N-(1,2,5-Oxadiazol-3-yl)-, N-(tetrazol-5-yl)- and N-(triazol-5-yl)bicycloarylcarboxamides and their use as herbicides

Information

  • Patent Grant
  • 9035067
  • Patent Number
    9,035,067
  • Date Filed
    Monday, March 12, 2012
    12 years ago
  • Date Issued
    Tuesday, May 19, 2015
    9 years ago
Abstract
N-(1,2,5-Oxadiazol-3-yl)-, N-(tetrazol-5-yl)- and N-(triazol-5-yl)bicycloarylcarboxamides of the general formula (I) are described as herbicides.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a §371 National Stage Application of PCT/EP2012/054269, filed Mar. 12, 2012, which claims priority to European Application No. 11158258.1, filed Mar. 15, 2011.


BACKGROUND OF THE INVENTION

1. Field of the Invention


2. Description of Related Art


The invention relates to the technical field of herbicides, especially that of herbicides for selective control of broad-leaved weeds and weed grasses in crops of useful plants.


WO2003/010143 and WO2003/010153 disclose particular N-(tetrazol-5-yl)- and N-(triazol-5-yl)benzamides and the pharmacological action thereof. Under CAS No. 639048-78-5, the compound N-(1-propyltetrazol-5-yl)-2,5-dichlorobenzamide is known. No herbicidal action of these compounds is disclosed in these documents. European patent applications No. 0912169.0 and No. 10174893.7, which have earlier priority dates but were yet to be published at the priority date of the present application, disclose N-(1,2,5-oxadiazol-3-yl)-, N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamides and the use thereof as herbicides.


SUMMARY

It has now been found that N-(1,2,5-oxadiazol-3-yl)-, N-(tetrazol-5-yl)- and N-(triazol-5-yl)bicycloarylcarboxamides are of good suitability as herbicides.


The present invention thus provides N-(1,2,5-oxadiazol-3-yl)-, N-(tetrazol-5-yl)- or N-(triazol-5-yl)bicycloarylcarboxamides of the formula (I) or salts thereof




embedded image



in which

  • Q is a Q1, Q2 or Q3 radical,




embedded image


  • R1 is (C1-C6)-alkyl, (C3-C7)-cycloalkyl, halo-(C1-C6)-alkyl, (C2-C6)-alkenyl, halo-(C2-C6)-alkenyl, (C2-C6)-alkynyl, halo-(C2-C6)-alkynyl, (C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-alkoxy-(C2-C6)-alkenyl, (C1-C6)-alkoxy-(C2-C6)-alkynyl, CH2R6, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by u radicals from the group consisting of halogen, nitro, cyano, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C3-C6)-cycloalkyl, (C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy, halo-(C1-C6)-alkoxy and (C1-C6)-alkoxy-(C1-C4)-alkyl;

  • R2 is hydrogen, (C1-C6)-alkyl, (C3-C7)-cycloalkyl, halo-(C1-C6)-alkyl, (C1-C6)-alkoxy, halo-(C1-C6)-alkoxy, (C2-C6)-alkenyl, (C2-C6)-alkenyloxy, halo-(C2-C6)-alkenyl, (C2-C6)-alkynyl, (C2-C6)-alkynyloxy, halo-(C2-C6)-alkynyl, cyano, nitro, methylsulfenyl, methylsulfinyl, methylsulfonyl, acetylamino, benzoylamino, methoxycarbonyl, ethoxycarbonyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, benzoyl, methylcarbonyl, piperidinylcarbonyl, trifluoromethylcarbonyl, halogen, amino, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxymethyl, or heteroaryl, heterocyclyl or phenyl each substituted by u radicals from the group consisting of methyl, ethyl, methoxy, trifluoromethyl and halogen;

  • R3 and R4 are each independently hydrogen, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C2-C6)-alkenyl, halo-(C2-C6)-alkenyl, (C2-C6)-alkynyl, halo-(C2-C6)-alkynyl, (C3-C7)-cycloalkyl, (C3-C7)-halocycloalkyl, (C1-C6)-alkoxy, (C1-C6)-haloalkoxy, (C1-C6)-alkylthio, (C1-C6)-haloalkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-haloalkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-haloalkylsulfonyl, (C1-C6)-alkoxy-(C1-C4)-alkyl, halogen, nitro or cyano;

  • R5 is hydrogen or fluorine;

  • R6 is acetoxy, acetamido, N-methylacetamido, benzoyloxy, benzamido, N-methylbenzamido, methoxycarbonyl, ethoxycarbonyl, benzoyl, methylcarbonyl, piperidinylcarbonyl, morpholinylcarbonyl, trifluoromethylcarbonyl, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, (C3-C6)-cycloalkyl, or heteroaryl, heterocyclyl or phenyl each substituted by u radicals from the group consisting of methyl, ethyl, methoxy, trifluoromethyl and halogen;

  • R7 and R8 are each independently hydrogen, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C2-C6)-alkenyl, halo-(C2-C6)-alkenyl, (C2-C6)-alkynyl, halo-(C2-C6)-alkynyl, (C3-C7)-cycloalkyl, halo-(C3-C7)-cycloalkyl, —OR9, S(O)mR9, (C1-C6)-alkylthio, halo-(C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, halo-(C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, halo-(C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy-(C1-C4)-alkyl, halogen, nitro, cyano, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by u radicals from the group consisting of halogen, nitro, cyano, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C3-C6)-cycloalkyl, (C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy, halo-(C1-C6)-alkoxy and (C1-C6)-alkoxy-(C1-C4)-alkyl,


    or

  • R7 and R8 together with the carbon atom to which they are bonded form the —X1—(CH2)r—X2—, —(CH2)s—X3—, —(CH2)t—X3—CH2—, —(CH2)v—X3—CH2CH2— or —(CH2)w— unit in which each of the (CH2) groups is substituted by m radicals from the group consisting of halogen, methyl and (C1-C3)-alkoxy,


    or

  • R7 and R8 together with the carbon atom to which they are bonded form the —O—N((C1-C3)-alkyl)-CHR10—CH2— or —O—N═CR10—CH2— unit in which each of the (CH2) groups is substituted by m radicals from the group consisting of halogen and methyl;

  • R9 is hydrogen, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C2-C6)-alkenyl, halo-(C2-C6)-alkenyl, (C2-C6)-alkynyl, halo-(C2-C6)-alkynyl, (C3-C7)-cycloalkyl, (C3-C7)-halocycloalkyl, (C3-C7)-cycloalkyl-(C1-C3)-alkyl, halo-(C3-C7)-cycloalkyl-(C1-C3)-alkyl, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by s radicals from the group consisting of halogen, nitro, cyano, (C1-C6)-alkyl, halo-(C1-C6)-alkyl, (C3-C6)-cycloalkyl, (C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy, halo-(C1-C6)-alkoxy and (C1-C6)-alkoxy-(C1-C4)-alkyl;

  • R10 is hydrogen, (C1-C3)-alkyl, or phenyl substituted by u radicals from the group consisting of (C1-C3)-alkyl, halogen, cyano and nitro;

  • R11 is hydrogen, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, formyl, (C2-C6)-alkylcarbonyl, (C2-C6)-alkoxycarbonyl or (C1-C2)-alkylsulfonyl;

  • X and Y are each independently O, S, SO, SO2, C═O, C═S, NR10, CR7R8, C═NOR10 or C═NN(R11)2;

  • X1 and X2 are each independently O, S or N((C1-C3)-alkyl);

  • X3 is O or S;

  • m is 0, 1 or 2;

  • n is 1, 2 or 3;

  • r is 2, 3 or 4;

  • s is 2, 3, 4 or 5;

  • t is 1, 2, 3 or 4;

  • u is 0, 1, 2 or 3;

  • v is 2 or 3;

  • w is 2, 3, 4, 5 or 6.








DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

In the formula (I) and all the formulae which follow, alkyl radicals having more than two carbon atoms may be straight-chain or branched. Alkyl radicals are, for example, methyl, ethyl, n- or isopropyl, n-, iso-, tert- or 2-butyl, pentyls, hexyls such as n-hexyl, isohexyl and 1,3-dimethylbutyl. Halogen is fluorine, chlorine, bromine or iodine.


Heterocyclyl is a saturated, semisaturated or fully unsaturated cyclic radical containing 3 to 6 ring atoms, of which 1 to 4 are from the group of oxygen, nitrogen and sulfur, and which may additionally be fused by a benzo ring. For example, heterocyclyl is piperidinyl, pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl and oxetanyl,


Heteroaryl is an aromatic cyclic radical containing 3 to 6 ring atoms, of which 1 to 4 are from the group of oxygen, nitrogen and sulfur, and which may additionally be fused by a benzo ring. For example, heteroaryl is benzimidazol-2-yl, furanyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridinyl, benzisoxazolyl, thiazolyl, pyrrolyl, pyrazolyl, thiophenyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, 1,2,4-triazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-thiadiazolyl, 1,2,5-thiadiazolyl, 2H-1,2,3,4-tetrazolyl, 1H-1,2,3,4-tetrazolyl, 1,2,3,4-oxatriazolyl, 1,2,3,5-oxatriazolyl, 1,2,3,4-thiatriazolyl and 1,2,3,5-thiatriazolyl.


When a group is polysubstituted by radicals, this means that this group is substituted by one or more identical or different radicals from those mentioned.


According to the nature and the bonding of the substituents, the compounds of the general formula (I) may be present as stereoisomers. When, for example, one or more asymmetric carbon atoms are present, enantiomers and diastereomers may occur. Stereoisomers likewise occur when n is 1 (sulfoxides). Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods, for example by chromatographic separation processes. It is equally possible to selectively prepare stereoisomers by using stereoselective reactions using optically active starting materials and/or auxiliaries. The invention also relates to all stereoisomers and mixtures thereof which are encompassed by the general formula (I) but not defined specifically.


Preference is given to compounds of the general formula (I) in which

  • R1 is (C1-C3)-alkyl, (C3-C5)-cycloalkyl, halo-(C1-C3)-alkyl or (C1-C3)-alkoxy-(C1-C3)-alkyl;
  • R2 is hydrogen, (C1-C3)-alkyl, (C3-C5)-cycloalkyl, halo-(C1-C3)-alkyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy, cyano, nitro, methylsulfenyl, methylsulfinyl, methylsulfonyl, acetylamino, methoxycarbonyl, ethoxycarbonyl, halogen, amino, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl or methoxymethyl;
  • R3 and R4 are each independently hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, (C1-C3)-alkoxy, (C1-C3)-haloalkoxy, (C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy-(C1-C4)-alkyl, halogen, nitro or cyano;
  • R5 is hydrogen;
  • R7 and R8 are each independently hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, —OR9, —S(O)mR9, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy-(C1-C3)-alkyl, halogen, nitro, cyano, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by u radicals from the group consisting of halogen, nitro, cyano, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy and (C1-C3)-alkoxy-(C1-C3)-alkyl,


    or
  • R7 and R8 together with the carbon atom to which they are bonded form the —X1—(CH2)r—X2—, —(CH2)s—X3—, —(CH2)t—X3—CH2—, —(CH2)v—X3—(CH2CH2— or —(CH2)w— unit in which each of the (CH2) groups is substituted by m radicals from the group consisting of halogen, methyl and (C1-C3)-alkoxy,


    or
  • R7 and R8 together with the carbon atom to which they are bonded form the—O—N((C1-C3)-alkyl)-CHR10—CH2— or —O—N═CR10—CH2— unit in which each of the (CH2) groups is substituted by m radicals from the group consisting of halogen and methyl;
  • R9 is hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C2-C3)-alkenyl, (C2-C4)-alkynyl, (C3-C5)-cycloalkyl, (C3-C5)-cycloalkyl-(C1-C3)-alkyl, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by s radicals from the group consisting of halogen, nitro, cyano, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C6)-cycloalkyl, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy and (C1-C3)-alkoxy-(C1-C3)-alkyl;
  • R10 is hydrogen or (C1-C3)-alkyl;
  • X and Y are each independently O, SO2, C═O, C═S, CR7R8, C═NOR10;
  • X1 and X2 are each independently O, S, N(CH3);
  • X3 is O or S;
  • m is 0, 1 or 2;
  • n is 1 or 2;
  • r is 2 or 3;
  • s is 2, 3 or 4;
  • t is 1, 2 or 3;
  • u is 0, 1 or 2;
  • v is 2 or 3;
  • w is 2, 3, 4 or 5.


In all the formulae specified hereinafter, the substituents and symbols have the same definition as in formula (I), unless defined differently.


Inventive compounds in which Q is Q1 or Q2 can be prepared, for example, by the method shown in scheme 1, by base-catalyzed reaction of a bicyclic benzoyl chloride (II) with a 5-amino-1H-1,2,4-triazole or 5-amino-1H-tetrazole (III):




embedded image


B therein is CH or N. The bicyclic benzoyl chlorides of the formula (II) or their parent bicyclic benzoic acids are known in principle and can be prepared, for example, by the methods known in WO 96/25413, WO 97/09324, WO 97/30993, WO 97/08164, WO 98/49159, WO 98/35954, WO 98/12192, WO 0014087 and EP 0636622.


Inventive compounds in which Q is Q1 or Q2 can also be prepared by the method shown in scheme 2, by reaction of a benzoic acid of the formula (IV) with a 5-amino-1H-1,2,4-triazole or 5-amino-1H-tetrazole (III):




embedded image


For the activation, it is possible to use dehydrating reagents which are typically used for amidation reactions, for example 1,1′-carbonyldiimidazole (CDI), dicyclohexylcarbodiimide (DCC), 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (T3P) etc.


Inventive compounds in which Q is Q1 or Q2 can also be prepared by the method shown in scheme 3, by reaction of an N-(1H-1,2,4-triazol-5-yl)benzamide, N-(1H-tetrazol-5-yl)benzamide, N-(1H-1,2,4-triazol-5-yl)nicotinamide or N-(1H-tetrazol-5-yl)nicotinamide:




embedded image


For this reaction shown in scheme 3, it is possible, for example, to use alkylating agents, for example alkyl halides or sulfonates or dialkyl sulfates, in the presence of a base.


It may be appropriate to alter the sequence of reaction steps. For instance, benzoic acids bearing a sulfoxide cannot be converted directly to their acid chlorides. One option here is first to prepare the amide to the thioether stage and then to oxidize the thioether to the sulfoxide.


The 5-amino-1H-tetrazoles of the formula (III) are either commercially available or can be prepared analogously to methods known from the literature. For example, substituted 5-aminotetrazoles can be prepared from aminotetrazole by the method described in Journal of the American Chemical Society (1954), 76, 923-924:




embedded image


In the above reaction, X is a leaving group such as iodine. Substituted 5-aminotetrazoles can also be synthesized, for example, as described in Journal of the American Chemical Society (1954) 76, 88-89:




embedded image


The 5-amino-1H-triazoles of the formula (III) are either commercially available or can be prepared analogously to methods known from the literature. For example, substituted 5-aminotriazoles can be prepared from aminotriazole by the method described in Zeitschrift füer Chemie (1990), 30(12), 436-437:




embedded image


Substituted 5-aminotriazoles can also be synthesized, for example, as described in Chemische Berichte (1964), 97(2), 396-404:




embedded image


Substituted 5-aminotriazoles can also be synthesized, for example, as described in Angewandte Chemie (1963), 75, 918:




embedded image


Inventive compounds in which Q is Q3 can be prepared, for example, by the method shown in scheme 4, by base-catalyzed reaction of a bicyclic benzoyl chloride (II) with a 4-amino-1,2,5-oxadiazole (VI):




embedded image


Inventive compounds can also be prepared by the method described in scheme 5, by reacting a bicyclic benzoic acid of the formula (IV) with a 4-amino-1,2,5-oxadiazole (VI):




embedded image


For the activation, it is possible to use dehydrating reagents which are typically used for amidation reactions, for example 1,1′-carbonyldiimidazole (CDI), dicyclohexylcarbodiimide (DCC), 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (T3P) etc.


The 4-amino-1,2,5-oxadiazoles of the formula (VI) are either commercially available or known, or can be prepared analogously to methods known from the literature. For example, 3-alkyl-4-amino-1,2,5-oxadiazoles can be prepared from β-keto esters by the method described in Russian Chemical Bulletin, Int. Ed., vol. 54, 4, p. 1032-1037 (2005):




embedded image


3-Aryl-4-amino-1,2,5-oxadiazoles can be synthesized, for example, as described in Russian Chemical Bulletin, 54(4), 1057-1059, (2005) or Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 26B(7), 690-2, (1987):




embedded image


3-Amino-4-halo-1,2,5-oxadiazoles can be prepared, for example, by a Sandmeyer reaction from the commercially available 3,4-diamino-1,2,5-oxadiazole by the method described in Heteroatom Chemistry 15(3), 199-207 (2004):




embedded image


Nucleophilic R2 radicals can be introduced into 3-amino-1,2,5-oxadiazoles by Substitution of the leaving group L as described in Journal of Chemical Research,Synopses, (6), 190, 1985 or in Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, (9), 2086-8, 1986 or in Russian Chemical Bulletin (Translation of Izvestiya Akademii Nauk, Seriya Khimicheskaya), 53(3), 596-614, 2004:




embedded image


Collections of compounds of the formula (I) and/or salts thereof which can be synthesized by the abovementioned reactions can also be prepared in a parallelized manner, in which case this may be accomplished in a manual, partly automated or fully automated manner. It is possible, for example, to automate the conduct of the reaction, the workup or the purification of the products and/or intermediates. Overall, this is understood to mean a procedure as described, for example, by D. Tiebes in Combinatorial Chemistry—Synthesis, Analysis, Screening (editor: Günther Jung), Wiley, 1999, on pages 1 to 34.


For the parallelized conduct of the reaction and workup, it is possible to use a number of commercially available instruments, for example Calypso reaction blocks from Barnstead International, Dubuque, Iowa 52004-0797, USA or reaction stations from Radleys, Shirehill, Saffron Walden, Essex, CB11 3AZ, England, or MultiPROBE Automated Workstations from Perkin Elmer, Waltham, Mass. 02451, USA. For the parallelized purification of compounds of the general formula (I) and salts thereof or of intermediates which occur in the course of preparation, available apparatuses include chromatography apparatuses, for example from ISCO, Inc., 4700 Superior Street, Lincoln, Nebr. 68504, USA.


The apparatuses detailed lead to a modular procedure in which the individual working steps are automated, but manual operations have to be carried out between the working steps. This can be circumvented by using partly or fully integrated automation systems in which the respective automation modules are operated, for example, by robots. Automation systems of this type can be purchased, for example, from Caliper, Hopkinton, Mass. 01748, USA.


The implementation of single or multiple synthesis steps can be supported by the use of polymer-supported reagents/scavenger resins. The technical literature describes a number of experimental protocols, for example ChemFiles, Vol. 4, No. 1, Polymer-Supported Scavengers and Reagents for Solution-Phase Synthesis (Sigma-Aldrich).


Aside from the methods described here, the compounds of the general formula (I) and salts thereof can be prepared completely or partially by solid-phase supported methods. For this purpose, individual intermediates or all intermediates in the synthesis or a synthesis adapted for the corresponding procedure are bound to a synthesis resin. Solid-phase supported synthesis methods are described adequately in the technical literature, for example Barry A. Bunin in “The Combinatorial Index”, Academic Press, 1998 and Combinatorial Chemistry—Synthesis, Analysis, Screening (editor: Günther Jung), Wiley, 1999. The use of solid-phase-supported synthesis methods permits a number of protocols known from the literature, and these may again be executed manually or in an automated manner. The reactions can be performed, for example, by means of IRORI technology in microreactors from Nexus Biosystems, 12140 Community Road, Poway, Calif. 92064, USA.


Either on a solid phase or in the liquid phase, the performance of single or multiple synthesis steps can be supported by the use of microwave technology. The technical literature describes a number of experimental protocols, for example Microwaves in Organic and Medicinal Chemistry (editors: C. O. Kappe and A. Stadler), Wiley, 2005.


The preparation by the process described here gives compounds of the formula (I) and salts thereof in the form of substance collections, which are called libraries. The present invention also provides libraries comprising at least two compounds of the formula (I) and salts thereof.


The inventive compounds of the formula (I) (and/or salts thereof), collectively referred to hereinafter as “inventive compounds”, have excellent herbicidal efficacy against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants. The active ingredients also have good control over perennial weed plants which are difficult to control and produce shoots from rhizomes, root stocks or other perennial organs.


The present invention therefore also provides a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant crops, in which one or more inventive compound(s) is/are applied to the plants (for example weed plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), to the seeds (for example grains, seeds or vegetative propagules such as tubers or shoot parts with buds) or to the area on which the plants grow (for example the area under cultivation). The inventive compounds can be deployed, for example, prior to sowing (if appropriate also by incorporation into the soil), prior to emergence or after emergence. Specific examples of some representatives of the monocotyledonous and dicotyledonous weed flora which can be controlled by the inventive compounds are as follows, though the enumeration is not intended to impose a restriction to particular species:


Monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.


Dicotyledonous weeds of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.


If the inventive compounds are applied to the soil surface before germination, either the weed seedlings are prevented completely from emerging or the weeds grow until they have reached the cotyledon stage, but then stop growing and, eventually, after three to four weeks have passed, die completely.


If the active ingredients are applied post-emergence to the green parts of the plants, there is likewise stoppage of growth after the treatment, and the harmful plants remain at the growth stage of the time of application, or they die completely after a certain time, such that competition by the weeds, which is harmful to the crop plants, is thus eliminated very early and in a lasting manner.


Although the inventive compounds have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crop plants of economically important crops, for example dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous crops of the genera Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, especially Zea and Triticum, are damaged only to an insignificant extent, if at all, depending on the structure of the respective inventive compound and the application rate thereof. For these reasons, the present compounds are very suitable for selective control of unwanted plant growth in plant crops such as agriculturally useful plants or ornamentals.


In addition, the inventive compounds (depending on their particular structure and the application rate deployed) have outstanding growth-regulating properties in crop plants. They intervene in the plant's own metabolism with a regulatory effect, and can thus be used to control plant constituents and to facilitate harvesting, for example by triggering desiccation and stunted growth. In addition, they are also suitable for general control and inhibition of unwanted vegetative growth without killing the plants. Inhibiting vegetative growth plays a major role for many monocotyledonous and dicotyledonous crops, since, for example, this can reduce or completely prevent lodging.


By virtue of their herbicidal and plant growth-regulating properties, the active ingredients can also be used for control of harmful plants in crops of genetically modified plants or plants modified by conventional mutagenesis. In general, the transgenic plants are notable for special advantageous properties, for example for resistances to certain pesticides, in particular certain herbicides, resistances to plant diseases or organisms that cause plant diseases, such as certain insects or microorganisms such as fungi, bacteria or viruses. Other particular properties relate, for example, to the harvested material with regard to quantity, quality, storability, composition and specific constituents. For instance, there are known transgenic plants with an elevated starch content or altered starch quality, or with a different fatty acid composition in the harvested material.


With regard to transgenic crops, preference is given to the use of the inventive compounds in economically important transgenic crops of useful plants and ornamentals, for example of cereals such as wheat, barley, rye, oats, millet/sorghum, rice and corn, or else crops of sugar beet, cotton, soybean, oilseed rape, potato, tomato, peas and other vegetables. Preferably, the inventive compounds can be used as herbicides in crops of useful plants which are resistant, or have been made resistant by recombinant means, to the phytotoxic effects of the herbicides.


Preference is given to the use of the inventive compounds or salts thereof in economically important transgenic crops of useful plants and ornamentals, for example of cereals such as wheat, barley, rye, oats, millet/sorghum, rice, cassava and corn, or else crops of sugar beet, cotton, soybean, oilseed rape, potato, tomato, peas and other vegetables. Preferably, the inventive compounds can be used as herbicides in crops of useful plants which are resistant, or have been made resistant by recombinant means, to the phytotoxic effects of the herbicides.


