 or 5 in a medium to produce and accumulate L-lysine in the medium, andrecovering the L-lysine from the culture.
Priority Claims (3)
Number Date Country Kind
P. 11-377484 Dec 1999 JP national
P. 2000-159162 Apr 2000 JP national
P. 2000-280988 Aug 2000 JP national
Parent Case Info

The present application is a divisional of application Ser. No. 09/738,626, filed Monday, Dec. 18, 2000 now abandoned, the entire contents of which is hereby incorporated by reference.

Foreign Referenced Citations (7)
Number Date Country
0358940 Mar 1990 EP
0387527 Sep 1990 EP
0555 661 Aug 1993 EP
0974647 Jan 2000 EP
WO 8809819 Dec 1988 WO
WO 9309225 May 1993 WO
WO 0100843 Jan 2001 WO
Related Publications (1)
Number Date Country
20060228712 A1 Oct 2006 US
Divisions (1)
Number Date Country
Parent 09738626 Dec 2000 US
Child 10805394 US