Conventional ways of producing novel plants which have modified properties in comparison to existing plants consist, for example, in traditional breeding methods and the generation of mutants. Alternatively, novel plants with modified properties can be generated with the aid of recombinant methods (see, for example, EP-A-0221044, EP-A-0131624). For example, there have been many descriptions of:

    • recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806),
    • transgenic crop plants which are resistant to particular herbicides of the glufosinate type (cf., for example, EP-A-0242236, EP-A-242246) or glyphosate type (WO 92/00377) or the sulfonylureas (EP-A-0257993, US-A-5013659),
    • transgenic crop plants, for example cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to particular pests (EP-A-0142924, EP-A-0193259),
    • transgenic crop plants with a modified fatty acid composition (WO 91/13972),
    • genetically modified crop plants with novel constituents or secondary metabolites, for example novel phytoalexins, which cause an increased disease resistance (EPA 309862, EPA0464461),
    • genetically modified plants with reduced photorespiration, which have higher yields and higher stress tolerance (EPA 0305398),
    • transgenic crop plants which produce pharmaceutically or diagnostically important proteins (“molecular pharming”),
    • transgenic crop plants which are notable for higher yields or better quality,
    • transgenic crop plants which are notable for a combination, for example, of the abovementioned novel properties (“gene stacking”).


Numerous molecular biology techniques which can be used to produce novel transgenic plants with modified properties are known in principle; see, for example, I. Potrykus and G. Spangenberg (eds.), Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg or Christou, “Trends in Plant Science” 1 (1996) 423-431).


For such recombinant manipulations, nucleic acid molecules which allow mutagenesis or a sequence change by recombination of DNA sequences can be introduced into plasmids. With the aid of standard methods, it it possible, for example, to undertake base exchanges, remove parts of sequences or add natural or synthetic sequences. For the connection of the DNA fragments to one another, it is possible to add adapters or linkers to the fragments; see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; or Winnacker “Gene and Klone”, VCH Weinheim, 2nd edition, 1996.


The production of plant cells with a reduced activity of a gene product can be achieved, for example, by the expression of at least one appropriate antisense RNA, or of a sense RNA for achievement of a cosuppression effect, or the expression of at least one appropriately constructed ribozyme which specifically cleaves transcripts of the abovementioned gene product. For this purpose, it is firstly possible to use DNA molecules which comprise the entire coding sequence of a gene product including any flanking sequences present, or else DNA molecules which comprise only parts of the coding sequence, in which case these parts must be long enough to bring about an antisense effect in the cells. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but are not completely identical.


When expressing nucleic acid molecules in plants, the protein synthesized may be localized in any desired compartment of the plant cell. However, in order to achieve localization in a particular compartment, it is possible, for example, to join the coding region to DNA sequences which ensure localization in a particular compartment. Such sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). The nucleic acid molecules can also be expressed in the organelles of the plant cells.


The transgenic plant cells can be regenerated by known techniques to give whole plants. In principle, the transgenic plants may be plants of any desired plant species, i.e. both monocotyledonous and dicotyledonous plants.


Thus, it is possible to obtain transgenic plants whose properties are altered by overexpression, suppression or inhibition of homologous (=natural) genes or gene sequences, or expression of heterologous (=foreign) genes or gene sequences.


Preferably, the inventive compounds can be used in transgenic crops which are resistant to growth regulators, for example dicamba, or to herbicides which inhibit essential plant enzymes, for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD), or to herbicides from the group of the sulfonylureas, the glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients.


On employment of the inventive active ingredients in transgenic crops, not only do the effects toward weed plants observed in other crops occur, but often also effects which are specific to application in the particular transgenic crop, for example an altered or specifically widened spectrum of weeds which can be controlled, altered application rates which can be used for the application, preferably good combinability with the herbicides to which the transgenic crop is resistant, and influencing of growth and yield of the transgenic crop plants.


The invention therefore also provides for the use of the inventive compounds as herbicides for control of harmful plants in transgenic crop plants.


The inventive compounds can be applied in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusting products or granules in the customary formulations. The invention therefore also provides herbicidal and plant growth-regulating compositions which comprise the inventive compounds.


The inventive compounds can be formulated in various ways, according to the biological and/or physicochemical parameters required. Examples of possible formulations include: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusting products (DP), seed-dressing products, granules for broadcasting and soil application, granules (GR) in the form of microgranules, sprayable granules, coated granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.


These individual types of formulation are known in principle and are described, for example, in: Winnacker-Küchler, “Chemische Technologie” [Chemical Technology], volume 7, C. Hanser Verlag Munich, 4th edition 1986, Wade van Valkenburg, “Pesticide Formulations”, Marcel Dekker, N.Y., 1973; K. Martens, “Spray Drying” Handbook, 3rd ed. 1979, G. Goodwin Ltd. London.


The necessary formulation assistants, such as inert materials, surfactants, solvents and further additives are likewise known and are described, for example, in: Watkins, “Handbook of Insecticide Dust Diluents and Carriers”, 2nd ed., Darland Books, Caldwell N.J., H. v. Olphen, “Introduction to Clay Colloid Chemistry”; 2nd ed., J. Wiley & Sons, N.Y.; C. Marsden, “Solvents Guide”; 2nd ed., Interscience, N.Y. 1963; McCutcheon's “Detergents and Emulsifiers Annual”, MC Publ. Corp., Ridgewood N.J., Sisley and Wood, “Encyclopedia of Surface Active Agents”, Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, “Grenzflächenaktive Äthylenoxidaddukte” [Interface-active ethylene oxide adducts], Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, “Chemische Technologie”, Volume 7, C. Hanser Verlag Munich, 4th Ed. 1986.


On the basis of these formulations, it is also possible to produce combinations with other pesticidally active substances, for example insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and/or growth regulators, for example in the form of a finished formulation or as a tankmix. Suitable safeners are, for example, mefenpyr-diethyl, cyprosulfamide, isoxadifen-ethyl, cloquintocet-mexyl and dichlormid.


Wettable powders are preparations which can be dispersed uniformly in water and, in addition to the active ingredient, apart from a diluent or inert substance, also comprise surfactants of the ionic and/or nonionic type (wetting agents, dispersants), for example polyoxyethylated alkylphenols, polyoxyethylated fatty alcohols, polyoxyethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzenesulfonates, sodium lignosulfonate, sodium 2,2′ dinaphthylmethane-6,6′-disulfonate, sodium dibutylnaphthalenesulfonate or else sodium oleoylmethyltaurinate. To produce the wettable powders, the herbicidal active ingredients are ground finely, for example in customary apparatus such as hammer mills, blower mills and air-jet mills, and simultaneously or subsequently mixed with the formulation assistants.


Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene, or else relatively high-boiling aromatics or hydrocarbons or mixtures of the organic solvents, with addition of one or more ionic and/or nonionic surfactants (emulsifiers). The emulsifiers used may, for example, be: calcium alkylarylsulfonates such as calcium dodecylbenzenesulfonate, or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters, for example sorbitan fatty acid esters, or polyoxyethylene sorbitan esters, for example polyoxyethylene sorbitan fatty acid esters.


Dusting products are obtained by grinding the active ingredient with finely distributed solid substances, for example talc, natural clays, such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.


Suspension concentrates may be water- or oil-based. They can be produced, for example, by wet grinding by means of commercial bead mills with optional addition of surfactants as already listed above, for example, for the other formulation types.


Emulsions, for example oil-in-water emulsions (EW), can be produced, for example, by means of stirrers, colloid mills and/or static mixers using aqueous organic solvents and optionally surfactants as already listed above, for example, for the other formulation types.


Granules can be produced either by spraying the active ingredient onto adsorptive granulated inert material or by applying active ingredient concentrates by means of adhesives, for example polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier substances, such as sand, kaolinites or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules—if desired as a mixture with fertilizers.


Water-dispersible granules are produced generally by the customary processes such as spray-drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion without solid inert material.


For the production of pan granules, fluidized bed granules, extruder granules and spray granules, see, for example, processes in “Spray-Drying Handbook” 3rd ed. 1979, G. Goodwin Ltd., London; J. E. Browning, “Agglomeration”, Chemical and Engineering 1967, pages 147 ff.; “Perry's Chemical Engineer's Handbook”, 5th ed., McGraw-Hill, New York 1973, p. 8-57.


For further details regarding the formulation of crop protection compositions, see, for example, G. C. Klingman, “Weed Control as a Science”, John Wiley and Sons, Inc., New York, 1961, pages 81-96 and J. D. Freyer, S. A. Evans, “Weed Control Handbook”, 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103.


The agrochemical formulations contain generally 0.1 to 99% by weight, especially 0.1 to 95% by weight, of inventive compounds.


In wettable powders, the active ingredient concentration is, for example, about 10 to 90% by weight; the remainder to 100% by weight consists of the customary formulation constituents. In emulsifiable concentrates, the active ingredient concentration may be about 1 to 90% and preferably 5 to 80% by weight.


Formulations in the form of dusts comprise 1 to 30% by weight of active ingredient, preferably usually 5 to 20% by weight of active ingredient; sprayable solutions contain about 0.05 to 80% and preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends partly on whether the active compound is present in liquid or solid form and on which granulation assistants, fillers, etc., are used. In the water-dispersible granules, the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.


In addition, the active ingredient formulations mentioned optionally comprise the respective customary tackifiers, wetting agents, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and agents which influence the pH and the viscosity.


On the basis of these formulations, it is also possible to produce combinations with other pesticidally active substances, for example insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and/or growth regulators, for example in the form of a finished formulation or as a tankmix.


Usable combination partners for the inventive compounds in mixture formulations or in a tankmix are, for example, known active ingredients based on inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoendesaturase, photosystem I, photosystem II, protoporphyrinogen oxidase, as described, for example, in Weed Research 26 (1986) 441-445 or “The Pesticide Manual”, 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 and literature cited therein. Examples of known herbicides or plant growth regulators which can be combined with the inventive compounds include the active ingredients which follow (the compounds are designated by the “common name” according to the International Organization for Standardization (ISO) or by the chemical name or by the code number) and always encompass all use forms, such as acids, salts, esters and isomers, such as stereoisomers and optical isomers. In this list, one or else, in some cases, more than one application form is mentioned by way of example:

  • acetochlor, acibenzolar, acibenzolar-S-methyl, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryne, amicarbazone, amidochlor, amidosulfuron, aminocyclopyrachlor, aminopyralid, amitrole, ammonium sulfamate, ancymidol, anilofos, asulam, atrazine, azafenidin, azimsulfuron, aziprotryne, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulide, bensulfuron, bensulfuron-methyl, bentazone, benzfendizone, benzobicyclon, benzofenap, benzofluor, benzoylprop, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, bromuron, buminafos, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorazifop, chlorazifop-butyl, chlorbromuron, chlorbufam, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlormequat-chloride, chlornitrofen, chlorophthalim, chlorthal-dimethyl, chlortoluron, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clodinafop-propargyl, clofencet, clomazone, clomeprop, cloprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cyclanilide, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop, cyhalofop-butyl, cyperquat, cyprazine, cyprazole, 2,4-D, 2,4-DB, daimuron/dymron, dalapon, daminozide, dazomet, n-decanol, desmedipham, desmetryn, detosyl-pyrazolate (DTP), diallate, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, diethatyl, diethatyl-ethyl, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dikegulac-sodium, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimetrasulfuron, dinitramine, dinoseb, dinoterb, diphenamid, dipropetryn, diquat, diquat-dibromide, dithiopyr, diuron, DNOC, eglinazine-ethyl, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethephon, ethidimuron, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-5331, i.e. N-[2-chloro-4-fluoro-5-[4-(3-fluoropropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]phenyl]ethanesulfonamide, F-7967, i.e. 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione, fenoprop, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fentrazamide, fenuron, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet (thiafluamide), flufenpyr, flufenpyr-ethyl, flumetralin, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluoroglycofen, fluoroglycofen-ethyl, flupoxam, flupropacil, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurprimidol, flurtamone, fluthiacet, fluthiacet-methyl, fluthiamide, fomesafen, foramsulfuron, forchlorfenuron, fosamine, furyloxyfen, gibberellic acid, glufosinate, glufosinate-ammonium, glufosinate-P, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-isopropylammonium, H-9201, i.e. O-(2,4-dimethyl-6-nitrophenyl) O-ethyl isopropylphosphoramidothioate, halosafen, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. 1-(dimethoxyphosphoryl)ethyl (2,4-dichlorophenoxy)acetate, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, inabenfide, indanofan, indaziflam, indoleacetic acid (IAA), 4-indol-3-ylbutyric acid (IBA), iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ipfencarbazone, isocarbamid, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KUH-043, i.e. 3-({[5-(difluoromethyl)-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole, karbutilate, ketospiradox, lactofen, lenacil, linuron, maleic hydrazide, MCPA, MCPB, MCPB-methyl, -ethyl and -sodium, mecoprop, mecoprop-sodium, mecoprop-butotyl, mecoprop-P-butotyl, mecoprop-P-dimethylammonium, mecoprop-P-2-ethylhexyl, mecoprop-P-potassium, mefenacet, mefluidide, mepiquat-chloride, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazasulfuron, methazole, methiopyrsulfuron, methiozolin, methoxyphenone, methyldymron, 1-methylcyclopropene, methyl isothiocyanate, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monalide, monocarbamide, monocarbamide dihydrogensulfate, monolinuron, monosulfuron, monosulfuron ester, monuron, MT-128, i.e. 6-chloro-N-[(2E)-3-chloroprop-2-en-1-yl]-5-methyl-N-phenylpyridazine-3-amine, MT-5950, i.e. N-[3-chloro-4-(1-methylethyl)phenyl]-2-methylpentanamide, NGGC-011, naproanilide, napropamide, naptalam, NC-310, i.e. 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, neburon, nicosulfuron, nipyraclofen, nitralin, nitrofen, nitrophenolate-sodium (isomer mixture), nitrofluorfen, nonanoic acid, norflurazon, orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paclobutrazole, paraquat, paraquat dichloride, pelargonic acid (nonanoic acid), pendimethalin, pendralin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxamid, phenisopham, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, pirifenop, pirifenop-butyl, pretilachlor, primisulfuron, primisulfuron-methyl, probenazole, profluazole, procyazine, prodiamine, prifluraline, profoxydim, prohexadione, prohexadione-calcium, prohydrojasmone, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfalin, prosulfocarb, prosulfuron, prynachlor, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, secbumeton, sethoxydim, siduron, simazine, simetryn, SN-106279, i.e. methyl (2R)-2-({7-[2-chloro-4-(trifluoromethyl)phenoxy]-2-naphthyl}oxy)propanoate, sulcotrione, sulfallate (CDEC), sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate (glyphosate-trimesium), sulfosulfuron, SYN-523, SYP-249, i.e. 1-ethoxy-3-methyl-1-oxobut-3-en-2-yl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, SYP-300, i.e. 1-[7-fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidine-4,5-dione, tebutam, tebuthiuron, tecnazene, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbuchlor, terbumeton, terbuthylazine, terbutryne, thenylchlor, thiafluamide, thiazafluron, thiazopyr, thidiazimin, thidiazuron, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, triafamone, triallate, triasulfuron, triaziflam, triazofenamide, tribenuron, tribenuron-methyl, trichloroacetic acid (TCA), triclopyr, tridiphane, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trimeturon, trinexapac, trinexapac-ethyl, tritosulfuron, tsitodef, uniconazole, uniconazole-P, vernolate, ZJ-0862, i.e. 3,4-dichloro-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}aniline, and the following compounds:




embedded image


For application, the formulations in commercial form are, if appropriate, diluted in a customary manner, for example in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules with water. Dust-type formulations, granules for soil application or granules for broadcasting and sprayable solutions are not normally diluted further with other inert substances prior to application.


The required application rate of the compounds of the formula (I) varies with the external conditions, including temperature, humidity and the type of herbicide used. It can vary within wide limits, for example between 0.001 and 1.0 kg/ha or more active substance, but it is preferably between 0.005 and 750 g/ha.


The examples which follow illustrate the invention.


A. CHEMICAL EXAMPLES
1. Synthesis of 4-chloro-3-methoxy-N-(4-methyl-1,2,5-oxadiazol-3-yl)-2,3-dihydro-1-benzothiophene-5-carboxamide 1,1-dioxide (table example No. 1928)

1.00 g (3.14 mmol) of 4-chloro-3-methoxy-2,3-dihydro-1-benzothiophene-5-carboxylic acid 1,1-dioxide and 0.33 g (3.15 mmol) of 4-methyl-1,2,5-oxadiazol-3-yl-amine were dissolved at room temperature (RT) in 35 ml of CH2Cl2, 3.02 g (4.74 mmol) of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (50% solution in THF) were added and the mixture was stirred at RT for 1 h. Subsequently, 2.18 ml (15.64 mmol) of triethylamine and 75 mg (0.61 mmol) of 4-dimethylaminopyridine (DMAP) were added and the whole mixture was stirred at RT for 16 h. This was followed by washing with water and twice with 6N hydrochloric acid, drying of the organic phase over Na2SO4 and filtration with suction through silica gel, washing through with 1:2 heptane/ethyl acetate and concentration. Yield 708 mg (63%).



1H NMR (CDCl3): δ=2.44 (s,3H), 3.53 (s,3H), 3.57 (dd,1H), 3.71 (d,1H), 5.15 (d,1H), 7.55 (d,1H), 7.74 (d,1H), 9.40 (s,1H)


2. Synthesis of 4-chloro-N-(1-methyl-1H-1,2,4-triazol-5-yl)-2,3-dihydro-1-benzothiophen-5-carboxamide 1,1-dioxide (table example No. 1545)

0.80 g (3.24 mmol) of 4-chloro-2,3-dihydro-1-benzothiophene-5-carboxylic acid 1,1-dioxide, 0.72 g (2.43 mmol) of di(1-methyl-1H-1,2,4-triazol-5-amine) sulfate and 20 mg (0.164 mmol) of DMAP were initially charged in 5 ml of pyridine, 0.65 g (5.35 mmol) of thionyl chloride were added and the mixture was stirred at 70° C. for 1 h. Subsequently, 0.5 ml of water was added, and the mixture was stirred for a further 30 min, acidified with saturated KHSO4 solution and extracted three times with 100 ml each time of ethyl acetate. The combined organic phases were washed with saturated NaHCO3 solution, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (silica gel, heptane/ethyl acetate). Yield 642 mg (61%).



1H NMR (DMSO-d6): δ=3.40 (t,2H), 3.74 (t,2H), 3.79 (s,3H), 7.89 (br,3H), 11.39 (s,1H)


3. Synthesis of N-(1-ethyl-1H-tetrazol-5-yl)-4,4,5,8-tetramethyl-3,4-dihydro-2H-thiochromene-6-carboxamide 1,1-dioxide (table example No. 189)

1.00 g (3.54 mmol) of 4,4,5,8-tetramethyl-3,4-dihydro-2H-thiochromene-6-carboxylic acid 1,1-dioxide, 0.63 g (5.32 mmol) of 1-ethyl-5-aminotetrazole and 23 mg (0.188 mmol) of DMAP were initially charged in 7 ml of pyridine, 0.71 g (5.86 mmol) of thionyl chloride were added and the mixture was stirred at 70° C. for 1 h.


Subsequently, 0.5 ml of water was added, and the mixture was stirred for a further 30 min, acidified with saturated KHSO4 solution and extracted three times with 100 ml each time of ethyl acetate. The combined organic phases were washed with saturated NaHCO3 solution, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (silica gel, heptane/ethyl acetate). Yield 492 mg (37%).



1H NMR (CDCl3): δ=1.56 (s,6H), 1.64 (t,3H), 2.36 (dd,2H), 2.65 (s,3H), 2.77 (s,3H), 3.43 (dd,2H), 4.46 (q,2H), 7.37 (s,3H), 10.16 (s,1H)


The examples listed in the tables below were prepared analogously to the abovementioned methods or are obtainable analogously to the abovementioned methods. The compounds listed in the tables below are very particularly preferred.


The abbreviations used mean:

















Et = ethyl
Me = methyl
n-Pr = n-propyl
i-Pr = isopropyl


c-Pr = cyclopropyl
Ph = phenyl
















TABLE 1







Inventive compounds of the general formula (I) in which Q is Q1, Y


is S(O)m, R5 is hydrogen and n is 2




embedded image


















No.
R1
R3
R4
m
X
1H NMR





 1.
Me
Me
Me
0
CH2



 2.
Me
Me
Me
1
CH2



 3.
Me
Me
Me
2
CH2



 4.
Me
Me
Me
0
CHMe



 5.
Me
Me
Me
1
CHMe



 6.
Me
Me
Me
2
CHMe



 7.
Me
Me
Me
0
C(CH3)2
CDCl3, 400 MHz:








1.49 (s, 6H), 2.04








(dd, 2H), 2.28 (s,








3H), 2.62 (s, 3H),








2.98 (dd, 2H), 4.10








(s, 3H), 7.22 (s,








1H), 8.81 (s, 1H)


 8.
Me
Me
Me
1
C(CH3)2



 9.
Me
Me
Me
2
C(CH3)2
CDCl3, 400 MHz:








1.55 (s, 6H), 2.38








(dd, 2H), 2.64 (s,








3H), 2.81 (s, 3H),








3.43 (dd, 2H), 4.10








(s, 3H), 7.33 (s,








1H), 8.87 (s, 1H)


 10.
Me
Me
Me
0
C(OC2H4O)



 11.
Me
Me
Me
1
C(OC2H4O)



 12.
Me
Me
Me
2
C(OC2H4O)



 13.
Me
Me
Me
0
C(SC2H4S)



 14.
Me
Me
Me
1
C(SC2H4S)



 15.
Me
Me
Me
2
C(SC2H4S)



 16.
Me
Me
Me
0
CHOMe



 17.
Me
Me
Me
1
CHOMe



 18.
Me
Me
Me
2
CHOMe



 19.
Me
Me
Me
0
CHOEt



 20.
Me
Me
Me
1
CHOEt



 21.
Me
Me
Me
2
CHOEt



 22.
Me
Me
Me
0
CHOiPr



 23.
Me
Me
Me
1
CHOiPr



 24.
Me
Me
Me
2
CHOiPr



 25.
Me
Me
Me
0
CHOCH2cPr



 26.
Me
Me
Me
1
CHOCH2cPr



 27.
Me
Me
Me
2
CHOCH2cPr



 28.
Me
Me
Me
0
CHOC2H4OMe



 29.
Me
Me
Me
1
CHOC2H4OMe



 30.
Me
Me
Me
2
CHOC2H4OMe



 31.
Me
Me
Me
0
CHOCH2CCH



 32.
Me
Me
Me
1
CHOCH2CCH



 33.
Me
Me
Me
2
CHOCH2CCH



 34.
Me
Me
Me
0
CHOCH2CH═CH2



 35.
Me
Me
Me
1
CHOCH2CH═CH2



 36.
Me
Me
Me
2
CHOCH2CH═CH2






 37.
Me
Me
Me
0


embedded image








 38.
Me
Me
Me
1


embedded image








 39.
Me
Me
Me
2


embedded image








 40.
Me
Me
Me
0


embedded image


CDCl3, 400 MHz: 8.28-8.25 (m, 2H), 8.19 (m, 1H), 7.62 (s, 1H), 6.52 (m, 1H), 4.13 (s, 3H), 3.81 (m, 1H), 3.30 (m, 1H), 2.92-2.74 (m, 2H), 2.80 (s, 3H), 2.32 (s, 3H)





 41.
Me
Me
Me
1


embedded image








 42.
Me
Me
Me
2


embedded image








 43.
Me
Me
Me
0


embedded image








 44.
Me
Me
Me
1


embedded image








 45.
Me
Me
Me
2


embedded image








 46.
Me
Me
Me
0


embedded image








 47.
Me
Me
Me
1


embedded image








 48.
Me
Me
Me
2


embedded image








 49.
Me
Me
Me
0


embedded image








 50.
Me
Me
Me
1


embedded image








 51.
Me
Me
Me
2


embedded image








 52.
Me
Me
Me
0
CHOC2H4F



 53.
Me
Me
Me
1
CHOC2H4F



 54.
Me
Me
Me
2
CHOC2H4F



 55.
Me
Me
Me
0
C═NOMe



 56.
Me
Me
Me
1
C═NOMe



 57.
Me
Me
Me
2
C═NOMe



 58.
Me
Me
Me
0
C═NOCH2CCH



 59.
Me
Me
Me
1
C═NOCH2CCH



 60.
Me
Me
Me
2
C═NOCH2CCH



 61.
Me
Me
Me
0
C═NOCH2CH═CH2



 62.
Me
Me
Me
1
C═NOCH2CH═CH2



 63.
Me
Me
Me
2
C═NOCH2CH═CH2



 64.
Me
Me
Me
0
C═O



 65.
Me
Me
Me
1
C═O



 66.
Me
Me
Me
2
C═O



 67.
Me
Me
Me
0
C═S



 68.
Me
Me
Me
1
C═S



 69.
Me
Me
Me
2
C═S



 70.
Me
Me
Me
0
C═S



 71.
Me
Me
Me
1
C═S



 72.
Me
Me
Me
2
C═S



 73.
Me
Me
Me
0
C═N—N(CH3)2



 74.
Me
Me
Me
1
C═N—N(CH3)2



 75.
Me
Me
Me
2
C═N—N(CH3)2



 76.
Me
Me
Me
0
O



 77.
Me
Me
Me
1
O



 78.
Me
Me
Me
2
O



 79.
Me
Me
Me
0
S



 80.
Me
Me
Me
1
S



 81.
Me
Me
Me
2
S



 82.
Me
Me
Me
0
SO



 83.
Me
Me
Me
1
SO



 84.
Me
Me
Me
2
SO



 85.
Me
Me
Me
0
SO2



 86.
Me
Me
Me
1
SO2



 87.
Me
Me
Me
2
SO2



 88.
Me
Me
Me
0
NMe



 89.
Me
Me
Me
1
NMe



 90.
Me
Me
Me
2
NMe



 91.
Me
Me
H
0
CH2



 92.
Me
Me
H
1
CH2



 93.
Me
Me
H
2
CH2



 94.
Me
Me
H
0
CHMe



 95.
Me
Me
H
1
CHMe



 96.
Me
Me
H
2
CHMe



 97.
Me
Me
H
0
C(CH3)2



 98.
Me
Me
H
1
C(CH3)2



 99.
Me
Me
H
2
C(CH3)2



100.
Me
Me
H
0
C(OC2H4O)



101.
Me
Me
H
1
C(OC2H4O)



102.
Me
Me
H
2
C(OC2H4O)



103.
Me
Me
H
0
C(SC2H4S)



104.
Me
Me
H
1
C(SC2H4S)



105.
Me
Me
H
2
C(SC2H4S)



106.
Me
Me
H
0
CHOMe



107.
Me
Me
H
1
CHOMe



108.
Me
Me
H
2
CHOMe



109.
Me
Me
H
0
CHOEt



110.
Me
Me
H
1
CHOEt



111.
Me
Me
H
2
CHOEt



112.
Me
Me
H
0
CHOiPr



113.
Me
Me
H
1
CHOiPr



114.
Me
Me
H
2
CHOiPr



115.
Me
Me
H
0
CHOCH2cPr



116.
Me
Me
H
1
CHOCH2cPr



117.
Me
Me
H
2
CHOCH2cPr



118.
Me
Me
H
0
CHOC2H4OMe



119.
Me
Me
H
1
CHOC2H4OMe



120.
Me
Me
H
2
CHOC2H4OMe



121.
Me
Me
H
0
CHOCH2CCH



122.
Me
Me
H
1
CHOCH2CCH



123.
Me
Me
H
2
CHOCH2CCH



124.
Me
Me
H
0
CHOCH2CH═CH2



125.
Me
Me
H
1
CHOCH2CH═CH2



126.
Me
Me
H
2
CHOCH2CH═CH2






127.
Me
Me
H
0


embedded image








128.
Me
Me
H
1


embedded image








129.
Me
Me
H
2


embedded image








130.
Me
Me
H
0


embedded image








131.
Me
Me
H
1


embedded image








132.
Me
Me
H
2


embedded image








133.
Me
Me
H
0


embedded image








134.
Me
Me
H
1


embedded image








135.
Me
Me
H
2


embedded image








136.
Me
Me
H
0


embedded image








137.
Me
Me
H
1


embedded image








138.
Me
Me
H
2


embedded image








139.
Me
Me
H
0


embedded image








140.
Me
Me
H
1


embedded image








141.
Me
Me
H
2


embedded image








142.
Me
Me
H
0
CHOC2H4F



143.
Me
Me
H
1
CHOC2H4F



144.
Me
Me
H
2
CHOC2H4F



145.
Me
Me
H
0
C═NOMe



146.
Me
Me
H
1
C═NOMe



147.
Me
Me
H
2
C═NOMe



148.
Me
Me
H
0
C═NOCH2CCH



149.
Me
Me
H
1
C═NOCH2CCH



150.
Me
Me
H
2
C═NOCH2CCH



151.
Me
Me
H
0
C═NOCH2CH═CH2



152.
Me
Me
H
1
C═NOCH2CH═CH2



153.
Me
Me
H
2
C═NOCH2CH═CH2



154.
Me
Me
H
0
C═O



155.
Me
Me
H
1
C═O



156.
Me
Me
H
2
C═O



157.
Me
Me
H
0
C═S



158.
Me
Me
H
1
C═S



159.
Me
Me
H
2
C═S



160.
Me
Me
H
0
C═S



161.
Me
Me
H
1
C═S



162.
Me
Me
H
2
C═S



163.
Me
Me
H
0
C═N—N(CH3)2



164.
Me
Me
H
1
C═N—N(CH3)2



165.
Me
Me
H
2
C═N—N(CH3)2



166.
Me
Me
H
0
O



167.
Me
Me
H
1
O



168.
Me
Me
H
2
O



169.
Me
Me
H
0
S



170.
Me
Me
H
1
S



171.
Me
Me
H
2
S



172.
Me
Me
H
0
SO



173.
Me
Me
H
1
SO



174.
Me
Me
H
2
SO



175.
Me
Me
H
0
SO2



176.
Me
Me
H
1
SO2



177.
Me
Me
H
2
SO2



178.
Me
Me
H
0
NMe



179.
Me
Me
H
1
NMe



180.
Me
Me
H
2
NMe



181.
Et
Me
Me
0
CH2



182.
Et
Me
Me
1
CH2



183.
Et
Me
Me
2
CH2



184.
Et
Me
Me
0
CHMe



185.
Et
Me
Me
1
CHMe



186.
Et
Me
Me
2
CHMe



187.
Et
Me
Me
0
C(CH3)2
CDCl3, 400 MHz:








1.49 (s, 6H), 1.61








(t, 3H), 2.04 (dd,








2H), 2.29 (s, 3H),








2.62 (s, 3H), 2.99








(dd, 2H), 4.46 (q,








2H), 7.23 (s, 1H),








9.12 (s, 1H)


188.
Et
Me
Me
1
C(CH3)2



189.
Et
Me
Me
2
C(CH3)2
CDCl3, 400 MHz:








1.56 (s, 6H), 1.64








(t, 3H), 2.36 (dd,








2H), 2.65 (s, 3H),








2.77 (s, 3H), 3.43








(dd, 2H), 4.46 (q,








2H), 7.37 (s, 1H),








10.16 (s, 1H)


190.
Et
Me
Me
0
C(OC2H4O)



191.
Et
Me
Me
1
C(OC2H4O)



192.
Et
Me
Me
2
C(OC2H4O)



193.
Et
Me
Me
0
C(SC2H4S)



194.
Et
Me
Me
1
C(SC2H4S)



195.
Et
Me
Me
2
C(SC2H4S)



196.
Et
Me
Me
0
CHOMe



197.
Et
Me
Me
1
CHOMe



198.
Et
Me
Me
2
CHOMe



199.
Et
Me
Me
0
CHOEt



200.
Et
Me
Me
1
CHOEt



201.
Et
Me
Me
2
CHOEt



202.
Et
Me
Me
0
CHOiPr



203.
Et
Me
Me
1
CHOiPr



204.
Et
Me
Me
2
CHOiPr



205.
Et
Me
Me
0
CHOCH2cPr



206.
Et
Me
Me
1
CHOCH2cPr



207.
Et
Me
Me
2
CHOCH2cPr



208.
Et
Me
Me
0
CHOC2H4OMe



209.
Et
Me
Me
1
CHOC2H4OMe



210.
Et
Me
Me
2
CHOC2H4OMe



211.
Et
Me
Me
0
CHOCH2CCH



212.
Et
Me
Me
1
CHOCH2CCH



213.
Et
Me
Me
2
CHOCH2CCH



214.
Et
Me
Me
0
CHOCH2CH═CH2



215.
Et
Me
Me
1
CHOCH2CH═CH2



216.
Et
Me
Me
2
CHOCH2CH═CH2






217.
Et
Me
Me
0


embedded image








218.
Et
Me
Me
1


embedded image








219.
Et
Me
Me
2


embedded image








220.
Et
Me
Me
0


embedded image








221.
Et
Me
Me
1


embedded image








222.
Et
Me
Me
2


embedded image








223.
Et
Me
Me
0


embedded image








224.
Et
Me
Me
1


embedded image








225.
Et
Me
Me
2


embedded image








226.
Et
Me
Me
0


embedded image








227.
Et
Me
Me
1


embedded image








228.
Et
Me
Me
2


embedded image








229.
Et
Me
Me
0


embedded image








230.
Et
Me
Me
1


embedded image








231.
Et
Me
Me
2


embedded image








232.
Et
Me
Me
0
CHOC2H4F



233.
Et
Me
Me
1
CHOC2H4F



234.
Et
Me
Me
2
CHOC2H4F



235.
Et
Me
Me
0
C═NOMe



236.
Et
Me
Me
1
C═NOMe



237.
Et
Me
Me
2
C═NOMe



238.
Et
Me
Me
0
C═NOCH2CCH



239.
Et
Me
Me
1
C═NOCH2CCH



240.
Et
Me
Me
2
C═NOCH2CCH



241.
Et
Me
Me
0
C═NOCH2CH═CH2



242.
Et
Me
Me
1
C═NOCH2CH═CH2



243.
Et
Me
Me
2
C═NOCH2CH═CH2



244.
Et
Me
Me
0
C═O



245.
Et
Me
Me
1
C═O



246.
Et
Me
Me
2
C═O



247.
Et
Me
Me
0
C═S



248.
Et
Me
Me
1
C═S



249.
Et
Me
Me
2
C═S



250.
Et
Me
Me
0
C═S



251.
Et
Me
Me
1
C═S



252.
Et
Me
Me
2
C═S



253.
Et
Me
Me
0
C═N—N(CH3)2



254.
Et
Me
Me
1
C═N—N(CH3)2



255.
Et
Me
Me
2
C═N—N(CH3)2



256.
Et
Me
Me
0
O



257.
Et
Me
Me
1
O



258.
Et
Me
Me
2
O



259.
Et
Me
Me
0
S



260.
Et
Me
Me
1
S



261.
Et
Me
Me
2
S



262.
Et
Me
Me
0
SO



263.
Et
Me
Me
1
SO



264.
Et
Me
Me
2
SO



265.
Et
Me
Me
0
SO2



266.
Et
Me
Me
1
SO2



267.
Et
Me
Me
2
SO2



268.
Et
Me
Me
0
NMe



269.
Et
Me
Me
1
NMe



270.
Et
Me
Me
2
NMe



271.
Et
Me
H
0
CH2



272.
Et
Me
H
1
CH2



273.
Et
Me
H
2
CH2



274.
Et
Me
H
0
CHMe



275.
Et
Me
H
1
CHMe



276.
Et
Me
H
2
CHMe



277.
Et
Me
H
0
C(CH3)2



278.
Et
Me
H
1
C(CH3)2



279.
Et
Me
H
2
C(CH3)2



280.
Et
Me
H
0
C(OC2H4O)



281.
Et
Me
H
1
C(OC2H4O)



282.
Et
Me
H
2
C(OC2H4O)



283.
Et
Me
H
0
C(SC2H4S)



284.
Et
Me
H
1
C(SC2H4S)



285.
Et
Me
H
2
C(SC2H4S)



286.
Et
Me
H
0
CHOMe



287.
Et
Me
H
1
CHOMe



288.
Et
Me
H
2
CHOMe



289.
Et
Me
H
0
CHOEt



290.
Et
Me
H
1
CHOEt



291.
Et
Me
H
2
CHOEt



292.
Et
Me
H
0
CHOiPr



293.
Et
Me
H
1
CHOiPr



294.
Et
Me
H
2
CHOiPr



295.
Et
Me
H
0
CHOCH2cPr



296.
Et
Me
H
1
CHOCH2cPr



297.
Et
Me
H
2
CHOCH2cPr



298.
Et
Me
H
0
CHOC2H4OMe



299.
Et
Me
H
1
CHOC2H4OMe



300.
Et
Me
H
2
CHOC2H4OMe



301.
Et
Me
H
0
CHOCH2CCH



302.
Et
Me
H
1
CHOCH2CCH



303.
Et
Me
H
2
CHOCH2CCH



304.
Et
Me
H
0
CHOCH2CH═CH2



305.
Et
Me
H
1
CHOCH2CH═CH2



306.
Et
Me
H
2
CHOCH2CH═CH2






307.
Et
Me
H
0


embedded image








308.
Et
Me
H
1


embedded image








309.
Et
Me
H
2


embedded image








310.
Et
Me
H
0


embedded image








311.
Et
Me
H
1


embedded image








312.
Et
Me
H
2


embedded image








313.
Et
Me
H
0


embedded image








314.
Et
Me
H
1


embedded image








315.
Et
Me
H
2


embedded image








316.
Et
Me
H
0


embedded image








317.
Et
Me
H
1


embedded image








318.
Et
Me
H
2


embedded image








319.
Et
Me
H
0


embedded image








320.
Et
Me
H
1


embedded image








321
Et
Me
H
2


embedded image








322.
Et
Me
H
0
CHOC2H4F



323.
Et
Me
H
1
CHOC2H4F



324.
Et
Me
H
2
CHOC2H4F



325.
Et
Me
H
0
C═NOMe



326.
Et
Me
H
1
C═NOMe



327.
Et
Me
H
2
C═NOMe



328.
Et
Me
H
0
C═NOCH2CCH



329.
Et
Me
H
1
C═NOCH2CCH



330.
Et
Me
H
2
C═NOCH2CCH



331.
Et
Me
H
0
C═NOCH2CH═CH2



332.
Et
Me
H
1
C═NOCH2CH═CH2



333.
Et
Me
H
2
C═NOCH2CH═CH2



334.
Et
Me
H
0
C═O



335.
Et
Me
H
1
C═O



336.
Et
Me
H
2
C═O



337.
Et
Me
H
0
C═S



338.
Et
Me
H
1
C═S



339.
Et
Me
H
2
C═S



340.
Et
Me
H
0
C═S



341.
Et
Me
H
1
C═S



342.
Et
Me
H
2
C═S



343.
Et
Me
H
0
C═N—N(CH3)2



344.
Et
Me
H
1
C═N—N(CH3)2



345.
Et
Me
H
2
C═N—N(CH3)2



346.
Et
Me
H
0
O



347.
Et
Me
H
1
O



348.
Et
Me
H
2
O



349.
Et
Me
H
0
S



350.
Et
Me
H
1
S



351.
Et
Me
H
2
S



352.
Et
Me
H
0
SO



353.
Et
Me
H
1
SO



354.
Et
Me
H
2
SO



355.
Et
Me
H
0
SO2



356.
Et
Me
H
1
SO2



357.
Et
Me
H
2
SO2



358.
Et
Me
H
0
NMe



359.
Et
Me
H
1
NMe



360.
Et
Me
H
2
NMe
















TABLE 2







Inventive compounds of the general formula (I) in which Q is Q2,


Y is S(O)m, R5 is hydrogen and n is 2




embedded image


















Number
R1
R3
R4
m
X
1H NMR





361.
Me
Me
Me
0
CH2



362.
Me
Me
Me
1
CH2



363.
Me
Me
Me
2
CH2



364.
Me
Me
Me
0
CHMe



365.
Me
Me
Me
1
CHMe



366.
Me
Me
Me
2
CHMe



367.
Me
Me
Me
0
C(CH3)2



368.
Me
Me
Me
1
C(CH3)2



369.
Me
Me
Me
2
C(CH3)2



370.
Me
Me
Me
0
C(OC2H4O)



371.
Me
Me
Me
1
C(OC2H4O)



372.
Me
Me
Me
2
C(OC2H4O)



373.
Me
Me
Me
0
C(SC2H4S)



374.
Me
Me
Me
1
C(SC2H4S)



375.
Me
Me
Me
2
C(SC2H4S)



376.
Me
Me
Me
0
CHOMe



377.
Me
Me
Me
1
CHOMe



378.
Me
Me
Me
2
CHOMe



379.
Me
Me
Me
0
CHOEt



380.
Me
Me
Me
1
CHOEt



381.
Me
Me
Me
2
CHOEt



382.
Me
Me
Me
0
CHOiPr



383.
Me
Me
Me
1
CHOiPr



384.
Me
Me
Me
2
CHOiPr



385.
Me
Me
Me
0
CHOCH2cPr



386.
Me
Me
Me
1
CHOCH2cPr



387.
Me
Me
Me
2
CHOCH2cPr



388.
Me
Me
Me
0
CHOC2H4OMe



389.
Me
Me
Me
1
CHOC2H4OMe



390.
Me
Me
Me
2
CHOC2H4OMe



391.
Me
Me
Me
0
CHOCH2CCH



392.
Me
Me
Me
1
CHOCH2CCH



393.
Me
Me
Me
2
CHOCH2CCH



394.
Me
Me
Me
0
CHOCH2CH═CH2



395.
Me
Me
Me
1
CHOCH2CH═CH2



396.
Me
Me
Me
2
CHOCH2CH═CH2






397.
Me
Me
Me
0


embedded image








398.
Me
Me
Me
1


embedded image








399.
Me
Me
Me
2


embedded image








400.
Me
Me
Me
0


embedded image








401.
Me
Me
Me
1


embedded image








402.
Me
Me
Me
2


embedded image








403.
Me
Me
Me
0


embedded image








404.
Me
Me
Me
1


embedded image








405.
Me
Me
Me
2


embedded image








406.
Me
Me
Me
0


embedded image








407.
Me
Me
Me
1


embedded image








408.
Me
Me
Me
2


embedded image








409.
Me
Me
Me
0


embedded image








410.
Me
Me
Me
1


embedded image








411.
Me
Me
Me
2


embedded image








412.
Me
Me
Me
0
CHOC2H4F



413.
Me
Me
Me
1
CHOC2H4F



414.
Me
Me
Me
2
CHOC2H4F



415.
Me
Me
Me
0
C═NOMe



416.
Me
Me
Me
1
C═NOMe



417.
Me
Me
Me
2
C═NOMe



418.
Me
Me
Me
0
C═NOCH2CCH



419.
Me
Me
Me
1
C═NOCH2CCH



420.
Me
Me
Me
2
C═NOCH2CCH



421.
Me
Me
Me
0
C═NOCH2CH═CH2



422.
Me
Me
Me
1
C═NOCH2CH═CH2



423.
Me
Me
Me
2
C═NOCH2CH═CH2



424.
Me
Me
Me
0
C═O



425.
Me
Me
Me
1
C═O



426.
Me
Me
Me
2
C═O



427.
Me
Me
Me
0
C═S



428.
Me
Me
Me
1
C═S



429.
Me
Me
Me
2
C═S



430.
Me
Me
Me
0
C═S



431.
Me
Me
Me
1
C═S



432.
Me
Me
Me
2
C═S



433.
Me
Me
Me
0
C═N—N(CH3)2



434.
Me
Me
Me
1
C═N—N(CH3)2



435.
Me
Me
Me
2
C═N—N(CH3)2



436.
Me
Me
Me
0
O



437.
Me
Me
Me
1
O



438.
Me
Me
Me
2
O



439.
Me
Me
Me
0
S



440.
Me
Me
Me
1
S



441.
Me
Me
Me
2
S



442.
Me
Me
Me
0
SO



443.
Me
Me
Me
1
SO



444.
Me
Me
Me
2
SO



445.
Me
Me
Me
0
SO2



446.
Me
Me
Me
1
SO2



447.
Me
Me
Me
2
SO2



448.
Me
Me
Me
0
NMe



449.
Me
Me
Me
1
NMe



450.
Me
Me
Me
2
NMe



451.
Me
Me
H
0
CH2



452.
Me
Me
H
1
CH2



453.
Me
Me
H
2
CH2



454.
Me
Me
H
0
CHMe



455.
Me
Me
H
1
CHMe



456.
Me
Me
H
2
CHMe



457.
Me
Me
H
0
C(CH3)2



458.
Me
Me
H
1
C(CH3)2



459.
Me
Me
H
2
C(CH3)2



460.
Me
Me
H
0
C(OC2H4O)



461.
Me
Me
H
1
C(OC2H4O)



462.
Me
Me
H
2
C(OC2H4O)



463.
Me
Me
H
0
C(SC2H4S)



464.
Me
Me
H
1
C(SC2H4S)



465.
Me
Me
H
2
C(SC2H4S)



466.
Me
Me
H
0
CHOMe



467.
Me
Me
H
1
CHOMe



468.
Me
Me
H
2
CHOMe



469.
Me
Me
H
0
CHOEt



470.
Me
Me
H
1
CHOEt



471.
Me
Me
H
2
CHOEt



472.
Me
Me
H
0
CHOiPr



473.
Me
Me
H
1
CHOiPr



474.
Me
Me
H
2
CHOiPr



475.
Me
Me
H
0
CHOCH2cPr



476.
Me
Me
H
1
CHOCH2cPr



477.
Me
Me
H
2
CHOCH2cPr



478.
Me
Me
H
0
CHOC2H4OMe



479.
Me
Me
H
1
CHOC2H4OMe



480.
Me
Me
H
2
CHOC2H4OMe



481.
Me
Me
H
0
CHOCH2CCH



482.
Me
Me
H
1
CHOCH2CCH



483.
Me
Me
H
2
CHOCH2CCH



484.
Me
Me
H
0
CHOCH2CH═CH2



485.
Me
Me
H
1
CHOCH2CH═CH2



486.
Me
Me
H
2
CHOCH2CH═CH2






487.
Me
Me
H
0


embedded image








488.
Me
Me
H
1


embedded image








489.
Me
Me
H
2


embedded image








490.
Me
Me
H
0


embedded image








491.
Me
Me
H
1


embedded image








492.
Me
Me
H
2


embedded image








493.
Me
Me
H
0


embedded image








494.
Me
Me
H
1


embedded image








495.
Me
Me
H
2


embedded image








496.
Me
Me
H
0


embedded image








497.
Me
Me
H
1


embedded image








498.
Me
Me
H
2


embedded image








499.
Me
Me
H
0


embedded image








500.
Me
Me
H
1


embedded image








501.
Me
Me
H
2


embedded image








502.
Me
Me
H
0
CHOC2H4F



503.
Me
Me
H
1
CHOC2H4F



504.
Me
Me
H
2
CHOC2H4F



505.
Me
Me
H
0
C═NOMe



506.
Me
Me
H
1
C═NOMe



507.
Me
Me
H
2
C═NOMe



508.
Me
Me
H
0
C═NOCH2CCH



509.
Me
Me
H
1
C═NOCH2CCH



510.
Me
Me
H
2
C═NOCH2CCH



511.
Me
Me
H
0
C═NOCH2CH═CH2



512.
Me
Me
H
1
C═NOCH2CH═CH2



513.
Me
Me
H
2
C═NOCH2CH═CH2



514.
Me
Me
H
0
C═O



515.
Me
Me
H
1
C═O



516.
Me
Me
H
2
C═O



517.
Me
Me
H
0
C═S



518.
Me
Me
H
1
C═S



519.
Me
Me
H
2
C═S



520.
Me
Me
H
0
C═S



521.
Me
Me
H
1
C═S



522.
Me
Me
H
2
C═S



523.
Me
Me
H
0
C═N—N(CH3)2



524.
Me
Me
H
1
C═N—N(CH3)2



525.
Me
Me
H
2
C═N—N(CH3)2



526.
Me
Me
H
0
O



527.
Me
Me
H
1
O



528.
Me
Me
H
2
O



529.
Me
Me
H
0
S



530.
Me
Me
H
1
S



531.
Me
Me
H
2
S



532.
Me
Me
H
0
SO



533.
Me
Me
H
1
SO



534.
Me
Me
H
2
SO



535.
Me
Me
H
0
SO2



536.
Me
Me
H
1
SO2



537.
Me
Me
H
2
SO2



538.
Me
Me
H
0
NMe



539.
Me
Me
H
1
NMe



540.
Me
Me
H
2
NMe



541.
Et
Me
Me
0
CH2



542.
Et
Me
Me
1
CH2



543.
Et
Me
Me
2
CH2



544.
Et
Me
Me
0
CHMe



545.
Et
Me
Me
1
CHMe



546.
Et
Me
Me
2
CHMe



547.
Et
Me
Me
0
C(CH3)2



548.
Et
Me
Me
1
C(CH3)2



549.
Et
Me
Me
2
C(CH3)2



550.
Et
Me
Me
0
C(OC2H4O)



551.
Et
Me
Me
1
C(OC2H4O)



552.
Et
Me
Me
2
C(OC2H4O)



553.
Et
Me
Me
0
C(SC2H4S)



554.
Et
Me
Me
1
C(SC2H4S)



555.
Et
Me
Me
2
C(SC2H4S)



556.
Et
Me
Me
0
CHOMe



557.
Et
Me
Me
1
CHOMe



558.
Et
Me
Me
2
CHOMe



559.
Et
Me
Me
0
CHOEt



560.
Et
Me
Me
1
CHOEt



561.
Et
Me
Me
2
CHOEt



562.
Et
Me
Me
0
CHOiPr



563.
Et
Me
Me
1
CHOiPr



564.
Et
Me
Me
2
CHOiPr



565.
Et
Me
Me
0
CHOCH2cPr



566.
Et
Me
Me
1
CHOCH2cPr



567.
Et
Me
Me
2
CHOCH2cPr



568.
Et
Me
Me
0
CHOC2H4OMe



569.
Et
Me
Me
1
CHOC2H4OMe



570.
Et
Me
Me
2
CHOC2H4OMe



571.
Et
Me
Me
0
CHOCH2CCH



572.
Et
Me
Me
1
CHOCH2CCH



573.
Et
Me
Me
2
CHOCH2CCH



574.
Et
Me
Me
0
CHOCH2CH═CH2



575.
Et
Me
Me
1
CHOCH2CH═CH2



576.
Et
Me
Me
2
CHOCH2CH═CH2






577.
Et
Me
Me
0


embedded image








578.
Et
Me
Me
1


embedded image








579.
Et
Me
Me
2


embedded image








580.
Et
Me
Me
0


embedded image








581.
Et
Me
Me
1


embedded image








582.
Et
Me
Me
2


embedded image








583.
Et
Me
Me
0


embedded image








584.
Et
Me
Me
1


embedded image








585.
Et
Me
Me
2


embedded image








586.
Et
Me
Me
0


embedded image








587.
Et
Me
Me
1


embedded image








588.
Et
Me
Me
2


embedded image








589.
Et
Me
Me
0


embedded image








590.
Et
Me
Me
1


embedded image








591.
Et
Me
Me
2


embedded image








592.
Et
Me
Me
0
CHOC2H4F



593.
Et
Me
Me
1
CHOC2H4F



594.
Et
Me
Me
2
CHOC2H4F



595.
Et
Me
Me
0
C═NOMe



596.
Et
Me
Me
1
C═NOMe



597.
Et
Me
Me
2
C═NOMe



598.
Et
Me
Me
0
C═NOCH2CCH



599.
Et
Me
Me
1
C═NOCH2CCH



600.
Et
Me
Me
2
C═NOCH2CCH



601.
Et
Me
Me
0
C═NOCH2CH═CH2



602.
Et
Me
Me
1
C═NOCH2CH═CH2



603.
Et
Me
Me
2
C═NOCH2CH═CH2



604.
Et
Me
Me
0
C═O



605.
Et
Me
Me
1
C═O



606.
Et
Me
Me
2
C═O



607.
Et
Me
Me
0
C═S



608.
Et
Me
Me
1
C═S



609.
Et
Me
Me
2
C═S



610.
Et
Me
Me
0
C═S



611.
Et
Me
Me
1
C═S



612.
Et
Me
Me
2
C═S



613.
Et
Me
Me
0
C═N—N(CH3)2



614.
Et
Me
Me
1
C═N—N(CH3)2



615.
Et
Me
Me
2
C═N—N(CH3)2



616.
Et
Me
Me
0
O



617.
Et
Me
Me
1
O



618.
Et
Me
Me
2
O



619.
Et
Me
Me
0
S



620.
Et
Me
Me
1
S



621.
Et
Me
Me
2
S



622.
Et
Me
Me
0
SO



623.
Et
Me
Me
1
SO



624.
Et
Me
Me
2
SO



625.
Et
Me
Me
0
SO2



626.
Et
Me
Me
1
SO2



627.
Et
Me
Me
2
SO2



628.
Et
Me
Me
0
NMe



629.
Et
Me
Me
1
NMe



630.
Et
Me
Me
2
NMe



631.
Et
Me
H
0
CH2



632.
Et
Me
H
1
CH2



633.
Et
Me
H
2
CH2



634.
Et
Me
H
0
CHMe



635.
Et
Me
H
1
CHMe



636.
Et
Me
H
2
CHMe



637.
Et
Me
H
0
C(CH3)2



638.
Et
Me
H
1
C(CH3)2



639.
Et
Me
H
2
C(CH3)2



640.
Et
Me
H
0
C(OC2H4O)



641.
Et
Me
H
1
C(OC2H4O)



642.
Et
Me
H
2
C(OC2H4O)



643.
Et
Me
H
0
C(SC2H4S)



644.
Et
Me
H
1
C(SC2H4S)



645.
Et
Me
H
2
C(SC2H4S)



646.
Et
Me
H
0
CHOMe



647.
Et
Me
H
1
CHOMe



648.
Et
Me
H
2
CHOMe



649.
Et
Me
H
0
CHOEt



650.
Et
Me
H
1
CHOEt



651.
Et
Me
H
2
CHOEt



652.
Et
Me
H
0
CHOiPr



653.
Et
Me
H
1
CHOiPr



654.
Et
Me
H
2
CHOiPr



655.
Et
Me
H
0
CHOCH2cPr



656.
Et
Me
H
1
CHOCH2cPr



657.
Et
Me
H
2
CHOCH2cPr



658.
Et
Me
H
0
CHOC2H4OMe



659.
Et
Me
H
1
CHOC2H4OMe



660.
Et
Me
H
2
CHOC2H4OMe



661.
Et
Me
H
0
CHOCH2CCH



662.
Et
Me
H
1
CHOCH2CCH



663.
Et
Me
H
2
CHOCH2CCH



664.
Et
Me
H
0
CHOCH2CH═CH2



665.
Et
Me
H
1
CHOCH2CH═CH2



666.
Et
Me
H
2
CHOCH2CH═CH2






667.
Et
Me
H
0


embedded image








668.
Et
Me
H
1


embedded image








669.
Et
Me
H
2


embedded image








670.
Et
Me
H
0


embedded image








671.
Et
Me
H
1


embedded image








672.
Et
Me
H
2


embedded image








673.
Et
Me
H
0


embedded image








674.
Et
Me
H
1


embedded image








675.
Et
Me
H
2


embedded image








676.
Et
Me
H
0


embedded image








677.
Et
Me
H
1


embedded image








678.
Et
Me
H
2


embedded image








679.
Et
Me
H
0


embedded image








680.
Et
Me
H
1


embedded image








681.
Et
Me
H
2


embedded image








682.
Et
Me
H
0
CHOC2H4F



683.
Et
Me
H
1
CHOC2H4F



684.
Et
Me
H
2
CHOC2H4F



685.
Et
Me
H
0
C═NOMe



686.
Et
Me
H
1
C═NOMe



687.
Et
Me
H
2
C═NOMe



688.
Et
Me
H
0
C═NOCH2CCH



689.
Et
Me
H
1
C═NOCH2CCH



690.
Et
Me
H
2
C═NOCH2CCH



691.
Et
Me
H
0
C═NOCH2CH═CH2



692.
Et
Me
H
1
C═NOCH2CH═CH2



693.
Et
Me
H
2
C═NOCH2CH═CH2



694.
Et
Me
H
0
C═O



695.
Et
Me
H
1
C═O



696.
Et
Me
H
2
C═O



697.
Et
Me
H
0
C═S



698.
Et
Me
H
1
C═S



699.
Et
Me
H
2
C═S



700.
Et
Me
H
0
C═S



701.
Et
Me
H
1
C═S



702.
Et
Me
H
2
C═S



703.
Et
Me
H
0
C═N—N(CH3)2



704.
Et
Me
H
1
C═N—N(CH3)2



705.
Et
Me
H
2
C═N—N(CH3)2



706.
Et
Me
H
0
O



707.
Et
Me
H
1
O



708.
Et
Me
H
2
O



709.
Et
Me
H
0
S



710.
Et
Me
H
1
S



711.
Et
Me
H
2
S



712.
Et
Me
H
0
SO



713.
Et
Me
H
1
SO



714.
Et
Me
H
2
SO



715.
Et
Me
H
0
SO2



716.
Et
Me
H
1
SO2



717.
Et
Me
H
2
SO2



718.
Et
Me
H
0
NMe



719.
Et
Me
H
1
NMe



720.
Et
Me
H
2
NMe
















TABLE 3







Inventive compounds of the general formula (I) in which Q is Q3, Y is


S(O)m, R5 is hydrogen and n is 2




embedded image


















No.
R2
R3
R4
m
X
1H NMR





 721.
Me
Me
Me
0
CH2



 722.
Me
Me
Me
1
CH2



 723.
Me
Me
Me
2
CH2



 724.
Me
Me
Me
0
CHMe



 725.
Me
Me
Me
1
CHMe



 726.
Me
Me
Me
2
CHMe



 727.
Me
Me
Me
0
C(CH3)2



 728.
Me
Me
Me
1
C(CH3)2



 729.
Me
Me
Me
2
C(CH3)2



 730.
Me
Me
Me
0
C(OC2H4O)



 731.
Me
Me
Me
1
C(OC2H4O)



 732.
Me
Me
Me
2
C(OC2H4O)



 733.
Me
Me
Me
0
C(SC2H4S)



 734.
Me
Me
Me
1
C(SC2H4S)



 735.
Me
Me
Me
2
C(SC2H4S)



 736.
Me
Me
Me
0
CHOMe



 737.
Me
Me
Me
1
CHOMe



 738.
Me
Me
Me
2
CHOMe



 739.
Me
Me
Me
0
CHOEt



 740.
Me
Me
Me
1
CHOEt



 741.
Me
Me
Me
2
CHOEt



 742.
Me
Me
Me
0
CHOiPr



 743.
Me
Me
Me
1
CHOiPr



 744.
Me
Me
Me
2
CHOiPr



 745.
Me
Me
Me
0
CHOCH2cPr



 746.
Me
Me
Me
1
CHOCH2cPr



 747.
Me
Me
Me
2
CHOCH2cPr



 748.
Me
Me
Me
0
CHOC2H4OMe



 749.
Me
Me
Me
1
CHOC2H4OMe



 750.
Me
Me
Me
2
CHOC2H4OMe



 751.
Me
Me
Me
0
CHOCH2CCH



 752.
Me
Me
Me
1
CHOCH2CCH



 753.
Me
Me
Me
2
CHOCH2CCH



 754.
Me
Me
Me
0
CHOCH2CH═CH2



 755.
Me
Me
Me
1
CHOCH2CH═CH2



 756.
Me
Me
Me
2
CHOCH2CH═CH2






 757.
Me
Me
Me
0


embedded image








 758.
Me
Me
Me
1


embedded image








 759.
Me
Me
Me
2


embedded image








 760.
Me
Me
Me
0


embedded image








 761.
Me
Me
Me
1


embedded image








 762.
Me
Me
Me
2


embedded image


DMSO-d6, 400 MHz: 11.42 (s, 1H), 8.39 (s, 1H), 8.35-8.30 (m, 2H), 7.70 (s, 1H), 6.52 (dd, 1H), 3.79- 3.69 (m, 1H), 3.61- 3.52 (m, 1H), 2.80- 2.60 (m, 5H), 2.38 (s, 3H), 2.21 (s, 3H)





 763.
Me
Me
Me
0


embedded image








 764.
Me
Me
Me
1


embedded image








 765.
Me
Me
Me
2


embedded image








 766.
Me
Me
Me
0


embedded image








 767.
Me
Me
Me
1


embedded image








 768.
Me
Me
Me
2


embedded image








 769.
Me
Me
Me
0


embedded image








 770.
Me
Me
Me
1


embedded image








 771.
Me
Me
Me
2


embedded image








 772.
Me
Me
Me
0
CHOC2H4F



 773.
Me
Me
Me
1
CHOC2H4F



 774.
Me
Me
Me
2
CHOC2H4F



 775.
Me
Me
Me
0
C═NOMe



 776.
Me
Me
Me
1
C═NOMe



 777.
Me
Me
Me
2
C═NOMe



 778.
Me
Me
Me
0
C═NOCH2CCH



 779.
Me
Me
Me
1
C═NOCH2CCH



 780.
Me
Me
Me
2
C═NOCH2CCH



 781.
Me
Me
Me
0
C═NOCH2CH═CH2



 782.
Me
Me
Me
1
C═NOCH2CH═CH2



 783.
Me
Me
Me
2
C═NOCH2CH═CH2



 784.
Me
Me
Me
0
C═O



 785.
Me
Me
Me
1
C═O



 786.
Me
Me
Me
2
C═O



 787.
Me
Me
Me
0
C═S



 788.
Me
Me
Me
1
C═S



 789.
Me
Me
Me
2
C═S



 790.
Me
Me
Me
0
C═S



 791.
Me
Me
Me
1
C═S



 792.
Me
Me
Me
2
C═S



 793.
Me
Me
Me
0
C═N—N(CH3)2



 794.
Me
Me
Me
1
C═N—N(CH3)2



 795.
Me
Me
Me
2
C═N—N(CH3)2



 796.
Me
Me
Me
0
O



 797.
Me
Me
Me
1
O



 798.
Me
Me
Me
2
O



 799.
Me
Me
Me
0
S



 800.
Me
Me
Me
1
S



 801.
Me
Me
Me
2
S



 802.
Me
Me
Me
0
SO



 803.
Me
Me
Me
1
SO



 804.
Me
Me
Me
2
SO



 805.
Me
Me
Me
0
SO2



 806.
Me
Me
Me
1
SO2



 807.
Me
Me
Me
2
SO2



 808.
Me
Me
Me
0
NMe



 809.
Me
Me
Me
1
NMe



 810.
Me
Me
Me
2
NMe



 811.
Me
Me
H
0
CH2



 812.
Me
Me
H
1
CH2



 813.
Me
Me
H
2
CH2



 814.
Me
Me
H
0
CHMe



 815.
Me
Me
H
1
CHMe



 816.
Me
Me
H
2
CHMe



 817.
Me
Me
H
0
C(CH3)2



 818.
Me
Me
H
1
C(CH3)2



 819.
Me
Me
H
2
C(CH3)2



 820.
Me
Me
H
0
C(OC2H4O)



 821.
Me
Me
H
1
C(OC2H4O)



 822.
Me
Me
H
2
C(OC2H4O)



 823.
Me
Me
H
0
C(SC2H4S)



 824.
Me
Me
H
1
C(SC2H4S)



 825.
Me
Me
H
2
C(SC2H4S)



 826.
Me
Me
H
0
CHOMe



 827.
Me
Me
H
1
CHOMe



 828.
Me
Me
H
2
CHOMe



 829.
Me
Me
H
0
CHOEt



 830.
Me
Me
H
1
CHOEt



 831.
Me
Me
H
2
CHOEt



 832.
Me
Me
H
0
CHOiPr



 833.
Me
Me
H
1
CHOiPr



 834.
Me
Me
H
2
CHOiPr



 835.
Me
Me
H
0
CHOCH2cPr



 836.
Me
Me
H
1
CHOCH2cPr



 837.
Me
Me
H
2
CHOCH2cPr



 838.
Me
Me
H
0
CHOC2H4OMe



 839.
Me
Me
H
1
CHOC2H4OMe



 840.
Me
Me
H
2
CHOC2H4OMe



 841.
Me
Me
H
0
CHOCH2CCH



 842.
Me
Me
H
1
CHOCH2CCH



 843.
Me
Me
H
2
CHOCH2CCH



 844.
Me
Me
H
0
CHOCH2CH═CH2



 845.
Me
Me
H
1
CHOCH2CH═CH2



 846.
Me
Me
H
2
CHOCH2CH═CH2






 847.
Me
Me
H
0


embedded image








 848.
Me
Me
H
1


embedded image








 849.
Me
Me
H
2


embedded image








 850.
Me
Me
H
0


embedded image








 851.
Me
Me
H
1


embedded image








 852.
Me
Me
H
2


embedded image








 853.
Me
Me
H
0


embedded image








 854.
Me
Me
H
1


embedded image








 855.
Me
Me
H
2


embedded image








 856.
Me
Me
H
0


embedded image








 857.
Me
Me
H
1


embedded image








 858.
Me
Me
H
2


embedded image








 859.
Me
Me
H
0


embedded image








 860.
Me
Me
H
1


embedded image








 861.
Me
Me
H
2


embedded image








 862.
Me
Me
H
0
CHOC2H4F



 863.
Me
Me
H
1
CHOC2H4F



 864.
Me
Me
H
2
CHOC2H4F



 865.
Me
Me
H
0
C═NOMe



 866.
Me
Me
H
1
C═NOMe



 867.
Me
Me
H
2
C═NOMe



 868.
Me
Me
H
0
C═NOCH2CCH



 869.
Me
Me
H
1
C═NOCH2CCH



 870.
Me
Me
H
2
C═NOCH2CCH



 871.
Me
Me
H
0
C═NOCH2CH═CH2



 872.
Me
Me
H
1
C═NOCH2CH═CH2



 873.
Me
Me
H
2
C═NOCH2CH═CH2



 874.
Me
Me
H
0
C═O



 875.
Me
Me
H
1
C═O



 876.
Me
Me
H
2
C═O



 877.
Me
Me
H
0
C═S



 878.
Me
Me
H
1
C═S



 879.
Me
Me
H
2
C═S



 880.
Me
Me
H
0
C═S



 881.
Me
Me
H
1
C═S



 882.
Me
Me
H
2
C═S



 883.
Me
Me
H
0
C═N—N(CH3)2



 884.
Me
Me
H
1
C═N—N(CH3)2



 885.
Me
Me
H
2
C═N—N(CH3)2



 886.
Me
Me
H
0
O



 887.
Me
Me
H
1
O



 888.
Me
Me
H
2
O



 889.
Me
Me
H
0
S



 890.
Me
Me
H
1
S



 891.
Me
Me
H
2
S



 892.
Me
Me
H
0
SO



 893.
Me
Me
H
1
SO



 894.
Me
Me
H
2
SO



 895.
Me
Me
H
0
SO2



 896.
Me
Me
H
1
SO2



 897.
Me
Me
H
2
SO2



 898.
Me
Me
H
0
NMe



 899.
Me
Me
H
1
NMe



 900.
Me
Me
H
2
NMe



 901.
Et
Me
Me
0
CH2



 902.
Et
Me
Me
1
CH2



 903.
Et
Me
Me
2
CH2



 904.
Et
Me
Me
0
CHMe



 905.
Et
Me
Me
1
CHMe



 906.
Et
Me
Me
2
CHMe



 907.
Et
Me
Me
0
C(CH3)2



 908.
Et
Me
Me
1
C(CH3)2



 909.
Et
Me
Me
2
C(CH3)2



 910.
Et
Me
Me
0
C(OC2H4O)



 911.
Et
Me
Me
1
C(OC2H4O)



 912.
Et
Me
Me
2
C(OC2H4O)



 913.
Et
Me
Me
0
C(SC2H4S)



 914.
Et
Me
Me
1
C(SC2H4S)



 915.
Et
Me
Me
2
C(SC2H4S)



 916.
Et
Me
Me
0
CHOMe



 917.
Et
Me
Me
1
CHOMe



 918.
Et
Me
Me
2
CHOMe



 919.
Et
Me
Me
0
CHOEt



 920.
Et
Me
Me
1
CHOEt



 921.
Et
Me
Me
2
CHOEt



 922.
Et
Me
Me
0
CHOiPr



 923.
Et
Me
Me
1
CHOiPr



 924.
Et
Me
Me
2
CHOiPr



 925.
Et
Me
Me
0
CHOCH2cPr



 926.
Et
Me
Me
1
CHOCH2cPr



 927.
Et
Me
Me
2
CHOCH2cPr



 928.
Et
Me
Me
0
CHOC2H4OMe



 929.
Et
Me
Me
1
CHOC2H4OMe



 930.
Et
Me
Me
2
CHOC2H4OMe



 931.
Et
Me
Me
0
CHOCH2CCH



 932.
Et
Me
Me
1
CHOCH2CCH



 933.
Et
Me
Me
2
CHOCH2CCH



 934.
Et
Me
Me
0
CHOCH2CH═CH2



 935.
Et
Me
Me
1
CHOCH2CH═CH2



 936.
Et
Me
Me
2
CHOCH2CH═CH2






 937.
Et
Me
Me
0


embedded image








 938.
Et
Me
Me
1


embedded image








 939.
Et
Me
Me
2


embedded image








 940.
Et
Me
Me
0


embedded image








 941.
Et
Me
Me
1


embedded image








 942.
Et
Me
Me
2


embedded image


DMSO-d6, 400 MHz: 11.35 (s, 1H), 8.39 (s, 1H), 8.34-8.30 (m, 2H), 7.67 (s, 1H), 6.52 (dd, 1H), 3.80- 3.71 (m, 1H), 3.60- 3.53 (m, 1H), 2.82- 2.60 (m, 7H), 2.20 (s, 3H), 1.26 (t, 3H)





 943.
Et
Me
Me
0


embedded image








 944.
Et
Me
Me
1


embedded image








 945.
Et
Me
Me
2


embedded image








 946.
Et
Me
Me
0


embedded image








 947.
Et
Me
Me
1


embedded image








 948.
Et
Me
Me
2


embedded image








 949.
Et
Me
Me
0


embedded image








 950.
Et
Me
Me
1


embedded image








 951.
Et
Me
Me
2


embedded image








 952.
Et
Me
Me
0
CHOC2H4F



 953.
Et
Me
Me
1
CHOC2H4F



 954.
Et
Me
Me
2
CHOC2H4F



 955.
Et
Me
Me
0
C═NOMe



 956.
Et
Me
Me
1
C═NOMe



 957.
Et
Me
Me
2
C═NOMe



 958.
Et
Me
Me
0
C═NOCH2CCH



 959.
Et
Me
Me
1
C═NOCH2CCH



 960.
Et
Me
Me
2
C═NOCH2CCH



 961.
Et
Me
Me
0
C═NOCH2CH═CH2



 962.
Et
Me
Me
1
C═NOCH2CH═CH2



 963.
Et
Me
Me
2
C═NOCH2CH═CH2



 964.
Et
Me
Me
0
C═O



 965.
Et
Me
Me
1
C═O



 966.
Et
Me
Me
2
C═O



 967.
Et
Me
Me
0
C═S



 968.
Et
Me
Me
1
C═S



 969.
Et
Me
Me
2
C═S



 970.
Et
Me
Me
0
C═S



 971.
Et
Me
Me
1
C═S



 972.
Et
Me
Me
2
C═S



 973.
Et
Me
Me
0
C═N—N(CH3)2



 974.
Et
Me
Me
1
C═N—N(CH3)2



 975.
Et
Me
Me
2
C═N—N(CH3)2



 976.
Et
Me
Me
0
O



 977.
Et
Me
Me
1
O



 978.
Et
Me
Me
2
O



 979.
Et
Me
Me
0
S



 980.
Et
Me
Me
1
S



 981.
Et
Me
Me
2
S



 982.
Et
Me
Me
0
SO



 983.
Et
Me
Me
1
SO



 984.
Et
Me
Me
2
SO



 985.
Et
Me
Me
0
SO2



 986.
Et
Me
Me
1
SO2



 987.
Et
Me
Me
2
SO2



 988.
Et
Me
Me
0
NMe



 989.
Et
Me
Me
1
NMe



 990.
Et
Me
Me
2
NMe



 991.
Et
Me
H
0
CH2



 992.
Et
Me
H
1
CH2



 993.
Et
Me
H
2
CH2



 994.
Et
Me
H
0
CHMe



 995.
Et
Me
H
1
CHMe



 996.
Et
Me
H
2
CHMe



 997.
Et
Me
H
0
C(CH3)2



 998.
Et
Me
H
1
C(CH3)2



 999.
Et
Me
H
2
C(CH3)2



1000
Et
Me
H
0
C(OC2H4O)



1001
Et
Me
H
1
C(OC2H4O)



1002
Et
Me
H
2
C(OC2H4O)



1003
Et
Me
H
0
C(SC2H4S)



1004
Et
Me
H
1
C(SC2H4S)



1005
Et
Me
H
2
C(SC2H4S)



1006
Et
Me
H
0
CHOMe



1007
Et
Me
H
1
CHOMe



1008
Et
Me
H
2
CHOMe



1009
Et
Me
H
0
CHOEt



1010
Et
Me
H
1
CHOEt



1011
Et
Me
H
2
CHOEt



1012
Et
Me
H
0
CHOiPr



1013
Et
Me
H
1
CHOiPr



1014
Et
Me
H
2
CHOiPr



1015
Et
Me
H
0
CHOCH2cPr



1016
Et
Me
H
1
CHOCH2cPr



1017
Et
Me
H
2
CHOCH2cPr



1018
Et
Me
H
0
CHOC2H4OMe



1019
Et
Me
H
1
CHOC2H4OMe



1020
Et
Me
H
2
CHOC2H4OMe



1021
Et
Me
H
0
CHOCH2CCH



1022
Et
Me
H
1
CHOCH2CCH



1023
Et
Me
H
2
CHOCH2CCH



1024
Et
Me
H
0
CHOCH2CH═CH2



1025
Et
Me
H
1
CHOCH2CH═CH2



1026
Et
Me
H
2
CHOCH2CH═CH2






1027
Et
Me
H
0


embedded image








1028
Et
Me
H
1


embedded image








1029
Et
Me
H
2


embedded image








1030
Et
Me
H
0


embedded image








1031
Et
Me
H
1


embedded image








1032
Et
Me
H
2


embedded image








1033
Et
Me
H
0


embedded image








1034
Et
Me
H
1


embedded image








1035
Et
Me
H
2


embedded image








1036
Et
Me
H
0


embedded image








1037
Et
Me
H
1


embedded image








1038
Et
Me
H
2


embedded image








1039
Et
Me
H
0


embedded image








1040
Et
Me
H
1


embedded image








1041
Et
Me
H
2


embedded image








1042
Et
Me
H
0
CHOC2H4F



1043
Et
Me
H
1
CHOC2H4F



1044
Et
Me
H
2
CHOC2H4F



1045
Et
Me
H
0
C═NOMe



1046
Et
Me
H
1
C═NOMe



1047
Et
Me
H
2
C═NOMe



1048
Et
Me
H
0
C═NOCH2CCH



1049
Et
Me
H
1
C═NOCH2CCH



1050
Et
Me
H
2
C═NOCH2CCH



1051
Et
Me
H
0
C═NOCH2CH═CH2



1052
Et
Me
H
1
C═NOCH2CH═CH2



1053
Et
Me
H
2
C═NOCH2CH═CH2



1054
Et
Me
H
0
C═O



1055
Et
Me
H
1
C═O



1056
Et
Me
H
2
C═O



1057
Et
Me
H
0
C═S



1058
Et
Me
H
1
C═S



1059
Et
Me
H
2
C═S



1060
Et
Me
H
0
C═S



1061
Et
Me
H
1
C═S



1062
Et
Me
H
2
C═S



1063
Et
Me
H
0
C═N—N(CH3)2



1064
Et
Me
H
1
C═N—N(CH3)2



1065
Et
Me
H
2
C═N—N(CH3)2



1066
Et
Me
H
0
O



1067
Et
Me
H
1
O



1068
Et
Me
H
2
O



1069
Et
Me
H
0
S



1070
Et
Me
H
1
S



1071
Et
Me
H
2
S



1072
Et
Me
H
0
SO



1073
Et
Me
H
1
SO



1074
Et
Me
H
2
SO



1075
Et
Me
H
0
SO2



1076
Et
Me
H
1
SO2



1077
Et
Me
H
2
SO2



1078
Et
Me
H
0
NMe



1079
Et
Me
H
1
NMe



1080
Et
Me
H
2
NMe
















TABLE 4







Inventive compounds of the general formula (I) in which Q is Q1, R5 is


hydrogen and n is 1




embedded image


















No.
R1
R3
R4
Y
X
1H NMR





1081.
Me
Me
Me
S
CH2



1082.
Me
Me
Me
SO
CH2



1083.
Me
Me
Me
SO2
CH2



1084.
Me
Me
Me
S
CHMe



1085.
Me
Me
Me
SO
CHMe



1086.
Me
Me
Me
SO2
CHMe



1087.
Me
Me
Me
S
C(CH3)2



1088.
Me
Me
Me
SO
C(CH3)2



1089.
Me
Me
Me
SO2
C(CH3)2



1090.
Me
Me
Me
S
C(OC2H4O)



1091.
Me
Me
Me
SO
C(OC2H4O)



1092.
Me
Me
Me
SO2
C(OC2H4O)



1093.
Me
Me
Me
S
C(SC2H4S)



1094.
Me
Me
Me
SO
C(SC2H4S)



1095.
Me
Me
Me
SO2
C(SC2H4S)



1096.
Me
Me
Me
S
CHOMe



1097.
Me
Me
Me
SO
CHOMe



1098.
Me
Me
Me
SO2
CHOMe



1099.
Me
Me
Me
S
CHOEt



1100.
Me
Me
Me
SO
CHOEt



1101.
Me
Me
Me
SO2
CHOEt



1102.
Me
Me
Me
S
CHOiPr



1103.
Me
Me
Me
SO
CHOiPr



1104.
Me
Me
Me
SO2
CHOiPr



1105.
Me
Me
Me
S
CHOCH2cPr



1106.
Me
Me
Me
SO
CHOCH2cPr



1107.
Me
Me
Me
SO2
CHOCH2cPr



1108.
Me
Me
Me
S
CHOC2H4OMe



1109.
Me
Me
Me
SO
CHOC2H4OMe



1110.
Me
Me
Me
SO2
CHOC2H4OMe



1111.
Me
Me
Me
S
CHOCH2CCH



1112.
Me
Me
Me
SO
CHOCH2CCH



1113.
Me
Me
Me
SO2
CHOCH2CCH



1114.
Me
Me
Me
S
CHOCH2CH═CH2



1115.
Me
Me
Me
SO
CHOCH2CH═CH2



1116.
Me
Me
Me
SO2
CHOCH2CH═CH2






1117.
Me
Me
Me
S


embedded image








1118.
Me
Me
Me
SO


embedded image








1119.
Me
Me
Me
SO2


embedded image








1120.
Me
Me
Me
S


embedded image








1121.
Me
Me
Me
SO


embedded image








1122.
Me
Me
Me
SO2


embedded image








1123.
Me
Me
Me
S


embedded image








1124.
Me
Me
Me
SO


embedded image








1125.
Me
Me
Me
SO2


embedded image








1126.
Me
Me
Me
S


embedded image








1127.
Me
Me
Me
SO


embedded image








1128.
Me
Me
Me
SO2


embedded image








1129.
Me
Me
Me
S


embedded image








1130.
Me
Me
Me
SO


embedded image








1131.
Me
Me
Me
SO2


embedded image








1132.
Me
Me
Me
S
CHOC2H4F



1133.
Me
Me
Me
SO
CHOC2H4F



1134.
Me
Me
Me
SO2
CHOC2H4F



1135.
Me
Me
Me
S
C═NOMe



1136.
Me
Me
Me
SO
C═NOMe



1137.
Me
Me
Me
SO2
C═NOMe



1138.
Me
Me
Me
S
C═NOCH2CCH



1139.
Me
Me
Me
SO
C═NOCH2CCH



1140.
Me
Me
Me
SO2
C═NOCH2CCH



1141.
Me
Me
Me
S
C═NOCH2CH═CH2



1142.
Me
Me
Me
SO
C═NOCH2CH═CH2



1143.
Me
Me
Me
SO2
C═NOCH2CH═CH2



1144.
Me
Me
Me
S
C═O



1145.
Me
Me
Me
SO
C═O



1146.
Me
Me
Me
SO2
C═O



1147.
Me
Me
Me
S
C═S



1148.
Me
Me
Me
SO
C═S



1149.
Me
Me
Me
SO2
C═S



1150.
Me
Me
Me
S
C═S



1151.
Me
Me
Me
SO
C═S



1152.
Me
Me
Me
SO2
C═S



1153.
Me
Me
Me
S
C═N—N(CH3)2



1154.
Me
Me
Me
SO
C═N—N(CH3)2



1155.
Me
Me
Me
SO2
C═N—N(CH3)2



1156.
Me
Me
Me
S
O



1157.
Me
Me
Me
SO
O



1158.
Me
Me
Me
SO2
O



1159.
Me
Me
Me
S
S



1160.
Me
Me
Me
SO
S



1161.
Me
Me
Me
SO2
S



1162.
Me
Me
Me
S
SO



1163.
Me
Me
Me
SO
SO



1164.
Me
Me
Me
SO2
SO



1165.
Me
Me
Me
S
SO2



1166.
Me
Me
Me
SO
SO2



1167.
Me
Me
Me
SO2
SO2



1168.
Me
Me
Me
S
NMe



1169.
Me
Me
Me
SO
NMe



1170.
Me
Me
Me
SO2
NMe



1171.
Me
Me
Me
O
O



1172.
Me
Me
H
O
O
DMSO-d6, 400 MHz:








11.33 (s, 1H), 7.34








(d, 1H), 6.92 (d, 1H),








6.12 (s, 2H), 3.93 (s,








3H), 2.30 (s, 3H)


1173.
Me
SMe
H
O
O
DMSO-d6, 400 MHz:








11.50 (bs, 1H), 7.21








(d, 1H), 6.99 (d, 1H),








6.18 (s, 2H), 3.96 (s,








3H), 2.44 (s, 3H)


1174.
Me
Cl
H
O
O



1175.
Me
Cl
H
S
CH2



1176.
Me
Cl
H
SO
CH2



1177.
Me
Cl
H
SO2
CH2
DMSO, 400 MHz:








3.41 (t, 2H), 3.76 (t,








2H), 4.02 (s, 3H),








7.94 (s, 2H), 11.95








(s, 1H)


1178.
Me
Cl
H
S
CHMe



1179.
Me
Cl
H
SO
CHMe



1180.
Me
Cl
H
SO2
CHMe



1181.
Me
Cl
H
S
C(CH3)2



1182.
Me
Cl
H
SO
C(CH3)2



1183.
Me
Cl
H
SO2
C(CH3)2



1184.
Me
Cl
H
S
C(OC2H4O)



1185.
Me
Cl
H
SO
C(OC2H4O)



1186.
Me
Cl
H
SO2
C(OC2H4O)



1187.
Me
Cl
H
S
C(SC2H4S)



1188.
Me
Cl
H
SO
C(SC2H4S)



1189.
Me
Cl
H
SO2
C(SC2H4S)



1190.
Me
Cl
H
S
CHOMe



1191.
Me
Cl
H
SO
CHOMe



1192.
Me
Cl
H
SO2
CHOMe
CDCl3, 400 MHz:








3.57 (s, 3H), 3.68








(dd, 1H), 3.81 (d,








1H), 4.13 (s, 3H),








5.25 (d, 1H), 7.80








(d, 1H), 7.98 (d,








1H), 9.85 (s, 1H)


1193.
Me
Cl
H
S
CHOEt



1194.
Me
Cl
H
SO
CHOEt



1195.
Me
Cl
H
SO2
CHOEt



1196.
Me
Cl
H
S
CHOiPr



1197.
Me
Cl
H
SO
CHOiPr



1198.
Me
Cl
H
SO2
CHOiPr



1199.
Me
Cl
H
S
CHOCH2cPr



1200.
Me
Cl
H
SO
CHOCH2cPr



1201.
Me
Cl
H
SO2
CHOCH2cPr



1202.
Me
Cl
H
S
CHOC2H4OMe



1203.
Me
Cl
H
SO
CHOC2H4OMe



1204.
Me
Cl
H
SO2
CHOC2H4OMe



1205.
Me
Cl
H
S
CHOCH2CCH



1206.
Me
Cl
H
SO
CHOCH2CCH



1207.
Me
Cl
H
SO2
CHOCH2CCH



1208.
Me
Cl
H
S
CHOCH2CH═CH2



1209.
Me
Cl
H
SO
CHOCH2CH═CH2



1210.
Me
Cl
H
SO2
CHOCH2CH═CH2






1211.
Me
Cl
H
S


embedded image








1212.
Me
Cl
H
SO


embedded image








1213.
Me
Cl
H
SO2


embedded image








1214.
Me
Cl
H
S


embedded image








1215.
Me
Cl
H
SO


embedded image








1216.
Me
Cl
H
SO2


embedded image








1217.
Me
Cl
H
S


embedded image








1218.
Me
Cl
H
SO


embedded image








1219.
Me
Cl
H
SO2


embedded image








1220.
Me
Cl
H
S


embedded image








1221.
Me
Cl
H
SO


embedded image








1222.
Me
Cl
H
SO2


embedded image








1223.
Me
Cl
H
S


embedded image








1224.
Me
Cl
H
SO


embedded image








1225.
Me
Cl
H
SO2


embedded image








1226.
Me
Cl
H
S
CHOC2H4F



1227.
Me
Cl
H
SO
CHOC2H4F



1228.
Me
Cl
H
SO2
CHOC2H4F



1229.
Me
Cl
H
S
C═NOMe



1230.
Me
Cl
H
SO
C═NOMe



1231.
Me
Cl
H
SO2
C═NOMe



1232.
Me
Cl
H
S
C═NOCH2CCH



1233.
Me
Cl
H
SO
C═NOCH2CCH



1234.
Me
Cl
H
SO2
C═NOCH2CCH



1235.
Me
Cl
H
S
C═NOCH2CH═CH2



1236.
Me
Cl
H
SO
C═NOCH2CH═CH2



1237.
Me
Cl
H
SO2
C═NOCH2CH═CH2



1238.
Me
Cl
H
S
C═O



1239.
Me
Cl
H
SO
C═O



1240.
Me
Cl
H
SO2
C═O



1241.
Me
Cl
H
S
C═S



1242.
Me
Cl
H
SO
C═S



1243.
Me
Cl
H
SO2
C═S



1244.
Me
Cl
H
S
C═S



1245.
Me
Cl
H
SO
C═S



1246.
Me
Cl
H
SO2
C═S



1247.
Me
Cl
H
S
C═N—N(CH3)2



1248.
Me
Cl
H
SO
C═N—N(CH3)2



1249.
Me
Cl
H
SO2
C═N—N(CH3)2



1250.
Me
Cl
H
S
O



1251.
Me
Cl
H
SO
O



1252.
Me
Cl
H
SO2
O



1253.
Me
Cl
H
S
S



1254.
Me
Cl
H
SO
S



1255.
Me
Cl
H
SO2
S



1256.
Me
Cl
H
S
SO



1257.
Me
Cl
H
SO
SO



1258.
Me
Cl
H
SO2
SO



1259.
Me
Cl
H
S
SO2



1260.
Me
Cl
H
SO
SO2



1261.
Me
Cl
H
SO2
SO2



1262.
Me
Cl
H
S
NMe



1263.
Me
Cl
H
SO
NMe



1264.
Me
Cl
H
SO2
NMe



1265.
Et
Me
Me
S
CH2



1266.
Et
Me
Me
SO
CH2



1267.
Et
Me
Me
SO2
CH2



1268.
Et
Me
Me
S
CHMe



1269.
Et
Me
Me
SO
CHMe



1270.
Et
Me
Me
SO2
CHMe



1271.
Et
Me
Me
S
C(CH3)2



1272.
Et
Me
Me
SO
C(CH3)2



1273.
Et
Me
Me
SO2
C(CH3)2



1274.
Et
Me
Me
S
C(OC2H4O)



1275.
Et
Me
Me
SO
C(OC2H4O)



1276.
Et
Me
Me
SO2
C(OC2H4O)



1277.
Et
Me
Me
S
C(SC2H4S)



1278.
Et
Me
Me
SO
C(SC2H4S)



1279.
Et
Me
Me
SO2
C(SC2H4S)



1280.
Et
Me
Me
S
CHOMe



1281.
Et
Me
Me
SO
CHOMe



1282.
Et
Me
Me
SO2
CHOMe



1283.
Et
Me
Me
S
CHOEt



1284.
Et
Me
Me
SO
CHOEt



1285.
Et
Me
Me
SO2
CHOEt



1286.
Et
Me
Me
S
CHOiPr



1287.
Et
Me
Me
SO
CHOiPr



1288.
Et
Me
Me
SO2
CHOiPr



1289.
Et
Me
Me
S
CHOCH2cPr



1290.
Et
Me
Me
SO
CHOCH2cPr



1291.
Et
Me
Me
SO2
CHOCH2cPr



1292.
Et
Me
Me
S
CHOC2H4OMe



1293.
Et
Me
Me
SO
CHOC2H4OMe



1294.
Et
Me
Me
SO2
CHOC2H4OMe



1295.
Et
Me
Me
S
CHOCH2CCH



1296.
Et
Me
Me
SO
CHOCH2CCH



1297.
Et
Me
Me
SO2
CHOCH2CCH



1298.
Et
Me
Me
S
CHOCH2CH═CH2



1299.
Et
Me
Me
SO
CHOCH2CH═CH2



1300.
Et
Me
Me
SO2
CHOCH2CH═CH2






1301.
Et
Me
Me
S


embedded image








1302.
Et
Me
Me
SO


embedded image








1303.
Et
Me
Me
SO2


embedded image








1304.
Et
Me
Me
S


embedded image








1305.
Et
Me
Me
SO


embedded image








1306.
Et
Me
Me
SO2


embedded image








1307.
Et
Me
Me
S


embedded image








1308.
Et
Me
Me
SO


embedded image








1309.
Et
Me
Me
SO2


embedded image








1310.
Et
Me
Me
S


embedded image








1311.
Et
Me
Me
SO


embedded image








1312.
Et
Me
Me
SO2


embedded image








1313.
Et
Me
Me
S


embedded image








1314.
Et
Me
Me
SO


embedded image








1315.
Et
Me
Me
SO2


embedded image








1316.
Et
Me
Me
S
CHOC2H4F



1317.
Et
Me
Me
SO
CHOC2H4F



1318.
Et
Me
Me
SO2
CHOC2H4F



1319.
Et
Me
Me
S
C═NOMe



1320.
Et
Me
Me
SO
C═NOMe



1321.
Et
Me
Me
SO2
C═NOMe



1322.
Et
Me
Me
S
C═NOCH2CCH



1323.
Et
Me
Me
SO
C═NOCH2CCH



1324.
Et
Me
Me
SO2
C═NOCH2CCH



1325.
Et
Me
Me
S
C═NOCH2CH═CH2



1326.
Et
Me
Me
SO
C═NOCH2CH═CH2



1327.
Et
Me
Me
SO2
C═NOCH2CH═CH2



1328.
Et
Me
Me
S
C═O



1329.
Et
Me
Me
SO
C═O



1330.
Et
Me
Me
SO2
C═O



1331.
Et
Me
Me
S
C═S



1332.
Et
Me
Me
SO
C═S



1333.
Et
Me
Me
SO2
C═S



1334.
Et
Me
Me
S
C═S



1335.
Et
Me
Me
SO
C═S



1336.
Et
Me
Me
SO2
C═S



1337.
Et
Me
Me
S
C═N—N(CH3)2



1338.
Et
Me
Me
SO
C═N—N(CH3)2



1339.
Et
Me
Me
SO2
C═N—N(CH3)2



1340.
Et
Me
Me
S
O



1341.
Et
Me
Me
SO
O



1342.
Et
Me
Me
SO2
O



1343.
Et
Me
Me
S
S



1344.
Et
Me
Me
SO
S



1345.
Et
Me
Me
SO2
S



1346.
Et
Me
Me
S
SO



1347.
Et
Me
Me
SO
SO



1348.
Et
Me
Me
SO2
SO



1349.
Et
Me
Me
S
SO2



1350.
Et
Me
Me
SO
SO2



1351.
Et
Me
Me
SO2
SO2



1352.
Et
Me
Me
S
NMe



1353.
Et
Me
Me
SO
NMe



1354.
Et
Me
Me
SO2
NMe



1355.
Et
Me
Me
O
O



1356.
Et
Me
H
O
O
CDCl3, 400 MHz:








9.65 (s, 1H), 7.42








(d, 1H), 6.79 (d,








1H), 6.06 (s, 2H),








4.43 (q, 2H), 2.41








(s, 3H), 1.60 (t,








3H)


1357.
Et
SMe
H
O
O



1358.
Et
Cl
H
O
O



1359.
Et
Cl
H
S
CH2



1360.
Et
Cl
H
SO
CH2



1361.
Et
Cl
H
SO2
CH2
DMSO, 400 MHz:








1.48 (t, 3H), 3.42








(t, 2H), 3.75 (t,








2H), 4.38 (q, 2H),








7.93 (s, 2H), 11.86








(s, 1H)


1362.
Et
Cl
H
S
CHMe



1363.
Et
Cl
H
SO
CHMe



1364.
Et
Cl
H
SO2
CHMe



1365.
Et
Cl
H
S
C(CH3)2



1366.
Et
Cl
H
SO
C(CH3)2



1367.
Et
Cl
H
SO2
C(CH3)2



1368.
Et
Cl
H
S
C(OC2H4O)



1369.
Et
Cl
H
SO
C(OC2H4O)



1370.
Et
Cl
H
SO2
C(OC2H4O)



1371.
Et
Cl
H
S
C(SC2H4S)



1372.
Et
Cl
H
SO
C(SC2H4S)



1373.
Et
Cl
H
SO2
C(SC2H4S)



1374.
Et
Cl
H
S
CHOMe



1375.
Et
Cl
H
SO
CHOMe



1376.
Et
Cl
H
SO2
CHOMe
CDCl3, 400 MHz:








1.62 (t, 3H), 3.55








(s, 3H), 3.66 (dd,








1H), 3.81 (d, 1H),








4.47 (q, 2H), 5.23








(d, 1H), 7.75 (d,








1H), 7.94 (d,








1H), 10.6 (s, 1H)


1377.
Et
Cl
H
S
CHOEt



1378.
Et
Cl
H
SO
CHOEt



1379.
Et
Cl
H
SO2
CHOEt



1380.
Et
Cl
H
S
CHOiPr



1381.
Et
Cl
H
SO
CHOiPr



1382.
Et
Cl
H
SO2
CHOiPr



1383.
Et
Cl
H
S
CHOCH2cPr



1384.
Et
Cl
H
SO
CHOCH2cPr



1385.
Et
Cl
H
SO2
CHOCH2cPr



1386.
Et
Cl
H
S
CHOC2H4OMe



1387.
Et
Cl
H
SO
CHOC2H4OMe



1388.
Et
Cl
H
SO2
CHOC2H4OMe



1389.
Et
Cl
H
S
CHOCH2CCH



1390.
Et
Cl
H
SO
CHOCH2CCH



1391.
Et
Cl
H
SO2
CHOCH2CCH



1392.
Et
Cl
H
S
CHOCH2CH═CH2



1393.
Et
Cl
H
SO
CHOCH2CH═CH2



1394.
Et
Cl
H
SO2
CHOCH2CH═CH2






1395.
Et
Cl
H
S


embedded image








1396.
Et
Cl
H
SO


embedded image








1397.
Et
Cl
H
SO2


embedded image








1398.
Et
Cl
H
S


embedded image








1399.
Et
Cl
H
SO


embedded image








1400.
Et
Cl
H
SO2


embedded image








1401.
Et
Cl
H
S


embedded image








1402.
Et
Cl
H
SO


embedded image








1403.
Et
Cl
H
SO2


embedded image








1404.
Et
Cl
H
S


embedded image








1405.
Et
Cl
H
SO


embedded image








1406.
Et
Cl
H
SO2


embedded image








1407.
Et
Cl
H
S


embedded image








1408.
Et
Cl
H
SO


embedded image








1409.
Et
Cl
H
SO2


embedded image








1410.
Et
Cl
H
S
CHOC2H4F



1411.
Et
Cl
H
SO
CHOC2H4F



1412.
Et
Cl
H
SO2
CHOC2H4F



1413.
Et
Cl
H
S
C═NOMe



1414.
Et
Cl
H
SO
C═NOMe



1415.
Et
Cl
H
SO2
C═NOMe



1416.
Et
Cl
H
S
C═NOCH2CCH



1417.
Et
Cl
H
SO
C═NOCH2CCH



1418.
Et
Cl
H
SO2
C═NOCH2CCH



1419.
Et
Cl
H
S
C═NOCH2CH═CH2



1420.
Et
Cl
H
SO
C═NOCH2CH═CH2



1421.
Et
Cl
H
SO2
C═NOCH2CH═CH2



1422.
Et
Cl
H
S
C═O



1423.
Et
Cl
H
SO
C═O



1424.
Et
Cl
H
SO2
C═O



1425.
Et
Cl
H
S
C═S



1426.
Et
Cl
H
SO
C═S



1427.
Et
Cl
H
SO2
C═S



1428.
Et
Cl
H
S
C═S



1429.
Et
Cl
H
SO
C═S



1430.
Et
Cl
H
SO2
C═S



1431.
Et
Cl
H
S
C═N—N(CH3)2



1432.
Et
Cl
H
SO
C═N—N(CH3)2



1433.
Et
Cl
H
SO2
C═N—N(CH3)2



1434.
Et
Cl
H
S
O



1435.
Et
Cl
H
SO
O



1436.
Et
Cl
H
SO2
O



1437.
Et
Cl
H
S
S



1438.
Et
Cl
H
SO
S



1439.
Et
Cl
H
SO2
S



1440.
Et
Cl
H
S
SO



1441.
Et
Cl
H
SO
SO



1442.
Et
Cl
H
SO2
SO



1443.
Et
Cl
H
S
SO2



1444.
Et
Cl
H
SO
SO2



1445.
Et
Cl
H
SO2
SO2



1446.
Et
Cl
H
S
NMe



1447.
Et
Cl
H
SO
NMe



1448.
Et
Cl
H
SO2
NMe
















TABLE 5







Inventive compounds of the general formula (I) in which Q is Q2, R5 is


hydrogen and n is 1




embedded image


















No.
R1
R3
R4
Y
X
1H NMR





1449.
Me
Me
Me
S
CH2



1450.
Me
Me
Me
SO
CH2



1451.
Me
Me
Me
SO2
CH2



1452.
Me
Me
Me
S
CHMe



1453.
Me
Me
Me
SO
CHMe



1454.
Me
Me
Me
SO2
CHMe



1455.
Me
Me
Me
S
C(CH3)2



1456.
Me
Me
Me
SO
C(CH3)2



1457.
Me
Me
Me
SO2
C(CH3)2



1458.
Me
Me
Me
S
C(OC2H4O)



1459.
Me
Me
Me
SO
C(OC2H4O)



1460.
Me
Me
Me
SO2
C(OC2H4O)



1461.
Me
Me
Me
S
C(SC2H4S)



1462.
Me
Me
Me
SO
C(SC2H4S)



1463.
Me
Me
Me
SO2
C(SC2H4S)



1464.
Me
Me
Me
S
CHOMe



1465.
Me
Me
Me
SO
CHOMe



1466.
Me
Me
Me
SO2
CHOMe



1467.
Me
Me
Me
S
CHOEt



1468.
Me
Me
Me
SO
CHOEt



1469.
Me
Me
Me
SO2
CHOEt



1470.
Me
Me
Me
S
CHOiPr



1471.
Me
Me
Me
SO
CHOiPr



1472.
Me
Me
Me
SO2
CHOiPr



1473.
Me
Me
Me
S
CHOCH2cPr



1474.
Me
Me
Me
SO
CHOCH2cPr



1475.
Me
Me
Me
SO2
CHOCH2cPr



1476.
Me
Me
Me
S
CHOC2H4OMe



1477.
Me
Me
Me
SO
CHOC2H4OMe



1478.
Me
Me
Me
SO2
CHOC2H4OMe



1479.
Me
Me
Me
S
CHOCH2CCH



1480.
Me
Me
Me
SO
CHOCH2CCH



1481.
Me
Me
Me
SO2
CHOCH2CCH



1482.
Me
Me
Me
S
CHOCH2CH═CH2



1483.
Me
Me
Me
SO
CHOCH2CH═CH2



1484.
Me
Me
Me
SO2
CHOCH2CH═CH2






1485.
Me
Me
Me
S


embedded image








1486.
Me
Me
Me
SO


embedded image








1487.
Me
Me
Me
SO2


embedded image








1488.
Me
Me
Me
S


embedded image








1489.
Me
Me
Me
SO


embedded image








1490.
Me
Me
Me
SO2


embedded image








1491.
Me
Me
Me
S


embedded image








1492.
Me
Me
Me
SO


embedded image








1493.
Me
Me
Me
SO2


embedded image








1494.
Me
Me
Me
S


embedded image








1495.
Me
Me
Me
SO


embedded image








1496.
Me
Me
Me
SO2


embedded image








1497.
Me
Me
Me
S


embedded image








1498.
Me
Me
Me
SO


embedded image








1499.
Me
Me
Me
SO2


embedded image








1500.
Me
Me
Me
S
CHOC2H4F



1501.
Me
Me
Me
SO
CHOC2H4F



1502.
Me
Me
Me
SO2
CHOC2H4F



1503.
Me
Me
Me
S
C═NOMe



1504.
Me
Me
Me
SO
C═NOMe



1505.
Me
Me
Me
SO2
C═NOMe



1506.
Me
Me
Me
S
C═NOCH2CCH



1507.
Me
Me
Me
SO
C═NOCH2CCH



1508.
Me
Me
Me
SO2
C═NOCH2CCH



1509.
Me
Me
Me
S
C═NOCH2CH═CH2



1510.
Me
Me
Me
SO
C═NOCH2CH═CH2



1511.
Me
Me
Me
SO2
C═NOCH2CH═CH2



1512.
Me
Me
Me
S
C═O



1513.
Me
Me
Me
SO
C═O



1514.
Me
Me
Me
SO2
C═O



1515.
Me
Me
Me
S
C═S



1516.
Me
Me
Me
SO
C═S



1517.
Me
Me
Me
SO2
C═S



1518.
Me
Me
Me
S
C═S



1519.
Me
Me
Me
SO
C═S



1520.
Me
Me
Me
SO2
C═S



1521.
Me
Me
Me
S
C═N—N(CH3)2



1522.
Me
Me
Me
SO
C═N—N(CH3)2



1523.
Me
Me
Me
SO2
C═N—N(CH3)2



1524.
Me
Me
Me
S
O



1525.
Me
Me
Me
SO
O



1526.
Me
Me
Me
SO2
O



1527.
Me
Me
Me
S
S



1528.
Me
Me
Me
SO
S



1529.
Me
Me
Me
SO2
S



1530.
Me
Me
Me
S
SO



1531.
Me
Me
Me
SO
SO



1532.
Me
Me
Me
SO2
SO



1533.
Me
Me
Me
S
SO2



1534.
Me
Me
Me
SO
SO2



1535.
Me
Me
Me
SO2
SO2



1536.
Me
Me
Me
S
NMe



1537.
Me
Me
Me
SO
NMe



1538.
Me
Me
Me
SO2
NMe



1539.
Me
Me
Me
O
O



1540.
Me
Me
H
O
O



1541.
Me
SMe
H
O
O



1542.
Me
Cl
H
O
O



1543.
Me
Cl
H
S
CH2



1544.
Me
Cl
H
SO
CH2



1545.
Me
Cl
H
SO2
CH2
DMSO, 400








MHz: 3.40 (t,








2H), 3.74 (t,








2H), 3.79 (s,








3H), 7.89 (br,








3H), 11.39 (s,








1H)


1546.
Me
Cl
H
S
CHMe



1547.
Me
Cl
H
SO
CHMe



1548.
Me
Cl
H
SO2
CHMe



1549.
Me
Cl
H
S
C(CH3)2



1550.
Me
Cl
H
SO
C(CH3)2



1551.
Me
Cl
H
SO2
C(CH3)2



1552.
Me
Cl
H
S
C(OC2H4O)



1553.
Me
Cl
H
SO
C(OC2H4O)



1554.
Me
Cl
H
SO2
C(OC2H4O)



1555.
Me
Cl
H
S
C(SC2H4S)



1556.
Me
Cl
H
SO
C(SC2H4S)



1557.
Me
Cl
H
SO2
C(SC2H4S)



1558.
Me
Cl
H
S
CHOMe



1559.
Me
Cl
H
SO
CHOMe



1560.
Me
Cl
H
SO2
CHOMe
CDCl3, 400








MHz: 3.56 (s,








3H), 3.68 (dd,








1H), 3.71 (d,








1H), 3.87 (s,








3H), 5.21 (d,








1H), 7.64 (s,








1H), 7.73 (d,








1H), 7.91 (d,








1H), 9.85 (s,








1H)


1561.
Me
Cl
H
S
CHOEt



1562.
Me
Cl
H
SO
CHOEt



1563.
Me
Cl
H
SO2
CHOEt



1564.
Me
Cl
H
S
CHOiPr



1565.
Me
Cl
H
SO
CHOiPr



1566.
Me
Cl
H
SO2
CHOiPr



1567.
Me
Cl
H
S
CHOCH2cPr



1568.
Me
Cl
H
SO
CHOCH2cPr



1569.
Me
Cl
H
SO2
CHOCH2cPr



1570.
Me
Cl
H
S
CHOC2H4OMe



1571.
Me
Cl
H
SO
CHOC2H4OMe



1572.
Me
Cl
H
SO2
CHOC2H4OMe



1573.
Me
Cl
H
S
CHOCH2CCH



1574.
Me
Cl
H
SO
CHOCH2CCH



1575.
Me
Cl
H
SO2
CHOCH2CCH



1576.
Me
Cl
H
S
CHOCH2CH═CH2



1577.
Me
Cl
H
SO
CHOCH2CH═CH2



1578.
Me
Cl
H
SO2
CHOCH2CH═CH2






1579.
Me
Cl
H
S


embedded image








1580.
Me
Cl
H
SO


embedded image








1581.
Me
Cl
H
SO2


embedded image








1582.
Me
Cl
H
S


embedded image








1583.
Me
Cl
H
SO


embedded image








1584.
Me
Cl
H
SO2


embedded image








1585.
Me
Cl
H
S


embedded image








1586.
Me
Cl
H
SO


embedded image








1587.
Me
Cl
H
SO2


embedded image








1588.
Me
Cl
H
S


embedded image








1589.
Me
Cl
H
SO


embedded image








1590.
Me
Cl
H
SO2


embedded image








1591.
Me
Cl
H
S


embedded image








1592.
Me
Cl
H
SO


embedded image








1593.
Me
Cl
H
SO2


embedded image








1594.
Me
Cl
H
S
CHOC2H4F



1595.
Me
Cl
H
SO
CHOC2H4F



1596.
Me
Cl
H
SO2
CHOC2H4F



1597.
Me
Cl
H
S
C═NOMe



1598.
Me
Cl
H
SO
C═NOMe



1599.
Me
Cl
H
SO2
C═NOMe



1600.
Me
Cl
H
S
C═NOCH2CCH



1601.
Me
Cl
H
SO
C═NOCH2CCH



1602.
Me
Cl
H
SO2
C═NOCH2CCH



1603.
Me
Cl
H
S
C═NOCH2CH═CH2



1604.
Me
Cl
H
SO
C═NOCH2CH═CH2



1605.
Me
Cl
H
SO2
C═NOCH2CH═CH2



1606.
Me
Cl
H
S
C═O



1607.
Me
Cl
H
SO
C═O



1608.
Me
Cl
H
SO2
C═O



1609.
Me
Cl
H
S
C═S



1610.
Me
Cl
H
SO
C═S



1611.
Me
Cl
H
SO2
C═S



1612.
Me
Cl
H
S
C═S



1613.
Me
Cl
H
SO
C═S



1614.
Me
Cl
H
SO2
C═S



1615.
Me
Cl
H
S
C═N—N(CH3)2



1616.
Me
Cl
H
SO
C═N—N(CH3)2



1617.
Me
Cl
H
SO2
C═N—N(CH3)2



1618.
Me
Cl
H
S
O



1619.
Me
Cl
H
SO
O



1620.
Me
Cl
H
SO2
O



1621.
Me
Cl
H
S
S



1622.
Me
Cl
H
SO
S



1623.
Me
Cl
H
SO2
S



1624.
Me
Cl
H
S
SO



1625.
Me
Cl
H
SO
SO



1626.
Me
Cl
H
SO2
SO



1627.
Me
Cl
H
S
SO2



1628.
Me
Cl
H
SO
SO2



1629.
Me
Cl
H
SO2
SO2



1630.
Me
Cl
H
S
NMe



1631.
Me
Cl
H
SO
NMe



1632.
Me
Cl
H
SO2
NMe



1633.
Et
Me
Me
S
CH2



1634.
Et
Me
Me
SO
CH2



1635.
Et
Me
Me
SO2
CH2



1636.
Et
Me
Me
S
CHMe



1637.
Et
Me
Me
SO
CHMe



1638.
Et
Me
Me
SO2
CHMe



1639.
Et
Me
Me
S
C(CH3)2



1640.
Et
Me
Me
SO
C(CH3)2



1641.
Et
Me
Me
SO2
C(CH3)2



1642.
Et
Me
Me
S
C(OC2H4O)



1643.
Et
Me
Me
SO
C(OC2H4O)



1644.
Et
Me
Me
SO2
C(OC2H4O)



1645.
Et
Me
Me
S
C(SC2H4S)



1646.
Et
Me
Me
SO
C(SC2H4S)



1647.
Et
Me
Me
SO2
C(SC2H4S)



1648.
Et
Me
Me
S
CHOMe



1649.
Et
Me
Me
SO
CHOMe



1650.
Et
Me
Me
SO2
CHOMe



1651.
Et
Me
Me
S
CHOEt



1652.
Et
Me
Me
SO
CHOEt



1653.
Et
Me
Me
SO2
CHOEt



1654.
Et
Me
Me
S
CHOiPr



1655.
Et
Me
Me
SO
CHOiPr



1656.
Et
Me
Me
SO2
CHOiPr



1657.
Et
Me
Me
S
CHOCH2cPr



1658.
Et
Me
Me
SO
CHOCH2cPr



1659.
Et
Me
Me
SO2
CHOCH2cPr



1660.
Et
Me
Me
S
CHOC2H4OMe



1661.
Et
Me
Me
SO
CHOC2H4OMe



1662.
Et
Me
Me
SO2
CHOC2H4OMe



1663.
Et
Me
Me
S
CHOCH2CCH



1664.
Et
Me
Me
SO
CHOCH2CCH



1665.
Et
Me
Me
SO2
CHOCH2CCH



1666.
Et
Me
Me
S
CHOCH2CH═CH2



1667.
Et
Me
Me
SO
CHOCH2CH═CH2



1668.
Et
Me
Me
SO2
CHOCH2CH═CH2






1669.
Et
Me
Me
S


embedded image








1670.
Et
Me
Me
SO


embedded image








1671.
Et
Me
Me
SO2


embedded image








1672.
Et
Me
Me
S


embedded image








1673.
Et
Me
Me
SO


embedded image








1674.
Et
Me
Me
SO2


embedded image








1675.
Et
Me
Me
S


embedded image








1676.
Et
Me
Me
SO


embedded image








1677.
Et
Me
Me
SO2


embedded image








1678.
Et
Me
Me
S


embedded image








1679.
Et
Me
Me
SO


embedded image








1680.
Et
Me
Me
SO2


embedded image








1681.
Et
Me
Me
S


embedded image








1682.
Et
Me
Me
SO


embedded image








1683.
Et
Me
Me
SO2


embedded image








1684.
Et
Me
Me
S
CHOC2H4F



1685.
Et
Me
Me
SO
CHOC2H4F



1686.
Et
Me
Me
SO2
CHOC2H4F



1687.
Et
Me
Me
S
C═NOMe



1688.
Et
Me
Me
SO
C═NOMe



1689.
Et
Me
Me
SO2
C═NOMe



1690.
Et
Me
Me
S
C═NOCH2CCH



1691.
Et
Me
Me
SO
C═NOCH2CCH



1692.
Et
Me
Me
SO2
C═NOCH2CCH



1693.
Et
Me
Me
S
C═NOCH2CH═CH2



1694.
Et
Me
Me
SO
C═NOCH2CH═CH2



1695.
Et
Me
Me
SO2
C═NOCH2CH═CH2



1696.
Et
Me
Me
S
C═O



1697.
Et
Me
Me
SO
C═O



1698.
Et
Me
Me
SO2
C═O



1699.
Et
Me
Me
S
C═S



1700.
Et
Me
Me
SO
C═S



1701.
Et
Me
Me
SO2
C═S



1702.
Et
Me
Me
S
C═S



1703.
Et
Me
Me
SO
C═S



1704.
Et
Me
Me
SO2
C═S



1705.
Et
Me
Me
S
C═N—N(CH3)2



1706.
Et
Me
Me
SO
C═N—N(CH3)2



1707.
Et
Me
Me
SO2
C═N—N(CH3)2



1708.
Et
Me
Me
S
O



1709.
Et
Me
Me
SO
O



1710.
Et
Me
Me
SO2
O



1711.
Et
Me
Me
S
S



1712.
Et
Me
Me
SO
S



1713.
Et
Me
Me
SO2
S



1714.
Et
Me
Me
S
SO



1715.
Et
Me
Me
SO
SO



1716.
Et
Me
Me
SO2
SO



1717.
Et
Me
Me
S
SO2



1718.
Et
Me
Me
SO
SO2



1719.
Et
Me
Me
SO2
SO2



1720.
Et
Me
Me
S
NMe



1721.
Et
Me
Me
SO
NMe



1722.
Et
Me
Me
SO2
NMe



1723.
Et
Me
Me
O
O



1724.
Et
Me
H
O
O



1725.
Et
SMe
H
O
O



1726.
Et
Cl
H
O
O



1727.
Et
Cl
H
S
CH2



1728.
Et
Cl
H
SO
CH2



1729.
Et
Cl
H
SO2
CH2



1730.
Et
Cl
H
S
CHMe



1731.
Et
Cl
H
SO
CHMe



1732.
Et
Cl
H
SO2
CHMe



1733.
Et
Cl
H
S
C(CH3)2



1734.
Et
Cl
H
SO
C(CH3)2



1735.
Et
Cl
H
SO2
C(CH3)2



1736.
Et
Cl
H
S
C(OC2H4O)



1737.
Et
Cl
H
SO
C(OC2H4O)



1738.
Et
Cl
H
SO2
C(OC2H4O)



1739.
Et
Cl
H
S
C(SC2H4S)



1740.
Et
Cl
H
SO
C(SC2H4S)



1741.
Et
Cl
H
SO2
C(SC2H4S)



1742.
Et
Cl
H
S
CHOMe



1743.
Et
Cl
H
SO
CHOMe



1744.
Et
Cl
H
SO2
CHOMe



1745.
Et
Cl
H
S
CHOEt



1746.
Et
Cl
H
SO
CHOEt



1747.
Et
Cl
H
SO2
CHOEt



1748.
Et
Cl
H
S
CHOiPr



1749.
Et
Cl
H
SO
CHOiPr



1750.
Et
Cl
H
SO2
CHOiPr



1751.
Et
Cl
H
S
CHOCH2cPr



1752.
Et
Cl
H
SO
CHOCH2cPr



1753.
Et
Cl
H
SO2
CHOCH2cPr



1754.
Et
Cl
H
S
CHOC2H4OMe



1755.
Et
Cl
H
SO
CHOC2H4OMe



1756.
Et
Cl
H
SO2
CHOC2H4OMe



1757.
Et
Cl
H
S
CHOCH2CCH



1758.
Et
Cl
H
SO
CHOCH2CCH



1759.
Et
Cl
H
SO2
CHOCH2CCH



1760.
Et
Cl
H
S
CHOCH2CH═CH2



1761.
Et
Cl
H
SO
CHOCH2CH═CH2



1762.
Et
Cl
H
SO2
CHOCH2CH═CH2






1763.
Et
Cl
H
S


embedded image








1764.
Et
Cl
H
SO


embedded image








1765.
Et
Cl
H
SO2


embedded image








1766.
Et
Cl
H
S


embedded image








1767.
Et
Cl
H
SO


embedded image








1768.
Et
Cl
H
SO2


embedded image








1769.
Et
Cl
H
S


embedded image








1770.
Et
Cl
H
SO


embedded image








1771.
Et
Cl
H
SO2


embedded image








1772.
Et
Cl
H
S


embedded image








1773.
Et
Cl
H
SO


embedded image








1774.
Et
Cl
H
SO2


embedded image








1775.
Et
Cl
H
S


embedded image








1776.
Et
Cl
H
SO


embedded image








1777.
Et
Cl
H
SO2


embedded image








1778.
Et
Cl
H
S
CHOC2H4F



1779.
Et
Cl
H
SO
CHOC2H4F



1780.
Et
Cl
H
SO2
CHOC2H4F



1781.
Et
Cl
H
S
C═NOMe



1782.
Et
Cl
H
SO
C═NOMe



1783.
Et
Cl
H
SO2
C═NOMe



1784.
Et
Cl
H
S
C═NOCH2CCH



1785.
Et
Cl
H
SO
C═NOCH2CCH



1786.
Et
Cl
H
SO2
C═NOCH2CCH



1787.
Et
Cl
H
S
C═NOCH2CH═CH2



1788.
Et
Cl
H
SO
C═NOCH2CH═CH2



1789.
Et
Cl
H
SO2
C═NOCH2CH═CH2



1790.
Et
Cl
H
S
C═O



1791.
Et
Cl
H
SO
C═O



1792.
Et
Cl
H
SO2
C═O



1793.
Et
Cl
H
S
C═S



1794.
Et
Cl
H
SO
C═S



1795.
Et
Cl
H
SO2
C═S



1796.
Et
Cl
H
S
C═S



1797.
Et
Cl
H
SO
C═S



1798.
Et
Cl
H
SO2
C═S



1799.
Et
Cl
H
S
C═N—N (CH3)2



1800.
Et
Cl
H
SO
C═N—N (CH3)2



1801.
Et
Cl
H
SO2
C═N—N (CH3)2



1802.
Et
Cl
H
S
O



1803.
Et
Cl
H
SO
O



1804.
Et
Cl
H
SO2
O



1805.
Et
Cl
H
S
S



1806.
Et
Cl
H
SO
S



1807.
Et
Cl
H
SO2
S



1808.
Et
Cl
H
S
SO



1809.
Et
Cl
H
SO
SO



1810.
Et
Cl
H
SO2
SO



1811.
Et
Cl
H
S
SO2



1812.
Et
Cl
H
SO
SO2



1813.
Et
Cl
H
SO2
SO2



1814.
Et
Cl
H
S
NMe



1815.
Et
Cl
H
SO
NMe



1816.
Et
Cl
H
SO2
NMe
















TABLE 6







Inventive compounds of the general formula (I) in which Q is Q3, R5


is hydrogen and n is 1




embedded image


















No.
R2
R3
R4
Y
X
1H NMR





1817.
Me
Me
Me
S
CH2



1818.
Me
Me
Me
SO
CH2



1819.
Me
Me
Me
SO2
CH2



1820.
Me
Me
Me
S
CHMe



1821.
Me
Me
Me
SO
CHMe



1822.
Me
Me
Me
SO2
CHMe



1823.
Me
Me
Me
S
C(CH3)2



1824.
Me
Me
Me
SO
C(CH3)2



1825.
Me
Me
Me
SO2
C(CH3)2



1826.
Me
Me
Me
S
C(OC2H4O)



1827.
Me
Me
Me
SO
C(OC2H4O)



1828.
Me
Me
Me
SO2
C(OC2H4O)



1829.
Me
Me
Me
S
C(SC2H4S)



1830.
Me
Me
Me
SO
C(SC2H4S)



1831.
Me
Me
Me
SO2
C(SC2H4S)



1832.
Me
Me
Me
S
CHOMe



1833.
Me
Me
Me
SO
CHOMe



1834.
Me
Me
Me
SO2
CHOMe



1835.
Me
Me
Me
S
CHOEt



1836.
Me
Me
Me
SO
CHOEt



1837.
Me
Me
Me
SO2
CHOEt



1838.
Me
Me
Me
S
CHOiPr



1839.
Me
Me
Me
SO
CHOiPr



1840.
Me
Me
Me
SO2
CHOiPr



1841.
Me
Me
Me
S
CHOCH2cPr



1842.
Me
Me
Me
SO
CHOCH2cPr



1843.
Me
Me
Me
SO2
CHOCH2cPr



1844.
Me
Me
Me
S
CHOC2H4OMe



1845.
Me
Me
Me
SO
CHOC2H4OMe



1846.
Me
Me
Me
SO2
CHOC2H4OMe



1847.
Me
Me
Me
S
CHOCH2CCH



1848.
Me
Me
Me
SO
CHOCH2CCH



1849.
Me
Me
Me
SO2
CHOCH2CCH



1850.
Me
Me
Me
S
CHOCH2CH═CH2



1851.
Me
Me
Me
SO
CHOCH2CH═CH2



1852.
Me
Me
Me
SO2
CHOCH2CH═CH2






1853.
Me
Me
Me
S


embedded image








1854.
Me
Me
Me
SO


embedded image








1855.
Me
Me
Me
SO2


embedded image








1856.
Me
Me
Me
S


embedded image








1857.
Me
Me
Me
SO


embedded image








1858.
Me
Me
Me
SO2


embedded image








1859.
Me
Me
Me
S


embedded image








1860.
Me
Me
Me
SO


embedded image








1861.
Me
Me
Me
SO2


embedded image








1862.
Me
Me
Me
S


embedded image








1863.
Me
Me
Me
SO


embedded image








1864.
Me
Me
Me
SO2


embedded image








1865.
Me
Me
Me
S


embedded image








1866.
Me
Me
Me
SO


embedded image








1867.
Me
Me
Me
SO2


embedded image








1868.
Me
Me
Me
S
CHOC2H4F



1869.
Me
Me
Me
SO
CHOC2H4F



1870.
Me
Me
Me
SO2
CHOC2H4F



1871.
Me
Me
Me
S
C═NOMe



1872.
Me
Me
Me
SO
C═NOMe



1873.
Me
Me
Me
SO2
C═NOMe



1874.
Me
Me
Me
S
C═NOCH2CCH



1875.
Me
Me
Me
SO
C═NOCH2CCH



1876.
Me
Me
Me
SO2
C═NOCH2CCH



1877.
Me
Me
Me
S
C═NOCH2CH═CH2



1878.
Me
Me
Me
SO
C═NOCH2CH═CH2



1879.
Me
Me
Me
SO2
C═NOCH2CH═CH2



1880.
Me
Me
Me
S
C═O



1881.
Me
Me
Me
SO
C═O



1882.
Me
Me
Me
SO2
C═O



1883.
Me
Me
Me
S
C═S



1884.
Me
Me
Me
SO
C═S



1885.
Me
Me
Me
SO2
C═S



1886.
Me
Me
Me
S
C═S



1887.
Me
Me
Me
SO
C═S



1888.
Me
Me
Me
SO2
C═S



1889.
Me
Me
Me
S
C═N—N(CH3)2



1890.
Me
Me
Me
SO
C═N—N(CH3)2



1891.
Me
Me
Me
SO2
C═N—N(CH3)2



1892.
Me
Me
Me
S
O



1893.
Me
Me
Me
SO
O



1894.
Me
Me
Me
SO2
O



1895.
Me
Me
Me
S
S



1896.
Me
Me
Me
SO
S



1897.
Me
Me
Me
SO2
S



1898.
Me
Me
Me
S
SO



1899.
Me
Me
Me
SO
SO



1900.
Me
Me
Me
SO2
SO



1901.
Me
Me
Me
S
SO2



1902.
Me
Me
Me
SO
SO2



1903.
Me
Me
Me
SO2
SO2



1904.
Me
Me
Me
S
NMe



1905.
Me
Me
Me
SO
NMe



1906.
Me
Me
Me
SO2
NMe



1907.
Me
Me
Me
O
O



1908.
Me
Me
H
O
O



1909.
Me
SMe
H
O
O



1910.
Me
Cl
H
O
O



1911.
Me
Cl
H
S
CH2



1912.
Me
Cl
H
SO
CH2



1913.
Me
Cl
H
SO2
CH2
CDCl3, 400 MHz:








2.52 (s, 3H), 3.47








(t, 2H), 3.62 (t,








2H), 3.79 (s, 3H),








7.80 (d, 1H), 7.88








(d, 1H), 8.14 (s,








1H)


1914.
Me
Cl
H
S
CHMe



1915.
Me
Cl
H
SO
CHMe



1916.
Me
Cl
H
SO2
CHMe



1917.
Me
Cl
H
S
C(CH3)2



1918.
Me
Cl
H
SO
C(CH3)2



1919.
Me
Cl
H
SO2
C(CH3)2



1920.
Me
Cl
H
S
C(OC2H4O)



1921.
Me
Cl
H
SO
C(OC2H4O)



1922.
Me
Cl
H
SO2
C(OC2H4O)



1923.
Me
Cl
H
S
C(SC2H4S)



1924.
Me
Cl
H
SO
C(SC2H4S)



1925.
Me
Cl
H
SO2
C(SC2H4S)



1926.
Me
Cl
H
S
CHOMe



1927.
Me
Cl
H
SO
CHOMe



1928.
Me
Cl
H
SO2
CHOMe
CDCl3, 400 MHz:








2.44 (s, 3H), 3.53








(s, 3H), 3.57 (dd,








1H), 3.71 (d, 1H),








5.15 (d, 1H), 7.55








(d, 1H), 7.74 (d,








1H), 9.40 (s, 1H)


1929.
Me
Cl
H
S
CHOEt



1930.
Me
Cl
H
SO
CHOEt



1931.
Me
Cl
H
SO2
CHOEt



1932.
Me
Cl
H
S
CHOiPr



1933.
Me
Cl
H
SO
CHOiPr



1934.
Me
Cl
H
SO2
CHOiPr



1935.
Me
Cl
H
S
CHOCH2cPr



1936.
Me
Cl
H
SO
CHOCH2cPr



1937.
Me
Cl
H
SO2
CHOCH2cPr



1938.
Me
Cl
H
S
CHOC2H4OMe



1939.
Me
Cl
H
SO
CHOC2H4OMe



1940.
Me
Cl
H
SO2
CHOC2H4OMe



1941.
Me
Cl
H
S
CHOCH2CCH



1942.
Me
Cl
H
SO
CHOCH2CCH



1943.
Me
Cl
H
SO2
CHOCH2CCH



1944.
Me
Cl
H
S
CHOCH2CH═CH2



1945.
Me
Cl
H
SO
CHOCH2CH═CH2



1946.
Me
Cl
H
SO2
CHOCH2CH═CH2






1947.
Me
Cl
H
S


embedded image








1948.
Me
Cl
H
SO


embedded image








1949.
Me
Cl
H
SO2


embedded image








1950.
Me
Cl
H
S


embedded image








1951.
Me
Cl
H
SO


embedded image








1952.
Me
Cl
H
SO2


embedded image








1953.
Me
Cl
H
S


embedded image








1954.
Me
Cl
H
SO


embedded image








1955.
Me
Cl
H
SO2


embedded image








1956.
Me
Cl
H
S


embedded image








1957.
Me
Cl
H
SO


embedded image








1958.
Me
Cl
H
SO2


embedded image








1959.
Me
Cl
H
S


embedded image








1960.
Me
Cl
H
SO


embedded image








1961.
Me
Cl
H
SO2


embedded image








1962.
Me
Cl
H
S
CHOC2H4F



1963.
Me
Cl
H
SO
CHOC2H4F



1964.
Me
Cl
H
SO2
CHOC2H4F



1965.
Me
Cl
H
S
C═NOMe



1966.
Me
Cl
H
SO
C═NOMe



1967.
Me
Cl
H
SO2
C═NOMe



1968.
Me
Cl
H
S
C═NOCH2CCH



1969.
Me
Cl
H
SO
C═NOCH2CCH



1970.
Me
Cl
H
SO2
C═NOCH2CCH



1971.
Me
Cl
H
S
C═NOCH2CH═CH2



1972.
Me
Cl
H
SO
C═NOCH2CH═CH2



1973.
Me
Cl
H
SO2
C═NOCH2CH═CH2



1974.
Me
Cl
H
S
C═O



1975.
Me
Cl
H
SO
C═O



1976.
Me
Cl
H
SO2
C═O



1977.
Me
Cl
H
S
C═S



1978.
Me
Cl
H
SO
C═S



1979.
Me
Cl
H
SO2
C═S



1980.
Me
Cl
H
S
C═S



1981.
Me
Cl
H
SO
C═S



1982.
Me
Cl
H
SO2
C═S



1983.
Me
Cl
H
S
C═N—N(CH3)2



1984.
Me
Cl
H
SO
C═N—N(CH3)2



1985.
Me
Cl
H
SO2
C═N—N(CH3)2



1986.
Me
Cl
H
S
O



1987.
Me
Cl
H
SO
O



1988.
Me
Cl
H
SO2
O



1989.
Me
Cl
H
S
S



1990.
Me
Cl
H
SO
S



1991.
Me
Cl
H
SO2
S



1992.
Me
Cl
H
S
SO



1993.
Me
Cl
H
SO
SO



1994.
Me
Cl
H
SO2
SO



1995.
Me
Cl
H
S
SO2



1996.
Me
Cl
H
SO
SO2



1997.
Me
Cl
H
SO2
SO2



1998.
Me
Cl
H
S
NMe



1999.
Me
Cl
H
SO
NMe



2000.
Me
Cl
H
SO2
NMe



2001.
Et
Me
Me
S
CH2



2002.
Et
Me
Me
SO
CH2



2003.
Et
Me
Me
SO2
CH2



2004.
Et
Me
Me
S
CHMe



2005.
Et
Me
Me
SO
CHMe



2006.
Et
Me
Me
SO2
CHMe



2007.
Et
Me
Me
S
C(CH3)2



2008.
Et
Me
Me
SO
C(CH3)2



2009.
Et
Me
Me
SO2
C(CH3)2



2010.
Et
Me
Me
S
C(OC2H4O)



2011.
Et
Me
Me
SO
C(OC2H4O)



2012.
Et
Me
Me
SO2
C(OC2H4O)



2013.
Et
Me
Me
S
C(SC2H4S)



2014.
Et
Me
Me
SO
C(SC2H4S)



2015.
Et
Me
Me
SO2
C(SC2H4S)



2016.
Et
Me
Me
S
CHOMe



2017.
Et
Me
Me
SO
CHOMe



2018.
Et
Me
Me
SO2
CHOMe



2019.
Et
Me
Me
S
CHOEt



2020.
Et
Me
Me
SO
CHOEt



2021.
Et
Me
Me
SO2
CHOEt



2022.
Et
Me
Me
S
CHOiPr



2023.
Et
Me
Me
SO
CHOiPr



2024.
Et
Me
Me
SO2
CHOiPr



2025.
Et
Me
Me
S
CHOCH2cPr



2026.
Et
Me
Me
SO
CHOCH2cPr



2027.
Et
Me
Me
SO2
CHOCH2cPr



2028.
Et
Me
Me
S
CHOC2H4OMe



2029.
Et
Me
Me
SO
CHOC2H4OMe



2030.
Et
Me
Me
SO2
CHOC2H4OMe



2031.
Et
Me
Me
S
CHOCH2CCH



2032.
Et
Me
Me
SO
CHOCH2CCH



2033.
Et
Me
Me
SO2
CHOCH2CCH



2034.
Et
Me
Me
S
CHOCH2CH═CH2



2035.
Et
Me
Me
SO
CHOCH2CH═CH2



2036.
Et
Me
Me
SO2
CHOCH2CH═CH2






2037.
Et
Me
Me
S


embedded image








2038.
Et
Me
Me
SO


embedded image








2039.
Et
Me
Me
SO2


embedded image








2040.
Et
Me
Me
S


embedded image








2041.
Et
Me
Me
SO


embedded image








2042.
Et
Me
Me
SO2


embedded image








2043.
Et
Me
Me
S


embedded image








2044.
Et
Me
Me
SO


embedded image








2045.
Et
Me
Me
SO2


embedded image








2046.
Et
Me
Me
S


embedded image








2047.
Et
Me
Me
SO


embedded image








2048.
Et
Me
Me
SO2


embedded image








2049.
Et
Me
Me
S


embedded image








2050.
Et
Me
Me
SO


embedded image








2051.
Et
Me
Me
SO2


embedded image








2052.
Et
Me
Me
S
CHOC2H4F



2053.
Et
Me
Me
SO
CHOC2H4F



2054.
Et
Me
Me
SO2
CHOC2H4F



2055.
Et
Me
Me
S
C═NOMe



2056.
Et
Me
Me
SO
C═NOMe



2057.
Et
Me
Me
SO2
C═NOMe



2058.
Et
Me
Me
S
C═NOCH2CCH



2059.
Et
Me
Me
SO
C═NOCH2CCH



2060.
Et
Me
Me
SO2
C═NOCH2CCH



2061.
Et
Me
Me
S
C═NOCH2CH═CH2



2062.
Et
Me
Me
SO
C═NOCH2CH═CH2



2063.
Et
Me
Me
SO2
C═NOCH2CH═CH2



2064.
Et
Me
Me
S
C═O



2065.
Et
Me
Me
SO
C═O



2066.
Et
Me
Me
SO2
C═O



2067.
Et
Me
Me
S
C═S



2068.
Et
Me
Me
SO
C═S



2069.
Et
Me
Me
SO2
C═S



2070.
Et
Me
Me
S
C═S



2071.
Et
Me
Me
SO
C═S



2072.
Et
Me
Me
SO2
C═S



2073.
Et
Me
Me
S
C═N—N(CH3)2



2074.
Et
Me
Me
SO
C═N—N(CH3)2



2075.
Et
Me
Me
SO2
C═N—N(CH3)2



2076.
Et
Me
Me
S
O



2077.
Et
Me
Me
SO
O



2078.
Et
Me
Me
SO2
O



2079.
Et
Me
Me
S
S



2080.
Et
Me
Me
SO
S



2081.
Et
Me
Me
SO2
S



2082.
Et
Me
Me
S
SO



2083.
Et
Me
Me
SO
SO



2084.
Et
Me
Me
SO2
SO



2085.
Et
Me
Me
S
SO2



2086.
Et
Me
Me
SO
SO2



2087.
Et
Me
Me
SO2
SO2



2088.
Et
Me
Me
S
NMe



2089.
Et
Me
Me
SO
NMe



2090.
Et
Me
Me
SO2
NMe



2091.
Et
Me
Me
O
O



2092.
Et
Me
H
O
O



2093.
Et
SMe
H
O
O



2094.
Et
Cl
H
O
O



2095.
Et
Cl
H
S
CH2



2096.
Et
Cl
H
SO
CH2



2097.
Et
Cl
H
SO2
CH2



2098.
Et
Cl
H
S
CHMe



2099.
Et
Cl
H
SO
CHMe



2100.
Et
Cl
H
SO2
CHMe



2101.
Et
Cl
H
S
C(CH3)2



2102.
Et
Cl
H
SO
C(CH3)2



2103.
Et
Cl
H
SO2
C(CH3)2



2104.
Et
Cl
H
S
C(OC2H4O)



2105.
Et
Cl
H
SO
C(OC2H4O)



2106.
Et
Cl
H
SO2
C(OC2H4O)



2107.
Et
Cl
H
S
C(SC2H4S)



2108.
Et
Cl
H
SO
C(SC2H4S)



2109.
Et
Cl
H
SO2
C(SC2H4S)



2110.
Et
Cl
H
S
CHOMe



2111.
Et
Cl
H
SO
CHOMe



2112.
Et
Cl
H
SO2
CHOMe



2113.
Et
Cl
H
S
CHOEt



2114.
Et
Cl
H
SO
CHOEt



2115.
Et
Cl
H
SO2
CHOEt



2116.
Et
Cl
H
S
CHOiPr



2117.
Et
Cl
H
SO
CHOiPr



2118.
Et
Cl
H
SO2
CHOiPr



2119.
Et
Cl
H
S
CHOCH2cPr



2120.
Et
Cl
H
SO
CHOCH2cPr



2121.
Et
Cl
H
SO2
CHOCH2cPr



2122.
Et
Cl
H
S
CHOC2H4OMe



2123.
Et
Cl
H
SO
CHOC2H4OMe



2124.
Et
Cl
H
SO2
CHOC2H4OMe



2125.
Et
Cl
H
S
CHOCH2CCH



2126.
Et
Cl
H
SO
CHOCH2CCH



2127.
Et
Cl
H
SO2
CHOCH2CCH



2128.
Et
Cl
H
S
CHOCH2CH═CH2



2129.
Et
Cl
H
SO
CHOCH2CH═CH2



2130.
Et
Cl
H
SO2
CHOCH2CH═CH2






2131.
Et
Cl
H
S


embedded image








2132.
Et
Cl
H
SO


embedded image








2133.
Et
Cl
H
SO2


embedded image








2134.
Et
Cl
H
S


embedded image








2135.
Et
Cl
H
SO


embedded image








2136.
Et
Cl
H
SO2


embedded image








2137.
Et
Cl
H
S


embedded image








2138.
Et
Cl
H
SO


embedded image








2139.
Et
Cl
H
SO2


embedded image








2140.
Et
Cl
H
S


embedded image








2141.
Et
Cl
H
SO


embedded image








2142.
Et
Cl
H
SO2


embedded image








2143.
Et
Cl
H
S


embedded image








2144.
Et
Cl
H
SO


embedded image








2145.
Et
Cl
H
SO2


embedded image








2146.
Et
Cl
H
S
CHOC2H4F



2147.
Et
Cl
H
SO
CHOC2H4F



2148.
Et
Cl
H
SO2
CHOC2H4F



2149.
Et
Cl
H
S
C═NOMe



2150.
Et
Cl
H
SO
C═NOMe



2151.
Et
Cl
H
SO2
C═NOMe



2152.
Et
Cl
H
S
C═NOCH2CCH



2153.
Et
Cl
H
SO
C═NOCH2CCH



2154.
Et
Cl
H
SO2
C═NOCH2CCH



2155.
Et
Cl
H
S
C═NOCH2CH═CH2



2156.
Et
Cl
H
SO
C═NOCH2CH═CH2



2157.
Et
Cl
H
SO2
C═NOCH2CH═CH2



2158.
Et
Cl
H
S
C═O



2159.
Et
Cl
H
SO
C═O



2160.
Et
Cl
H
SO2
C═O



2161.
Et
Cl
H
S
C═S



2162.
Et
Cl
H
SO
C═S



2163.
Et
Cl
H
SO2
C═S



2164.
Et
Cl
H
S
C═S



2165.
Et
Cl
H
SO
C═S



2166.
Et
Cl
H
SO2
C═S



2167.
Et
Cl
H
S
C═N—N(CH3)2



2168.
Et
Cl
H
SO
C═N—N(CH3)2



2169.
Et
Cl
H
SO2
C═N—N(CH3)2



2170.
Et
Cl
H
S
O



2171.
Et
Cl
H
SO
O



2172.
Et
Cl
H
SO2
O



2173.
Et
Cl
H
S
S



2174.
Et
Cl
H
SO
S



2175.
Et
Cl
H
SO2
S



2176.
Et
Cl
H
S
SO



2177.
Et
Cl
H
SO
SO



2178.
Et
Cl
H
SO2
SO



2179.
Et
Cl
H
S
SO2



2180.
Et
Cl
H
SO
SO2



2181.
Et
Cl
H
SO2
SO2



2182.
Et
Cl
H
S
NMe



2183.
Et
Cl
H
SO
NMe



2184.
Et
Cl
H
SO2
NMe
















TABLE 7







Inventive compounds of the general formula (I) in which Q is Q1, X and


Y are each oxygen, R5 is fluorine and n is 1




embedded image
















No.
R1
R3
R4
1H NMR





2185.
Me
Me
Me



2186.
Me
Me
H
DMSO-d6, 400 MHz: 7.62 (d, 1H),






7.40 (d, 1H), 3.90 (s, 3H), 2.39 (s, 3H)


2187.
Me
Cl
H



2188.
Me
SMe
H



2189.
Me
Me
Me



2190.
Me
Me
H



2191.
Me
Cl
H



2192.
Me
SMe
H



2193.
Et
Me
Me



2194.
Et
Me
H



2195.
Et
Cl
H



2196.
Et
SMe
H



2197.
Et
Me
Me



2198.
Et
Me
H



2199.
Et
Cl
H



2200.
Et
SMe
H
















TABLE 8







Inventive compounds of the general formula (I) in which Q is Q3,


X is 2-(1,4-pyrazinyl)oxymethyl, Y is SO2, R5 is hydrogen and n is 2




embedded image
















No.
R2
R3
R4
1H NMR





2201.
Cl
Me
Me



2202.
Cl
Me
H



2203.
Cl
Cl
H



2204.
OMe
Me
Me
DMSO-d6, 400 MHz: 11.36 (s, 1H), 8.38 (s, 1H),






8.33-8.31 (m, 2H), 7.60 (s, 1H), 6.51 (dd, 1H),






4.07 (s, 3H), 3.77-3.70 (m, 1H), 3.58-3.53






(m, 1H), 2.76-2.60 (m, 5H), 2.18 (s, 3H)


2205.
OMe
Me
H



2206.
OMe
Cl
H



2207.
NHAc
Me
Me



2208.
NHAc
Me
H



2209.
NHAc
Cl
H
















TABLE 9







Inventive compounds of the general formula (I) in which Q is Q1, Y is


SO2, R5 is hydrogen and n is 1




embedded image

















No.
R1
R3
R4
X
1H NMR





2210.
nPr
Me
Me
CH2



2211.
nPr
Me
H
CH2



2212.
nPr
Cl
H
CH2
DMSO-d6, 400 MHz: 0.89 (t, 3H), 1.89 (m, 2H), 3.42







(t, 2H), 3.76 (t, 2H), 4.33 (t, 2H), 7.90 (d, 1H), 7.94







(d, 1H), 11.84 (s, 1H)


2213.
C2H4OMe
Me
Me
CH2



2214.
C2H4OMe
Me
H
CH2



2215.
C2H4OMe
Cl
H
CH2



2216.
CH2CF3
Me
Me
CH2



2217.
CH2CF3
Me
H
CH2



2218.
CH2CF3
Cl
H
CH2



2219.
nPr
Me
Me
CHOMe



2220.
nPr
Me
H
CHOMe



2221.
nPr
Cl
H
CHOMe
DMSO-d6, 400 MHz: 0.99 (t, 3H), 2.01 (m, 2H), 3.53







(s, 3H), 3.63 (dd, 1H), 3.80 (d, 1H), 4.40 (t, 2H), 5.22







(d, 1H), 7.72 (d, 1H), 7.92 (d, 1H), 10.80 (s, 1H)


2222.
C2H4OMe
Me
Me
CHOMe



2223.
C2H4OMe
Me
H
CHOMe



2224.
C2H4OMe
Cl
H
CHOMe



2225.
CH2CF3
Me
Me
CHOMe



2226.
CH2CF3
Me
H
CHOMe



2227.
CH2CF3
Cl
H
CHOMe
















TABLE 10







Inventive compounds of the general formula (I) in which Q is Q1 and R5


is hydrogen and n is 1




embedded image


















No.
R1
R3
R4
X
Y
1H NMR





2228.
Me
Me
Me
S
C═O



2229.
Me
Me
Me
SO
C═O



2230.
Me
Me
Me
SO2
C═O



2231.
Me
Me
Me
S
CHOMe



2232.
Me
Me
Me
SO
CHOMe



2233.
Me
Me
Me
SO2
CHOMe



2234.
Me
Me
Me
S
CHOEt



2235.
Me
Me
Me
SO
CHOEt



2236.
Me
Me
Me
SO2
CHOEt



2237.
Me
Me
Me
S
C═NOMe



2238.
Me
Me
Me
SO
C═NOMe



2239.
Me
Me
Me
SO2
C═NOMe



2240.
Me
Me
Me
S
C═NOEt



2241.
Me
Me
Me
SO
C═NOEt



2242.
Me
Me
Me
SO2
C═NOEt



2243.
Me
Me
Me
S
O



2244.
Me
Me
Me
SO
O



2245.
Me
Me
Me
SO2
O



2246.
Me
Me
Me
S
S



2247.
Me
Me
Me
SO
S



2248.
Me
Me
Me
SO2
S



2249.
Me
Me
Me
S
SO2



2250.
Me
Me
Me
SO
SO2



2251.
Me
Me
Me
SO2
SO2



2252.
Me
Me
H
S
C═O



2253.
Me
Me
H
SO
C═O



2254.
Me
Me
H
SO2
C═O



2255.
Me
Me
H
S
CHOMe



2256.
Me
Me
H
SO
CHOMe



2257.
Me
Me
H
SO2
CHOMe



2258.
Me
Me
H
S
CHOEt



2259.
Me
Me
H
SO
CHOEt



2260.
Me
Me
H
SO2
CHOEt



2261.
Me
Me
H
S
C═NOMe



2262.
Me
Me
H
SO
C═NOMe



2263.
Me
Me
H
SO2
C═NOMe



2264.
Me
Me
H
S
C═NOEt



2265.
Me
Me
H
SO
C═NOEt



2266.
Me
Me
H
SO2
C═NOEt



2267.
Me
Me
H
S
O



2268.
Me
Me
H
SO
O



2269.
Me
Me
H
SO2
O



2270.
Me
Me
H
S
S



2271.
Me
Me
H
SO
S



2272.
Me
Me
H
SO2
S



2273.
Me
Me
H
S
SO2



2274.
Me
Me
H
SO
SO2



2275.
Me
Me
H
SO2
SO2
















TABLE 11







Inventive compounds of the general formula (I) in which Q is Q2, R5 is


hydrogen and n is 1




embedded image


















No.
R1
R3
R4
X
Y
1H NMR





2276.
Me
Me
Me
S
C═O



2277.
Me
Me
Me
SO
C═O



2278.
Me
Me
Me
SO2
C═O



2279.
Me
Me
Me
S
CHOMe



2280.
Me
Me
Me
SO
CHOMe



2281.
Me
Me
Me
SO2
CHOMe



2282.
Me
Me
Me
S
CHOEt



2283.
Me
Me
Me
SO
CHOEt



2284.
Me
Me
Me
SO2
CHOEt



2285.
Me
Me
Me
S
C═NOMe



2286.
Me
Me
Me
SO
C═NOMe



2287.
Me
Me
Me
SO2
C═NOMe



2288.
Me
Me
Me
S
C═NOEt



2289.
Me
Me
Me
SO
C═NOEt



2290.
Me
Me
Me
SO2
C═NOEt



2291.
Me
Me
Me
S
O



2292.
Me
Me
Me
SO
O



2293.
Me
Me
Me
SO2
O



2294.
Me
Me
Me
S
S



2295.
Me
Me
Me
SO
S



2296.
Me
Me
Me
SO2
S



2297.
Me
Me
Me
S
SO2



2298.
Me
Me
Me
SO
SO2



2299.
Me
Me
Me
SO2
SO2



2300.
Me
Me
H
S
C═O



2301.
Me
Me
H
SO
C═O



2302.
Me
Me
H
SO2
C═O



2303.
Me
Me
H
S
CHOMe



2304.
Me
Me
H
SO
CHOMe



2305.
Me
Me
H
SO2
CHOMe



2306.
Me
Me
H
S
CHOEt



2307.
Me
Me
H
SO
CHOEt



2308.
Me
Me
H
SO2
CHOEt



2309.
Me
Me
H
S
C═NOMe



2310.
Me
Me
H
SO
C═NOMe



2311.
Me
Me
H
SO2
C═NOMe



2312.
Me
Me
H
S
C═NOEt



2313.
Me
Me
H
SO
C═NOEt



2314.
Me
Me
H
SO2
C═NOEt



2315.
Me
Me
H
S
O



2316.
Me
Me
H
SO
O



2317.
Me
Me
H
SO2
O



2318.
Me
Me
H
S
S



2319.
Me
Me
H
SO
S



2320.
Me
Me
H
SO2
S



2321.
Me
Me
H
S
SO2



2322.
Me
Me
H
SO
SO2



2323.
Me
Me
H
SO2
SO2
















TABLE 12







Inventive compounds of the general formula (I) in which Q is Q3, R5 is


hydrogen and n is 1




embedded image


















No.
R2
R3
R4
X
Y
1H NMR





2324.
Me
Me
Me
S
C═O



2325.
Me
Me
Me
SO
C═O



2326.
Me
Me
Me
SO2
C═O



2327.
Me
Me
Me
S
CHOMe



2328.
Me
Me
Me
SO
CHOMe



2329.
Me
Me
Me
SO2
CHOMe



2330.
Me
Me
Me
S
CHOEt



2331.
Me
Me
Me
SO
CHOEt



2332.
Me
Me
Me
SO2
CHOEt



2333.
Me
Me
Me
S
C═NOMe



2334.
Me
Me
Me
SO
C═NOMe



2335.
Me
Me
Me
SO2
C═NOMe



2336.
Me
Me
Me
S
C═NOEt



2337.
Me
Me
Me
SO
C═NOEt



2338.
Me
Me
Me
SO2
C═NOEt



2339.
Me
Me
Me
S
O



2340.
Me
Me
Me
SO
O



2341.
Me
Me
Me
SO2
O



2342.
Me
Me
Me
S
S



2343.
Me
Me
Me
SO
S



2344.
Me
Me
Me
SO2
S



2345.
Me
Me
Me
S
SO2



2346.
Me
Me
Me
SO
SO2



2347.
Me
Me
Me
SO2
SO2



2348.
Me
Me
H
S
C═O



2349.
Me
Me
H
SO
C═O



2350.
Me
Me
H
SO2
C═O



2351.
Me
Me
H
S
CHOMe



2352.
Me
Me
H
SO
CHOMe



2353.
Me
Me
H
SO2
CHOMe



2354.
Me
Me
H
S
CHOEt



2355.
Me
Me
H
SO
CHOEt



2356.
Me
Me
H
SO2
CHOEt



2357.
Me
Me
H
S
C═NOMe



2358.
Me
Me
H
SO
C═NOMe



2359.
Me
Me
H
SO2
C═NOMe



2360.
Me
Me
H
S
C═NOEt



2361.
Me
Me
H
SO
C═NOEt



2362.
Me
Me
H
SO2
C═NOEt



2363.
Me
Me
H
S
O



2364.
Me
Me
H
SO
O



2365.
Me
Me
H
SO2
O



2366.
Me
Me
H
S
S



2367.
Me
Me
H
SO
S



2368.
Me
Me
H
SO2
S



2369.
Me
Me
H
S
SO2



2370.
Me
Me
H
SO
SO2



2371.
Me
Me
H
SO2
SO2
















TABLE 13







Inventive compounds of the general formula (I) in which Q is Q1, R5 is


hydrogen and n is 2




embedded image


















No.
R1
R3
R4
X
Y
1H NMR





2372.
Me
Me
Me
S
C═O



2373.
Me
Me
Me
SO
C═O



2374.
Me
Me
Me
SO2
C═O



2375.
Me
Me
Me
S
CHOMe



2376.
Me
Me
Me
SO
CHOMe



2377.
Me
Me
Me
SO2
CHOMe



2378.
Me
Me
Me
S
CHOEt



2379.
Me
Me
Me
SO
CHOEt



2380.
Me
Me
Me
SO2
CHOEt



2381.
Me
Me
Me
S
C═NOMe



2382.
Me
Me
Me
SO
C═NOMe



2383.
Me
Me
Me
SO2
C═NOMe



2384.
Me
Me
Me
S
C═NOEt



2385.
Me
Me
Me
SO
C═NOEt



2386.
Me
Me
Me
SO2
C═NOEt



2387.
Me
Me
Me
S
O



2388.
Me
Me
Me
SO
O



2389.
Me
Me
Me
SO2
O



2390.
Me
Me
Me
S
S



2391.
Me
Me
Me
SO
S



2392.
Me
Me
Me
SO2
S



2393.
Me
Me
Me
S
SO2



2394.
Me
Me
Me
SO
SO2



2395.
Me
Me
Me
SO2
SO2



2396.
Me
Me
H
S
C═O



2397.
Me
Me
H
SO
C═O



2398.
Me
Me
H
SO2
C═O



2399.
Me
Me
H
S
CHOMe



2400.
Me
Me
H
SO
CHOMe



2401.
Me
Me
H
SO2
CHOMe



2402.
Me
Me
H
S
CHOEt



2403.
Me
Me
H
SO
CHOEt



2404.
Me
Me
H
SO2
CHOEt



2405.
Me
Me
H
S
C═NOMe



2406.
Me
Me
H
SO
C═NOMe



2407.
Me
Me
H
SO2
C═NOMe



2408.
Me
Me
H
S
C═NOEt



2409.
Me
Me
H
SO
C═NOEt



2410.
Me
Me
H
SO2
C═NOEt



2411.
Me
Me
H
S
O



2412.
Me
Me
H
SO
O



2413.
Me
Me
H
SO2
O



2414.
Me
Me
H
S
S



2415.
Me
Me
H
SO
S



2416.
Me
Me
H
SO2
S



2417.
Me
Me
H
S
SO2



2418.
Me
Me
H
SO
SO2



2419.
Me
Me
H
SO2
SO2
















TABLE 14







Inventive compounds of the general formula (I) in which Q is Q2, R5 is


hydrogen and n is 2




embedded image


















No.
R1
R3
R4
X
Y
1H NMR





2420.
Me
Me
Me
S
C═O



2421.
Me
Me
Me
SO
C═O



2422.
Me
Me
Me
SO2
C═O



2423.
Me
Me
Me
S
CHOMe



2424.
Me
Me
Me
SO
CHOMe



2425.
Me
Me
Me
SO2
CHOMe



2426.
Me
Me
Me
S
CHOEt



2427.
Me
Me
Me
SO
CHOEt



2428.
Me
Me
Me
SO2
CHOEt



2429.
Me
Me
Me
S
C═NOMe



2430.
Me
Me
Me
SO
C═NOMe



2431.
Me
Me
Me
SO2
C═NOMe



2432.
Me
Me
Me
S
C═NOEt



2433.
Me
Me
Me
SO
C═NOEt



2434.
Me
Me
Me
SO2
C═NOEt



2435.
Me
Me
Me
S
O



2436.
Me
Me
Me
SO
O



2437.
Me
Me
Me
SO2
O



2438.
Me
Me
Me
S
S



2439.
Me
Me
Me
SO
S



2440.
Me
Me
Me
SO2
S



2441.
Me
Me
Me
S
SO2



2442.
Me
Me
Me
SO
SO2



2443.
Me
Me
Me
SO2
SO2



2444.
Me
Me
H
S
C═O



2445.
Me
Me
H
SO
C═O



2446.
Me
Me
H
SO2
C═O



2447.
Me
Me
H
S
CHOMe



2448.
Me
Me
H
SO
CHOMe



2449.
Me
Me
H
SO2
CHOMe



2450.
Me
Me
H
S
CHOEt



2451.
Me
Me
H
SO
CHOEt



2452.
Me
Me
H
SO2
CHOEt



2453.
Me
Me
H
S
C═NOMe



2454.
Me
Me
H
SO
C═NOMe



2455.
Me
Me
H
SO2
C═NOMe



2456.
Me
Me
H
S
C═NOEt



2457.
Me
Me
H
SO
C═NOEt



2458.
Me
Me
H
SO2
C═NOEt



2459.
Me
Me
H
S
O



2460.
Me
Me
H
SO
O



2461.
Me
Me
H
SO2
O



2462.
Me
Me
H
S
S



2463.
Me
Me
H
SO
S



2464.
Me
Me
H
SO2
S



2465.
Me
Me
H
S
SO2



2466.
Me
Me
H
SO
SO2



2467.
Me
Me
H
SO2
SO2
















TABLE 15







Inventive compounds of the general formula (I) in which Q is Q3, R5 is


hydrogen and n is 2




embedded image


















No.
R1
R3
R4
X
Y
1H NMR





2468.
Me
Me
Me
S
C═O



2469.
Me
Me
Me
SO
C═O



2470.
Me
Me
Me
SO2
C═O



2471.
Me
Me
Me
S
CHOMe



2472.
Me
Me
Me
SO
CHOMe



2473.
Me
Me
Me
SO2
CHOMe



2474.
Me
Me
Me
S
CHOEt



2475.
Me
Me
Me
SO
CHOEt



2476.
Me
Me
Me
SO2
CHOEt



2477.
Me
Me
Me
S
C═NOMe



2478.
Me
Me
Me
SO
C═NOMe



2479.
Me
Me
Me
SO2
C═NOMe



2480.
Me
Me
Me
S
C═NOEt



2481.
Me
Me
Me
SO
C═NOEt



2482.
Me
Me
Me
SO2
C═NOEt



2483.
Me
Me
Me
S
O



2484.
Me
Me
Me
SO
O



2485.
Me
Me
Me
SO2
O



2486.
Me
Me
Me
S
S



2487.
Me
Me
Me
SO
S



2488.
Me
Me
Me
SO2
S



2489.
Me
Me
Me
S
SO2



2490.
Me
Me
Me
SO
SO2



2491.
Me
Me
Me
SO2
SO2



2492.
Me
Me
H
S
C═O



2493.
Me
Me
H
SO
C═O



2494.
Me
Me
H
SO2
C═O



2495.
Me
Me
H
S
CHOMe



2496.
Me
Me
H
SO
CHOMe



2497.
Me
Me
H
SO2
CHOMe



2498.
Me
Me
H
S
CHOEt



2499.
Me
Me
H
SO
CHOEt



2500.
Me
Me
H
SO2
CHOEt



2501.
Me
Me
H
S
C═NOMe



2502.
Me
Me
H
SO
C═NOMe



2503.
Me
Me
H
SO2
C═NOMe



2504.
Me
Me
H
S
C═NOEt



2505.
Me
Me
H
SO
C═NOEt



2506.
Me
Me
H
SO2
C═NOEt



2507.
Me
Me
H
S
O



2508.
Me
Me
H
SO
O



2509.
Me
Me
H
SO2
O



2510.
Me
Me
H
S
S



2511.
Me
Me
H
SO
S



2512.
Me
Me
H
SO2
S



2513.
Me
Me
H
S
SO2



2514.
Me
Me
H
SO
SO2



2515.
Me
Me
H
SO2
SO2









B. FORMULATION EXAMPLES



  • a) A dusting product is obtained by mixing 10 parts by weight of a compound of the formula (I) and/or a salt thereof and 90 parts by weight of talc as an inert substance, and comminuting the mixture in a hammer mill.

  • b) A readily water-dispersible wettable powder is obtained by mixing 25 parts by weight of a compound of the formula (I) and/or salts thereof, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleylmethyltaurate as a wetting agent and dispersant, and grinding the mixture in a pinned-disk mill.

  • c) A readily water-dispersible dispersion concentrate is obtained by mixing 20 parts by weight of a compound of the formula (I) and/or salts thereof with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range for example about 255 to above 277° C.), and grinding the mixture in a ball mill to a fineness of below 5 microns.

  • d) An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and/or salts thereof, 75 parts by weight of cyclohexanone as a solvent and 10 parts by weight of ethoxylated nonylphenol as an emulsifier.

  • e) Water-dispersible granules are obtained by mixing
    • 75 parts by weight of a compound of the formula (I) and/or salts thereof,
    • 10 parts by weight of calcium lignosulfonate,
    • 5 parts by weight of sodium laurylsulfate,
    • 3 parts by weight of polyvinyl alcohol and
    • 7 parts by weight of kaolin,
    • grinding the mixture in a pinned-disk mill and granulating the powder in a fluidized bed by spraying on water as a granulating liquid.

  • f) Water-dispersible granules are also obtained by homogenizing and precomminuting
    • 25 parts by weight of a compound of the formula (I) and/or salts thereof,
    • 5 parts by weight of sodium 2,2′-dinaphthylmethane-6,6′-disulfonate,
    • 2 parts by weight of sodium oleylmethyltaurate,
    • 1 part by weight of polyvinyl alcohol,
    • 17 parts by weight of calcium carbonate and
    • 50 parts by weight of water
    • in a colloid mill, then grinding the mixture in a bead mill and atomizing and drying the resulting suspension in a spray tower by means of a one-substance nozzle.



C. BIOLOGICAL EXAMPLES
1. Pre-Emergence Herbicidal Action Against Harmful Plants

Seeds of monocotyledonous and dicotyledonous weed plants and crop plants are placed in wood-fiber pots in sandy loam and covered with soil. The inventive compounds formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then applied to the surface of the covering soil as an aqueous suspension or emulsion at a water application rate of 600 to 800 l/ha (converted) with addition of 0.2% wetting agent. After the treatment, the pots are placed in a greenhouse and kept under good growth conditions for the test plants. The damage to the test plants is assessed visually after a test period of 3 weeks by comparison with untreated controls (herbicidal activity in percent (%): 100% action=the plants have died, 0% action=like control plants). For example, compounds No. 7, 9, 40, 187 and 189 at an application rate of 320 g/ha each show at least 80% efficacy against Abutilon theophrasti and Amaranthus retroflexus. Compounds No. 9, 40, 187, 189 and 2204 at an application rate of 320 g/ha each show at least 80% efficacy against Matricaria inodora, Stellaria media and Veronica persica.


2. Post-Emergence Herbicidal Action Against Harmful Plants

Seeds of monocotyledonous and dicotyledonous weed and crop plants are placed in sandy loam in wood-fiber pots, covered with soil and cultivated in a greenhouse under good growth conditions. 2 to 3 weeks after sowing, the test plants are treated at the one-leaf stage. The inventive compounds formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then sprayed onto the green parts of the plants as an aqueous suspension or emulsion at a water application rate of 600 to 800 l/ha (converted) with addition of 0.2% wetting agent. After the test plants have been left to stand in the greenhouse under optimal growth conditions for about 3 weeks, the action of the formulations is scored visually in comparison to untreated controls (herbicidal action in percent (%): 100% action=the plants have died, 0% action=like control plants).


Examples of good post-emergence efficacy (PO). For example, compounds No. 7 and 2204 at an application rate of 80 g/ha each show at least 80% efficacy against Abutilon theophrasti and Viola tricolor. Compounds No. 9, 187 and 189 at an application rate of 80 g/ha each show at least 80% efficacy against Abutilon theophrasti and Amaranthus retroflexus. Compounds No. 40, 187 and 189 at an application rate of 80 g/ha each show at least 80% efficacy against Matricaria inodora, Stellaria media and Veronica Persica.

Claims
  • 1. An N-(1,2,5-oxadiazol-3-yl)-, N-(tetrazol-5-yl)- or N-(triazol-5-yl)bicycloarylcarboxamide of the formula (I) or a salt thereof
  • 2. An N-(1,2,5-oxadiazol-3-yl)—, N-(tetrazol-5-yl)- or N-(triazol-5-yl)bicycloarylcarboxamide as claimed in claim 1, in which R1 is (C1-C3)-alkyl, (C3-C5)-cycloalkyl, halo-(C1-C3)-alkyl or (C1-C3)-alkoxy-(C1-C3)-alkyl;R2 is hydrogen, (C1-C3)-alkyl, (C3-C5)-cycloalkyl, halo-(C1-C3)-alkyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy, cyano, nitro, methylsulfenyl, methylsulfinyl, methylsulfonyl, acetylamino, methoxycarbonyl, ethoxycarbonyl, halogen, amino, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl or methoxymethyl;R3 and R4 are each independently hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, (C1-C3)-alkoxy, (C1-C3)-haloalkoxy, (C1-C6)-alkylthio, (C1-C6)-alkylsulfinyl, (C1-C6)-alkylsulfonyl, (C1-C6)-alkoxy-(C1-C4)-alkyl, halogen, nitro or cyano;R5 is hydrogen;R7 and R8 are each independently hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, —OR9, —S(O)mR9, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy-(C1-C3)-alkyl, halogen, nitro, cyano, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by u radicals selected from the group consisting of halogen, nitro, cyano, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C5)-cycloalkyl, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy and (C1-C3)-alkoxy-(C1-C3)-alkyl,orR7 and R8 together with the carbon atom to which they are bonded form a —X1—(CH2),—X2—, —(CH2)s,—X3—, —(CH2)t—X3—CH2—, —(CH2)v—X3—CH2CH2— or —(CH2)w— unit in which each of the (CH2) groups is substituted by m radicals selected from the group consisting of halogen, methyl and (C1-C3)-alkoxy,orR7 and R8 together with the carbon atom to which they are bonded form the —O—N((C1-C3)-alkyl)-CHR10—CH2— or —O—N═CR10—CH2— unit in which each of the (CH2) groups is substituted by m radicals selected from the group consisting of halogen and methyl;R9 is hydrogen, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C2-C3)-alkenyl, (C2-C4)-alkynyl, (C3-C5)-cycloalkyl, (C3-C5)-cycloalkyl-(C1-C3)-alkyl, heteroaryl, heterocyclyl or phenyl, where the three latter radicals are each substituted by s radicals selected from the group consisting of halogen, nitro, cyano, (C1-C3)-alkyl, halo-(C1-C3)-alkyl, (C3-C6)-cycloalkyl, (C1-C3)-alkylthio, (C1-C3)-alkylsulfinyl, (C1-C3)-alkylsulfonyl, (C1-C3)-alkoxy, halo-(C1-C3)-alkoxy and (C1-C3)-alkoxy-(C1-C3)-alkyl;R10 is hydrogen or (C1-C3)-alkyl;X and Y are each independently O, SO2, C═O, C═S, CR7R8, C═NOR10;X1 and X2 are each independently O, S, N(CH3);X3 is O or S;m is 0, 1 or 2;n is 2;r is2or3;s is 2, 3 or 4;t is 1, 2 or 3;u is 0, 1 or 2;v is 2 or 3; andw is2,3,4or5.
  • 3. A herbicidal composition, comprising a herbicidally active content of at least one compound of the formula (I) as claimed in claim 1.
  • 4. The herbicidal composition as claimed in claim 3, in a mixture with at least one formulation auxiliary.
  • 5. A herbicidal composition as claimed in claim 3 additionally comprising at least one pesticidally active substance selected from the group consisting of an insecticide, an acaricide, a further herbicide, a fungicide, a safener and a growth regulator.
  • 6. The herbicidal composition as claimed in claim 5, comprising a safener.
  • 7. A herbicidal composition as claimed in claim 6, comprising cyprosulfamide, cloquintocet-mexyl, mefenpyr-diethyl or isoxadifen-ethyl.
  • 8. A herbicidal composition as claimed in claim 5, comprising a further herbicide.
  • 9. The compound of formula (I) and/or a salt thereof as claimed in claim 1 capable of being used for controlling an unwanted plant.
  • 10. The compound of formula (I) and/or a salt thereof as claimed in claim 1, wherein said compound of formula (I) is capable of being used for controlling an unwanted plant in a crop of a useful plant.
  • 11. The compound of formula (I) capable of being used as claimed in claim 10, wherein said useful plant is a transgenic useful plant.
  • 12. The compound of formula (I) and/or a salt thereof as claimed in claim 2, capable of being used for controlling an unwanted plant.
  • 13. A herbicidal composition as claimed in claim 3 capable of being used for controlling an unwanted plant.
  • 14. An N-(tetrazol-5-yl)bicycloarylcarboxamide as claimed in claim 1 having the formula
  • 15. An N-(tetrazol-5-yl)bicycloarylcarboxamide as claimed in claim 1 having the formula
  • 16. An N-(tetrazol-5-yl)bicycloarylcarboxamide as claimed in claim 1 having the formula
  • 17. An N-(tetrazol-5-yl)bicycloarylcarboxamide as claimed in claim 1 having the formula
  • 18. An N-(tetrazol-5-yl)bicycloarylcarboxamide as claimed in claim 1 having the formula
Priority Claims (1)
Number Date Country Kind
11158258 Mar 2011 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2012/054269 3/12/2012 WO 00 12/20/2013
Publishing Document Publishing Date Country Kind
WO2012/123409 9/20/2012 WO A
US Referenced Citations (2)
Number Name Date Kind
4432986 Erickson Feb 1984 A
20110152084 Kohn et al. Jun 2011 A1
Foreign Referenced Citations (9)
Number Date Country
0 173 657 Mar 1986 EP
0173657 Mar 1986 EP
03010143 Feb 2003 WO
03010143 Feb 2003 WO
03010153 Feb 2003 WO
2004101532 Nov 2004 WO
2004101532 Nov 2004 WO
2011035874 Mar 2011 WO
2012123409 Sep 2012 WO
Non-Patent Literature Citations (6)
Entry
Rao, Der Pharmacia Lettre, 2012, vol. 4, No. 2, p. 620-625.
PubChem compound CID 62306, create date Mar. 28, 2005 [online], retrived from the internet on Sep. 23, 2014. URL; http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=62306.
Komarova et al, FASEB, 2005, p. 1-21.
International Search Report for PCT/EP2012/054269 Mailed May 11, 2012.
European Search Report dated Jul. 22, 2011, issued in counterpart German Application No. 11 15 8258.1.
International Search Report dated May 3, 2012, issued in counterpart European Application No. 2012*054269.
Related Publications (1)
Number Date Country
20140106969 A1 Apr 2014 US